
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Scheduling Sport Tournaments using Constraint Logic Programming

A. Schaerf

Probability, Networks and Algorithms (PNA)

PNA-R9707 April 30, 1997

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301665512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report PNA-R9707
ISSN 1386-3711

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Scheduling Sport Tournaments using Constraint Logic Programming

Andrea Schaerf

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria 113, I-00198 Roma, Italy

e-mail: aschaerf@dis.uniroma1.it

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

We tackle the problem of scheduling the matches of a round robin tournament for a sport league. We

formally de�ne the problem, state its computational complexity, and present a solution algorithm using a

two-step approach. The �rst step is the creation of a tournament pattern and is based on known graph-

theoretic results. The second one is a constraint-based depth-�rst branch and bound procedure that assigns

actual teams to numbers in the pattern. The procedure is implemented using the �nite domain library of

the constraint logic programming language ECLiPSe. Experimental results show that, in practical cases, the

optimal solution can be found in reasonable time, despite the fact that the problem is NP-complete.

1991 Mathematics Subject Classi�cation: 68N17, 68P10, 68Q25, 68T20

1991 Computing Reviews Classi�cation System: I.2.8, F.2.2, G.2.1

Keywords and Phrases: sport scheduling, constraint logic programming, scheduling applications, branch &

bound, local search

Note: This work has been partly carried out while the author was visiting CWI as an ERCIM fellow. Work

carried out under project PNA1.2, CIP.

1. Introduction

Many sport leagues (e.g. football, hockey, basketball) face the problem of scheduling the

matches of the round robin tournament. The problem consists in assigning matches to rounds

in such a way that every team plays with every other one, all teams play every round with a

di�erent opponent (either home or away), and various other side constraints are satis�ed.

This problem has a straightforward graph-theoretic formulation, and several papers have

appeared in the literature concerning the solution of di�erent variants of the problem based

on properties of the corresponding graphs (see e.g., de Werra, 1980, 1985; de Werra, Jacot-

Descombes, & Masson, 1990; Schreuder, 1980; Straley, 1983).

In addition, a considerable attention has been devoted to the automated generation of

the schedule using computer programs. To this respect, various techniques have been used:

heuristics (see e.g., Cain, 1977; Ferland & Fleurent, 1991), clustering (Schreuder, 1992), and

tabu search (Costa, 1995).

We deal with the speci�c problem of �nding a schedule of a round robin tournament for a

sport league with various constraints including availability for matches and stadia, like the

Dutch \Top League" or the Italian \Serie A" of football (USA: soccer).

2

We tackle the problem using a two-step approach (as in Schreuder, 1993). The �rst step

regards the generation of a �xed tournament pattern, which can be done in polynomial time

using known graph-theoretic results. The second step involves the solution of a bipartite

graph matching with side constraints, which turns out to be an NP-complete problem.

We present a solution of the bipartite graph matching problem based on a depth-�rst branch

and bound technique implemented in the logic programming language ECLiPSe (ECRC,

1995b) using the �nite domain library (ECRC, 1995a, Chapter 5). Using a suitable ordering

of the selected variables and their values, and thanks to the good pruning capability of the

�nite domain constraint solver, we have been able to �nd for practical cases the optimal

solution in a reasonable computation time.

The paper is organized as follows: Section 2 de�nes the round robin tournament prob-

lem. Section 3 describes how the problem can be tackled in a two-step way, dividing it into

two smaller subproblems. Section 4 discusses the computational complexity on the overall

problem and its subproblems. Section 5 explains the algorithm employed and its implemen-

tation. Section 6 shows the experimental results and the performances obtained. Section 7

describes the interactive features of the system. Finally, in Section 8 related and future work

is discussed and some conclusions are drawn.

2. Tournament Scheduling

A league comprises 2n teams, and in 2n � 1 consecutive rounds each team must play with

each other. Matches take place at the home stadium of one of the two teams, and home

and away games should be alternated as much as possible. We call break , after de Werra

(1980), the fact that a team plays two consecutive rounds in the same location, where the

term location denotes either home or away. The problem is to �nd a schedule that minimizes

the number of breaks and satis�es a number of other side constraints.

Constraints are split into hard (requirements) and soft ones (wishes): Hard constraints

must necessarily be satis�ed by the solution, soft ones instead can be violated and they

contribute to the objective function.

For all the types of constraints de�ned below, each single constraint can be declared either

hard or soft. The soft ones are associated with an integer-valued positive penalty, and the

sum of all penalties determines the objective function. The hard ones are strictly enforced

during the construction of the solution.

We have two groups of constraints. The �rst group, that we call ordinary constraints,

regards general constraints on all teams. The second group of constraints are related to a

grouping of the teams based on their strength, and we call them special constraints.

2.1 Ordinary Constraints

Ordinary constraints we consider are of the following types (see also Schreuder, 1993).

� Complementarity: Teams t1 and t2 must have complementary schedules (i.e. when

t1 plays home t2 plays away, and vice versa).

� Availability: Team t must play home (or away) at round r.

� Mating: Team t1 cannot play home (or away, or both) with team t2 at round r.

3

� Triples: Three teams t1, t2, and t3 cannot be simultaneously in the same location (i.e.

two must be in one location and the third in the other location).

Hard complementarity constraints are used if two teams share the same stadium (e.g. the

\San Siro" stadium in Milan is shared by Internazionale and A.C. Milan). Soft complemen-

tarity instead is used if the stadia of two teams are located close to each other and the clubs

want to optimize the use of railways and highways for their supporters (e.g. Feyenoord and

Sparta have their stadia in Rotterdam).

