
Verification of an Algorithm for

Log-time Sorting by Square Comparison

J.C. Mulder
Programming Research Group, University of Amsterdam
P. 0. Box 41882, 1009 DB Amsterdam, The Netherlands

W.P. Weijland
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this paper a concurrent sorting algorithm called RANKSORT is presented, able
to sort an input sequence of length n in log n time, using n2 processors. The
algorithm is formally specified as a delay-insensitive circuit. Then, a formal
correctness proof is given, using bisimulation semantics in the language ACP,.
The algorithm has area-time2 = O(n2 log4 ll) complexity which is slightly sub­
optimal with respect to the lower bound of AT2 =O(n2 log n).

1. INTRODUCTION

Many authors have studied the concurrency aspects of sorting, and indeed the
n-tirne bubblesort algorithm (using n processors) is rather thoroughly analyzed
already (e.g. see: Hennessy [3], Kossen and Weijland [4]). However, bubblesort
is not the most efficient sorting algorithm in sequential programming, since it
is n2-time and for instance heapsort and mergesort are nlogn-time sorting algo­
rithms. So, the natural question arises whether it would be possible to design
an algorithm using even less than n-time.

In this paper we discuss a concurrent algorithm, capable of sorting n
numbers in 0 (log n) time. This algorithm is based on the idea of square com­
parison: putting all numbers to be sorted in a square matrix, all comparisons
can be made in 0 (1) time, using n 2 processors (one for each cell of the
matrix). Then, the algorithm only needs to evaluate the result of this
operation.

The algorithm presented here, which is called RANKSORT, is not the only
concurrent time-efficient sorting algorithm. Several subn-time algorithms have
been developed by others (see: Thompson [5]). For instance algorithms were
presented of time-complexity Vn, log3n, log2n and logn. Indeed, the square

Partial support received from the European Community under ESPRJT project no. 432, An In­
tegrated Formal Approach to Industrial Software Development (METEOR).

128 J.C. Mulder, W.P. Weijland

comparison algorithm presented here, appeared in [5] as well. Its network has
been given various names, like mesh of trees or orthogonal tree network.

In this paper we will show how a log n-sorter can be constructed. Moreover
we will present a formal speciftcation of the algorithm and prove it correct
using bisimulation semantics with asynchronous cooperation.

At this place we want to thank Niek van Diepen (University of Nijmegen)
and Karl Meinke (University of Leeds) for their contributions to this paper.
Moreover we thank Jaap Jan de Bruin for his assistance concerning the illus­
trations which were made on an Apple Macintosh. Finally, we thank Jos Bae­
ten for his remarks on the early drafts of this paper.

2. SoRTING BY SQUARE COMPARISON

Suppose we have a sequence <a0 ,a 1,a2, ... ,an -1 > of distinct numbers, for some
n >0, and consider the problem of computing a non-decreasing permutation of
this sequence. Note that, in fact, we can start from an arbitrary set of symbols
and any linear ordering >, defined on this finite set. Now restrict this order­
ing to the n elements that are considered, then we obtain a finite ordering,
which can be represented in a matrix as pictured in Figures 1 and 2.

>:l
E;;;:O ao a1 ai a3 a4 as a6 07

ao
a1
ai
a3
a4
as
a6
a1

FIGURE 1. Defining ;;;.. by laying out a full matrix

In every cell (i,j) of the matrix in Figure 1 we write 1 if a1 >aj, and 0 other­
wise. Note that now the matrix has only O's on its diagonal. Moreover it is
antisymmetric, i.e.: if i=j::.j we have 1 in (i,j) if and only if we have 0 in (j,i).
So in fact we only need one 'half' of the matrix.

The idea of square comparison now simply reads as follows: suppose we
have a finite sequence of numbers to be sorted, then all the information
relevant to the ordering problem can be computed in unit time, starting from
the matrix above. Indeed, in one blow all n2 individual cells (i,j) can do one
comparison (between <lj and aj), and next all information about > is available.
Note that we can set up this matrix in O (log n) time, starting from n proces­
sors containing the values to be sorted. Thus all ordering information can be
computed in O(log n) time.

After O(logn) time we have computed a matrix which is full of O's and l's.

Verification by square comparison 129

Note, that on the i-th row, we have a I for every aj which is smaller than ai.
Hence the number of I's in the i-th row is precisely the number of elements a·
out of <ao,a 1>a2, ... ,an-1), satisfying aj <ai. However, the number of eli­
ments less than ai is exactly the index of ai in the sorted sequence, i.e.
represents the place of the number ai in the sorted array.

