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Abstract 

Van der Houwen, P.J. and Nguyen huu Cong, Parallel block predictor-corrector methods of Runge-Kutta 
type, Applied Numerical Mathematics 13 (1993) 109-123. 

In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our approach 
consists of applying the predictor-corrector method not only at step points, but also at off-step points (block 
points), so that, in each step, a whole block of approximations to the exact solution is computed. In the next 
step, these approximations are used to obtain a high-order predictor formula by Lagrange or Hermite 
interpolation. By choosing the abscissas of the off-step points narrowly spaced, a much more accurately 
predicted value is obtained than by predictor formulas based on preceding step point values. Since the 
approximations at the off-step points to be computed in each step can be obtained in parallel, the sequential 
costs of these block predictor-corrector methods are comparable with those of a conventional predictor-cor­
rector method. Furthermore, by using Runge-Kutta correctors, the predictor-corrector iteration scheme itself 
is also highly parallel. Application of these block predictor-corrector methods based on Lagrange-Gauss pairs 
to a few widely-used test problems reveals that the sequential costs are reduced by a factor ranging from 2 to 
11 when compared with the best sequential methods. 

Keywords. Numerical analysis; stability; parallelism. 

1. Introduction 

We will investigate a particular class of (explicit) predictor-corrector (PC) methods for 
solving the initial-value problem (IVP) for nonstiff, first-order differential equations 

dy(t) 
dt =f(y(t)) (1.1) 
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on parallel computers. It is our aim to improve the conventional PC methods by using parallel 
processors. At a first level, PC methods can be characterized by the values ( p, k, {3), where p 
is the order of the method, k is the number of right-hand side evaluations per step, and {3 
characterizes the stability of the integration process, e.g., f3 may denote the real or imaginary 
stability boundaries f3re and f3im of the method. Evidently, we would like to have a PC method 
in which for given order p, the value of k is small and /3 is sufficiently large. The magnitude of 
{3 should take into account the costs per step, which leads us to the definition of the effective or 
scaled stability boundary /3 / k. 

For sequential computers, the PC methods of Adams type belong to the most efficient 
nonstiff IVP solvers. The PECE mode of these methods are characterized by [p, 2, /3], where 
the effective stability boundaries (f3re• /3im) /2 monotonically decrease from (1.20, 0.60) for 
p = 3 to (0.16, 0.09) for p = 10. Less popular are PC methods based on PC pairs consisting of 
"last step value predictors" and Runge-Kutta (RK) correctors. In P(EC)P- 1 E mode, these 
RK-type PC methods are characterized by {p, s(p -1) + 1, (3}, where s is the number of stages 
of the generating corrector. The effective stability boundaries (f3re• f3im)/(s(p -1) + 1) strongly 
depend on the particular corrector chosen, but are extremely small for the higher-order RK 
correctors. The advantage of the RK-type PC methods is their one-step nature facilitating easy 
implementation and stepsize control. However, the relatively large number of right-hand side 
evaluations per step makes them unattractive from a computational point of view. 

With the introduction of parallel computers, several authors have proposed parallel methods 
(mostly of PC type) and have tried to improve on the sequential PC methods. Parallel PC 
methods can again be characterized by {p, k, {3} if we define k as the sequential number of 
right-hand side evaluations per step, that is, the wall-clock time per step corresponds to the 
time needed to evaluate k right-hand side functions. With this meaning of k, the effective 
stability boundary on parallel computers can again be defined by f3 /k. Let us first consider the 
parallel implementation of the Adams PECE methods and RK-type PC methods in P(EC)P-l E 
mode. The Adams PECE methods are again characterized by {p, 2, {3} indicating that these 
methods do not have intrinsic parallelism. For future reference, the effective stability bound­
aries are listed in Table 1. If the RK-type PC methods are implemented on a parallel computer, 
then we can characterize them by {p, p, /3} which shows that the sequential costs are reduced 
by about a factor s. PC methods of this type have been discussed in [10,12,13,14,16). An actual 
implementation, including a stepsize strategy, and a detailed performance analysis can be 
found in [10) where they were called PIRK methods (parallel iterated RK methods). The 
effective stability boundaries of PIRK methods using "last step value" predictors are listed in 
Table 1 (these methods possess stability boundaries that do not depend on the particular 
corrector chosen). 