Hard availability constraints are used when a stadium is occupied by some other event

in a given round (e.g. a team playing in another league like for Sampdoria in \Serie A"

which shares the \Marassi" stadium with Genoa in \Serie B"). Soft availability constraints

are used either for commercial aspects (e.g. overlapping with other events), sportive aspects

(e.g. clubs promoted from the inferior league play the �rst game at home), or organizational

aspects (e.g. clubs with hooligans among the fans should not be allowed for away games in a

round scheduled in a week day).

Hard and soft mating constraints are mostly used for sportive aspects. For example matches

between teams of the same city (derby matches) should not occur in the �rst or in the last

rounds. Further, teams involved in the European cups should not play with a strong opponent

just before the cup matches.

Triples constraints are used for triples of teams which are located closed to each other in

one geographic area. The scheduling of three matches simultaneously in that area would

overload railways and highways due to traveling supporters.

Soft complementarity constraints are penalized proportionally to the number of rounds

in which they are violated. Therefore, their penalty weight is multiplied by the number of

times that the two teams play in the same location (which varies from 0 to 2n � 2). For

soft complementarity, it is usually requested that the optimal solution satis�es not only a

minimality condition, but it also ensures a certain level of fairness. In fact, a solution cannot

be acceptable if it optimizes the objective function at the expenses of some speci�c teams.

We improve fairness by adding hard constraints that impose that certain soft constraints are

not violated beyond a given extent. To this aim, we also consider constraints of the following

kind

� Fairness: Teams t1 and t2 can be simultaneously in the same location (home or away)

for at most m rounds.

Generally, for each soft complementarity constraint we associate a hard fairness constraint

that ensures that the complementarity is violated at most m times in the season.

2.2 Special Constraints

The de�nition of the second group of constraints presupposed some prior notions: We call

top teams the members of a subset of the teams composed by the strongest teams, which

require some special treatment. We call top match a match between two top teams. We call

distance of two matches the number of rounds between the rounds in which they take place.

The special constraints are the following ones:

� Top matches schedule: For a given set of rounds R, no top match can take place at

any round r 2 R.

4

� Top match distance: Two top matches cannot take place at distance smaller than a

given value TopMatchDistance.

� Top opponent distance: Any team cannot match two top teams at distance smaller

than a given value TopOpponentDistance.

The two parameters TopMatchDistance and TopOpponentDistance are given at global

level; that is, they are the same for all teams. Their typical value can be 3 and 2, respectively.

We split teams in two groups: the top teams (usually 3 or 4) and the other ones. A �ner

grain grouping is also possible, and more complex constraint types can be considered. For

example, Schreuder (1993) proposes (although he does not pursue this idea) to divide teams

in three groups |strong, medium, and weak teams| and looks for schedules that alternate

matches with teams belonging to the three groups.

3. Two-Step Approach

We propose a solution of the round robin tournament scheduling problem based on two steps:

First, determine a tournament pattern, i.e. a complete tournament in which numbers from

1 to 2n are used as teams. Second, associate all actual teams with distinct numbers in the

pattern.

The total number of breaks is completely determined by the tournament pattern. There-

fore, it is in the �rst step that we take care of minimizing such number. At the same stage,

we also ensure that the tournament pattern is done so that there is a way to satisfy the

complementarity constraints. All other constraints are not considered at this stage and they

are dealt with in the second step.

In the second step, we take into account the actual constraints that involve the speci�c

teams (ordinary and special ones), trying to satisfy the hard ones and minimize the total

penalty of the soft ones.

3.1 Step 1: Determine a Tournament Pattern

The problem of determining the tournament pattern is related to the problem of �nding an

1-factorization of a complete (undirected) graph (Mendelsohn & Rosa, 1985). That is, given

the complete graph K2n we must partition it in a set of 2n�1 sets of n arcs (called 1-factors),

such that in each set the arcs are pairwise non adjacent.

Each arc represents a match and each 1-factor a round. Therefore, giving an order to the

1-factors and assigning home or away teams for each match, a 1-factorization can be turned

into a tournament pattern.

de Werra (1981) proved that there cannot exist a tournament pattern for 2n teams with

less than 2n � 2 breaks, and he supplied a formula for constructing a pattern with exactly

2n� 2 breaks, that he called the canonical pattern. In the canonical pattern, for each team

t1 there exists a unique team t2 such that t1 and t2 have a complementary schedule. Pairs of

teams with complementary schedules are called complementary pairs. The complementary

pairs of the canonical schedule are (1; 2n) and (i; i + 1) for i = 2; 4; : : : ; 2n� 2.

The canonical schedule for 2n = 6 is shown in Figure 1, where the order of the teams

determines the location of the match: The �rst team plays home and the second one away.

The complementary pairs are (1; 6), (2; 3), and (4; 5).

5

Round 1 1-6 2-5 4-3

Round 2 6-2 3-1 5-4

Round 3 3-6 4-2 1-5

Round 4 6-4 5-3 2-1

Round 5 5-6 1-4 3-2

Figure 1: The canonical pattern for 2n = 6

Round 1 1-6 2-5 4-3

Round 2 6-2 3-1 5-4

Round 3 6-3 4-2 1-5

Round 4 4-6 5-3 2-1

Round 5 6-5 1-4 3-2

Round 6 6-1 5-2 3-4

Round 7 2-6 1-3 4-5

Round 8 3-6 2-4 5-1

Round 9 6-4 3-5 1-2

Round 10 5-6 4-1 2-3

Figure 2: The modi�ed canonical pattern for 2n = 6

Most of the national football tournaments involve a double round robin, such that the

second round robin is a copy of the �rst one with home and away teams swapped. To create

a schedule for the double round robin, the canonical pattern is not suitable because two teams

(numbers 2n�2 and 2n�1) have two consecutive breaks (i.e. three consecutive matches home

or away). Speci�cally, they occur in the last round of the �rst round robin and in the �rst

round of the second one. In addition, the same two teams play the last two games in the

same location, which is something sportively not fair.