Finally note that the number of I's can simply be found, by computing the
sum of all matrix values on the row considered. This computation can be
done in 0 (log n) time, since we can repeatedly add pairs of numbers con­
currently, until there is only one single value left. Thus we conclude that, for
all input values, we can compute the 'sorted index' in O(logn) time.

In fact we have computed a permutation of the index values
<O, 1,2, ... ,n-1>. From this permutation one can compute the sorted array in
0(1) time, since all cells consider the computed index value, as an address to
send the value to, they actually contain. Having enough wires to interconnect
all cells, this can be done in one single computation step. (By putting the pro­
cessors in a tree configuration once again, we can do this in O (log n) time,
with many wires less.)

So, indeed, we can sort a sequence of numbers in log n time using n 2 proces­
sors. An example of this square comparison method is presented in Figure 2.

> 2 7 I ;;;;.

2 0 0 I
7 I 0 I
1 0 0 0
-5 0 0 0
11 I 1 1
2 1 0 I
3 I 0 1
8 I I 1

-5 11 2

I 0 0
1 0 I
1 0 0
0 0 0
I 0 I
I 0 0
I 0 I
1 0 1

3

0
l
0
0
I
0
0
1

8

0
0
0
0
I
0
0
0

+~2

+~5

+~1

+~o

+~7

+~3

+~4

+~6

FIGURE 2. An example of the square comparison method
on the sequence <2, 7, l, -5, 11,2,3,8>

Here we have a small problem: suppose two numbers in the array are equal
(the numbers are no longer distinct), then the matrix values, computed in Fig­
ure 1, would be equal for both numbers. Thus the problem is that the com­
puted array of index values no longer is a permutation of <0, 1,2, ... ,n -1>,
since some of the computed indices might be equal.

In Figure 2, this problem is solved by slightly changing the former pro­
cedure. Now, the 'lower' cells, i.e. the cells below the main diagonal of the
matrix, do not compare two values via'>' but via';;;;.'. It turns out that the
computed indices indeed are a permutation of <O, 1,2, ... ,n -1 > and that the
'original order' of equal numbers is preserved in the sorted array.

In Figure 2 the sequence <2, 7, l, -5, 11,2,3,8> is considered. Note that here,

130 J.C. Mulder, W.P. Weijland

the computed index values <2,5, 1,0, 7,3,4,6> indeed form a permutation of
<O, I,2,3,4,5,6, 7>. To be specific: note that the number 2 has two different
computed indices (namely 2 and 3); without the adaptation mentioned above,
both occurrences of the value 2 would yield the index value 2.

The sorting machine considered in this paper is pictured in Figure 3, for
n =4. Note that on the upper side we have n trees, one for every input value.
Each input value is broadcast to n leaves in a row of the matrix, which is in
the middle part of the machine. Then, the cells on the main diagonal will send
the value received from the upper tree downwards to the bottom of the con­
nected lower tree; this value is broadcast upwards again to n matrix cells,
belonging to a column of the matrix. So, every matrix cell now contains two
values, precisely in the way as in Figure I. Then the n 2 comparisons are made
and each cell sends a 1 or a 0 to its upper tree. In every node the addition of
two input values is computed, and the result is sent upwards again. Finally,
the computed index permutation can be read from the roots of the upper trees.

3. A FORMAL SPECIFICATION OF THE SORTING MACHINE

In this section we will present a formal specification of RA:NKsoRT, using the
language ACP. First, we have to name the channels of the machine (Figures
3-5) in order to be able to give a precise definition of the behaviour of the
individual cells. For reasons of simplicity, in the following we will assume
n = 2k for some given k >0, n being the length of the array to be sorted.

In Figure 4 we present the names of the processes, corresponding to the ver­
tices in the trees and the cells of the matrix. The upper trees are called
U; (OE;;i<n) and the cells in these trees are numbered U;,j (O<j <n). Like­
wise, the lower trees are called Lj, with cells L;,j (O<i <n), and the matrix cells
are called M;,j (OE;;i, j <n). The bottom cells will be called Bi (O,,;;;,.j <n).

Note that for all i, U; has depth 2logn =k and has 2 -1 =n -1 cells.
Further, the cells and channels in the trees are numbered 'left first/breadth
first', as one can see in the Figures 4 and 5.

