
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

S.L. van de Velde

Minimizing total completion time in the two-machine flow shop
by Lagrangian relaxation

Department of Operations Research and System Theory Report OS-R8808 June

Bibliotheek
Cr:nt.mm voor Wi7..kunde eri lnformalea

AmslerrJ~fT>

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyri~ht (~ Stichting Mathematisch Centrum, Amsterdam

Minimizing Total Completion Time in the Two-Machine Flow Shop

by Lagrangian Relaxation

S.L. van de Velde
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A branch-and-bound algorithm is presented for the two-machine flow shop problem with the objective of
minimizing the sum of the job completion times. Lower bounds and precedence constraints result from a
Lagrangian relaxation of this problem. The Lagrangian subproblem turns out to be a linear ordering problem,
that is polynomially solvable for appropriate choices of the Lagrangian multipliers. Earlier published lower
bounds are shown to coincide with two of these choices. Several dominance criteria are given to restrict the
search tree. Computational experiments show that the proposed algorithm outperforms the previously best
method.

1980 Mathematics Subject Classification (1985): 90835, 90C27.
Key Words & Phrases: flow shop scheduling, Lagrangian relaxation, linear ordering problem, branch-and­
bound, computational experience.
Note: This paper has been submitted for publication.

1. INTRODUCTION

An m-machine flow shop is described as follows. There are m machines, each of which can handle at most
one job at a time. There are n independent jobs, each consisting of a chain of m operations. The h-th
operation of job i has to be scheduled on machine h during a positive uninterrupted processing time
(h = l, ... ,m; i = l, ... ,n). Note that the jobs pass through the machines in the same order. A schedule
defines a job order for each machine.

The bulk of flow shop research in the last decades has been focused on the minimization of the max­
imum of the job completion times, i.e., the length or makespan of a schedule. However, Gupta and Dudek
(1971) pleaded that criteria in which the costs of each job are reflected have a better economic interpreta­
tion than the makespan objective has.

This paper deals with the minimization of the sum of completion times in a two-machine flow shop. It
is well known that for this problem it suffices to optimize over all permutation schedules (Conway 1967).
A permutation schedule is a schedule in which every machine has the same job sequence. Ignall and
Schrage (1965) were the first to study this problem. They presented a branch-and-bound scheme, based
on two lower bounds. The heuristics presented by Krone and Steiglitz (1974) were applied by Kohler and
Steiglitz (1975) in further developing and testing the Ignall and Schrage algorithm. Garey and Johnson
(1976) proved the problem to be NP-hard.

Szwarc (1983) developed some properties for them-machine flow shop problem with the total comple­
tion time criterion and defined a class of well-solvable cases. A more elaborate treatment of well-solvable
cases can be found in Adiri and Amit (1984). Bansal (1977) extended the branch-and-bound algorithm
proposed by Ignall and Schrage to them-machine case.

We will develop a branch-and-bound procedure that uses lower bounds obtained with Lagrangian
relaxation techniques. Although the concept of Lagrangian relaxation has shown its merits for many

Report OS-R8808 .
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

types of combinatorial optimization problems (see Fisher (1981) for a survey), its use in scheduling
theory, outside the area of single machine problems with minsum criteria, is limited. Scheduling problems
dealing with multiple machines, and especially flow shop and job shop problems, seldomly give way to
promising relaxations. Fisher et al. (1983) confirm this observation in their (unsuccessful) attempt to
apply the related technique of surrogate relaxation to the notorious job shop scheduling problem. A not­
able exception is the paper by Hariri and Potts (1984) for the two-machine flow shop problem with the
objective of minimizing makespan subject to precedence constraints.

The organization of this paper is as follows. In Section 2 a formulation of the problem will be given,
followed by a relaxation. The resulting subproblem is a linear ordering problem, that, although it is
known to be NP-hard, is efficiently solvable for some special situations. There appears to be a class of
Lagrangian multipliers that converts the subproblems into polynomially solvable linear ordering prob­
lems. The two Ignall and Schrage lower bounds correspond to two particular choices within that class. It
is shown how the new lower bounds can be strengthened, and the last subsection is concerned with the
derivation of precedence constraints between jobs. Section 3 presents some dominance criteria to restrict
the search tree. In Section 4, there is a complete description of the algorithm and a presentation of some
computational results. Section 5 concludes with a few remarks and some directions for possible exten­
sions.