There have been several attempts to construct parallel methods without starting from a 
conventional sequential method [5,11,15,19). For a number of these parallel methods, Table 2 

Table 1 
Effective stability boundaries (f3,e, /3im)/ k of PC methods 

p=3 p=4 p=5 p=6 p=7 p=8 p=9 p=lO 

Adams PECE (1.20, 0.60) (0.96, 0.58) (0.70, 048) (0.52, 0.35) (0.39, 0.26) (0.29, 0.18) (0.22, 0.13) (0.16, 0.09) 
PIRK (k = p) (0.84, 0.57) (0.69, 0.70) (0.63, 0.00) (0.59, 0.00) (0.56, 0.25) (0.54, 0.42) (0.52, 0.00) (0.50, 0.00) 
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Table 2 
Effective stability boundaries (f3re' f3im)/ k of various parallel methods 

Method p k f3 := (f3re• f3im) 

Multiblock method [5, Methods {(2.7), (2.9)}] 3 2 (2.49, -) 
BRK method [11, Method (4.1)] 3 1 (0.64, 0.65) 
Miranker-Liniger method [15] 4 I (0.50, 0.04) 
Shampine-Watts-Worland [17,19] 4 2 (0.44, 0.58) 
Multiblock method [5, Method {(2.11), (2.13)}] 4 2 (1.67, -) 
Hermite-Gauss method [14] 4 2 
BRK method [11, Method (4.7)] 4 1 (0.53, 0.05) 
BRK method [11, Method {(4.3), (4.6)}] 4 2 (0.06, 0.05) 
Cyclic multistep method [6, Table 2] 6 2 
BRK method [11, Method {(4.12), (4.13)}] 6 2 (0.87, 0.29) 
Cyclic multistep method [6, Table 2] 8 2 
BRK method [11, Method {(4.14), (4.15)}] 8 2 (0.15, 0.07) 

lists the corresponding {p, k, /3/k} values (if available). We remark that the cyclic multistep 
methods mentioned in this table refer to parallel modifications of the original methods of 
Donelson and Hansen [6]. 

A further increase of the amount of parallelism in step-by-step methods consists of comput­
ing parallel solution values not only at step points, but also at off-step points, so that, in each 
step, a whole block of approximations to the exact solution is computed. This approach was 
successfully used in [7] for obtaining reliable defect control in explicit RK methods. In this 
paper, we want to use this approach for constructing parallel PC methods where the value of k 
is substantially less than the order p and where, at the same time, the effective stability 
boundaries are acceptably large. In our case, the block of approximations is used to obtain a 
high-order predictor formula in the next step by some interpolation formula, e.g., Lagrange or 
Hermite interpolation. By choosing the abscissas of the off-step points narrowly spaced, we 
achieve much more accurately predicted values than can be obtained by predictor formulas 
based on preceding step point values. Moreover, the precise location of the off-step points can 
be used for minimizing the interpolation errors or for maximizing stability boundaries. Since 
the approximations at the off-step points to be computed in each step can be obtained in 
parallel, the sequential costs of this block PC method are equal to those of conventional PC 
methods. Furthermore, by using RK correctors, the PC iteration scheme itself is also highly 
parallel (cf. [10, 13]). The RK-based block PC methods may be considered as block versions of 
the aforementioned PIRK methods, and will therefore be termed block PIRK methods (BPIRK 
methods). 

We concentrated on BPIRK methods based on Lagrange predictors and Gauss corrections. 
The number of sequential function calls per step of Lagrange-Gauss BPIRK methods equals 
k = m + 1, where m denotes the number of iterations performed. Using p-point Lagrange 
interpolation predictors (i.e., the dimension of the block of approximations equals p resulting 
in predictor formulas of order p - 1) and pth-order Gauss correctors, we obtain a p-dimen­
sional BPIRK method whose order equals p for all m (even m = 0). The abscissas of the 
off-step points were used for minimizing the predictor errors (in some sense, see Section 2.3). 
For these BPIRK methods, we computed the effective stability boundaries. It turned out that 
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Table 3 
Effective stability boundaries (f3re' /3;m)/ k of BPIRK methods based on {Lagrange, Gauss} pairs 

p = 4, k = 3 p=6, k = 2 p = 8, k = 1 p = 10, k = 4 

(0.42, 0.42) (0.39, 0.15) (0.39, 0.20) (0.37, 0.36) 

for k ~ 4, the scaled stability boundary f3re/k assumes values in the range [0.31, 0.44]. The 
values of f3im/k are less constant and are often quite small (see Table 6 in Section 2.4). Table 3 
lists cases where k is minimal while both f3relk and f3im/k are "substantial". These figures 
show that the requirement of "substantial" scaled stability boundaries makes the fourth- and 
tenth-order BPIRK methods relatively expensive. However, our numerical experiments reveal 
that in actual applications, the BPIRK methods of order four and ten already perform 
efficiently for k = 1 or k = 2. Hence, we conclude that minimizing the interpolation error leads 
to sufficiently stable methods requiring only one or two sequential function calls per step. 