Now, let us present a more detailed description of the behaviour of the indi­
vidual processes.

• A cell U;,j will receive a value from its upper neighbour. Next, it will send
this value to both ·of its lower neighbours, and from both of them it will
receive another value in return. Since both lower neighbours are indepen­
dent processes, these send and receive actions are fully interleaved. Finally,
having received two values from below, U;,j will send its sum up again.

• A matrix cell MiJ in the middle of the sorter will first receive a value from
the upper neighbour. Then, if it is a diagonal cell, it will send this value
downwards to its lower neighbour. For sake of simplicity, we will make
non-diagonal cells send a value nil downwards as well. Next, the cell will
receive a new value from below, and send up a 0 or a I, depending on its
position (see Figure 2) and the two input values.

• A cell L;J from one of the lower trees, will first receive two values from
above (in any order). Note that in any lower tree only one leaf, the one in

Verification of an algorithm for log-time sorting 131

FIGURE 3. A 'mesh of trees'; the circuit configuration of RANKSORT

132 J.C. Mulder, W.P. Weijland

FIGURE 4. The names of the individual cells in the sorter

Verification of an algorithm for log-time sorting 133

M

1,0,, 1'1, 1 1, 2,, 1,3,1

FIGURE 5. The channel numbers are in 'left first/breadth first' order

134 J.C. Mulder, W.P. Weijland

the diagonal of the matrix, will send down a number. The others will only
send down nil. Now, if one of the values received from above is not nil, L;,j

will send this value to its lower neighbour. Otherwise it will send down just
nil. Next a value is received from below and 'broadcast' upwards, just like
in ~.j• by sending it to its upper neighbours.

• Finally, a cell Bj from the bottom of the machlne, acts as a reflector: it will
rereive a value from its upper neighbour, and simply return it. Note that Bi
will actually receive the number (=Foil) which is sent down by Mjj.

Now we will translate these informal descriptions into the algebraical
specification language ACP. To do this we need the definitions of the follow­
ing functions.

DEFINITION. We need a function diag to specify the value that will actually be
sent down by M;,j after having received d:

diag(i,i,d) = d

diag(i,j,d) =nil (i=Fj).

DEFINITION. We also need a function comp to express what boolean value, 0
or 1, will be sent up by M1,j again, after having received d and e. So in comp
we actually use the square comparison method (see Figure 2):

comp(i,j,d,e) =if i>j then if d-;a.e then 1else0 fi

else if d > e then 1 else 0 fi

fi ;

DEFINITION. Finally we need a kind of exclusive or on strings of symbols, to
express what value is sent down by L;,j after having received two values:

xor(d,nil) = xor(nil,d) = d

xor(d,e) = xor(nil,nil) =nil (d,eeD).

Inductively, we will define xor on arbitrary strings of length n =2k:

xor(d 1,d2, ... ,dt) = xor(xor(d1, ... ,dt-•),xor(dt-1 +1, ... ,dt))(d1eD U {nil}).

Note, that if exactly one value out of { d 1 ,. .. , d.i } , d; say, is not equal to nil,
then xor(d1,. .. ,dn)=d1• So xor 'picks' out the unique value =F nil, assuming
this unique value exists. This more general definition will be needed later, to
describe the specific behaviour of the lower trees, since all of its leaves will
send down nil except for the leaf on the diagonal of the matrix.

Now we will turn to the formal specification of the cells (see Table I). In
this specification we have atomic actions r;,j,m(d) and St,j,m(d) for receiving and
sending a datum d from and to the channel [i,j,m]. Note that receive and
send actions do not have a fixed 'direction' in the channel. We assume D to

Verification by square comparison

be a (finite) set of numbers. All (bound) variables are written in italics.

ui,j = ~ ,i,j, o(d) · [{s;, 2j,o(d) · ~ ,i, 2j,o(n)} 11
deD neN

11{S,.2j+1.o(dJ ·.~.';.zj + 1,o(m)}] · s4,o(n + m)

