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In this paper a concurrent sorting algorithm called RANKSORT is presented, able 
to sort an input sequence of length n in log n time, using n2 processors. The 
algorithm is formally specified as a delay-insensitive circuit. Then, a formal 
correctness proof is given, using bisimulation semantics in the language ACP,. 
The algorithm has area-time2 = O(n2 log4 ll) complexity which is slightly sub
optimal with respect to the lower bound of AT2 =O(n2 log n). 

1. INTRODUCTION 

Many authors have studied the concurrency aspects of sorting, and indeed the 
n-tirne bubblesort algorithm (using n processors) is rather thoroughly analyzed 
already (e.g. see: Hennessy [3], Kossen and Weijland [4]). However, bubblesort 
is not the most efficient sorting algorithm in sequential programming, since it 
is n2-time and for instance heapsort and mergesort are nlogn-time sorting algo
rithms. So, the natural question arises whether it would be possible to design 
an algorithm using even less than n-time. 

In this paper we discuss a concurrent algorithm, capable of sorting n 
numbers in 0 (log n) time. This algorithm is based on the idea of square com
parison: putting all numbers to be sorted in a square matrix, all comparisons 
can be made in 0 (1) time, using n 2 processors (one for each cell of the 
matrix). Then, the algorithm only needs to evaluate the result of this 
operation. 

The algorithm presented here, which is called RANKSORT, is not the only 
concurrent time-efficient sorting algorithm. Several subn-time algorithms have 
been developed by others (see: Thompson [5]). For instance algorithms were 
presented of time-complexity Vn, log3n, log2n and logn. Indeed, the square 
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comparison algorithm presented here, appeared in [5] as well. Its network has 
been given various names, like mesh of trees or orthogonal tree network. 

In this paper we will show how a log n-sorter can be constructed. Moreover 
we will present a formal speciftcation of the algorithm and prove it correct 
using bisimulation semantics with asynchronous cooperation. 

At this place we want to thank Niek van Diepen (University of Nijmegen) 
and Karl Meinke (University of Leeds) for their contributions to this paper. 
Moreover we thank Jaap Jan de Bruin for his assistance concerning the illus
trations which were made on an Apple Macintosh. Finally, we thank Jos Bae
ten for his remarks on the early drafts of this paper. 

2. SoRTING BY SQUARE COMPARISON 

Suppose we have a sequence <a0 ,a 1,a2, ... ,an -1 > of distinct numbers, for some 
n >0, and consider the problem of computing a non-decreasing permutation of 
this sequence. Note that, in fact, we can start from an arbitrary set of symbols 
and any linear ordering >, defined on this finite set. Now restrict this order
ing to the n elements that are considered, then we obtain a finite ordering, 
which can be represented in a matrix as pictured in Figures 1 and 2. 

>:l 
E;;;:O ao a1 ai a3 a4 as a6 07 

ao 
a1 
ai 
a3 
a4 
as 
a6 
a1 

FIGURE 1. Defining ;;;.. by laying out a full matrix 

In every cell (i,j) of the matrix in Figure 1 we write 1 if a1 >aj, and 0 other
wise. Note that now the matrix has only O's on its diagonal. Moreover it is 
antisymmetric, i.e.: if i=j::.j we have 1 in (i,j) if and only if we have 0 in (j,i). 
So in fact we only need one 'half' of the matrix. 

The idea of square comparison now simply reads as follows: suppose we 
have a finite sequence of numbers to be sorted, then all the information 
relevant to the ordering problem can be computed in unit time, starting from 
the matrix above. Indeed, in one blow all n2 individual cells (i,j) can do one 
comparison (between <lj and aj), and next all information about > is available. 
Note that we can set up this matrix in O (log n) time, starting from n proces
sors containing the values to be sorted. Thus all ordering information can be 
computed in O(log n) time. 

After O(logn) time we have computed a matrix which is full of O's and l's. 
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Note, that on the i-th row, we have a I for every aj which is smaller than ai. 
Hence the number of I's in the i-th row is precisely the number of elements a· 
out of <ao,a 1>a2, ... ,an-1), satisfying aj <ai. However, the number of eli
ments less than ai is exactly the index of ai in the sorted sequence, i.e. 
represents the place of the number ai in the sorted array. 