In Section 3, we present comparisons with sequential and parallel methods from the 
literature for two widely-used test examples, viz. FEHL: the Fehlberg problem (cf. [9, p. 174]) 
and JACB: the Jacobian elliptic functions problem (cf. [9, p. 236]). Let R be the factor by which 
the sequential costs (i.e., wall-clock time) are reduced by applying the BPIRK methods to 
obtain the same accuracy. Then, from a comparison with sequential methods, we find the 
reduction factors listed in Table 4. 

These conclusions encourage us to pursue the analysis of BPIRK methods. In particular, we 
will concentrate on a performance analysis of other predictors and on stepsize strategies that 
exploit the special structure of BPIRK methods . 

. Block PIRK methods 

For simplicity of notation, let the IVP be a scalar problem and let us consider the s-stage 
implicit RK method 

U = Yne + Mf(U), (2.1) 

where A is an s X s matrix, b is an s-dimensional vector, e is the unit vector, U is the stage 
vector with components U,., and where f(U) denotes the vector with components f(U/ 
Suppose that we apply (2.1) at tn with distinct stepsizes a;h, where i = 1, ... , r and a1 = 1. 

Table 4 
Reduction factors obtained by applying BPIRK methods 

Problem Method from the literature BPIRK R 

FEHL Dormand-Prince method of order 5 order 4 2 
Dormand-Prince method of order 8 order 8 5 

JACB Runge-Kutta-Hairer method of order 10 order 10 11 
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Then we obtain a block of r numerical approximations y to the exact solution values 
y(tn + aih) defined by n+ l,i 

(2.2) 
Let 

y ·- (y )T n·- n,l'''''Yn,r ' Yn,1==yn, (2.3) 

and let us approximate the stage vectors Vi by 

U/Ol = V;Yn + hWJ(Yn), i = 1, ... , r, (2.4) 

where v; and W, are s X r matrices determined by order conditions (see Section 2.1). Regarding 

(2.2) as correctors and (2.4) as predictors for the stage vectors, we arrive at the PC method (in 
PE(CE)mE mode) 

W0l =VY + hWf(Y) 
l l n 1 n ' 

UUl=eTY +aMf(uU-ll) 
1 l n 1 1 ' j=l, ... ,m, (2.5) 

y n + l,i = eTYn + aihb Tf(u/ml)' Yn+! := ( Yn+ 1,1' ... ' Yn+ 1JT' 

where i = 1, ... , r and where e1 denotes the first unit vector. We may distinguish the following 
types of predictors: 

Hermite: 

Adams: 

U/Dl = V;Y,, + hU'J(Yn), 

V/01 = Yn,1e + hW,f(Yn), 

Lagrange: W0l =VY 
l l n' 

Explicit BDF: U/01 = J!;Y,, +hW,f(Yn,re). 

In the case of a Lagrange predictor, the PE(CErE mode reduces to P(CE)mE mode. If r = 1, 

then (2.5) reduces to the PIRK method studied in [10]. We shall call (2.5) an r-dimensional 

BPIRK method. 
Given the vector Yn, the r values Y,, + 1.i can be computed in parallel and, on a second level, 

the components of the ith stage vector iterate U/i> can also be evaluated in parallel. Hence, 

r-dimensional BPIRK methods based on s-stage RK correctors can be implemented on a 

computer possessing r parallel processors each of which is itself a parallel system with s 

parallel processors. The number of sequential evaluations of f per step of length h equals 

k = m + 2. If the matrices W, vanish, then k = m + 1. 