M;,j = ~ ri,j+n,o(d) · S;+n,j, 1(diag(i,j,d)) ·
deD

· ~ r; +n,j, 1 (e) · S;,j+n,o(comp(i,j,d,e))
eeD

L;,j = [~ ru,j,1(d)ll ~ ru+1,j,1(e)] ·s;,j,l(xor(d,e))·
deD U {nil} eeD U {nil}

Bj = ~ r1,j, 1 (d) · s l,j, 1 (d)
deD

· ~ r;,j, 1 (/) • [su,j, 1(/)1 lsu +1,j, 1 if)]
feD

TABLE I. Specification of the cells in the sorter

135

As a shorthand, the scope rules of~ are violated in the first equation. Writ­
ing out II using the axioms CMl-4 of [l], ~.j can easily be specified correctly
(see also [4] and [6]). It takes some effort to check all the indices, correspond­
ing to the names of the channels. However, making use of the regular
configuration of the circuit, and comparing the specification with Figures 3
and 4, one can find out that they are presented correctly here. Furthermore, in
the next section we will concentrate on a formal proof of correctness of the
sorter, and from any such proof it follows immediately that the channel
numbers in the specification above are correct.

Now we present the final specification of the sorting machine as a whole by
simply interconnecting all cells (see Table 2).

RANxsORT(n) =. H {u;,j1IM;,jll.4,j}11 u B;
1,1<n 1<n

TABLE 2. Specification of RANK.SORT

136 J.C. Mulder, W.P. Weijland

So this is the specification, in detail, of RANKSORT. Indeed, it is not clear at
all why such a complex machine would be a sorting machine. In the next sec­
tion we will hide almost all of the internal actions of the machine (only actions
via channels [i, 1,0] are of interest to the user). Then we will prove the result
to be a sorting machine, and hence prove RANKSORT correct.

4. FORMULATING A CORRECTNESS THEOREM

In this section we will present a formal theorem of correctness for RANKSORT,
i.e.: abstracting from internal actions, we will state that RANKSORT indeed
behaves like a sorting machine. To do this, we first have to specify what actu­
ally is a sorting machine.

DEFINITION. In the following we define the sorted indices of a given sequence
of numbers. Suppose a=<a0 ,al>a2 , ... ,a,,- 1 > is such a sequence of numbers,
then we have:
(i) (po(a), ... •Pn-1(a)>ePERM(<O, ... ,n-l>),
(ii) Pi(a)<pj(a) implies ai~a1 ,
(iii) Pi(a)<pj(a) & ai=a1 implies i<j.

Because of part (iii) of the definition the permutation p;(a)ti...:i <n satisfying all
three conditions, is uniquely determined.

Note that from the sorted indices Pi(a')o..;i<n we can immediately compute
the sorted sequence itself: assume we haven processors P 0 , ... ,Pn-I> contain­
ing the values po(a),. . .,pn-1(a) and ao,.-· ,an-I respectively, and suppose all
processors are interconnected by channels (wires) then in one step every pro­
cess P; can send the number a; to the 'address' given by Pi(a), i.e.: to Pp,(a)·

Next we will formulate a crucial proposition, stating a criterion for correct­
ness of the square comparison method. A proof of this proposition is omitted.

PROPOSITION. For all sequences a= <a0 , ••• ,an-I> and all O~i <n we have:
n-1

~ comp(i,)A,a1) = Pi(a).
j=O

Clearly, the proposition states that the square comparison method provides us
with the sorted indices of the input sequence. Using this proposition we will
be able to prove RANKSORT correct, in the sense that RANKsoRT turns out to
calculate precisely ko"']<noomp(i,JA,a1) for all sequences <a0 , .•. ,an-I>.

DEFINmON. Suppose a process SoRT(n) satisfies the equation

SORT(n)= [I.I [~r;,1,o(xi)]]·[II s;1o(pi(x))),
0.;;1<n x, O<i<n ' '

and x = <xo,.·· ,Xn-I), then SORT(n) is called a sorting machine of size n.

Verification by square comparison 137

So we agree that any machine that receives a sequence of n numbers, and con­
sequently outputs all sorted indices of this input sequence, may be called a
sorting machine. ~ow we will return to RANKSORT arain.

Let D be a (finite) set of numbers. Suppose n = 2 , k ;;;;.o. The communica­
tion Junction I is defined by

(ri,j,m(d)js;,j,m(d)) = (s;,j,m(d)lr;,j,m(d))=c;,j,m(d) for all i,j,m,

all other communication actions result in deadlock, S.