Finally note that the number of I's can simply be found, by computing the 
sum of all matrix values on the row considered. This computation can be 
done in 0 (log n) time, since we can repeatedly add pairs of numbers con
currently, until there is only one single value left. Thus we conclude that, for 
all input values, we can compute the 'sorted index' in O(logn) time. 

In fact we have computed a permutation of the index values 
<O, 1,2, ... ,n-1>. From this permutation one can compute the sorted array in 
0(1) time, since all cells consider the computed index value, as an address to 
send the value to, they actually contain. Having enough wires to interconnect 
all cells, this can be done in one single computation step. (By putting the pro
cessors in a tree configuration once again, we can do this in O (log n) time, 
with many wires less.) 

So, indeed, we can sort a sequence of numbers in log n time using n 2 proces
sors. An example of this square comparison method is presented in Figure 2. 

> 2 7 I ;;;;. 

2 0 0 I 
7 I 0 I 
1 0 0 0 
-5 0 0 0 
11 I 1 1 
2 1 0 I 
3 I 0 1 
8 I I 1 

-5 11 2 

I 0 0 
1 0 I 
1 0 0 
0 0 0 
I 0 I 
I 0 0 
I 0 I 
1 0 1 
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0 
l 
0 
0 
I 
0 
0 
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8 

0 
0 
0 
0 
I 
0 
0 
0 

+~2 

+~5 

+~1 

+~o 

+~7 

+~3 

+~4 

+~6 

FIGURE 2. An example of the square comparison method 
on the sequence <2, 7, l, -5, 11,2,3,8> 

Here we have a small problem: suppose two numbers in the array are equal 
(the numbers are no longer distinct), then the matrix values, computed in Fig
ure 1, would be equal for both numbers. Thus the problem is that the com
puted array of index values no longer is a permutation of <0, 1,2, ... ,n -1>, 
since some of the computed indices might be equal. 

In Figure 2, this problem is solved by slightly changing the former pro
cedure. Now, the 'lower' cells, i.e. the cells below the main diagonal of the 
matrix, do not compare two values via'>' but via';;;;.'. It turns out that the 
computed indices indeed are a permutation of <O, 1,2, ... ,n -1 > and that the 
'original order' of equal numbers is preserved in the sorted array. 

In Figure 2 the sequence <2, 7, l, -5, 11,2,3,8> is considered. Note that here, 
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the computed index values <2,5, 1,0, 7,3,4,6> indeed form a permutation of 
<O, I,2,3,4,5,6, 7>. To be specific: note that the number 2 has two different 
computed indices (namely 2 and 3); without the adaptation mentioned above, 
both occurrences of the value 2 would yield the index value 2. 

The sorting machine considered in this paper is pictured in Figure 3, for 
n =4. Note that on the upper side we have n trees, one for every input value. 
Each input value is broadcast to n leaves in a row of the matrix, which is in 
the middle part of the machine. Then, the cells on the main diagonal will send 
the value received from the upper tree downwards to the bottom of the con
nected lower tree; this value is broadcast upwards again to n matrix cells, 
belonging to a column of the matrix. So, every matrix cell now contains two 
values, precisely in the way as in Figure I. Then the n 2 comparisons are made 
and each cell sends a 1 or a 0 to its upper tree. In every node the addition of 
two input values is computed, and the result is sent upwards again. Finally, 
the computed index permutation can be read from the roots of the upper trees. 

3. A FORMAL SPECIFICATION OF THE SORTING MACHINE 

In this section we will present a formal specification of RA:NKsoRT, using the 
language ACP. First, we have to name the channels of the machine (Figures 
3-5) in order to be able to give a precise definition of the behaviour of the 
individual cells. For reasons of simplicity, in the following we will assume 
n = 2k for some given k >0, n being the length of the array to be sorted. 

In Figure 4 we present the names of the processes, corresponding to the ver
tices in the trees and the cells of the matrix. The upper trees are called 
U; (OE;;i<n) and the cells in these trees are numbered U;,j (O<j <n). Like
wise, the lower trees are called Lj, with cells L;,j (O<i <n), and the matrix cells 
are called M;,j (OE;;i, j <n). The bottom cells will be called Bi (O,,;;;,.j <n). 