For this reason, we consider the modi�ed canonical pattern de�ned in (de Werra, 1981,

Prop. 4), which is obtained from the canonical one by reversing the orientation of the last

three matches of the team number 2n. Such pattern overcomes the above limitations, since

it has no consecutive breaks and no breaks in the last round. In addition, it has exactly

6n � 6 breaks for the whole double round robin, which is the minimum (de Werra, 1981,

Prop. 3). Furthermore, it retains the property that teams have pairwise complementary

schedules. The complementary pairs are (1; 2n�1), (2n�4; 2n), (2n�3; 2n�2) and (i; i+1)

for i = 2; 4; : : : ; 2n � 6. The full double tournament for 2n = 6 is shown in Figure 2.

Complementary pairs are (1; 5), (2; 6), and (3; 4).

The modi�ed canonical pattern is therefore suitable for the solution of our problem. Obvi-

ously, other patterns (having the required features) can also be used in place of the modi�ed

canonical one. In particular, we can think of patterns that satisfy some other requirements.

For example, the patterns de�ned by Russell (1980) take care also of the so-called carry-over

6

e�ect; that is, they avoid that a team plays too often with teams that played in the previous

round with a speci�c team. Unfortunately, the patterns de�ned by Russell do not include

home-away selection since they are meant for a tournament on a single site. Nevertheless,

home and away teams can be assigned to them (in a way that minimizes the number of

breaks) adapting the method proposed by Wallis (1983) to the double round robin case.

Therefore Russell's patterns are a possible alternative to the modi�ed canonical pattern.

In addition, many national football federations have their standard patterns which are used

for all tournaments organized by the league. Therefore, they enforce the use of such patterns

for the tournament.

In any case, it is worth remarking that the second step is completely independent of the

choice of the speci�c pattern in use.

3.2 Step 2: Team Assignment

Given a �xed pattern, the second step of our approach aims at �nding a matching between the

actual teams and the numbers appearing in the pattern. This is a bipartite graph matching,

which is a well-studied problem (see e.g., Hopcroft & Karp, 1973). However, we have to take

into account our constraints, and the way they a�ect the structure of the problem.

Hard availability constraints force a given team not to be assigned to any number that

plays in the undesired location at the given round. Therefore, constraints of this type simply

remove some arcs from the complete bipartite graph.

Hard mating constraints require that a given pair of teams (t1; t2) is not assigned to any

of the pairs of numbers that compose a given round r. Therefore, they can be reduced to a

set of constraints, that we call pair-inequality constraints, stating that a given pair of teams

(t1; t2) cannot be simultaneously assigned to a given pair of numbers (m1;m2).

Hard complementarity constraints require that a given pair of teams (t1; t2) is assigned

to one of the complementary pairs of numbers. Such constraints can also be reduced to a

set of pair-inequality constraints stating that (t1; t2) must be di�erent from any pair but the

complementary ones.

Hard fairness constraints require that a given pair of teams (t1; t2) is di�erent from all

the pairs that have more than the given number m of games together. Therefore, they also

reduce to a set of pair-inequality constraints.

Triples constraints force triples of teams to be not simultaneously assigned to triples of

numbers that are in the same location for at least one round. Since all such triples of numbers

can be easily precomputed from the given pattern, triple constraints reduce to triple-inequality

constraints which are the variant of pair-inequality with three teams.

All top teams constraints can be veri�ed based on the assignment given to the top teams

alone. Therefore, assuming that there are t top teams (typically 3 or 4), all top teams

constraints together can be reduced to a set of tuple-inequality constraints.

Regarding the soft constraints, all of them can be embedded in the objective function,

which is the function that returns, for each feasible matching, the associated total penalty.

In fact, all types of (soft) constraints can be easily computed when the complete matching is

given.

Summing up, the problem we have to face in the second step is a minimum-cost matching

problem in a (not necessarily complete) bipartite graph with tuple-inequality constraints.

7

3.3 Discussion

It is easy to see that �nding the \optimal" solution using the two-step approach does not

ensure to reach the optimal solution in the general case.

Possible techniques to solve optimally the general case will be briey discussed in Section 8.

From this point on, when we write optimal solution we refer to the optimal solution of the

assignment problem considered within the framework of the two-step approach.

4. Computational Complexity

As already mentioned, computing the solution of the tournament scheduling problem in the

general case and in the two-step approach are two distinct problems. We now discuss the

complexity of both problems.

4.1 Complexity of the Two-Step Approach

Regarding the complexity of the two-step approach, we can easily recognize that the modi-

�ed canonical tournament pattern can be generated in polynomial time (O(n2)). Regarding

the complexity of the minimum-cost matching problem, it is easy to see that, for a given

matching, the objective function can be computed in polynomial time. Conversely, we now

prove that the underlying decision problem |\does a matching satisfying all the hard con-

straints exist?"| is NP-complete. To this aim, we have to prove that the problem is in NP

and that it is NP-hard. The NP membership is trivial, since every matching can be easily

generated and veri�ed in non-deterministic polynomial time. We now state its NP-hardness.