The encapsulation sets M,,, B,,, Hn and E,, are defined by

M,, = {s;,j +n,o(d),r;,j +n,o(d): d EDU 1\1, i,j <n} U

{s; +11,J, 1 (d),r; +n,j, 1(d): dED U {nil}, i,j <n}

corresponding to all channels connected with the matrix cells M .
I,)'

B,, = {s1,J, 1 (d), r1,J, 1 (d): d EDU {nil}, j <n}

corresponding to the channels connected with the bottom cells Bj•

H,, = {si,J,m(d),r;,J,m(d):deDUl\IU{nil}; for all i,j,m, such that:

(j,m) :;i= (1,0) and (i,m):;i= (1, 1) and i,j <n}

which is the set of all communicating actions, except for actions from M,, or
B,, or the ones corresponding to the input/output channels [i, 1,0] (i <n),

E,, = H,, UMn UBn.

Finally, the abstraction set I is defined by

I = { C;,J,m (d) : d ED U {nil}; for all appropriate i,j, m } .

The definition of the communication function says, that receive and send
actions only result in a communication c;,J,m(d) if they correspond to the same
channel [i,j,m] and the same datum d. If not, a deadlock occurs, e.g. if
d1=/=d2 then (r2,1,o(d)js5,2,1(d)) = (r;,j,m(d1)!s;,j,m(d2)) = (r;,j,m(d)lr;,J,m(d)) = 8.
The choice of the encapsulation sets Mn, Bn and H,, is quite standard: we want
no single receive or send actions to happen without direct communication with
their 'partner', since otherwise data would be sent to a channel but never read
from it. Except for the receive and send actions on the channels [i, 1,0]
(Oo;;;;i <n): they are the input and output channels of the machine, and are
ready for communication with the outside world. The encapsulation sets, Mn
and Bn, are defined separately from Hn, to simplify the proofs that will be
presented later. At the end of the proof, however, we will encapsulate all

actions from En =Hn UMn UBn.
The abstraction set I has no index n since it contains all communication

actions c;,J,m(d). By renaming all actions from I into 'T we can hide internal
communication actions from the outside world. Note that any user of
RANK.SORT will indeed not be interested in the internal communications of the

138 J.C. Mulder, W.P. Weijland

machine; only the outside behaviour will be observed, i.e.:
T1a E. (RANKsoRT(n)).

Now a correctness theorem can easily be formulated as follows:

THEOREM (CORRECTNESS OF .RAN.KSORT). For all k ;;;i.o and n = 2k, we have

ACP'I' I- 'TJaE,{R.ANKsoRT(n)) = SoRT(n)

where SoRT(n) is specified earlier.

This theorem states that 'TJaE (.RAN.KsoRT(n)) is indeed a sorting machine in .
the sense of the definition of SoRT(n). The proof will be presented in the next
section.

5. A FORMAL PROOF OF CORRECTNESS

In this section we will present the final proof of the correctness theorem. First
we will simplify the problem by stating and proving two lemmas. Combining
both of them we can easily find the proof we are looking for.

First we will formulate what we expect the i-th upper tree U;, ill··· II U;,n-l to
behave like. This is done in Lemma I below.

LEMMA I. Assume n =2k, for some given k >0. Then in the theory ACP'I' we
can prove

'TJaH, (U;, ill··· 11 U;,n-1) = ~r;, 1,o(x;) ·0 1.1 [si,j +n,o(x;) -~ri,j +n,o(Y;,j)l · s;, 1,0 [nj:lYiJ]
x, <1<n Y1J j=O

PROOF. By induction on k.
k = l: Now n =2, so T1aH, (Ui,tll···llll;,n-d=T1a82 (U;,1)= Ui, 1> and the lemma

directly follows from the definition of Ui, 1•

k + 1: Suppose the lemma holds for n = 2k. Now we prove it to hold for
2n = 2k + 1 as well:

'TJaH,.(Ui,1ll···lllf;,2n-I) =

= T1aH,. (T1aH. (Ui, 1 II··· II U;,n-1) 11 Ui,n II··· II Ui,2n-1)

{~r;, 1,o(x;) ·0 I) [si,j+n,o(x;) · ~ri,j +n,o(Y;,j)l ·
x, <.1<n Y1J

·s;,1,0 [nj:1Yi,j]}110 I) U;,j+n]
j=O <.;<n

Note, that we needed the conditional axioms to prove the first step. Using the
definition of U;,j+n we immediately find

Verification of an algorithm tor log-time sorting 139

= < 10 H, { ~r, 1,o(x;) O<J<" ['11 '"o (x,) ~r.,1 ; " o(y, 1)] 1, 10 [;~;y, J J l 11