Note that for all i, U; has depth 2logn =k and has 2 -1 =n -1 cells. 
Further, the cells and channels in the trees are numbered 'left first/breadth 
first', as one can see in the Figures 4 and 5. 

Now, let us present a more detailed description of the behaviour of the indi
vidual processes. 

• A cell U;,j will receive a value from its upper neighbour. Next, it will send 
this value to both ·of its lower neighbours, and from both of them it will 
receive another value in return. Since both lower neighbours are indepen
dent processes, these send and receive actions are fully interleaved. Finally, 
having received two values from below, U;,j will send its sum up again. 

• A matrix cell MiJ in the middle of the sorter will first receive a value from 
the upper neighbour. Then, if it is a diagonal cell, it will send this value 
downwards to its lower neighbour. For sake of simplicity, we will make 
non-diagonal cells send a value nil downwards as well. Next, the cell will 
receive a new value from below, and send up a 0 or a I, depending on its 
position (see Figure 2) and the two input values. 

• A cell L;J from one of the lower trees, will first receive two values from 
above (in any order). Note that in any lower tree only one leaf, the one in 
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FIGURE 3. A 'mesh of trees'; the circuit configuration of RANKSORT 
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FIGURE 4. The names of the individual cells in the sorter 
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M 

1,0,, 1'1, 1 1, 2,, 1,3,1 

FIGURE 5. The channel numbers are in 'left first/breadth first' order 
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the diagonal of the matrix, will send down a number. The others will only 
send down nil. Now, if one of the values received from above is not nil, L;,j 

will send this value to its lower neighbour. Otherwise it will send down just 
nil. Next a value is received from below and 'broadcast' upwards, just like 
in ~.j• by sending it to its upper neighbours. 

• Finally, a cell Bj from the bottom of the machlne, acts as a reflector: it will 
rereive a value from its upper neighbour, and simply return it. Note that Bi 
will actually receive the number (=Foil) which is sent down by Mjj. 

Now we will translate these informal descriptions into the algebraical 
specification language ACP. To do this we need the definitions of the follow
ing functions. 

DEFINITION. We need a function diag to specify the value that will actually be 
sent down by M;,j after having received d: 

diag(i,i,d) = d 

diag(i,j,d) =nil (i=Fj). 

DEFINITION. We also need a function comp to express what boolean value, 0 
or 1, will be sent up by M1,j again, after having received d and e. So in comp 
we actually use the square comparison method (see Figure 2): 

comp(i,j,d,e) =if i>j then if d-;a.e then 1else0 fi 

else if d > e then 1 else 0 fi 

fi ; 

DEFINITION. Finally we need a kind of exclusive or on strings of symbols, to 
express what value is sent down by L;,j after having received two values: 

xor(d,nil) = xor(nil,d) = d 

xor(d,e) = xor(nil,nil) =nil (d,eeD). 

Inductively, we will define xor on arbitrary strings of length n =2k: 

xor(d 1,d2, ... ,dt) = xor(xor(d1, ... ,dt-• ),xor(dt-1 +1, ... ,dt))(d1eD U {nil}). 

Note, that if exactly one value out of { d 1 ,. .. , d.i } , d; say, is not equal to nil, 
then xor(d1,. .. ,dn)=d1• So xor 'picks' out the unique value =F nil, assuming 
this unique value exists. This more general definition will be needed later, to 
describe the specific behaviour of the lower trees, since all of its leaves will 
send down nil except for the leaf on the diagonal of the matrix. 

Now we will turn to the formal specification of the cells (see Table I). In 
this specification we have atomic actions r;,j,m(d) and St,j,m(d) for receiving and 
sending a datum d from and to the channel [i,j,m ]. Note that receive and 
send actions do not have a fixed 'direction' in the channel. We assume D to 
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be a (finite) set of numbers. All (bound) variables are written in italics. 

ui,j = ~ ,i,j, o(d) · [{s;, 2j,o(d) · ~ ,i, 2j,o(n)} 11 
deD neN 

11{S,.2j+1.o(dJ ·.~.';.zj + 1,o(m)}] · s4,o(n + m) 

