
Two Simple Protocols

Frits W. Vaandrager
Centre tor Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

After some introductory remarks about the specification and verification of dis
tributed systems in the framework of process algebra, simple versions of the
Alternating Bit Protocol and the Positive Acknowledgement with Retransmission
protocol are discussed.

1. GENERAL INTRODUCTION
In the ACP formalism we can define (specify) networks of processes which
cooperate in an asynchronous way. We can do this by looking at the commun
ication channels in the network as processes which communicate in a synchro
nous way with the processors to which they are connected. Almost always, this
synchronous communication will take place according to the handshaking para
digm: exactly two processes participate in every communication. When we
specify communications of this type we will employ a read! send communica
tion function: Let [) be a finite set of data which can be communicated
between processes, and let IJl> be a finite set of locations (or ports) where syn
chronous communication can take place. The alphabet of atomic actions now
consists of read actions rp (d), send actions sp (d) and communication actions
cp(d) for pEIJl> and dED. As the only communications we have:
y(rp(d),sp(d)) = cp(d).

A typical system that can be specified in this way in ACP is depicted in Fig
ure I. This graphical representation was first used by Jan Willem Klop. The
corresponding process expression is then for instance:

aH(P1 llP2 //P3 [/P 4[[Ps llC1 llC2llC3 [[C4llCs).

Let us stand still for a moment at the issue of the physical interpretation of
expressions of this type and the question about the nature of the events in
reality that are modelled by the read and send actions. In general we will
describe with expressions Pi, P 2 ,. •. and C 1 , C 2 ,... the behaviour of physical

Partial support received from the European Community under ESPRIT project no. 432, An In
tegrated Formal Approach to Industrial Software Development (METEOR).

24

input ports

1'
output port

FIGURE 1

p
3

F. W. Vaandrager

(--- internal
ports

objects. p 1 and p2 for example correspond with personal computers, P3 and
p 4 with disk drives and P 5 with a printer. C 1 up to Cs descnbe cables of a
network connecting all these machines together. All the com~on~nts have a
spatial extent. Now we associate with each port name p E~ a pomt m space on
the border line between two (or more) components (see Figure 2).

\

........ ... ··

c
1

,,

p
······2 · ·

/ \
/ ..
. , \

"·, .. /

.
',i ·1·-. ,.,.,,,,.,_.,.,,,,.w•••''''""'''"•''"'''~'\

': / \ .. \... '•

' / '

FIGURE 2

When process P 1 performs an actions 1(d0) we relate this to the transmission
of a datum d0 by the personal computer. At the physical level this means that
at the location (port I) where cable C 1 is connected to the computer variations
occur in the electric voltage during a certain amount of time. Because d0 can
have a considerable size (think of a file which is sent to the printer) the
transmission can take a lot of time. The instantaneous event associated with
r l(do) occurs at a moment the cable 'knows' that a datum do has been

Two simple protocols 25

transmitted at port L Such a moment occurs when P 1 has almost finished
transmission of this datum. The complementary event s I(do) happens at the
moment that the computer has made so much progress with the transmission
of d0 that the environment has enough information to 'know' that it is d0
indeed. By defining the events in the right way we can ensure that s l(d0) and
r l(d0) coincide. It is impossible that s l(d0) occurs and r l(d0) does not, or the
other way around. Therefore we can consider the occurrence of s l(d0) and
r l(d0) as a single event. This is precisely what we express in process algebra
with the communication function and the encapsulation operator. Notice that
the above interpretation of read and send actions is not in conflict with the
intuition presented in [6) that the instantaneous event associated with an
atomic process should be situated at the beginning of that process. Apparently
a command print(d0) that one can give to the computer corresponds to a pro
cess TS l(d0). At the moment process C 1 knows that d0 is transmitted and the
event c I(d0) occurs, the execution of processes s I(d0) and r l(d0) will not yet
be finished. One possible scenario is that execution of s 1(d0) finishes before
the end of the execution of r 1(d0).

In process theory we assume that the only thing which is interesting about a
system is its external behaviour. Two systems with identical external
behaviour should be identified in principle. From the point of view of process
algebra there is no difference between a labourer assembling bicycle pumps,
and a robot performing the same job. Unless attention is paid in the formal
specification to all kind of details like fluctuations in productivity due to noc
turnal excesses, the approaching weekend, depressions because of the mono
tony of the job, etc.

In order to realise a certain external behaviour (the specification), often a
complex internal structure (the implementation) is needed. This brings us to the
important issue of abstraction. We are interested in a technique which makes it
possible to abstract from the internal structure of a system, so that we can
derive statements about the external behaviour. Abstraction is an indispensable
tool for managing the complexity of process verifications. This is because
abstraction allows for a reduction of the complexity (the number of states) of
subprocesses. This makes it possible to verify large processes in a hierarchical
way. A typical verification consists of a proof that, after abstraction, an imple
mentation IMP behaves like the much simpler process SPEC which serves as
system specification:

ABS(IMP) = SPEC.