To this aim, we consider only pair-inequality constraints. The NP-hardness of the problem

with all constraints follows from the NP-hardness of the problem with only pair-inequality

constraints.

It is well known that bipartite graph matching is a polynomial problem (Hopcroft & Karp,

1973). Conversely, Itai, Rodeh, and Tanimoto (1977) proved that the \restricted" bipartite

graph matching is NP-complete, where restricted means that one can express constraints of

the form: For a given set of arcs E at most r of them can be in the matching. Moreover, Itai

et al. in their NP-completeness proof (which is a reduction from the SAT problem) make

use only of constraints of a special type where E has cardinality 2 and r = 1. That is, they

consider only a set of restrictions of the form: Between two arcs of the graph, at most one can

be part of the matching. Therefore, they implicitly proved that bipartite graph matching with

this special type of restriction is also NP-complete. Our pair-inequality constraints are exactly

restriction of the special type; in fact, the constraint that t1; t2 cannot be simultaneously

assigned to m1;m2 is equivalent to state that at most one of the arcs (t1;m1) and (t2;m2)

can be in the matching. Therefore, we can conclude that the team/number matching problem

with pair-inequality constraints is NP-complete.

4.2 Complexity of the General Problem

Now we discuss the complexity of the overall tournament scheduling problem. In particular,

we consider the underlying decision problem |\does a tournament satisfying all the hard

constraints exist?"| and we prove its NP-completeness.

We �rst prove that it is in NP. To this aim, we can think of a tournament as a table

of quadratic size each entry of which is one of the teams. Such table can be guessed in

polynomial time. The check that it is indeed a legal tournament amounts to verify that every

8

team appears in every round and that every teams plays with all other teams. It is easy to

see that both these conditions, plus our hard constraints, can be veri�ed in polynomial time

therefore the problem is not harder than NP.

Unfortunately though, there is no known way to enumerate all the possible tournament

patterns in a computationally tractable way. On the graph-theoretic side, it is not even

known which is the number of non-isomorphic 1-factorizations of the complete graph K2n

(independently of the orientation). To this respect there are some isolated results: It is

known that for 2n = 2; 4; 6 there is only one equivalence class of 1-factorizations. For 2n = 8

there are 6 non-isomorphic 1-factorizations (Wallis, Street, & Wallis, 1972). Gelling and Odeh

(1973) proved, by exhaustive computer construction, that for 2n = 10 they are exactly 396.

Lindner, Mendelsohn, and Rosa (1976) found an exponential lower bound for such number,

which proves that the number goes to in�nity with n.

Rosa and Wallis (1982) introduce the notion of premature schedule, which is a partial

tournament (i.e. a set of scheduled rounds) that cannot be completed in a full tournament.

They proved the existence of premature schedules of k > n rounds for all n � 5. They also

proved that for n � 4 a partial tournament of 3 rounds is never premature, i.e. it can always

be completed. Conversely, Colbourn (1983) proved that it is NP-complete to decide whether

a partial tournament is not premature.

Based on Colbourn's result, we can infer that our tournament scheduling problem is NP-

hard. This is because non prematurity can be polynomially reduced to tournament scheduling

with mating constraints. In fact, imposing mating constraints for all pairs of teams but n

in a given number of rounds, we can �x the schedule of such rounds and then reduce the

problem to scheduling the rest of the tournament (without further constraints). Thus, we

can conclude that the decision problem for tournament scheduling is NP-complete.

5. Algorithm and Implementation

As already mentioned, our approach is to use a �xed tournament pattern and to solve the

associated minimum-cost matching problem. To this aim, we use the modi�ed canonical

pattern mentioned in Section 2. For reasons that will be explained below, we rename the

numbers appearing in the pattern in such a way that i and i + 1 (for i = 1; 3; : : : ; 2n � 1)

have complementary schedule.

5.1 Constraint Logic Programming with Finite Domains

The program is implemented using the �nite domain library of ECLiPSe. Finite domain

variables are associated with a �nite set of values (the domain) which represents all its

possible instantiations. Variable domains can be seen as monadic predicates attached to

variables; however they are dealt with at uni�cation level instead of at resolution level as

standard monadic predicates (see e.g., Van Hentenryck, 1989; Ja�ar & Maher, 1994).

Finite domain constraints, like equality \#=", inequality \##", and disequality \#<", are

processed based on the domain of the variables involved. They can succeed, fail, or delay

depending on the current state of the domain of the variables. Delayed goals are collected in

the constraint store which a�ects the future dynamics of the variables involved.

For example, suppose that A, B, and C are three (uninstantiated) �nite domain variables

and their domains are the integer intervals 1..5, 1..3, and 5..7, respectively. Then, the

constraint B #> C would fail, whereas the constraint B #< C would succeed. Conversely, the

9

constraint A #< B would delay, however in the mean time the domain of A is reduced to the

interval 1..2. The reduction of the domain of A might a�ect the domain of other variables

involved in delayed goals. In fact, any time the domain of one of the variables is reduced, the

constraint is woken and the domain of the other variables is reduced consequently.

In this way, the constraint store can give a good pruning in the search space for variables

to be instantiated for the solution of the problem.

The high level predicate de�nition of our program is the following:

sportSchedule(NbrTeams):-

createDataStructures(NbrTeams),

stateDomains(NbrTeams,TeamVars),

stateConstraints(NbrTeams,TeamVars),

generateValues(NbrTeams,TeamVars),

printReport(NbrTeams,TeamVars).