M;,j = ~ ri,j+n,o(d) · S;+n,j, 1(diag(i,j,d)) · 
deD 

· ~ r; +n,j, 1 (e) · S;,j+n,o(comp(i,j,d,e)) 
eeD 

L;,j = [ ~ ru,j,1(d)ll ~ ru+1,j,1(e)] ·s;,j,l(xor(d,e))· 
deD U {nil} eeD U {nil} 

Bj = ~ r1,j, 1 (d) · s l,j, 1 (d) 
deD 

· ~ r;,j, 1 (/) • [su,j, 1(/)1 lsu +1,j, 1 if)] 
feD 

TABLE I. Specification of the cells in the sorter 

135 

As a shorthand, the scope rules of~ are violated in the first equation. Writ
ing out II using the axioms CMl-4 of [l], ~.j can easily be specified correctly 
(see also [4] and [6]). It takes some effort to check all the indices, correspond
ing to the names of the channels. However, making use of the regular 
configuration of the circuit, and comparing the specification with Figures 3 
and 4, one can find out that they are presented correctly here. Furthermore, in 
the next section we will concentrate on a formal proof of correctness of the 
sorter, and from any such proof it follows immediately that the channel 
numbers in the specification above are correct. 

Now we present the final specification of the sorting machine as a whole by 
simply interconnecting all cells (see Table 2). 

RANxsORT(n) =. H {u;,j1IM;,jll.4,j}11 u B; 
1,1<n 1<n 

TABLE 2. Specification of RANK.SORT 
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So this is the specification, in detail, of RANKSORT. Indeed, it is not clear at 
all why such a complex machine would be a sorting machine. In the next sec
tion we will hide almost all of the internal actions of the machine (only actions 
via channels [i, 1,0] are of interest to the user). Then we will prove the result 
to be a sorting machine, and hence prove RANKSORT correct. 

4. FORMULATING A CORRECTNESS THEOREM 

In this section we will present a formal theorem of correctness for RANKSORT, 
i.e.: abstracting from internal actions, we will state that RANKSORT indeed 
behaves like a sorting machine. To do this, we first have to specify what actu
ally is a sorting machine. 

DEFINITION. In the following we define the sorted indices of a given sequence 
of numbers. Suppose a=<a0 ,al>a2 , ... ,a,,- 1 > is such a sequence of numbers, 
then we have: 
(i) (po(a), ... •Pn-1(a)>ePERM(<O, ... ,n-l>), 
(ii) Pi(a)<pj(a) implies ai~a1 , 
(iii) Pi(a)<pj(a) & ai=a1 implies i<j. 

Because of part (iii) of the definition the permutation p;(a )ti...:i <n satisfying all 
three conditions, is uniquely determined. 

Note that from the sorted indices Pi(a')o..;i<n we can immediately compute 
the sorted sequence itself: assume we haven processors P 0 , ... ,Pn-I> contain
ing the values po(a),. . .,pn-1(a) and ao,.-· ,an-I respectively, and suppose all 
processors are interconnected by channels (wires) then in one step every pro
cess P; can send the number a; to the 'address' given by Pi(a), i.e.: to Pp,(a)· 

Next we will formulate a crucial proposition, stating a criterion for correct
ness of the square comparison method. A proof of this proposition is omitted. 

PROPOSITION. For all sequences a= <a0 , ••• ,an-I> and all O~i <n we have: 
n-1 

~ comp(i,)A,a1) = Pi(a). 
j=O 

Clearly, the proposition states that the square comparison method provides us 
with the sorted indices of the input sequence. Using this proposition we will 
be able to prove RANKSORT correct, in the sense that RANKsoRT turns out to 
calculate precisely ko"']<noomp(i,JA,a1) for all sequences <a0 , .•. ,an-I>. 

DEFINmON. Suppose a process SoRT(n) satisfies the equation 

SORT(n)= [ I.I [~r;,1,o(xi)]]·[ II s;1o(pi(x))), 
0.;;1<n x, O<i<n ' ' 

and x = <xo,.·· ,Xn-I), then SORT(n) is called a sorting machine of size n. 
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So we agree that any machine that receives a sequence of n numbers, and con
sequently outputs all sorted indices of this input sequence, may be called a 
sorting machine. ~ow we will return to RANKSORT arain. 