In process algebra we model abstraction by making the distinction between
two types of actions, namely external or observable actions and the internal or
hidden action T, and by introducing explicit abstraction operators 'TJ which
transform observable actions into the hidden action (see Figure 3).

Fundamental within the ACP-formalism is the algebraic approach. A
verification consists of a proof of a statement of the form:

ACP T + ... I- T1(IMP)=SPEC.

26 F. W. Vaandrager

FIGURE 3

The idea is that 'users' can stay in the realm of the formal system and execute
algebraic manipulations, without the need for an excursion into the semantics.

2. THE ALTERNATING BIT PROTOCOL
The most studied communication protocol in existence is undoubtedly the
Alternating Bit Protocol (ABP). Whenever somewhere in this world someone
introduces a new formalism for concurrent processes, you can count on it that
the practical applicability of the formalism is illustrated by means of a
specification and verification of a variant of the ABP. As a first test-case for a
concurrency theory the protocol is very appropriate indeed: the protocol can
be described in a few words, but the formal specification and verification of it
forms a non-trivial problem. However, for real practical application of a con
currency theory much more is needed. In the analysis of realistic protocols one
encounters various problems of scale which cannot be observed when dealing
with the ABP.

We do not want to break with the traditions concerning the ABP, and will
start here with a discussion of a simple variant of the ABP in the setting of
process algebra. More complex protocols are dealt with in some other contri
butions of this volume.

Other discussions of the Alternating Bit Protocol can be found in
[2, 8, 10, 12, 15]. In the context of ACP the protocol was verified for the first
time in [4]. The discussion of the ABP here is based on a streamlined version
of the proof, given by the author, which can be found in [5]. Variants of the
ABP are discussed in the setting of process algebra in [7, 9].

2.1. Specification
The Alternating Bit Protocol can be visualised as follows:

Two simple protocols 27

s R
K

1
2

/' ' input
L output port

port

FIGURE 4

Let D be a finite set of data. Elements of D are to be transmitted by the proto
col from port 1 to port 2. There are four components: a sender S, a receiver
R, and two channels K and L.

2.1.1. Component S. S starts by Reading a Message (RM) at port 1. Then a
frame consisting of the message from D and a control bit is transmitted via
channel K (SF= Send Frame), until a correct acknowledgement has arrived via
channel L (RA= Receive Acknowledgement). In equations we will always use
the symbol d to denote elements from the set D, b denotes an element from
B = {O, l }, and f finally is used for frames in D XB. In Table I we 'declare'
the recursive specification that gives the behaviour of component S. After a
variable has been declared we will use it without mentioning the corresponding
specification.

s = RM0

RMb = ~ r l(d) ·SFdb
deD

SFdb = s3(db) ·RAdb

RAdb = (r5(1-b)+r5(ce)) ·SFdb +r5(b) ·RMl-b

TABLE I. Recursive specification for component S

Graphically we can depict process S as in Figure 5. In a certain sense the
figure is inaccurate: instead of a node SF" 0 for each element e in D, there is
only a single node spdO. Between each pair of nodes we draw only one edge,
which however can be labelled with more than one action. Figure 5 can be
considered as a 'projection' of the transition diagram belonging to S.

28

r5(1)
r5(ce)

ell
SF

s3(d0)

rl(d)

r5(0) RMI

FIGURE 5

r5(1)

rl(e)

F. W. Vaandrager

el
RA

s3(el)

el
SF

r5(0)
r5(ce)

2.1.2. Component K. We assume that two things can happen if we send a
frame into channel K: (1) the message is communicated correctly, (2) the mes
sage is damaged in transit. We assume that if something goes wrong with the
message, the receiver hardware will detect this when it computes a checksum
(ce =checksum error). Further the channels are supposed to be fair in the
sense that they will not produce an infinite consecutive sequence of erroneous
outputs. These are plausible assumptions we have to make in order to prove
correctness of a protocol that is based on unreliable message passing. Data
transmission channel K communicates frames in the set D X B from port 3 to
4. We give the defining equations (Table 2) and the corresponding diagram
(Figure 6).

K = 2: r3(j) -Kl
leDXB

Kl = (T ·s4(ce)+T ·s4(j)) -K

TABLE 2. Defining equations for channel K

:me T's in the second equation express that the choice whether or not a frame f
is to be communicated correctly, is nondeterrninistic and cannot be influenced
by one of the other components.