2. THE RELAXATION

Letph; denotetheprocessingtimeofjobi(i = l, ... ,n)onmachineh(h = 1,2). The problem of minimiz­
ing the sum of the job completion times in a two-machine flow shop can then be formulated as follows:
determine completion times chi (h = 1,2; i = l, ... ,n) that minimize

subject to

the precedence constraints between the operations of job i (i = l, ... ,n),

the capacity constraints of machine h (h = 1,2).

Condition (1) will be formulated as

(i = l, ... ,n).

In the sequel of this paper, condition (2) will be assumed to be implicitly present.

(P)

(1)

(2)

A vector of multipliers A = ("A1, ••• , An) is introduced for dualizing conditions (1). Lagrangian relaxa­
tion of those constraints yields the Lagrangian problem (LR):

n
L("A) = min ~("A;Cli + (1-"A;)C2; + "A;p2;). (LR)

i=l

From standard Lagrangian theory (Fisher 1981), it is known that for any given A~ 0, the value L("A) pro­
vides a lower bound to (P). In order to prevent that L("A) becomes arbitrarily small, we require that A,,;;; 1.

In the Lagrangian problem, the operations of a job can be processed simultaneously. Hence, the prob­
lem decomposes into two single-machine problems, that can easily be solved by Smith's (1956) shortest
weighted processing time rule. In concreto, this implies that jobs are scheduled on machine 1 and
machine 2 in order of non-increasing ratios "A;I p Ii and (1 - "A;) Ip 2; respectively.

However, the gist of our approach lies in imposing the restriction that (LR) is solved over all permuta­
tion schedules. This is a redundant condition for the primal problem, but it may increase the value L("A).
We will choose the multiplier vector A in such a way that (LR) can be solved in polynomial time.

To that end, we will first reformulate the problem of solving (LR) for a given "A over all permutation
schedules as a linear ordering problem. The linear ordering problem is the following: given an n X n matrix
A = (aij) of weights, find a permutationu of {1, ... ,n} that maximizes the sum

3

~ aij.
(i,j):a(i)<o(j)

In our application, we identify G(i) with the job that is put in the i-th position. ·Since in problem (LR) we
have that

it follows that

Chi= ~ Phj•
j :a(j),.;;a(i)

n n n

~(AiCli +(l-A;)C2i)= ~A; ~ P1j + ~(1-A;) ~ P2j
i =I i =I j :a(j),.;;a(i) i =I j :a(j),.;;a(i)

n n n

= ~ ~(AiPij + (l-Ai)P2)- ~ ~ (A;pij + (l-Ai)P2j)·
i = Ij = I i = lj :a(i)<a(J)

(3)

Hence, minimizing (LR) over all permutation schedules is equivalent to finding a permutation G that max­
imizes

~ (A;P1j + (l-A;)p2)· (4)
(i,j):a(i)<a(j)

Kolen (1986) proved, by an adjacent pairwise interchange argument, that the linear ordering problem is
polynomially solvable for two special cases. If the weights are in product form, i.e., aij = xiyj, the linear
ordering problem is solved by ordering according to non-increasing ratios xi I Yi· This ordering is exactly
induced by Smith's rule. The linear ordering problem can also efficiently be solved if the weights are in
sum form, i.e., aij = xi + Yj· In that case, an optimal permutation is obtained by ordering the elements
according to non-increasing valu~s xi - Yi. The choice Aj = c for each j, for some constant c (0 .:;;;; c .:;;;; 1),
converts (4) into an even simpler polynomially solvable case of the linear ordering problem: we get the
form aij = yj, solved by ordering according to non-decreasing values Yj· Hence, for those particular
values of A, solving problem (LR) over all permutation schedules amounts to scheduling the jobs in order
of non-decreasing values cp 1j + (1-c)pij· The values c = 0 and c = 1 render exactly the Ignall and
Schrage lower bounds, and in fact these bounds result from applying Smith's rule to each of the machines
separately.