Let D be a (finite) set of numbers. Suppose n = 2 , k ;;;;.o. The communica
tion Junction I is defined by 

(ri,j,m(d)js;,j,m(d)) = (s;,j,m(d)lr;,j,m(d))=c;,j,m(d) for all i,j,m, 

all other communication actions result in deadlock, S. 

The encapsulation sets M,,, B,,, Hn and E,, are defined by 

M,, = {s;,j +n,o(d),r;,j +n,o(d): d EDU 1\1, i,j <n} U 

{s; +11,J, 1 (d),r; +n,j, 1(d): dED U {nil}, i,j <n} 

corresponding to all channels connected with the matrix cells M . 
I,)' 

B,, = {s1,J, 1 (d), r1,J, 1 (d): d EDU {nil}, j <n} 

corresponding to the channels connected with the bottom cells Bj• 

H,, = {si,J,m(d),r;,J,m(d):deDUl\IU{nil}; for all i,j,m, such that: 

(j,m) :;i= (1,0) and (i,m):;i= (1, 1) and i,j <n} 

which is the set of all communicating actions, except for actions from M,, or 
B,, or the ones corresponding to the input/output channels [i, 1,0] (i <n), 

E,, = H,, UMn UBn. 

Finally, the abstraction set I is defined by 

I = { C;,J,m ( d) : d ED U {nil}; for all appropriate i,j, m } . 

The definition of the communication function says, that receive and send 
actions only result in a communication c;,J,m(d) if they correspond to the same 
channel [i,j,m] and the same datum d. If not, a deadlock occurs, e.g. if 
d1=/=d2 then (r2,1,o(d)js5,2,1(d)) = (r;,j,m(d1)!s;,j,m(d2)) = (r;,j,m(d)lr;,J,m(d)) = 8. 
The choice of the encapsulation sets Mn, Bn and H,, is quite standard: we want 
no single receive or send actions to happen without direct communication with 
their 'partner', since otherwise data would be sent to a channel but never read 
from it. Except for the receive and send actions on the channels [i, 1,0] 
(Oo;;;;i <n): they are the input and output channels of the machine, and are 
ready for communication with the outside world. The encapsulation sets, Mn 
and Bn, are defined separately from Hn, to simplify the proofs that will be 
presented later. At the end of the proof, however, we will encapsulate all 

actions from En =Hn UMn UBn. 
The abstraction set I has no index n since it contains all communication 

actions c;,J,m(d). By renaming all actions from I into 'T we can hide internal 
communication actions from the outside world. Note that any user of 
RANK.SORT will indeed not be interested in the internal communications of the 
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machine; only the outside behaviour will be observed, i.e.: 
T1a E. (RANKsoRT(n )). 

Now a correctness theorem can easily be formulated as follows: 

THEOREM (CORRECTNESS OF .RAN.KSORT). For all k ;;;i.o and n = 2k, we have 

ACP'I' I- 'TJaE,{R.ANKsoRT(n)) = SoRT(n) 

where SoRT(n) is specified earlier. 

This theorem states that 'TJaE (.RAN.KsoRT(n)) is indeed a sorting machine in . 
the sense of the definition of SoRT(n). The proof will be presented in the next 
section. 

5. A FORMAL PROOF OF CORRECTNESS 

In this section we will present the final proof of the correctness theorem. First 
we will simplify the problem by stating and proving two lemmas. Combining 
both of them we can easily find the proof we are looking for. 

First we will formulate what we expect the i-th upper tree U;, ill··· II U;,n-l to 
behave like. This is done in Lemma I below. 

LEMMA I. Assume n =2k, for some given k >0. Then in the theory ACP'I' we 
can prove 

'TJaH, (U;, ill··· 11 U;,n-1) = ~r;, 1,o(x;) ·0 1.1 [si,j +n,o(x;) -~ri,j +n,o(Y;,j)l · s;, 1,0 [nj:lYiJ] 
x, <1<n Y1J j=O 

PROOF. By induction on k. 
k = l: Now n =2, so T1aH, (Ui,tll···llll;,n-d=T1a82 (U;,1)= Ui, 1> and the lemma 

directly follows from the definition of Ui, 1• 

k + 1: Suppose the lemma holds for n = 2k. Now we prove it to hold for 
2n = 2k + 1 as well: 