2.1.3. Component R. R starts by Receiving a Frame (RF) via channel K. If the
control bit of the frame is correct, then the message contained in the frame is
sent to_ port 2 (SM= Send Message). Component R Sends Acknowledgements
(SA) via channel L. Figure 7 gives the transition diagram for R.

Two simple protocols

r4(e0)
r4(ce)

FIGURE 6

R =RF°

RFb = (~ r4(d(l -b))+r4(ce)) ·SA l-b + ~ r4(db) ·SMdb
deD deD

SA b = s6(b) ·RF1-b

SMdb = s2(d) ·SAb

TABLE 3. Recursive specification for component R

s2(d)

s6(0)

RFI r4(el)

dO
SM

el
SM

FIGURE 7

r4(d0)

s6(1)

s2(e)

29

r4(dl)
r4(ce)

2.1.4. Component L. The task of acknowledgement transmission channel L is
to communicate boolean values from R to S. The channel may yield error
outputs but again we assume that this is detected, and that moreover the chan
nel is fair. See Figure 8 for the diagram.

30 F. W. Vaandrager

L = ~r6(b) Lb
beB

Lb = ('r ·s5(ce)+r ·s5(b)) L

TABLE 4. Defining equations for channel L

FIGURE 8

2.1.5. Sets. Define D=DU(DXB)UBU{ce}. [} is the set of 'generalised' data (i.e. plain data, frames, bits, error) that occur as parameter of atomic actions. We use the notation gED. The second parameter of atomic actions is the set I? = {1,2, ... ,6} of ports. We use symbol p for elements of IP. Communication follows the read/ send scheme. This leads to an alphabet
A= {sp(g), rp(g), cp(g)ipEIP,gED}

and communications y(sp(g), rp(g))=cp(g) voor p EIP, gED. Define the following two subsets of A :

H = {sp(g), rp(g)ipE{3,4,5,6},gE0},
I= {cp(g)ipE{3,4,5,6},gED}.

Now the ABP is described by

ABP = T1°an(SllKllRllL)

This is a good description in the sense that the specifications of the components S, K, R and L are guarded and consequently the specification of the ABP as a whole has a unique solution.

Two simple protocols 31

2.2. Verification
Verification of the ABP amounts to a proof that:
(1) the protocol will eventually send at port 2 all and only data it has read at

port I,
(2) the protocol will output data at port 2 in the same order as it has read

them at port l.
This means that, in order to verify the protocol, it is enough to prove the fol
lowing theorem.

THEOREM 2.2.1. ACPT +SC+ RDP + RSP +CA+ CFAR f

ABP = ~ rl(d) ·s2(d) ABP.
dED

PROOF. Let J'={cp(g)lpE{3,4,5}, gE[])}. We will use [x] as a notation for
rr 0 aH(x). I' is defined in such a way that we just can derive a guarded system
of equations for [x]. Consider the following system of recursion equations in
Table 5.

(0) x = x<j

(1) xy = ~rI(d) ·°Xt
dED

(2) x'f = r x~h +r x~h

(3) X'{b = c6(1-b) xqb

(4) x~b = s2(d) ·X~b

(5) x~b = c6(b) ·Xc;/1

(6) x'f = T ·X1b +r x1-b

TABLE 5. Recursion equations for X

The transition diagram of X is displayed in Figure 9. We claim that with the
above mentioned axioms one can prove that X=[SllKllRllL]. We prove this
by showing that [S llKllR llL] satisfies the same recursion equations (0)-(6) as X
does. In the computations below, the bold-face part denotes the part of the
expression currently being 'rewritten'.

[SllKllRllL] = [RM0 11KllRF°llL] (0)

32
F. W. Vaandrager

0
X=X 1

el
x4

s2(d)

FIGURE 9

[RM> llKllRFb llL] = 2: r l(d) ·[SF1h llKllRFb llL]
deD

= 2:rl(d)·T·[RAdbllKdbllRFbllL]
deD

= 2: r l(d) ·[RA db llKdb llRFb llL]
deD

't

(1)

[RAdbllKdhllRFbllL] = T·[RAdblls4(ce)·KllRFbllL] + (2)
+ T·[RAdblls4(db) ·KllRFbllL]

= T·[RAdbllKllSA l-bllL]+ T·[RAdbllKllSMdbllL]
[RAdbllKllSA1-bllL] = c6(1-b)·[RAdbllKllRFbllL1-b] (3)

= c6(1-b) ·(r·[RAdb llKllRFblls5(ce) ·L] +
+ -r ·[RAdb llKllRFb lls5(1-b) ·L])

= c6(1-b)·T·T·[SF1bilKllRFblJL]
= c 6(1-b) ·T·T ·T-[RA db llKdb llRFb llL]
= c6(1-b)-[RAdbllKdbllRFb llL]