In the sequel of this paper the notation (LR(c)) refers to problem (LR) with Aj = c for eachj. L(c)
denotes the optimal objective value of problem (LR(c)).

2.1. SOLVING THE LAGRANGIAN DUAL

Of course, we are particularly interested in solving the (restricted) Lagrangian dual (D), that is, in finding
that value of c (0 .:;;;; c .:;;;; 1) that maximizes L (c):

n
max min ~(Cu+ c(Cli + P2i - C2i)).

O,.;;c,.;; I i=l
(D)

We assert that (L(c)) is a continuous, concave and piecewise-linear function in c. Hence, an optimal solu­
tion is achieved in a point of non-differentiability or breakpoint. These breakpoints can be characterized
in the following way.

Job i is called c-preferable to job j if cp 1i + (1-c)pu < cp 1j + (l -c)pij· If job i is c-preferable to job j
for all c (0 .:;;;; c .:;;;; 1), then job i is strongly preferable. For each pair of jobs (i,j) without a strong preference
relation, a critical value is defined as the value of c for which both jobs are equally preferable, i.e.,
cp Ii + (l-c)p2i = tp 1j + (1-c)pij· These critical values are precisely the points of non-differentiability.

The procedure to solve (D) is the following. Find the O(n 2) critical values and sort them in non­
decreasing order. From (D), one can tell for each critical value o whether o +£or o-£, with E: > 0 and£
sufficiently small, is the direction of ascent. In case o has no direction of ascent, then of course o is the
breakpoint at which the optimal solution is attained. So the optimal breakpoint can be achieved by a
binary search over all breakpoints.

4

2.2. STRENGTHENING THE LOWER BOUND

Let c* be the value of c that solves problem (D). Suppose now that the multiplier vector A is perturbated
in the i-th component by a term A;, i.e., A; = c* +A;. Suppose further that this perturbation does not
change the processing order. Obviously, the lower bound would be affected by the term

A;(C!i + p2; - C2i). (5)

Define aij = A;p V + (l -A;)p 2j. If A; would be perturbated by A;, then the i-th row in the weight matrix
A for the linear ordering problem would turn into aij + A;(plj - p2j), for j = l, ... ,n. The issue now is to
determine the range for A; such that the optimal solution to the perturbated problem is the same as to
(LR(c*)). A sufficient condition for this is that for each} (j = l, ... ,n, j =I= i)

aji ;;;;. aij + A;(p lj - p 2j) if o{i) > a(j),

aji .;;;;; aij + A;(p lj - p 2j) if a(i) < a(j).

The next step is then to calculate for each j, j =I= i, the value 8ij such that aji and (aij + 8ij(p lj - p2j)) coin­
cide, if such a value exists. From this, we get

8;j = (aji - aij)/(plj -p2j) if P1j=l=P2j•

if Plj =p2j• aij=l=aji, cli + P2i - c2i >0,

if P1j = P2j• aij =l=aji, Cli + p2; - C2; < 0,

= 0 if Plj = P2j• aij = aji.

Defining At = minj 1s
1
;;;.o 8j and A;- = maxj 1s

1
..;;o 8j, respectively, we conclude that as long as A; is pertur­

bated by A; with A;- .;;;;; A;.;;;;; A;+, the optimal solution to (LR(c*)) is also optimal to the perturbated
problem. Therefore, the current lower bound can be improved by perturbating the Lagrangian weights in
the following way:

(a) A;~ min{A;+At,l} if Cli+p2;>C2;,

(b) A; ~ max{ A;+ A;-, 0} if Cli + p2; < C2;.

This analysis can consecutively be performed for each job i. It is important to note that the ultimate
strengthened lower bound depends on the order in which the multipliers have been adjusted.

2.3. PRECEDENCE CONSTRAINTS

A job i is said to have precedence over job j, denoted by i ~ j, if there is an optimal solution in which job i
precedes job j. The technique of deriving precedence constraints is based upon the following concept. Let
(LR(c,i ~ j)) denote problem (LR(c)) to which we added the constraint i ~ j, while job j is c-preferable to
job i. Clearly, we have that L(c,i ~ j) > L(c). If L(c,i ~ j) exceeds a known upper bound, then obviously
there is an optimal solution to (P) in which j ~i. We only have to deal with the question whether
(LR(c,i ~ j)) is polynomially solvable. Fortunately, this is the case. A single machine result from Monma
and Sidney (1979) for objective functions that possess the adjacent pairwise interchange property applies
to problem (LR(c)). This result clears the way for solving (LR(c,i ~ j)) in a quite straightforward way.