11 0.,,/l<n 2: r;,j+n,o(d1)· [{si,2(]+n),O(d1)· 2; ri,2(j+n),O(n1,1)}11
j d,ED n,,EN

Note that for every O~j <n we have two communications: the first one bind­
ing the variable d1 and the value x;, and the second one binding y1,1 and
n1,1+m1,1. So we find:

= r1aH,,, [2:r1,1,o(x;)·0 I) {ci,J+n,o(x;)·
~J<n x,

' [{si,2(i+n),o(x;)· 2: ri,2(i+n),O(n;,J)}ll
ni,1 EN

II {si,2(i+n)+!,O(x;)· 2: ri,2(J+n)+l,O(m;)}] ·c;,J+n,O(n;,J+m;,J)l·
m1JEN

[
n-1 l

· S;, 1,0 2: (n;,J + m;,J)
;=O

= 2:r;, 1,o(x;) · 1.1 [{si,2(i +n),o(x;) · 2: r;,2v +n).o(n;,J)} 11
x O~j<n n EN

' ~

II {si,2(i+n)+!,O(x;)· 2: ri,2(J+n)+l,O(m;,1)}] ·s;,1,o [n~1 (n;,1+m1.1)]
m,.1 El'\I J-0

using the equation (rx llY) = r(x llY), which can be derived directly from the
axioms of ACPr. Thus we have

140 J.C. Mulder, W.P. Weijland

= ~r;,1,o(x;)· II [s;J+2n,o(x;)· ~ r;,j+2n,o(y1,j)] ·s;,1,o [2n~ 1Y;,jl
x, 0<;<2n ylJeN j =O

renaming the n's and m's into y's again. 0

So indeed, the i-th upper tree first will receive a number x1 from channel
(i, 1,0], i.e.: from its own root. Next, after some time, we will see all of its
leaves send this value downward to the cells in the matrix, getting some other
value in return. All processes in the leaves of the tree are interleaved, precisely
as we expected. Finally, after some time, we will find the sum of all values
being sent up from the leaves, appears at the root channel [i, 1,0] again.

In the same way we can describe what the j-th lower tree acts like, as is
done in Lemma 2.

LEMMA 2. Assume n=2k,for some given k >O. Then we have (for j<n)

T1a8.(L1)l···llL,.-1,j) = IJ [~ r;+nJ,1(z1J)l ·
O<i<n zlJeDU{nB}

·s1J,1(xor(zo,j• ... ,Zn-1,j))· ~ r1,j,1(uj)·0,..1.1< s;+n,j, 1(u)
u1eD 1 n

PROOF. By induction on k.

k =I: Now n =2, so the result directly follows from the definition of Li,j·

k + 1: T1aH,.(T1aH.(L1,jll···llL,,-1,j) llL,,,jll···llL2n-1,j) =

=T1aH,. [I.I [~ r;+n,j,1(z;J)] ·s1J,l(xor(zo,j•····Zn-J,j))·
O<i<n zveDU{nB}

· s1+n,j, 1 (xor(d;,j,ei,j)) ·

· ~ '1+nJ,1(f;,j)· [s21+2n,j,1(/;,j)llsu+1+2n,j,l(f;,j)J]
JIJeD

using the definition of L;,j and the lemma for n = 2k

Verification by square comparison 141

• C; +n,j, I (xor(d;,1,e;,)) · s l,j, 1 (xor(xor(do,1,e0,1), ... ,xor(d11 _ 1,1,e,, _ 1,1))) ·

· -~•''J.1 (uj) ·,<\I<• { C; +•J. I (uj) · [s>+,.,J. I (u1)11su. 1 +"'J. I (uj)]}]

bindin~ ~or(d;,1,e;,1) and z;,1; moreover the variables u1 and fi.1 are identified,

for all z,J. Note that xor(xor(do,1,eo,1), ... ,xor(dn-i,1,en-i,1)) =
xor(do,j,eO,j•···,d,,-1,j,en-1,); renaming d;,j and e;,j into zu,j and zu+l,j
respectively, we find

= II [""' r· +2n . 1(Z· ·)l ·
0 . ~- """ l .;. '·1
<z<,,. ZIJEDU{oll}

·s1 1· 1(xor(zo1-, ... ,z2n-1 1))· ~ r1 1· 1(u'J-)· II S;+2n;· 1(u'J-)
,' ' ' u~D '' Oc;;i<2n ',

1

D

From Lemma 2 we read that the j-th lower tree first will receive n values

(probably with some nil's) from its leaves, say z0,1, ... ,zn-1,1. Then it will send

xor(zo,j• ... ,Zn-I,j) to the bottom. Next it waits until it gets a value u1 from

the bottom in return, and it will broadcast this value up to the leaves again,

i.e.: after some time all leaves, in any order, will send up u1. Using both lem­

mas we can now easily find the final proof of the correctness theorem.