[RA dbllKllSMdbllL] = s2(d) ·[RA db llKllSA bllL]
[RA dbllKllSAbllL] = c6(b) ·[RA db llKllRF1-bl1Lb]
[RA db llKllRF1-b II Lb] = T·[RAdb llKllRF1-b lls5(ce) ·L] +

+ T ·[RAdb llKllRF1-b lls5(b) ·L}
= T-[SFdbllKllRF1-bllL]+T·[RM 1-bllKllRF1-bllL]

(4)

(5)

(6)

Two simple protocols

[SF'bllKllRF1-bllL] = T·[RAdbllKdbllRF1-bllL]

= r·(r·[RAd6 11s4(ce) ·KllRF1-bllL] +
+ r·[RAdb lls4(db) ·KllRF1-bllL])

= r·[RAdbllKllSAbllL]

33

(7)

Now substitute (7) in (6) and apply RSP. Using conditional axiom CA6 we
have ABP = r1([SllKllRllL]) = ,-1(X) = T1(x</). Further, an application of
CFAR gives T1(Xtf) =,. ·r1(JGI') and r1(X~b) = r ·T1(Xl-b). Hence,

r1(Xf) = 2; r I(d) ·r1(Xqb) = 2; r l(d) ·r1(X<f/')
dED dED

= 2; r I(d) ·s 2(d) ·T1(X'f) = 2; r l(d) ·s 2(d) ·T1(XJ-b)
dED dED

and thus

r1(x</) = 2;rl(d) ·s2(d) · 2;rl(e)·s2(e)·T1(x</) and
dED eED

r1(XI) = 2;rl(d)·s2(d)· 2;rl(e)·s2(e)·T1(XI).
dED eED

Applying RSP again yields r1(x</) = r1(XI) and therefore

r1(x?) = 2; r l(d) ·s 2(d) ·T1(x</).
dED

This finishes the proof of the theorem. D

REMARK. Channels Kand L can contain only one datum at a time. Now one
can say that this is no problem because S and R will never send a message
into a channel when the previous one is still there. If S and R would do this
then our process algebra modelling would be incorrect. Because they don't,
there is no problem. This argument is correct for the ABP, but one should be
careful in more complex situations: if one implicitly uses assumptions about the
behaviour of a system in the specification of that system, then there is a danger
that a verification shows that the system has a lot of 'wonderful' properties
which in reality it has not. We give an example. Consider the situation where
a process S first sends three threatening letters into channel K followed by an
violent attempt to eliminate process R. Suppose K is a I-datum-buffer. The
system starts and S sends the first threatening letter into the channel. Now
receiver R at the other side of the channel is very busy doing other things, and
has no time to read messages from K. Only after a long, long time R looks if
there is mail in K. Of course R is really shocked by the contents of the letter,
and immediately tries to eliminate S. Only after this has succeeded, it reads
from K again. Because S becomes dangerous only after the third message has
been sent, process R will not get into trouble. The crucial point is now that
this would have been different if K were a FIFO-queue.

34 F. W. Vaandrager

3. THE PAR PROTOCOL (PART 1) In this section we will describe a protocol that is very similar to the ABP, although there is a fundamental difference. The protocol, that is described in [13], is called PAR, which stands for Positive Acknowledgement with Retransmission. In the protocol the sender waits for an acknowledgement before a new datum is transmitted. Instead of two different acknowledgements, like in the ABP, the PAR protocol only uses one type of acknowledgement (hence the word 'Positive'). This discussion of the PAR protocol is a revised version of Sections 3 and 4 of [14].

3.1. Specification
The diagram that describes the architecture of the PAR protocol is identical to the diagram for the ABP, with as only difference that on one side of the sender a small timer process has been added.

s

/
input
port

T

Thus, there are five components:
S: Sender
T: Timer
K: Data transmission channel
R: Receiver

K

L

FIGURE 10

L: Acknowledgement transmission channel

R

2

' output
port

3.1.1. Sets. Let D be a finite set of data. Elements of D are to be transmitted by the PAR. protocol from port l to port 2. Let B = {O, I}. Frames in D x B are_transrrutted by channel K. Define D=DU(DXB)U{ac,ce,st,to} (ac -ac~owled~eme~t, ce~checksum error, st=start timer, to= time out). For the mteract1on with their environment, the components use ports from a set P = { 1,2, ... ,6, 7}. ~ and [} ?ccur as parameters of atomic actions. Alphabet A ~d cornmuru~at.J.on funct10n y are defined using the read/ send scheme. In addit.J.on, A contains two other actions i and j which do not communicate.

Two simple protocols 35

3.1.2. The channels. If a message is sent into channel Kor L, three things can
happen:
'. l) the message is communicated correctly,
:1) the message is damaged in transit,
)) the message gets lost in the channel

=.:hannels Kand L are described by the equations in Table 6.