In the �rst phase, by means of the invocation of the predicate createDataStructures,

the program builds the patterns based on the number of teams and it declares and initializes

all the auxiliary data structures associated to the pattern. The auxiliary data structures

are used for a fast retrieval of all the information related to the pattern. For example, for

each pair of numbers, we store the number of times the corresponding teams would be in the

same location (home or away). Such structures are implemented using the ECLiPSe array

facilities, which work much more e�ciently than regular lists in standard logic programming

languages.

In the second phase, through the predicate stateDomains, each team t is associated with

a �nite domain variable T, whose value corresponds to the number that the team gets in the

tournament pattern. All variables are stored in a list, called TeamVars, whose length is the

number of teams (2n), stored in the variable NbrTeams. Each variable of the list is associated

with a domain, which is the integer interval from 1 to NbrTeams.

In the third phase, based on the hard constraints of the problem, we state, by means of

the predicate stateConstraints, the constraints on the �nite domain variables. The fact

that each team must be assigned to a di�erent number, and thus that all values must be

di�erent from each other, is expressed by a call of the built-in alldistinct(TeamVars),

which generates inequality constraints between all pairs of constraints in the list TeamVars.

Availability constraints are taken into account simply by removing from the domain of a

variable the numbers that in the pattern play in the location (home or away) where the team

cannot be. For example, if team t cannot play home at round r, the program retrieves all

the numbers that play at home at round r |which are stored at location r of the auxiliary

array HomeTeams| and deletes all values from the domain of the variable T (by means of the

built-in dvar remove element).

As already stated, each mating constraint reduces to a set of pair-inequality constraints.

Pair-inequality constraints are enforced by avoiding that the given pair of variables T1,T2

are simultaneously instantiated with the given pair of values V1,V2. Exploiting the fact that

the domain of the variables is bounded by the value NbrTeams, a pair-inequality constraint

can be expressed using a single primitive inequality constraint in ECLiPSe in the following

way:

10

T1 * NbrTeams + T2 ## V1 * NbrTeams + V2

The way constraints are dealt with in ECLiPSe ensures that if T1 (resp. T2) is instantiated to

V1 (resp. V2), the value V2 (resp. V1) is removed from the domain of T2 (resp. T1). Conversely,

if T1 (or T2) is instantiated to a di�erent value, the constraint is immediately satis�ed (and

thus discarded) independently of the value of T2. For example, if the number of teams is 10

and V1 and V2 are respectively 6 and 3, we state the constraint T1 * 10 + T2 ## 63. If at a

certain point of the computation, T2 is instantiated to 3, the constraint is woken, instantiated

to T1 * 10 + 3 ## 63, and simpli�ed to T1 ## 6. Therefore, the value 6 is removed from

the domain of T1. If T2 is instantiated to 5, the constraint reduces to T1 * 10 ## 58 which

is automatically satis�ed and discarded.

Such approach gives much more pruning than just checking the violation of the constraint

when both variables are instantiated, which can be achieved with conventional logic program-

ming techniques.

Triple-inequality constraints are treated in an analogous way. Speci�cally, the constraint

that (t1; t2; t3) must be di�erent from (v1; v2; v3) is implemented by

T1 * NbrTeams * NbrTeams + T2 * NbrTeams + T3 ##

V1 * NbrTeams * NbrTeams + V2 * NbrTeams + V3

Complementary constraints in principle can also be reduced to pair-inequality constraints.

However, for e�ciency reasons they are treated di�erently. Nevertheless, they are also reduced

to primitive �nite domain constraints. In particular, since we renamed the pattern in such

a way that values i and i + 1 (for i = 1; 3; : : : ; 2n � 1) have complementary schedules, the

constraint that teams t1 and t2 must be complementary simple reduces to the following

equality constraint

T2 #= T1 + 1

along with the constraint that T1 has an odd value.

Notice that this way we have imposed that T1 has the lower value and T2 the higher. We

can proceed this way (applying the general principle of eliminating symmetric cases whenever

it is possible) only if there are no constraints that involve the single variables T1 and T2.

Conversely, if there are other constraints on T1 and T2, it is necessary to try also the dual

assignment (i.e. T1 #= T2 + 1, with T2 odd). In this case, we have a disjunctive constraint

involving the variables T1 and T2. Such constraints are dealt with by using the generalized

propagation library Propia of ECLiPSe (ECR, 1995a, Chapter 6), which implements a form

of constructive disjunction.

Using constructive disjunction in Propia, choices due to disjunction are delayed as much as

possible; however, before making the choice, the system extracts useful information common

to the two branches. For example, suppose that T1 and T2 are �nite domain variables with

current domains respectively 3..5 and 1..10, then a disjunction of the form

T1 #= T2 + 1 ; T2 #= T1 + 1

is delayed until one of the two variables is \touched" (Provost & Wallace, 1993), but in the

mean time the domain of T2 is automatically reduced to 2..6.

11

Special constraints are not considered at this stage for reasons that will be explained in

the sequel.

The fourth phase is the team assignment. This is the only phase in which backtracking

takes place. The choice of the order for instantiating the variables is crucial for the e�ciency

of the algorithm. Since the most constrained variables are those corresponding to the top

teams, we start instantiating them. For the remaining teams, we split them in those on which

some constraints (hard or soft) are stated and those that are completely unconstrained. For

the latter ones, called free teams, any assignment is feasible and their assignment does not

a�ect the objective function. For this reason, we assign the values for free teams after the

regular ones so as to reduce the number of variables upon which backtracking is necessary.