Proof of the correctness theorem
Let n =2k for some k~O. Using the conditional axioms of [1], one easily

verifies

'fJaH, uM. (U;, 1 II··· II U;,n-1 llM;,o II··· llM;,n-1) =

= 'f138 • uM, ('f13n, (Ui, 1 II··· II U;,n-1) llM;,oll··· llM;,n-1).

Then, using Lemma 1 and the definition of M;,1 we find

'f13n. (U;, 111··· II U;,n-1) llM;,oll··· llM;,n-1 =

= ~r; 10(x;)" II [si+nj 1(diag(i,j,x;))·~r;+n,1.1(W;,j)l ·
x, ' ' Or;;;;;.j <n ' ' wv

· s;, i,o [n"j:I comp (i,j,x;, w;,j)J.
1=0

142 J.C. Mulder, W.P. Weijland

Using the conditional axioms once again we have

,.1aE. (L1,111 .. ·114-1,jl1Bj) = 'l'JaE. (T1<ln. (L1)1···114-1,j) llBj)·

From the definition of Bj and Lemma 2 we find directly

,.1aE.(,.1<la.(L1,jll .. ·ll4.-1.j) llBj) =

= II [""r;+n 1· 1 (z;1-)l · II S;+n 1· 1 (xor(zo1·, ... ,Zn-1 1·))
O<i <n ;-' ' ' ' O~i <n ' ' ' '

IJ

so we have

TfdE, (R.ANKsORT(n)) =

~ ,,a" [.. ll<• [,,a H. uM. (T,a H.< U;,, II··· II u. .• -d llM,,o II .. · llM; .• - .i] 11

llo<~<n [T1ClE,(L1,jll···ll.L,.-1,jllB1)] l
= T1ClE [II {""r; 1 o(x;) · II C; +nJ· 1 (diag(i,j,x;))} ·

• O..;i<n ~ ' ' O""}<n ''

· I.I { I) [c;+n,J,l(xor(diag(O,J,xo), ... ,diag(n-1,j,xn-I)))]·
0<1<n O<;<n

· ""·' [~~:comp (i,j,x,, xor (dlag(O,j,x0), ... ,dlag (n - 1,j,x. _,)))] }]

=T1ClE [II {~r;1o(x;)· II C;+nj1(diag(i,j,x;))}·
" O<i<n x, ' ' O""}<n ''

· .II. C;+n,j,1(xj)·s;,1,o [n·j:\omp(i,j,x;,xj)]]
0<1,;<n j=O

= II [~r;, 1,o(x;)l · 1.1 s;,1,0 ["~1comp(i,j,x;,xj)l
0<1<n x, 0<1<n j=O

= II [~r;, 1,o(x;)l · II s; 1 o(p;(x))
O..;i<n x, O<i<n ' '

= SORT(n)

using the proposition of Section 4 for the last but one equality. D

Verification by square comparison 143

6. SOME REMARKS ABOUT THE COMPLEXITY OF RANKSORT

It is beyo~d the subject of this paper to study the complexity of the machine
described m the former sections. Still, some obvious remarks can be made to
indicate that RANKsORT in fact is only slightly suboptimal with respect to
other well-known algorithms. All of these remarks are from [5], in which a
review over thirteen VLSI sorting algorithms is presented.

As it turns out, RANKsoRT works with n2 processors and in logn time. So
one could say, comparing this complexity behaviour with for instance the
nlogn time sequential mergesort algorithm, a factor O(n) time can be 'won' by
exchanging it for a large amount of space. In some well-known models of
VLSI complexity this notion of 'space' is worked out in more detail (see:
Bilardi & Preparata [2] and Thompson [5]). A convenient unit of area of a
VLSI chip is the square of the minimum separation between parallel wires.
Every square unit on the chip surface may contain a wire element, or a piece
of a gate, i.e.: a localized set of transistors or other switching elements, which
perform a simple logical function. Starting from a square tessellation of the
chip surface, some restrictions on the design of the chip are made. For
instance, no pieces of gates may overlap (i.e.: any square unit only contains a
part of at most one gate) and only two (or perhaps three, depending on the
model) wires can pass over the same point (any square unit can represent the
crossing of at most two wires).