K 2: r3(j) ·Kl
jEDXB

Kl = (i ·s4(f)+i ·s4(ce)+i) ·K

L = r6(ac)Lac

Lac = (j ·s S(ac)+ j ·s S(ce)+ j) ·L

TABLE 6. Definition for channels Kand L

ne reason why we use actions i and j, instead of the r as is done in the
pecification of the ABP, will become clear further on .

. 1.3. The sender. In the specification of the sender process S (Table 7) we use
~rmal variables RHn, span, STdn, wsdn (d ED, n EB):

'..H == Read a message from the Host at port l. The host process, which is
not specified here, furnishes the sender with data.

F == Send a Frame in channel K at port 3.
T == Start the Timer.
VS == Wait for Something to happen. Here there are three possibilities: (I) an

acknowledgement frame arrives undamaged, (2) something damaged
comes in, or (3) the timer goes off. If a valid acknowledgement comes
in, the sender fetches the next message, and changes the control bit,
otherwise a duplicate of the old frame is sent.

1.4. The timer. The timer process T is very simple (see Table 8). There are
vo states: the initial (stop-) state and the (run-) state in which the timer is
mning. In both states the timer can be started, but only in the running state
time out can be generated.

36

s

= ~ rl(d)·SFdn
dED

spdn = s3(dn)-STdn

STdn = s ?(st) · WSdn

WSdn = r5(ac)-RH 1-n +(r5(ce)+r7(to))-SFdn

TABLE 7. Specification of the sender process S

T = r?(st)-T'

T' = r?(st)-T' +s?(to) ·T

TABLE 8. Specification of the timer process T

F. W. Vaandrager

3.1.5. The receiver. For the specification of the receiver process R (see Table 9)
we use formal variables wpn, SAn, SHdn (dED, n EB):

WF = Wait for the arrival of a Frame at port 4.
SA = Send an Acknowledgement at port 6.
SH = Send a message to the Host at port 2. In general the host of the receiver

will of course be di.ff erent than the host of the sender.

R = WP

WP = r4(ce)·Wpn+ ~r4(d(I-n))·SAn+ ~r4(dn)·SHdn

SAn = s6(ac)·Wpn

SHdn = s2(d)·SA 1-n

dED dED

TABLE 9. Specification of the receiver process R

When a valid frame arrives at the receiver, its control bit is checked to see if it
is a duplicate. If not, it is accepted, the message contained in it is written at
port 2, and an acknowledgement is generated. Duplicates and damaged frames are not written at port 2.

Two simple protocols

3.1.6. Premature time outs. We define

H = {sp(g), ry(g)lpE{3,4,5,6,7}, gED}

and consider the expression

3H(SllTllKllRllL).

37

Each time after a frame is sent, the sender S starts the timer. An unpleasant
property of the PAR protocol is that a premature time out can disturb the
functioning of the protocol. If the sender times out too early, while the ac
knowledgement is still on the way, it will send a duplicate. When the previous
acknowledgement finally arrives, the sender will mistakenly think that the just
sent frame is the one being acknowledged and will not realise that there is
potentially another acknowledgement somewhere in the channel. If the next
frame sent is lost completely, but the extra acknowledgement arrives correctly,
the sender will not attempt to retransmit the lost frame, and the protocol will
fail.

An important observation is that in our modelling 'too early' corresponds
exactly to the availability of an alternative action. Thus we can express the
desired behaviour of the timer by giving the action c7(to) a lower priority then
every other atomic action. In the next section we will elaborate on this idea.

4. PRIORITIES
The axiom system ACP8 , introduced in [l], consists of the operators and
axioms of ACP, extended with a unary priority operator (), an auxiliary binary
operator <J (unless) and some defining axioms for these operators. We use () to
model priorities. Parameter of () is a partial order < on the atomic actions. So
for a,b,c EA we have

1. -,(a<a)
2. a<b&b<c~a<c.

The constant 8 can be incorporated in this ordering as a minimal element. We
then have o<a for all a EA. Consider, as an example, the following partial
order on atomic actions a,b and c:

b<a and c<a.

Relative to this ordering the operator() will forbid in a sum-context all actions
that are majorated by one of the other actions in that sum-context. So we have
for instance:
(i) O(a+b)=a,O(a+c)=abut
(ii) O(b+c)=b+c.
Operator() is axiomatized in the system ACP8 (see Table 10).

Ex.AMPLE. Let b <a and c <a. Then:
(i) O(a + b) = O(a)<]b + O(b)<]a = a<]b + b<]a =a+ o =a,
(ii) O(b + c) = O(b)<Jc + O(c)<]b = b<Jc + c<]b = b + c,

38 F. W. Vaandrager

(iii) O(b(a + c)) = 8(b) ·O(a + c) = b ·(8(a)<!c + O(c)<!a) = b(a<!c + c<!a)
= b (a + 8) = ba.