'TJaH,.(Ui,1ll···lllf;,2n-I) = 

= T1aH,. (T1aH. (Ui, 1 II··· II U;,n-1) 11 Ui,n II··· II Ui,2n-1) 

{~r;, 1,o(x;) ·0 I) [si,j+n,o(x;) · ~ri,j +n,o(Y;,j)l · 
x, <.1<n Y1J 

·s;,1,0 [nj:1Yi,j]}110 I) U;,j+n] 
j=O <.;<n 

Note, that we needed the conditional axioms to prove the first step. Using the 
definition of U;,j+n we immediately find 
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= < 10 H, { ~r, 1,o(x;) O<J<" ['11 '"o (x,) ~r.,1 ; " o(y, 1)] 1, 10 [;~;y, J J l 11 

11 0.,,/l<n 2: r;,j+n,o(d1)· [{si,2(]+n),O(d1)· 2; ri,2(j+n),O(n1,1)}11 
j d,ED n,,EN 

Note that for every O~j <n we have two communications: the first one bind
ing the variable d1 and the value x;, and the second one binding y1,1 and 
n1,1+m1,1. So we find: 

= r1aH,,, [2:r1,1,o(x;)·0 I) {ci,J+n,o(x;)· 
~J<n x, 

' [{si,2(i+n),o(x;)· 2: ri,2(i+n),O(n;,J)}ll 
ni,1 EN 

II {si,2(i+n)+!,O(x;)· 2: ri,2(J+n)+l,O(m;)}] ·c;,J+n,O(n;,J+m;,J)l· 
m1JEN 

[
n-1 l 

· S;, 1,0 2: (n;,J + m;,J) 
;=O 

= 2:r;, 1,o(x;) · 1.1 [{si,2(i +n),o(x;) · 2: r;,2v +n).o(n;,J)} 11 
x O~j<n n EN 

' ~ 

II {si,2(i+n)+!,O(x;)· 2: ri,2(J+n)+l,O(m;,1)}] ·s;,1,o [n~1 (n;,1+m1.1)] 
m,.1 El'\I J-0 

using the equation ( rx llY) = r(x llY ), which can be derived directly from the 
axioms of ACPr. Thus we have 
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= ~r;,1,o(x;)· II [s;J+2n,o(x;)· ~ r;,j+2n,o(y1,j)] ·s;,1,o [2n~ 1Y;,jl 
x, 0<;<2n ylJeN j =O 

renaming the n's and m's into y's again. 0 

So indeed, the i-th upper tree first will receive a number x1 from channel 
(i, 1,0], i.e.: from its own root. Next, after some time, we will see all of its 
leaves send this value downward to the cells in the matrix, getting some other 
value in return. All processes in the leaves of the tree are interleaved, precisely 
as we expected. Finally, after some time, we will find the sum of all values 
being sent up from the leaves, appears at the root channel [i, 1,0] again. 

In the same way we can describe what the j-th lower tree acts like, as is 
done in Lemma 2. 

LEMMA 2. Assume n=2k,for some given k >O. Then we have (for j<n) 

T1a8.(L1)l···llL,.-1,j) = IJ [ ~ r;+nJ,1(z1J)l · 
O<i<n zlJeDU{nB} 

·s1J,1(xor(zo,j• ... ,Zn-1,j))· ~ r1,j,1(uj)·0,..1.1< s;+n,j, 1(u) 
u1eD 1 n 

PROOF. By induction on k. 

k =I: Now n =2, so the result directly follows from the definition of Li,j· 

k + 1: T1aH,.(T1aH.(L1,jll···llL,,-1,j) llL,,,jll···llL2n-1,j) = 

=T1aH,. [ I.I [ ~ r;+n,j,1(z;J)] ·s1J,l(xor(zo,j•····Zn-J,j))· 
O<i<n zveDU{nB} 

· s1+n,j, 1 (xor(d;,j,ei,j)) · 

· ~ '1+nJ,1(f;,j)· [s21+2n,j,1(/;,j)llsu+1+2n,j,l(f;,j)J] 
JIJeD 

using the definition of L;,j and the lemma for n = 2k 
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• C; +n,j, I (xor(d;,1,e;,)) · s l,j, 1 (xor(xor(do,1,e0,1), ... ,xor(d11 _ 1,1,e,, _ 1,1))) · 