The de�nition of the predicate generateValues is the following

generateValues(NbrTeams,TeamVars):-

splitTeamVars(TeamVars,TopTeams,RegularTeams,FreeTeams),

generateValuesForTopTeams(TeamVars,TopTeams)

generateValuesForRegularTeams(TeamVars,RegularTeams),

generateValuesForFreeTeams(FreeTeams).

The predicate splitTeamVars separate top team variables and free team variables from

the variables of the rest of the teams, called regular teams.

For assigning top teams, we use the predicate generateValuesForTopTeams we make use

of a simple generate and test procedure. That is, an assignment for all top teams is generated

before testing it against the special constraints.

This way of proceeding is justi�ed by the fact that top teams are few and the number of

feasible assignments is also small, and thus it is not worth using a backtracking mechanism.

In any case, the ordinary constraints in the store are automatically taken into account and

they prevent the search space for the top teams to become too large. For example, they ensure

that top teams are assigned to di�erent numbers and they satisfy the availability constraints.

For each feasible assignment for the top teams, we look for an assignment for the regular

teams with the predicate generateValuesForRegularTeams. This is the computationally

hard part of the program, and it is dealt with a branch and bound algorithm. Therefore, in

this phase, pruning takes place not only based on constraints accumulated in the store by the

stateConstraints predicate, but also due to the binding activity for the branch and bound

scheme. That is, a backtracking can occur either because the domain of a variable becomes

empty or because of the value of the objective function based on the current best solution.

Variables are chosen one at a time to be instantiated to a value belonging to its domain.

For the selection of the next variable to be instantiated, we use the deleteffc built-in,

that retrieves the variable with the smallest domain and (in case of equal size) the most

constrained one.

The choice of the possible value for the selected variable is done by computing a lower

bound of the objective function for each possible partial solution. In details, for each soft

constraint the evaluation returns its penalty if the constraint is violated and 0 if it is not

violated. For the constraints that cannot be checked because the variables involved are not

instantiated yet, we compute a lower bound of their penalty based on the current domain

of the variables. Obviously, the evaluation takes into account also the variables that are

automatically instantiated due to the constraints and not only those instantiated by the

12

labeling process. Based on such evaluation, values are sorted in ascending order, to be selected

one at a time upon backtracking. After each instantiation, if the value of the objective

function for the given (partial) solution is higher than the current best (if any), then the

evaluation fails and the program backtracks.

When a solution has been found for top teams and regular teams, the predicate generate-

ValuesForFreeTeams generates values for the free teams (without backtracking) using the

labeling built-in predicate, which chooses variables in the order they appear in the list, and

instantiates it with the minimum of its current domain.

When the generateValues predicate has traversed the entire search space, the current

best solution is passed to the predicate printReport which displays the full tournament,

with the list of all soft constraints violated.

The critical issues of our program (and of constraint logic programming in general) are

the ordering of the variables and the selection of the appropriate value, within the current

domain of the variable, for the instantiation.

Regarding the former issue, a general principle is to instantiate the most constrained vari-

ables �rst. Ordering variables in top teams, regular teams, and free teams is done exactly for

this purpose. In addition, such separation allow us to consider the special constraints only

in the �rst phase, taking them out of the second one which is the computational bottleneck.

The use of the built-in deleteffc for selecting variables in the second phase gives a huge

speed-up (roughly 2 orders of magnitude) with respect to the naive labeling built-in predi-

cate, which chooses variables in the order they appear in the list.

Regarding the latter issue, our value selection based on the objective function also gives

a good speed-up (almost 1 order of magnitude) w.r.t. the use of built-in indomain, which

selects the values for a variable starting always with the minimum of its current domain.

6. Experimental Results

For 2n = 12 (for example the Danish \Superligaen") the program was able to �nd the optimal

schedule in a few seconds for a wide collection of constraint settings.

For 2n = 18 (like the German \Bundesliga") and 2n = 20 (like the English \Premiership")

the program has di�erent running time depending on how tightly it is constrained. In par-

ticular, if the problem has several hard complementary constraints (e.g. 3 in the Italian Serie

A in 1995-96), plus various other constraints (e.g. many big teams which cannot match in

various given rounds), then it takes no more than 5 minutes to compute the optimal solution.

Conversely, if the league is loosely constrained the whole process takes much longer (up to

1 hour). In particular, the program spends most of the time after it has found the optimal

solution, before it realizes that no better one can be found.

For real settings of constraints,1 it takes about 20 minutes to generate the optimal solution.

The method proposed by Schreuder (1992) takes about 2 minutes of cpu time (plus some

manual adjustments).

Although our running time might seem to be quite long compared with 2 minutes, it must

be clear that Schreuder uses an incomplete clustering procedure which gives no guarantees

about the quality of the solution. The only optimal solution method available is the diagnostic

system described in (Bakker, Dikker, Tempelman, & Wognum, 1993), which solves instances

1Kindly supplied by Jan Schreuder for the Dutch \Top League".

13

Algorithm TournamentScheduling

Input Instance : TournamentSchedulingInstance;

Output Solution : AssignmentSolution;

begin

Solution := SolveApproximate(Instance);

while not Satisfying(Solution)

begin

Instance := ManuallyAdjustSpeci�cation(Instance);

Solution := FastReviseSolution(Instance,Solution)

end

Solution := SolveExactly(Instance);

end.

Figure 3: The interactive algorithm

of the same size in about 25 hours of cpu time.