ACPo

x+y=y+x Al a<!b =a if,(a<b) Pl
x +(Y +z) = (x +y)+z A2 a<!b = 8 if a<b P2
x+x = x A3 x<1Yz = x<!Y P3
(x +y)z = xz +yz A4 x<!(Y+z) = (x<!Y)<!z P4
(xy)z = x(Yz) AS xy<!z == (x<!z)y P5
x+a = x A6 (x +y)<]z = x<1z +y<!z P6
8x = 8 A7

a lb == y(a,b) CF

xl[y == xlly+yllx+xly CMl 8(a) = a THl
all_x = ax CM2 O(xy) = O(x) ·O(Y) TH2
axll_y = a(xl[y) CM3 O(x + y) = 8(x)<!Y + O(y)<Jx TH3
(x +y)llz = xllz +yllz CM4
(a.x)lb =(a lb)x CM5
a l(bx) = (a lb)x CM6
(ax)l(by) = (a lb)(xl[y) CM7
(x+y)lz = xlz+ylz CM8
xl(Y+z) = xly+xlz CM9

aH(a) = a if ar:;.H Dl
aH(a) = a if a EH D2
aH(x +y) = aH(x)+aH(Y) D3
3H(xy) = aH(x)·aH(Y) D4

TABLE 10

In [l] the proof can be found of the following theorem:

THEOREM 4.1.
i) For each recursionfree closed ACP0-term s there is a basic term t such that

ACPo 1- s = t.
ii) ACPo is a conservative extension of ACP, i.e. for all recursionfree ACP

terms s,t we have: ACPo I- s =t zj ACP I- s =t.

At present it is not altogether clear how ACP8 and ACP.,. should be combined
into ACP.,.e. As a consequence of Theorem 4.1 however we can give meaning to
a term like -r1(s), where sis a recursion-free closed ACPe-term. Expression s is
related to exactly one ACP process, and ACP.,. is a conservative extension of

Two simple protocols 39

ACP. For infinite processes the situation is a bit more complicated. Without
proof we mention that for the theory of regular process expressions (expres
sions that generate a finite transition diagram) we also have conservativity.

5. THE PAR PROTOCOL (PART 2)
Returning to the specification of the PAR protocol we define operator (}on the
basis of the following partial ordering < on A:
(1) a<c7(st) for aEA-{c7(st)}
(2) c7(to)<a for aEA-{c7(to)}.
The reason for giving action c 7(to) a lower priority than the other actions has
already been given in Section 3.1.6. In addition we have given action c7(st) a
higher priority than the other actions in order to express that immediately
after sending a message the timer is started. This assumption is not essential
for the correctness of the protocol. The system as a whole is now described by

B0 a H(S II TllKllR llL).

The fact that in the scope of a priority operator no r's are allowed explains the
use of i and j actions in the specification of components K and L. We are
only interested in the actions taking place at ports I and 2. The other actions
cannot be observed.

I= { cp (g) Ip E {3,4,5,6, 7}, gE ID} U {i,j}

The PAR protocol can now be specified by:

PAR = r1°0°oH(SIJTllKllRllL)

For a verification of the protocol it is enough to prove the following theorem.

THEOREM 5.1. ACP7 + ACPo +SC+ RDP + RSP +CA+ CFAR f

PAR= ~ r I(d)·s2(d)·PAR
deD

PRooF. Let I'= {cp(g)lpE{4,5,7},gED} U{i,j}. We use [x] as notation for
rr 00°oH(x). Since I' c;;J we can apply axiom CA6:

PAR= T1([SllT/IKllRllL]).

In the first part of the proof we will derive a guarded system of recursion
equations for the process expression [SllTllKllRllL] in which only the opera
tors + and · occur. Thereafter, in the second part, we will abstract from the
other internal actions using CFAR. Throughout the proof d ranges over D and
n ranges over B. The transition diagram of [SllTllKllRllL] is depicted in Fig
ure 11.

40
F. W. Vaandrager

0
X=X

1 't dl x
6

c6(ac)

dO x
2

't x®lJ-~~~~~---~~~--1.c>
6

FIGURE 11

[SllTllKllRllL] = [RH0 11TllKllWF°llL]
[RHnllTllKllWPllL] = ~rl(d)'[SFdnllTllKllWPllL]

deD

[SFdnllTllKllWPllL] = c3(dn) ·[STdn llTllKdnllWPllL]
= c3(dn)·[WSdnllrrllKdnllWFnllL]

dl x
5

s2(d)

dl
x

4

't

xd1

3

c3(dl)

dl
x

2

rl(d)

x1
l

(0)

(1)

(2)

(Here we used that the action c7(st) has higher priority than the other actions.)