· -~•''J.1 (uj) ·,<\I<• { C; +•J. I (uj) · [s>+,.,J. I (u1)11su. 1 +"'J. I (uj)]}] 

bindin~ ~or(d;,1,e;,1) and z;,1; moreover the variables u1 and fi.1 are identified, 

for all z,J. Note that xor(xor(do,1,eo,1), ... ,xor(dn-i,1,en-i,1)) = 
xor(do,j,eO,j•···,d,,-1,j,en-1,); renaming d;,j and e;,j into zu,j and zu+l,j 
respectively, we find 

= II [ ""' r· +2n . 1(Z· ·)l · 
0 . ~- """ l .;. '·1 
<z<,,. ZIJEDU{oll} 

·s1 1· 1(xor(zo1-, ... ,z2n-1 1))· ~ r1 1· 1(u'J-)· II S;+2n;· 1(u'J-) 
,' ' ' u~D '' Oc;;i<2n ', 

1 

D 

From Lemma 2 we read that the j-th lower tree first will receive n values 

(probably with some nil's) from its leaves, say z0,1, ... ,zn-1,1. Then it will send 

xor(zo,j• ... ,Zn-I,j) to the bottom. Next it waits until it gets a value u1 from 

the bottom in return, and it will broadcast this value up to the leaves again, 

i.e.: after some time all leaves, in any order, will send up u1. Using both lem

mas we can now easily find the final proof of the correctness theorem. 

Proof of the correctness theorem 
Let n =2k for some k~O. Using the conditional axioms of [1], one easily 

verifies 

'fJaH, uM. (U;, 1 II··· II U;,n-1 llM;,o II··· llM;,n-1) = 

= 'f138 • uM, ('f13n, (Ui, 1 II··· II U;,n-1) llM;,oll··· llM;,n-1). 

Then, using Lemma 1 and the definition of M;,1 we find 

'f13n. (U;, 111··· II U;,n-1) llM;,oll··· llM;,n-1 = 

= ~r; 10(x;)" II [si+nj 1(diag(i,j,x;))·~r;+n,1.1(W;,j)l · 
x, ' ' Or;;;;;.j <n ' ' wv 

· s;, i,o [n"j:I comp (i,j,x;, w;,j)J. 
1=0 



142 J.C. Mulder, W.P. Weijland 

Using the conditional axioms once again we have 

,.1aE. (L1,111 .. ·114-1,jl1Bj) = 'l'JaE. (T1<ln. (L1)1···114-1,j) llBj)· 

From the definition of Bj and Lemma 2 we find directly 

,.1aE.(,.1<la.(L1,jll .. ·ll4.-1.j) llBj) = 

= II [""r;+n 1· 1 (z;1-)l · II S;+n 1· 1 (xor(zo1·, ... ,Zn-1 1·)) 
O<i <n ;-' ' ' ' O~i <n ' ' ' ' 

IJ 

so we have 

TfdE, (R.ANKsORT(n )) = 

~ ,,a" [ .. ll<• [,,a H. uM. (T,a H.< U;,, II··· II u. .• -d llM,,o II .. · llM; .• - .i] 11 

llo<~<n [T1ClE,(L1,jll···ll.L,.-1,jllB1)] l 
= T1ClE [ II {""r; 1 o(x;) · II C; +nJ· 1 (diag(i,j,x;))} · 

• O..;i<n ~ ' ' O""}<n '' 

· I.I { I) [c;+n,J,l(xor(diag(O,J,xo), ... ,diag(n-1,j,xn-I)))]· 
0<1<n O<;<n 

· ""·' [~~:comp ( i,j,x,, xor ( dlag(O,j,x0 ), ... ,dlag (n - 1,j,x. _,) )) ] } ] 

=T1ClE [ II {~r;1o(x;)· II C;+nj1(diag(i,j,x;))}· 
" O<i<n x, ' ' O""}<n '' 