The unit of time can be taken to be the time of one clock pulse, so the time
behaviour of the chip can be expressed as a number of pulses. Note, that the
specification of RANKsoRT, as given in Section 4, can be implemented in an
unclocked network, since we have asynchronous cooperation between indivi­
dual processes. A clocked network, however, is a special case of the general
network in which no restrictions on timing are made, so a clock can do no
'harm' to the correct behaviour of the machine.

Of course, the list of restrictions mentioned here is not complete. In [2] all
restrictions are formulated in detail, as rules on the underlying graphs
representing the VLSI networks.

In [2] and [5], VLSI models are used to find lower and upper bounds for the
complexity behaviour of sorting algorithms. Assume a VLSI chip has area A
and needs time T to do its task, then a useful complexity measure turns out to
be A ·T2 (although AT and AT !logA can be used as well). In [5] a lower
bound for the complexity of any sorting algorithm is put at AT2 =O(n 2 logn).
Moreover about thirteen VLSI sorting algorithms are examined, ranging from
O(n 2 log2n) to O(n 2 log5n), and hence all are only slightly suboptimal in AT2

behaviour.
Although we have O(n 2) wires in the network, we need some more ~e unit

elements to implement the orthogonal tree network on a VLSI chip. The
RANKsORT al~orithm turns out to be A =O(n2 log2n), and thus
AT2 =O(n2 log4n), which can be understood by making the following
observation. 2

As we can see, the orthogonal tree network consists o! 0 (n) ~rocessors,
interconnected by a number of wires. Note that every wrre has width 0(1),

144 J.C. Mulder, W.P. Weijland

not O. Now consider the projection of the orthogonal tree network on a plane,
as pictured in Figure 6. We see we have to leave at least log n units of space
between two rows or columns of matrix cells, since this is the minimum area
needed to construct a tree in between these cells. So, we may conclude that
the width of the whole circuit is O(nlogn), since the distance between two
matrix processors is O(logn), and any processor is O(logn) square. So we
find directly that the total area of the orthogonal tree network is O(n2 log2n).
Since the sorting task can be done in 0 (log n) time, we have
AT2 =O(n2 log4n).

Indeed, RANKsoRT can be said to be slightly suboptimal with respect to the
lower boundAT2 =0(n2 1ogn). Oearly, however, the strong time performance
of the algorithm takes a large amount of area, so we may not expect the circuit
to be of much interest until chip area is cheap enough.

put/ in
OU tput:

[OJ

[1]

/

[2]

/

[3]

re f I ec ors:-.- -- -..-

0,0 '-- 0, 1 - 0,2 '--

I I I ~

T - T
T

1a.. ... IL

1, 0 1 '1 ... 1,2

I
4 ...

I
I.,_

I
I~

T T
T'

2,0 2' 1 2,2
,..._ ,._

I I I -
T - T

T

3,0 3, 1 3,2

I I I
T' - T

T

FIGURE 6. A two dimensional projection of the
orthogonal tree network with n = 4

--

0,3 -
I

I._

1. 3

I
1 ..

2,3 -
I

, ...

3,3

I

Verification of an algorithm for log-time sorting 145

REFERENCES

1. J.A. BERGSTRA, J.W. K.LoP (1989). An Introduction to Process Algebra.
This volume.

2. G. BILARDI, F.P. PREPARATA (1986). Area-time lower-bound techniques
with applications to sorting. Algorithmica 1, 65-91.

3. M. HENNESSY (1986). Proving systolic systems correct. TOPLAS 8(3),
344-387.

4. L. KOSSEN, W.P. WEIJLAND (1989). Correctness Proofs for Systolic Algo­
rithms: Palindromes and Sorting. This volume.

5. CLARK D. THOMPSON (1983). The VLSI complexity of sorting. IEEE
Transactions on Computers: Vol. C-32, 12, December 1983.

6. W.P. WEIJLAND (1987). A systolic algorithm for matrix-vector multiplica­
tion. Proc. SION Conference CSN 1987, Centre for Mathematics and
Computer Science, Amsterdam, 143-160.