[WSdnllT'llKdnllWPllL] = Tr 0 8(c7(to}·oH(SFdnllTllKdnllWPllL) + (3)
+ i ·oH(WSdnllT'lls4(dn)·KllWFnllL) +
+ i ·oH(WSdnllT'lls4(ce)·KllWFnllL) +
+ i ·oH(WsdnllT'llKll WPllL))

Two simple protocols

(Action c7(to) has lower priority than the other actions.)

= T·[WsdnllTrllKllSHdnllL] +
+ T·[SFdn llTllKll WF" llL]

41

(If the message is damaged, the resulting state is the same as in the case in
which the message gets lost. In both cases a time out event occurs.)

[WSdnllT'llKllSHdn llL] =s2(d) ·[WSdnJIT'llKllSA !-nllL] (4)
[WSdnllT'llKllSA l-n llL] =c6(ac) ·[WSdnllT'llKllWF1-nllLac]

[WSdnllT'llKllWF1-nllLacJ =r·[RH 1-nllT'llKllWF1-nllL] +
+ T·[SFdnlJT'llKllWF1-nllL] +
+ T·[SFdnJJTllKllWF1-nllL]

[RHnllT'llKll WF" llL] = ~ r l(d)·[SFdnJIT'llKllWF"llL]
dED

[SFdn llT'llKll WF" llL] = c3(dn)·[WSdnllT'llKdnll WF"llL]

[SFdn llT'llKll WF 1-nllL] =c3(dn) ·[WSdn llT'llKdnll WF1-nllL]

[SFdn llTllKll WF 1-n llL] =c3(dn) ·[WSdn llT'llKdn llWF1-n llL]
[WSdn llT'llKdn llWF1-n llL] =T"[SFdnllT'llKll WF1-n llL] +

+ T·[WSdnllT'llKllSA I-nllL]

(5)

(6)

(la)

(2a)

(7)

(7a)

(8)

Now observe that the processes of equations l and la, 2 and 2a, and 7 and 7a
are identical. This means we have derived that X (= [S II TllKllR llL]) satisfies
the system of recursion equations in Table 11.

(0) x =X1f

(1) X1/ = ~rl(d)·X~n (5) x~n = c 6(ac) -xgn
dED

(2) xqn = c3(dn)·X~n (6) xtn = r-x1-n + 'T xqn

(3) x~n = r·xqn + T·X~n (7) x~n = c3(dn) -xgn

(4) x~n = s 2(d) x~n (8) xgn = 'T xgn + T ·X~n

TABLE 11. Recursion equations for X

This finishes the first part of the proof. In the second part we will abstract
from the communications at ports 3 and 6. Because PAR= T1(X)= r1(X1f), it

42 F. W. Vaandrager

is enough to show that

T1(XI) = ~ rl(d) ·s2(d) ·T1(XI).
deD

For d and n fixed, variables Xf and X~n form a conservative cluster from I.
Hence we can apply CF AR:

T1(xf) = 'T ''TJ(Xf).
Variables x~n, X'/:', Xf and xgn (d and n fixed) also form a conservative clus
ter from I. CFAR gives:

T1(Xf) = 'T'T1(X\-n).

We use these two results in the following derivation:

T1(X'/) = ~ rl(d) ·Tr(X~n)
dED

= ~ rl(d) ·T·Tr(X~n)
deD

= ~rl(d)·s2(d)·T1(X~n)
deD

= ~rl(d)·s2(d)·T1(Xl-n).
dED

Substituting this equation in itself gives:

T1(XI) = ~rl(d)·s2(d)· ~rl(e)·s2(e)·r1(Xf) and
deD eeD

Tr(XI) = ~rl(d)·s2(d)· ~rl(e)·s2(e)·r1(X\).
deD eED

Due to the Recursive Specification Principle we have:

T1(XI) = r1(X\).
Hence

T1(XI)= ~rl(d)·s2(d)·T1(Xf),
deD

which is the desired result. 0

REMARK. For the modelling of time outs in the PAR protocol the use of the priority operator is not essential. We sketch an alternative. If a frame gets lost in one of the channels then one can say that this event in a sense causes a time out. This causal relationship can be expressed in process algebra by means of a communication between the channel and the pair sender/timer. For channels K and L the specifications then become as shown in Table 12.