2.1. Order conditions for the predictor 

The order conditions for the predictor to be of order q are derived by replacing both Yn and 

u,coJ by exact solution values. On substitution of y(t n _ 1 e +ha) and y(t ne + a;hc ), respectively, 

setting c :=Ae, and by requiring that the residue is of order q + 1 in h, we are led to the 

conditions 

y ( t n e + a; he) - Ji; y ( t n e + h (a - e)) - h W, Y ' ( t,, e + h (a - e)) = 0 { h q + 1), 

i = 1, ... , r. (2.6) 
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Using the relation y(te + hx) = exp(hx d/dt)y(t), we can expand the left-hand side of (2.6) in 
powers of h: 

[exp(h(a;c+e) :t )-(~+ W;h :t) exp( ha :t )]y(tn_ 1) 

q ( d)j ( d)q+l 
= j~OCJil hdt Y(tn-1)+cjq+1) hdt y(t*)=O(hq+I), (2.6') 

where t * is a suitably chosen point in the interval containing the values tn- i + a;h, i = 1, ... , r, 
and where 

c~n,= ~[(a.c +e)i -Vai-jWai- 1] =0 
l j! l l l ' 

j=O, l,. . .,q, i=l,. .. ,r. (2.7a) 

The Cfi\ i = 1, ... , r, represent the error vectors of the predictor formula. From (2.6') we 
obtain the order conditions 

j=O,l, ... ,q, i=l,. . .,r. (2.7b) 

The error vectors Cfq+I) are the principal error vectors of the predictor (it is assumed that 
Cfq+ll does not vanish). 

If the conditions (2.7) are satisfied, then the iteration error associated with the stage vector 
and the step point value satisfy the order relations 

U. _ u,<ml = O(hq+m+l) 
l l ' 

1ere vn+i,; denote the exact corrector solutions. Thus, we have 

fheorem 2.1. If the conditions (2.7) are satisfied and if the generating corrector (2.1) is of order 
p, then the orders of the iteration error and the BP IRK method (2.5) are Piter = q + m + 1 and 
p* := min{p, Piter}, respectively. 

Let q ~ r - 1 and define the matrices 

P;== (e, a;c+e, (a;c+e)2 ,. .. ,(a;c+ef- 1), 

Q==(e, a, a2 ,. • .,a'- 1), 

P;* == ((a;c + e )', .. ., (a;c +et), 

Q* :=(a',. . ., aq), 

R == (0, e, 2a, 3a 2 ,. • ., ( r - 1 )a'- 2 ), R* := (ra'- 1, ••• ,qaq- 1), 

where the matrices P;*, Q*, and R* are assumed to be zero if q = r - 1. Then the conditions 
(2.7) can be presented in the form 

P; - ~Q - W;R = 0, P;* - ~Q* - W;R* = 0, i=l,. . .,r. (2.7') 

Since the abscissas a i are assumed to be distinct, we may write 

~ = [P; - W;R]Q- 1 , P;* - [P; - W;R]Q- 1Q* -W;R* = 0, i=l, ... ,r. 
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Using Theorem 2.1, explicit expressions for the predictor matrices v; and W; can be derived. 
The following theorem presents these matrices for Lagrange predictors and Hermite predic­
tors: 

Theorem 2.2. Let (:J = 1 and (:J = 2 respectively indicate the Lagrange and Hermite predictors. If 

q=(:Jr-1, 

V; =[Pi - (e - l)W;R]wQ- 1, 

W;= (e-1)[PiQ- 1Q* -P;*][RQ- 1Q* -R*r 1, i= 1, ... ,r, 

thenpiter=(:Jr+m, p*=min{p, Piter}, and k=m+(:J, where RQ- 1Q*-R* is assumed to be 
nonsingular. 

In the application of BPIRK methods, we have two natural PC pairs, viz. Lagrange-Gauss 
pairs and Hermite-Radau pairs. The Lagrange-Gauss pairs have the advantage of (i) a 
maximal corrector-order for a given number of stages, (ii) no additional evaluations of f in the 
predictor (since we are aiming at a small number of iterations, say one or two, one extra 
f-evaluation substantially increases the total effort per step), and (iii) less round-off if the 
abscissas ai are narrowly spaced. The disadvantage of Gauss correctors of being only A-stable 
is not relevant here, since BPIRK methods are designed for nonstiff problems, so that more 
stable correctors such as the L-stable Radau correctors are not needed. In the case of Radau 
correctors where the last component of the stage vector is identical to the step point value 
Yn+ 1,,., Hermite predictors are more natural because the additional /-evaluation needed in 
Hermite interpolation formulas is already available. An important advantage of using Hermite 
interpolation is the reduction of the number of processors needed for the implementation of 
BPIRK methods. 

In this paper, we confine our considerations to Lagrange predictors and Gauss correctors. In 
the near future, we intend to compare BPIRK methods employing Lagrange, Hermite, Adams, 
and BDF predictors. 

2.2. Region of convergence 

In actual integration, the number of iterations m is determined by some iteration strategy, 
rather than by order considerations. Therefore, it is of interest to know how the integration 
step affects the rate of convergence. The stepsize should be such that a reasonable convergence 
speed is achieved. 