7. Interactive System

The ability to work interactively is widely recognized as crucial for scheduling systems. For

our problem, although each instance can be solved optimally in reasonable time, in order to

solve a real case, the run must be repeated several times so as to get sensibility on constraints

and penalties. Therefore, it is necessary to have a fast (possibly incomplete) method that

runs in a few seconds, that allows the user to play interactively with the constraints and the

corresponding solutions. Speci�cally, the typical session with the system has the structure

shown in �gure 3.

7.1 Fast Sub-Optimal Construction

The function SolveApproximate is meant to give a sub-optimal assignment in short time (say

in 2-5 minutes). One easy way to solve this problem is to stop the search when time is expired

and to return the current best solution. An di�erent way, is to reduce the branching factor

during the branch and bound search (see Ginsberg & Harvey, 1992). That is, we might not

consider all possible values for the selected variable, but only the best k ones, where k is a

selected parameter. In (Ginsberg & Harvey, 1992), k is iteratively increased so as to retain

completeness of the procedure. Conversely, in order to have a fast (incomplete) procedure, k

must be selected based on a compromise between e�ciency and completeness.

Our experimental results show that the value k = 3 almost never misses the optimal

solution, and gives a speed-up of 2 (i.e. it halves the computational time). The value k = 2

gives a speed-up of approximately 5, but in a few cases does not �nd the optimal solution. We

therefore use a branching factor of 2 in order to implement the procedure SolveApproximate.

7.2 Solution Revision

In order to implement the function FastReviseSolution we make use of a local search. Local

search techniques are a family of general-purpose techniques for the solution of optimization

14

problems. They are based on the notion of neighbor. Consider an optimization problem,

and let S be its search space and f its objective function to minimize. A function N , which

depends on the structure of the speci�c problem, assigns to each feasible solution s 2 S its

neighborhood N(s) � S. Each solution s0 2 N(s) is called a neighbor of s.

A local search technique, starting from an initial solution s0, enters in a loop that navigates

the search space, stepping iteratively from one solution to one of its neighbors. We call move

the modi�cation that transforms a solution to one of its neighbors.

In our case, the initial solution s0 is the solution of the problem considered in the previous

iteration, and a local move consists in swapping the assignments given to two di�erent teams.

To the respect, local search techniques are especially suitable for our purpose, since they

allow to revise the given solution, based on the new constraints, without recomputing it from

scratch.

Speci�cally, we implemented a hill climbing procedure based in the MCHC technique de-

�ned by Minton, Johnston, Philips, and Laird (1992). That is, a move consists in randomly

selecting a team t, and swapping the assignment for t with the assignment of another team s,

choosing s in such a way to minimize the number of infeasibilities and |with less priority|

the objective function.

MCHC allows also for sideways moves, i.e. moves that leave the value of the objective

function unaltered. therefore this method has the feature of being able to follow descending

paths that pass through plateaux. That is, if the search lands in a plateau, it is able to move

within it, and might get down from it through a solution di�erent from the one from which

it reached the plateau.

Accepting sideways move, the algorithm can run for in�nite time, we therefore �x a maxi-

mum number of iterations so as to keep its running time within a reasonable amount of time

(about 1 minute).

Although MCHC has the capability of navigating plateaux, it is inevitably trapped by strict

local minima. More sophisticated local search techniques (like tabu search and simulated

annealing) also accept worsening moves and allow one to escape from strict local minima.

We do not discuss their use in this paper, however we believe that, due to the limited time

granted to the algorithm, more complex would not give any improvement. This conjecture is

supported by preliminary experimental results with tabu search.

8. Conclusions and Future Work

We have presented a constraint-based branch and bound algorithm for a sport scheduling

problem. Our procedure uses exponential time in the worst-case. However, being the problem

NP-complete, such complexity is unavoidable.

We have also discussed a local search procedure that complements the branch and bound

algorithm, allowing the resulting system to be a useful tool for interactive runs.

Despite its theoretical complexity and despite the common opinion that this kind of prob-

lems cannot be solved in an exact way (see e.g., Schreuder, 1993), the problem turned out to

be relatively easy to handle using constraint programming. In fact, the solution program is

considerably short and quite straightforward to write. Moreover, it is exible, readable and

easy to maintain.

It is worth mentioning that hard constraints give much more pruning than soft ones. In

fact, the a-priori pruning given by domain reduction is more e�ective than the pruning given

15

by the failure due to the bounding capabilities of the branch and bound. Therefore, in order

to improve the e�ciency of the program, it is advisable to include as many hard constraints

as possible. For example, if for two given teams they both wish to have a complementary

schedule it is reasonable to assign it to them as a demand, even though they do not share

the same stadium.

We do not claim that all tournament scheduling problems can be easily solved using con-

straint logic programming. There are some problems that involve more than one league (see

e.g., de Werra et al., 1990), and others that are based on the minimization of traveling costs

for the teams (see e.g., Campbell & San Chen, 1976). Such more complex sport scheduling

problems generally require specialized optimization techniques (see e.g., Costa, 1995; Ferland

& Fleurent, 1991).

As already mentioned, the two-step approach does not ensure to �nd the optimal solution

for the general problem. Theoretically, there are two possible approaches to the general

problem.

The �rst approach would be to construct directly a complete tournament respecting the

above constraint and ensuring a minimum number of breaks. In that case, the number of

breaks can be either a soft or a hard constraint. This approach, however, seem to be extremely

expensive from the computational point of view, and thus absolutely intractable for practical

cases.

The alternative idea, would be a generalized two-step approach, based on the enumeration

of all possible patterns. However, as mentioned in Section 4, this approach seems to be

extremely hard to formalize and solve, especially due to the lack of suitable graph-theoretic

results.