Two simple protocols

K -j
~ r3(f)·K

jEDXB

K_f = (i ·s4(f)+i ·s4(ce)+i ·s7(to)) ·K

-~ -L = (j·s5(ac)+j·s5(ce)+j·s7(to))·L

TABLE 12. Specification for channels Kand L

43

In a time out event three processes participate: the timer, the sender and a channel. This means that when dealing with time outs we have ternary com
munication at port 7.

y(s7(to),s7(to)) = ss7(to) y(s7(to),r7(to)) = sr?(to)
y(s7(to),sr7(to)) = c7(to) y(r7(to),ss7(to)) = c?(to)

This leads to a slightly bigger set of unsuccessful communications:
H = HU{ss7(to),sr7(to)}.

The alternative specification of the PAR protocol now becomes.

One can prove that PAR =PAR. In [11], essentially the above idea is used to
specify a simple version of the PAR protocol.

5.2. Asymmetric communication
Consider the situation where channel K contains a frame and the receiver is
doing some other things and reads the datum from K only after a long time.
Now one can consider it to be unnatural that during this whole period the
datum keeps 'floating' in K and does not disappear. In a more realistic
approach we would assume that if a datum is contained in channel K, either
this is read by process R, or it gets lost if R is not willing to receive. Formally
we can model this in process algebra by not encapsulating s4(d) actions, but give them a lower priority than the corresponding c4(d) actions. This mechan
ism is called put mechanism in [3]. One can prove that the ABP and the PAR protocol are invariant under the use of the put mechanism.

44

REFERENCES
1. J.C.M. BAETEN, J.A. BERGSTRA, J.W. KLoP (1986). Syntax and defining equations for an interrupt mechanism in process algebra. Fundamenta Informaticae IX(2), 127-168.
2. K.A. BARTLETT, R.A. SCANTLEBURY, P.T. WILKINSON (1969). A note on reliable full-duplex transmission over half-duplex links. Communications of the ACM 12, 260-261.
3. J.A. BERGSTRA (1985). Put and Get, Primitives for Synchronous Unreliable Message Passing, Logic Group Preprint Series Nr. 3, CIF, State University of Utrecht.
4. J.A. BERGSTRA, J.W. KLoP (1986). Verification of an Alternating Bit Protocol by means of process algebra. W. BIBEL, K.P. JANTKE (eds.). Math. Methods of Spee. and Synthesis of Software Systems '85, Math. Research 31, Akademie-Verlag, Berlin, 9-23. Also appeared as CWI Report CSR8404, Centre for Mathematics and Computer Science, Amsterdam, 1984. 5. J.A. BERGSTRA, J.W. KLoP (1986). Process algebra: specification and verification in bisimulation semantics. M. HAZEWINKEL, J.K. LENSTRA, L.G.L.T. MEERTENS (eds.). Mathematics and Computer Science II, CWI Monograph 4, North-Holland, Amsterdam, 61-94.
6. R.J. VAN GLABBEEK (1987). Bounded nondetenninism and the approximation induction principle in process algebra. F.J. BRANDENBURG, G. VIDAL-NAQUET, M. WIRSING (eds.). Proc. STACS 87, LNCS 247, Springer-Verlag, 336-347.
7. R.J. VAN GLABBEEK, F.W. VAANDRAGER (1988). Modular Specifications in Process Algebra - With Curious Queues, CWI Report CS-R8821, Centre for Mathematics and Computer Science, Amsterdam. Extended abstract to appear in Proceedings of the METEOR Workshop on Algebraic Methods: Theory, Tools and Applications, LNCS, Springer-Verlag.
8. J.Y. HALPERN, L.D. ZUCK (1987). A Little Knowledge Goes a Long Way: Simple Knowledge-based Derivations and Correctness Proofs for a Family of Protocols (extended abstract), IBM Almaden Research Center. 9. C.P.J. KOYMANS, J.C. MULDER (1989). A Modular Approach to Protocol Verification using Process Algebra. This volume.
10. K.G. LARSEN, R. MILNER (1987). A complete protocol verification using relativized bisimulation. TH. OITMANN (ed.). Proceedings 14th ICALP, Karlsruhe, LNCS 267, Springer-Verlag, 126-135.
11. J. PARROW (1985). Fairness Properties in Process Algebra - with Applications in Communication Protocol Verification, DoCS 85/03, Ph.D. Thesis, Department of Computer Systems, Uppsala University.
12. T. STREICHER (1987). A Verification Method for Finite Datajlow Networks with Constraints Applied to the Verification of the Alternating Bit Protocol, Report MIP-8706, Fakultiit fiir Mathematik und Informatik, Universitiit Passau.
13. A.S. TANENBAUM (1981). Computer Networks, Prentice-Hall International. 14. F.W. VAANDRAGER (1986). Verification of Two Communication Protocols by means of Process Algebra, CWI Report CS-R8608, Centre for Mathematics and Computer Science, Amsterdam.
15. D. VERGAMINI (1986). Verification by means of Observational Equivalence on Automata, Report 501, INRIA, Centre Sophia-Antipolis, Valbonne Cedex.