We shall determine the convergence factor for the test equation y' =A. y, where A runs 
through the eigenvalues of the Jacobian matrix a/ ;ay. For this equation, we obtain the 
iteration error equation 

wn-u=a.zA[u(j-l)_u] z:=hA., 
l l l l l ' 

j= 1, ... ,m. (2.8) 
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Table 5 
Convergence boundaries y(a) 

p=4 p=6 p=8 p=lO 

Gauss-Legendre 3.46a 4.65a 6.06a 7.30a 

Hence, with respect to the test equation, the convergence factor is defined by the spectral 
radius p(aiz.A) of the iteration matrix aiz.A, i = 1, ... , r. Requiring that p(aiz.A) is less than a 
given number a leads us to the convergence condition 

y(a) a 
a;h~ p(af;ay)' y(a):= p(A)' (2.9) 

where y(a) presents the convergence boundary of the method. In Table 5, the maximal 
convergence boundaries y(a) are given for Gauss correctors of orders up to 10. In actual 
computation, the stepsize should of course be substantially smaller than allowed by y(l). 
Notice that for a given integration step h, the maximal damping factor is given by 

a;hp(af ;ay) 
a= 

y(l) 

so that the higher-order correctors listed in Table 5 give rise to faster convergence. 

2.3. On the choice of abscissas a; 

The accuracy of Lagrange interpolation formulas improves if the abscissas of the interpolat­
ing values are more narrowly spaced. However, this will increase the magnitude of the entries 
of the matrix V;, causing serious round-off errors. There are several ways to reduce this 
round-off effect: (i) multi-precision arithmetic, (ii) direct computation of the extrapolated 
values, and (iii) limitation of the spacing of the abscissas. The use of multi-precision arithmetic 
is the most simple remedy, but not always available and usually rather costly. Direct interpola­
tion of the values Yn,I• •.. , Yn,r requires in each step and for each component equation of the 
system of IVPs the solution of a linear system of dimension fJr. Again, this option is rather 
costly. Probably, the most realistic option is a limitation on the minimal spacing of the abscissas 
ai. In [7] where Hermite interpolation formulas were used for deriving reliable error estimates 
for defect control, it was found that on a Silicon Grafics Inc. Power Iris 4D /240S-64 machine 
with 15 digits precision, the abscissas should be separated by 0.2 in order to suppress rounding 
errors. For the more stable Lagrange interpolation formulas, we expect that slightly smaller 
spacings are still acceptable. 

In order to derive further criteria for the choice of suitable values for the abscissas ai, we 
need insight into the propagation of a perturbation B of the block vector Yn within a single 
step. We shall study this for the test equation y' = Ay. First we express y n + 1,; in terms of Yn­
Applying (2.5) and (2.8), we obtain the recursions 

U/0l = [ ~ + Z JiV;] Yn, 

U?l-U;=a;zA[v;U-IJ_Ui), j=l, ... ,m. 
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Hence 

= ( e T + a; zb T [I - a; zA] - 1 ee T) Yn 

+ a; zb T [a; L4] m [ v; + z W; - [I - a; zA] - 1 ee T] Yn 

= R (a; z) e T Yn + a; zb T [a; zA] m [ v; + z W; - [I - a; L4] - 1 ee T] Yn, (2.10) 

where i = 1, ... , r, and R( z) is the stability function of the RK corrector. Let us now replace Yn 
by yn * = yn + B. Then, the perturbed value of y n +I i is given by 

+ a; zb T [a; L4] m [ v; + z W; - [I - a; zA] - 1 ee T] B. (2.10') 

This relation shows that the first component of the perturbation s is amplified by a factor of 
0(1), whereas all other components are amplified by a factor of O(hm + 1 ). 

Let us now return to the choice of the abscissas a;. The values of the a; influence the 
accuracy of the predicted stage values, and hence the accuracy of the block vectors Yn. Let s 
represent the effect on Yn of using inaccurate interpolation formulas in the preceding steps. 
Then, from the preceding discussion, we may conclude that the first component of s is not 
damped. Since the components of the block vectors Yn are calculated independently from the 
predicted stage values, it is important that the interpolation error corresponding to the 
predicted stage values used for the first component of the block vector are small. Thus, we 
should try to minimize the magnitude of the principal error vector C\q +I). 