THEOREM 1. For problem (LR (c,i ~ j)) with job j preferable to job i, there is an optimal permutation with job
j immediately succeedingjob i.

Again, this can be demonstrated by an interchange argument.
By use of Theorem 1, an optimal permutation for (LR(c,i ~ j)) can be found in the following way. Start

by scheduling all jobs as in the solution for problem (LR(c)) and remove the jobs i and j from this
sequence. Call this permutation 'IT. The module { i,j} is then inserted just before the first job k E {'IT} for
which 2(cp 1k + (l -c)p21c) > c(pli + plj) + (l -c)(p2; + p 2j). If no such job exists, then {i,j} is
scheduled last. This condition stems from evaluating the objective values for (LR(c)) for the sequences ijk

5

and kij respectively. The lower bound resulting from (LR(c,i ~ j)) can be strengthened in the same spirit
as was outlined in Section 2.2.

3. DOMINANCE CRITERIA

A node at level k of the branch-and-bound procedure corresponds to an initial ,partial sequence '1T in
which k jobs have been put in the first k positions. For each node at level k, at most n -k descendant
nodes are created, one for every job without unscheduled predecessors. Let Ch('1T) be the completion time
of the last job in sequence '1T on machine h. The sum of the completion times on machine 2 of the jobs in '1T
is denoted by TC('1T). Then there is no need to branch from a node having '1T as an initial sequence if there
is permutation 'IT• of the jobs in 'IT, 'IT* =/='IT, that satisfies the following conditions:

TC('1T*) ~ TC('1T), (6)

(7)

In that case we say that the sequence '1T is dominated by 'IT*. Condition (7) ensures that the unscheduled
jobs can start on machine 2 at least as soon with 'IT* as with '1T as an initial sequence. Of course, finding out
whether a given permutation '1T is dominated or not is as hard as the original problem. A dominance rule
gives an easy to check sufficient condition for the existence of dominance.

The next result comes forth from this dominance concept, but it boils down to a rule to generate a priori
precedence constraints.

THEOREM 2. If for jobs i and j it holds that p2; = p2j and p Ii ~ p lj• then there is an optimal permutation in
which job i precedes job j.

PROOF. We shall compare two sequences '1T1 i'1T2j'1T3 and '1Tij'1T2i'1T3 : the orders are identical except for jobs i
and j. Then we have that C1('1T1j) = C1(7T1i) + Plj - p1; and therefore C2('1T1j);;;:;.: C2('1T1i). Further­
more, for every job k E '1T2 it holds that C2('1Tij'1Tkk);;;;.: C2('1T1i'1Tkk), where '1Tk denotes those jobs of subse­
quence '1T2 that are scheduled before job k. Consequently, C2('1Tij'1T2);;;a.: C2('1T1i'1T2) and from this and
from C1('1Tij'1T2i) = C1('1T1i'1Tij) we derive that C2('1T1i'1T2j) ~ C2('1T1j'1Tzi). This is exactly condition (7).
Totalling all processing times yields TC 2 ('1T1 i'1T2j) ~ TC 2 ('1T1j'1T2i). Since these arguments are irrespective
of the subsequences 'lTJ, '1T2 and 7T3, the conclusion that job i precedes job j is warranted. D

The next rules should be checked as soon as we are about to add a new job j to the current initial
sequence. The dynamic programming dominance criterion is probably the most obvious one. A node that
adds job j to the sequence '1Ti can be eliminated if it is dominated by the sequence '1Tji. The second one
reschedules '1Tj into 'IT* according to Johnson's rule (1954) for minimizing makespan for a two-machine
flow shop. Then certainly, condition (7) is satisfied. It is left to find out whether TC2('1T*) ~ TC 2('1Tj).
The third rule compares the new sequence 'lTJ i'1T2j with '1T1j'1T2 i, where job i is selected such that p 1; ~ p lj
and P2i <pzj· From the arguments we used for Theorem 2 we know that TC('1T1 i'1T2j) ~ TC('1Tij'1T2i). It
can rapidly be verified whether condition (7) also holds. It should be noted that in case ties occur imple­
mentation of these rules should be carried out carefully in order not to eliminate both sequences.