An intermediate solution, which we plan to implement in the future, is to collect a number

of di�erent patterns and to look for the global minimum using one of them. The main issue

of this approach is to identify those patterns that are di�erent enough to each other with

respect to their ability to satisfy our type of constraints.

We also plan to work for improving further the e�ciency of the program. To this aim, we

want to look for a better upper-bound to the cost of a partial solution so as to give a larger

pruning in the branch and bound procedure based on the soft constraints.

Acknowledgements

I wish to thank Jan Schreuder and Krzysztof Apt for many fruitful discussions that con-

tributed to the paper, Bruno Errico and Maurizio Lenzerini for useful comments on an earlier

draft of the paper.

References

Bakker, R. R., Dikker, F., Tempelman, F., & Wognum, P. M. (1993). Diagnosing and solving

over-determined constraints satisfaction problems. In Proc. of the 13th Int. Joint Conf.

on Arti�cial Intelligence (IJCAI-93), pp. 276{281. Morgan Kaufmann.

Cain, Jr., W. O. (1977). The computer-assisted heuristic approach used to schedule the major

league baseball clubs. In Ladany, S. P., & Machol, R. E. (Eds.), Optimal Strategies in

Sports, pp. 32{41. North-Holland, Amsterdam.

16

Campbell, R. T., & San Chen, D. (1976). A minimum distance basketball scheduling problem.

In Machol, R. E., Ladany, S. P., & Morrison, D. G. (Eds.), Mamagements Science in

Sports, pp. 15{25. North-Holland, Amsterdam.

Colbourn, C. J. (1983). Embedding partial Steiner triple systems is NP-complete. Journal

of Combinatorial Theory, Series A 35, 100{105.

Costa, D. (1995). An evolutionary tabu search algorithm and the NHL scheduling problem.

INFOR, 33 (3), 161{178.

de Werra, D. (1980). Geography, games and graphs. Discrete Applied Mathematics, 2, 327{

337.

de Werra, D. (1981). Scheduling in sports. In Hansen, P. (Ed.), Studies on Graphs and

Discrete Programming, pp. 381{395. North Holland.

de Werra, D. (1985). On the multiplication of divisions: The use of graphs for sports schedul-

ing. Networks, 15, 125{136.

de Werra, D., Jacot-Descombes, L., & Masson, P. (1990). A constrained sports scheduling

problem. Discrete Applied Mathematics, 26, 41{49.

ECRC, Germany (1995a). ECLiPSe Extensions User Manual (Version 3.5.2).

ECRC, Germany (1995b). ECLiPSe User Manual (Version 3.5.2).

Ferland, J. A., & Fleurent, C. (1991). Computer aided scheduling for a sport league. INFOR,

29, 14{25.

Gelling, E. N., & Odeh, R. E. (1973). On 1-factorizations of the complete graph and the

relationship to round robin schedules. In Third Manitoba Conference on Numerical

Math., pp. 214{221.

Ginsberg, M. L., & Harvey, W. D. (1992). Iterative broadening. Arti�cial Intelligence, 55 (2-

3), 367{383.

Hopcroft, J. E., & Karp, R. (1973). An n5=2 algorithm for maximum matching in bipartite

graphs. SIAM Journal of Computation, 2, 225{231.

Itai, A., Rodeh, M., & Tanimoto, S. L. (1977). Some matching problems for bipartite graphs.

Tech. rep. TR93, IBM Israel Scienti�c Center, Haifa, Israel.

Ja�ar, J., & Maher, M. (1994). Constraint logic programming: a survey. Journal of Logic

Programming, 19/20, 503{581.

Lindner, C. C., Mendelsohn, E., & Rosa, A. (1976). On the number of 1-factorizations of the

complete graph. Journal of Combinatorial Theory, Series B 20, 265{282.

Mendelsohn, E., & Rosa, A. (1985). One-factorizations of the complete graph { a survey.

Journal of Graph Theory, 9, 43{65.

17

Minton, S., Johnston, M. D., Philips, A. B., & Laird, P. (1992). Minimizing conicts: a

heuristic repair method for constraint satisfaction and scheduling problems. Arti�cial

Intelligence, 58, 161{205.

Provost, T. L., & Wallace, M. (1993). Generalized constraint propagation over the CLP

scheme. Journal of Logic Programming, 16.

Rosa, A., & Wallis, W. D. (1982). Premature sets of 1-factors or how not to schedule round

robin tournaments. Discrete Applied Mathematics, 4, 291{297.

Russell, K. G. (1980). Balancing carry-over e�ects in round robin tournaments. Biometrika,

67 (1), 127{131.

Schreuder, J. A. M. (1980). Constructing timetables for sport competitions. Mathematical

Programming Study, 13, 58{67.

Schreuder, J. A. M. (1992). Combinatorial aspects of construction of competition dutch

professional football leagues. Discrete Applied Mathematics, 35, 301{312.

Schreuder, J. A. M. (1993). Construction of �xture lists for professional football leagues. Ph.D.

thesis, Department of Management Science, The University of Strathclyde, Glasgow.

Straley, T. H. (1983). Scheduling designs for a league tournament. Ars Combinatorica, 15,

193{200.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. MIT Press.

Wallis, W. D. (1983). A tournament problem. Journal of the Australian Mathematical Society,

Series B 24, 289{291.

Wallis, W. D., Street, A. P., & Wallis, J. S. (1972). Combinatorics: Room Squares, Sum-Free

Sets, Hadamard Matrices. No. 292 in Lecture Notes in Mathematics. Springer-Verlag,

New York.