In the case of Lagrange predictors where q = r - 1, we have to minimize the magnitude of 
qr>. Although we may use (2.7a) for minimizing C\'l, it is more convenient to start with the 
usual expression for the remainder term in Lagrange interpolation formulas. For sufficiently 
differentiable functions y( t ), the r-point Lagrange interpolation formula can be written in the 
form (see e.g. [1, formulas 25.2.1-25.2.3]) 

r ( d ) r 
y(tn+rh)=;~1 L;(r)y(tn-!+a;h)+C<rl(r) hdt y(t*), 

1 r 

C(r)( T) := l n [ T + 1 - a;], 
r. i=I 

(2.11) 

where L;( r) are the interpolation coefficients and t * is a suitably chosen point in the interval 
containing the values tn-I + a;h, i = 1, ... , r. The principal error vectors of the Lagrange 
predictor formulas defined by Theorem 2.2 are given by c('> = c<rl(ca;), i = 1, ... , r. Recalling 
that a 1 = 1, we are led to minimize the magnitude of the values 

1 r 

c<rl(cj)=-, CT[cj+l-a;), j= l,. . .,s. 
T. i=I 
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Confining our considerations to block dimensions r;;:::. s + 1, we set 

(2.12a) 

By this choice, the principal error vector qr) vanishes, so that now all inaccuracies introduced 
by the predictor formula are damped by a factor of 0( h m + 1) ( cf. (2.10 ')). If r > s + 1, then we 
have additional abscissas for improving the predictor formula. It is tempting to use these 
additional abscissas for reducing the magnitude of the other error vectors. From (2.11) it 
follows that the largest error constant (corresponding to the largest values of ai and c) can be 
minimized by choosing the remaining abscissas close to 1. However, as already observed, the 
minimal spacing of the abscissas should be sufficiently large to avoid round-off. From (2.12a) it 
follows that the averaged spacing of the abscissas a 1,. • ., as+I is 1/(s + 1) for correctors with 
c s of= 1 and 1 / s otherwise, the minimal spacing being, in general, smaller. Therefore, it seems 
recommendable to choose the remaining abscissas outside the interval [1, 1 + c J In our 
numerical experiments, we have chosen the remaining abscissas such that averaged spacing 
equals that of the abscissas a 1, ••• , as+ 1• This leads us to define the remaining abscissas 
according to 

s+i 
if c s * 1, then a i = -- , 

s+l 
s+i-1 

i = s + 2, ... , r, 

else ai = , i = s + 2, ... , r. 
s 

(2.12b) 

For Gauss correctors, the order p is equal to 2s, resulting in an averaged spacing 2/(p + 2). 
Recalling that the 15 digits experiments reported in [7] indicate that a minimal spacing of 0.2 is 
acceptable in the case of Hermite interpolation, we expect that on 15-digit computers and for 
orders up to p = 10, an averaged spacing of 2/(p + 2) should be acceptable in the case of the 
more stable Lagrange interpolation formulas. We remark that the optimal location of the 
off-step points for defect control as derived in [7] is in the interval where the defect is to be 
computed, rather than advancing the current step point as in (2.12). 

Finally, we remark that the abscissas defined by (2.12) enable us to develop various cheap 
strategies for stepsize control. For example, if r;;:::. s + 2, then the difference y n _ l,s + 2 - y n.l can 
be used for obtaining an error estimate. 

2.4. Stability 

From (2.10) it follows that we may write 

Yn+l =Mmr(z)Yn, 

R (a 1 z) e T + a 1 zb T [ a 1 zA r [ V1 + z WI - [ I - a I zA] - I ee T] 

R (a r z) e T + a r zb T [ a r zA r [ v,. + z w,. - [ I - a r zA] - 1 ee T] 
Evidently, the asymptotic stability region for m ~ oo is the intersection in the z-plane of the 

stability region Scorr of the generating corrector and the region of convergence defined by the 
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Table 6 
Effective stability boundaries (/jr•' /jim)/ k of BPIRK methods of order p* = p using Lagrange-Gauss pairs with 
r= P 

p k= 1 k=2 k=3 k=4 
4 (0.44, 0.00) (0.40, 0.00) (0.42, 0.42) (0.37, 0.37) 
6 (0.40, 0.08) (0.39, 0.15) (0.39, 0.03) (0.38, 0.39) 
8 (0.39, 0.20) (0.38, 0.28) (0.38, 0.35) (0.37, 0.05) 

10 (0.31, 0.00) (0.37, 0.00) (0.36, 0.03) (0.37, 0.36) 

points z where the eigenvalues of a;zA are within the unit disk. Hence, if the corrector is 
A-stable, then the asymptotic stability region in the left half-plane is completely determined by 
the region of convergence (see Table 5 for convergence boundaries). 