4. THE ALGORITHM

Before starting the actual branch-and-bound procedure, we do some preprocessing in order to find an
upper bound, to derive precedence constraints, and to accelerate the calculations in a node of the tree. As
far as an upper bound is concerned, we begin with a random permutation and we try to improve its sum
of the job completion times by local interchanges. In this way we get some upper bound, say, UB. Furth­
ermore, we store 21 permutations that solve the problems (LR(c)) with c = x/20, x = 0, ... ,20 respec­
tively. Preliminary calculations showed that the function (LR(c)) is very flat around the optimum. This
storage enables a significant reduction in lower bound calculation time, since we only have to sort the jobs
for each value of c once. This storage enables the calculation of (L(c)) in a node of the tree in only linear

6

time.
In order to derive additional precedence constraints, the best c, say, c* among these 21 values is

achieved by a binary search. The completion times on both machines can easily be calculated from (3),
taking linear time, albeit that we can put C2i ~ C2i + min1.;;J.;;nP1J for each job i (i = l, ... ,n), since the
second machine is surely idle until min1.;;1.;;nPIJ· For problem (LR(c*)) we try to derive precedence con­
straints as described in Section 2.3. For that purpose, we introduce an n Xn matrix X with elements
xiJ = L(c*,i ~ j) and Xu = 0. It is necessary to store this matrix, since, as soon as we find a better upper
bound, new precedence constraints can possibly be derived.

Furthermore, for each value of c we determine and store the maximum perturbation values !::./ and
!::..j, for each job i (i = 1, ... , n). Actually, these values depend on the set of unscheduled jobs and, conse­
quently, these values are likely to increase if we go down the search tree. However, this storage reduces the
cost of lower bound strengthening from O(n 2) to O(n) time per call. The deficiency of this weakened
strengthening procedure was more that compensated by the reduction in computation time.

Table 1: Computational results on a V AX-780 computer

IGNALL and SCHRAGE PROPOSED
ALGORITHM ALGORITHM

max. #
active total# time total# time

data set nodes nodes sec nodes sec
10.1 5 53 0.86 9 1.54
10.2 13 84 0.88 10 1.30
10.3 18 152 0.96 14 1.52
10.4 117 728 3.10 57 1.86
10.5 135 957 3.94 169 2.70
15.1 1462 13718 92.99 693 9.48
15.2 2097 11156 116.86 388 7.44
15.3 1721 17712 142.36 603 9.66
15.4 676 2946 18.58 169 5.04
15.5 4280 35442 958.74 380 6.02
20.1 5213 (98.81%) 336.72 963 18.98
20.2 6411 (95.28%) 281.02 9235 95.45
20.3 5266 (97.12%) 182.19 1282 21.66
20.4 8909 (90.43%) 489.98 8846 102.61
20.5 8184 (96.72%) 422.38 4913 56.28

The Ignall and Schrage algorithm follows a best bound strategy. For each of the new nodes the
corresponding lower bound is calculated and, if this lower bound is smaller the current upper bound, this
new node is inserted in a list of active nodes. That list is sorted in order of non-decreasing lower bounds.
The node on top of this list is chosen to branch from. A significant advantage of such a list is that it facili­
tates dominance checking. However, in the worst case, the size of this list is exponential in the number of
jobs. Computational experiments made it clear to us that this dominance checking was only advanta­
geous for instances with n up to 10.

In contrast to the Ignall and Schrage procedure, we use an active node strategy. This means that for only
one non-fathomed node at level k its descendant nodes, of which there are at most n - k, are generated.
These descendant nodes are stored in a separate list, sorted according to a branching rule, and we pick the
node on top of this list to branch from. This node becomes the active node at level k + 1. Such a pro­
cedure only requires 0 (n 2) space, since at each level k we have a list of at most n - k jobs. The only thing

7

that remains to explain is the branching rule. The new nodes that add som~ob j without unscheduled
predecessors to an initial sequence 'TT are sorted in non-decreasing order of ~i~{w} Xji· This sum is sup-
posed to reflect some notion of 'costs' if we schedule job j before the other unscheduled jobs.