· .II. C;+n,j,1(xj)·s;,1,o [n·j:\omp(i,j,x;,xj)]] 
0<1,;<n j=O 

= II [~r;, 1,o(x;)l · 1.1 s;,1,0 ["~1comp(i,j,x;,xj)l 
0<1<n x, 0<1<n j=O 

= II [~r;, 1,o(x;)l · II s; 1 o(p;(x )) 
O..;i<n x, O<i<n ' ' 

= SORT(n) 

using the proposition of Section 4 for the last but one equality. D 
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6. SOME REMARKS ABOUT THE COMPLEXITY OF RANKSORT 

It is beyo~d the subject of this paper to study the complexity of the machine 
described m the former sections. Still, some obvious remarks can be made to 
indicate that RANKsORT in fact is only slightly suboptimal with respect to 
other well-known algorithms. All of these remarks are from [5], in which a 
review over thirteen VLSI sorting algorithms is presented. 

As it turns out, RANKsoRT works with n2 processors and in logn time. So 
one could say, comparing this complexity behaviour with for instance the 
nlogn time sequential mergesort algorithm, a factor O(n) time can be 'won' by 
exchanging it for a large amount of space. In some well-known models of 
VLSI complexity this notion of 'space' is worked out in more detail (see: 
Bilardi & Preparata [2] and Thompson [5]). A convenient unit of area of a 
VLSI chip is the square of the minimum separation between parallel wires. 
Every square unit on the chip surface may contain a wire element, or a piece 
of a gate, i.e.: a localized set of transistors or other switching elements, which 
perform a simple logical function. Starting from a square tessellation of the 
chip surface, some restrictions on the design of the chip are made. For 
instance, no pieces of gates may overlap (i.e.: any square unit only contains a 
part of at most one gate) and only two (or perhaps three, depending on the 
model) wires can pass over the same point (any square unit can represent the 
crossing of at most two wires). 

The unit of time can be taken to be the time of one clock pulse, so the time 
behaviour of the chip can be expressed as a number of pulses. Note, that the 
specification of RANKsoRT, as given in Section 4, can be implemented in an 
unclocked network, since we have asynchronous cooperation between indivi
dual processes. A clocked network, however, is a special case of the general 
network in which no restrictions on timing are made, so a clock can do no 
'harm' to the correct behaviour of the machine. 

Of course, the list of restrictions mentioned here is not complete. In [2] all 
restrictions are formulated in detail, as rules on the underlying graphs 
representing the VLSI networks. 

In [2] and [5], VLSI models are used to find lower and upper bounds for the 
complexity behaviour of sorting algorithms. Assume a VLSI chip has area A 
and needs time T to do its task, then a useful complexity measure turns out to 
be A ·T2 (although AT and AT !logA can be used as well). In [5] a lower 
bound for the complexity of any sorting algorithm is put at AT2 =O(n 2 logn). 
Moreover about thirteen VLSI sorting algorithms are examined, ranging from 
O(n 2 log2n) to O(n 2 log5n), and hence all are only slightly suboptimal in AT2 

behaviour. 
Although we have O(n 2) wires in the network, we need some more ~e unit 

elements to implement the orthogonal tree network on a VLSI chip. The 
RANKsORT al~orithm turns out to be A =O(n2 log2n), and thus 
AT2 =O(n2 log4n), which can be understood by making the following 
observation. 2 

As we can see, the orthogonal tree network consists o! 0 (n ) ~rocessors, 
interconnected by a number of wires. Note that every wrre has width 0(1), 
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not O. Now consider the projection of the orthogonal tree network on a plane, 
as pictured in Figure 6. We see we have to leave at least log n units of space 
between two rows or columns of matrix cells, since this is the minimum area 
needed to construct a tree in between these cells. So, we may conclude that 
the width of the whole circuit is O(nlogn), since the distance between two 
matrix processors is O(logn), and any processor is O(logn) square. So we 
find directly that the total area of the orthogonal tree network is O(n2 log2n). 
Since the sorting task can be done in 0 (log n) time, we have 
AT2 =O(n2 log4n). 

Indeed, RANKsoRT can be said to be slightly suboptimal with respect to the 
lower boundAT2 =0(n2 1ogn). Oearly, however, the strong time performance 
of the algorithm takes a large amount of area, so we may not expect the circuit 
to be of much interest until chip area is cheap enough. 
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