For finite m, the stability regions are given by 

Sstab(m, r) == {z: p(Mm,(z)) < 1}. 

The associated real and imaginary stability boundaries f3re and /3irn can be defined in the usual 
way. 

Let us consider methods where r = p and where the number of iterations is chosen 
dynamically by some iteration strategy. This type of methods use "maximal" block dimension r 
(in the sense that the order of the predictor equals that of the corrector) and iterate until a 
stable result is obtained assuming that the process converges. Again restricting our considera­
tions to Lagrange-Gauss pairs, we obtain the results listed in Table 6. Because the effective, 
real stability boundaries are almost constant for all k, we may use k = 1 when only the real 
stability boundary plays a role. The imaginary stability boundaries show a less regular be­
haviour. BPIRK methods with (r, p, k) = (4, 4, 3), (6, 6, 4), (8, 8, 2), (10, 10, 4) possess reason­
ably large effective real and imaginary stability boundaries (these cases are collected in Table 
3). Notice that in all the cases the convergence regions contains the real and imaginary stability 
intervals, so that the integrations step will not be limited by convergence conditions, but rather 
by accuracy or stability conditions. 

3. Numerical experiments 

We tested accuracy and efficiency aspects of BPIRK methods based on Lagrange-Gauss 
pairs. All experiments are performed on a 28-digit computer, so that the effect of rounding 
errors is negligible. In Section 3.1, we will concentrate on the accuracy of the methods. In 
particular, the effective order and the influence of the number of iterations on the efficiency 
will be tested. In Section 3.2, we compare the BPIRK methods with block RK methods, and in 
Section 3.3 a number of tenth-order methods are compared. In all experiments, the abscissas a; 

are defined according to (2.12). 
The maximal absolute error obtained at t = T is presented in the form 10-.a (L1 may be 

interpreted as the number of correct decimal digits). Negative values of L1 are indicated by * . 
If the order of accuracy shown in the experiments equals the theoretical order p *, then, on 
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halving the (fixed) stepsize, the number of correct decimal digits should increase by 0.3p*. 
Hence, the number of steps, denoted by Nsteps' and .1 are related according to 

N = c2 .:i/(0.3p*J 
neps ' 

where c is a constant depending on the problem. In order to verify this theoretical relation, we 
define the effective order 

L1( h) - L1(2h) 

0.3 
(3 .1) Perf := 

In the first step, we always set r = 1 and k = m + 1 = p, where k is the number of sequential 
function calls per step. For the subsequent steps, we used either r = 1 (PIRK methods) or 
r = p, while k is specified in the tables of results. These methods will be denoted by 
PIRK(p, k) and BPIRK(p, k). The stepsize is chosen such that the total number of sequential 
function calls (approximately) equals a prescribed number Nsew Since Nseq = p + k(Nsteps - 1), 
we have 

[ /V.~eq - P 1 l 
N~teps = 1 + + - , 

p-r+l 2 

T-t 0 
h:=-­

Nsteps ' 

where [ ·] denotes the integer part function and T denotes the end point of the integration 
interval (the effect of the integer part operation causes that the actual number of sequential 
right-hand sides may be slightly different from the prescribed number Nseq). 

3.1. Accuracy tests 

Consider the often-used test problem of Fehlberg (cf. [9, p. 174]) 

Y~ = 2ty 1 log(max{y 2 , 10-3}), 

Y~ = -2ty 2 log(max{y 1 , 10- 3}), 

with exact solution 

Y1(0) = 1, 

yi(O) = e, 

Y1(t) = exp(sin(t 2 )), y 2(t) = exp(cos(t 2 )). 

O<,t<,T, (3.2) 

Tables 7 and 8 present results for the fourth- and eighth-order Gauss correctors. We listed 
values of L1 for prescribed numbers Nseq of sequential function calls and the effective orders 

Table 7 
Correct decimal digits at t = T = S for problem (3.2) 

240 
480 
960 

1920 

Perr 

DOPRI5 

2.9 
4.6 
6.0 

PIRK(4, 4) 

1.2 
2.7 
3.9 
5.1 

4.0 

BPIRK(4, k) 

k = 1 k=2 k=3 

3.5 3.5 2.4 
5.1 4.8 3.7 
6.7 6.0 4.9 
8.2 7.2 6.1 

5.0 4.0 4.0 
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Table 8 
Correct decimal digits at t = T = 5 for problem (3.2) 