Both algorithms were coded in C, implemented on a VAX-780 computer, and tested on problems with
10, 15 and 20 jobs. The processing times for each job were taken from the uniform distribution [l,10], as
Kohler and Steiglitz (1975) did in carrying out their experiments. Table 1 presents the results. The entries
in the column 'maximum number of active nodes' give an indication of the space required by the Ignall
and Schrage algorithm. Data inspection shows that the new algorithm outperforms the Ignall and
Schrage procedure, although in case n = 10 it is sometimes slower. The main reason for this lies in the
preprocessing phase. For instance, the derivation of precedence constraints takes O(n 3) time, and is con­
sequently relatively expensive for smaller instances.

As to the Ignall and Schrage algorithm with 20 jobs, computation was terminated after 10000 nodes.
An entry within brackets represents the ratio in percentage upon termination between the lower bound of
the first node in the list and the current upper bound.

5. CONCLUSIONS
The computational tests show that the F2 I I ~CJ problem remains difficult to solve. Nevertheless, the
presented approach proved to be very useful. Most of the results obtained here carry over to the more
general F2 I I ~w1c1 problem. In this problem, each job j has got some weight w1 attached to it, express­
ing its importance relative to other jobs. Performing an analysis along the lines of Section 2, one can find
out that the resulting linear ordering problem can efficiently be solved in case that for each j, A.1 = c, with
c = 0, w1, or w112. For this last choice of A. the weights of the linear ordering problem are in product
form.

REFERENCES
I. ADIRI, N. AMIT (1984). Openshop and flowshop scheduling to minimize sum of completion times.

Computers and Operations Research 11, 275-284.
S.P. BANSAL (1977). Minimizing the sum of completion times of n jobs over m machines in a flowshop - a

branch and bound approach. AIIE Transactions 9, 306-311.
R.W. CONWAY, W.L. MAxwELL, L.W. MILLER (1967). Theory of Scheduling. Addison-Wesley, Reading,

Mass.
M.L. FISHER (1981). The Lagrangian relaxation method for solving integer programming problems.

Management Science 27, 1-18.
M.L. FISHER, B.J. LAGEWEG, J.K. LENSTRA, A.H.G. RINNOOY KAN (1983). Surrogate duality relaxation

for job shop scheduling. Discrete Applied Mathematics 5, 65-75.
M.R. GAREY, D.S. JOHNSON, R. SETHI (1976). The complexity of flowshop and jobshop scheduling.

Mathematics of Operations Research 1, 117-129.
J.N.D. GUPTA, R.A. DUDEK (1971). Optimality criteria for flowshop schedules. AIIE Transactions 3,

199-205.
AM.A. HARIRI, C.N. Porrs (1984). Algorithms for two-machine flow-shop sequencing with precedence

constraints. European Journal of Operational Research 17, 238-248.
E. IGNALL, L. SCHRAGE (1965). Application of the branch and bound technique for some flow-shop

scheduling problems. Operations Research 13, 400-412.
S.M. JOHNSON (1954). Optimal two- and three-stage production schedules with setup times included.

Naval Research Logistics Quarterly 1, 61-68.
W.H. KOHLER, K. STEIGLITZ Q.975). Exact, approximate and guaranteed accuracy algorithms for the

flow-shop problem n I 2/ FI F. Journal of the Association for Computing Machinery 22, 106-114.
A.W.J. KOLEN (1986). A polynomial algorithm for the linear ordering problem with weights in product

form. Report 86221 A, Econometric Institute, Erasmus University, Rotterdam.
M.J. KRONE, K. STEIGLITZ (1974). Heuristic programming solution of a flowshop-scheduling problem.

Operations Research 22, 629-638.

8

C.L. MoNMA, J.B. SYDNEY (1979). Sequencing with series-parallel precedence constraints. Mathematics
of Operations Research 3, 215-224.

W.E. SMim (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly 3,
59-66.

W. SZWARC (1983). The flow-shop problem with mean completion time criterion. IIE Transactions 15,
172-176.