Nseq DOPRI8 PIRK(8, 8) BPIRK(8, k) 

k = 1 k=2 k=3 

240 1.5 6.8 8.1 7.4 
480 6.0 10.8 11.7 9.7 
960 7.0 8.3 13.8 14.2 12.1 

1920 9.9 10.3 16.9 16.7 14.5 

Peff 6.7 10.3 8.3 8.0 

Peff corresponding to the smallest stepsize h. In order to appreciate the accuracy of the BPIRK 
methods, we added the Li-values produced by the PIRK methods and by the "best" sequential 
methods currently available. In Table 7 we included results obtained by the 5(4) Dormand­
Prince RK pair (DOPRIS) taken from [9, Fig. 4.3], and in Table 8 we included results obtained 
by the 8(7) Dormand-Prince RK pair (DOPRI8) (see [10, Table 5]). Unlike the BPIRK results, 
the DOPRI results are obtained using a stepsize strategy, so that at first sight, a comparison 
may not be fair. However, the BPIRK methods can be provided with a stepsize strategy without 
additional costs per step (see [10]) and, for problem (3.1), stepsize strategies do not change the 
(Nseq• L1) results very much. This may be concluded from a comparison of the PIRK(8, 8) 
results of Table 8 with the results reported in [10, Table 5] for the stepsize control version of 
PIRK(8, 8), i.e. the code PIRK8. Therefore, it seems fair to conclude that for the Fehlberg 
problem (3.1) the BPIRK(4, 1) method is at least a factor two faster than DOPRI5, and 
BPIRK(8, 2) beats DOPRI8 by at least a factor five. 

3.2. Comparison with other parallel methods 

In [11] parallel block Runge-Kutta methods (BRK methods) of orders up to 8 for nonstiff 
problems have been constructed and were shown to be highly efficient when compared with 
sequential methods. One of the test examples in [11] is the equation of motion of a rigid body 
without external forces (problem JACB in [9, p. 236]): 

Yi= Y2Y3, 

Y; = -Y1Y3, 

y~ = -0.5ly 1y2 , 

Y1(0) = 0, 

Y2(0)=1, O~t~T. 

y 3(0)=1, 

(3.3) 

Table 9 presents a comparison of the most efficient BRK methods with BPIRK methods of the 
same order. These (fixed-stepsize) results show that the BPIRK methods are about four times 
as efficient as the BRK methods. However, the BRK methods are all two-processor methods, 
whereas the BPIRK methods require p 2 /2 processors. 

3.3. Comparison of tenth-order methods 

We repeat the (fixed-stepsize) experiment performed in [8], where a number of methods 
were compared by applying them to problem (3.3) with T = 60 and by counting the number of 
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Table 9 
Comparison with methods from the literature for problem (3.3) with T = 20 

Sequential right-hand sides N.,eq 120 240 480 960 Peff p* -p 

BRK [10, PC pair (4.3)-(4.6) of Table 5.4] * 3.3 4.7 6.0 4.3 4 
BPIRK (4, 1) 4.3 5.8 7.2 8.7 5.0 4 

BRK [10, PC pair (4.12)-(4.13) of Table 5.4] 3.2 5.1 6.9 8.7 6.0 6 
BPIRK (6, 1) 6.8 9.3 11.3 13.4 7.0 6 

BRK [10, PC pair (4.14)-(4.15)] 2.9 7.4 9.8 12.2 8.0 8 
BPIRK (8, 2) 8.7 11.4 13.8 16.2 8.0 8 

Table 10 
Comparison with tenth-order methods from the literature for problem (3.3) at T = 60. 

Method k p Nsteps Ll Nseq 

Runge-Kutta-Curtis (cf. [8]) 18 10 240 9.9 4320 
Runge-Kutta-Hairer [8] 17 10 240 10.1 4080 
PIRK(lO, k) method [10, Table 4] 10 10 150 10.0 1560 
BPIRK(lO, k) 1 10 410 10.1 419 

2 10 190 10.l 389 
3 10 120 10.0 369 

(sequential) function calls needed to obtain 10 digits accuracy. In Table 10, we reproduce the 
values given in [8,10] for a few tenth-order methods, and we added the results obtained by our 
tenth-order BPIRK method. From these results we conclude that the BPIRK(lO, 3) method is 
about eleven times cheaper than the sequential Runge-Kutta-Hairer method and about four 
times cheaper than the PIRK(lO, 10) method. 
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