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RESEARCH ARTICLE 

A HILLE-YOSIDA THEOREM FOR A CLASS OF 
WEAKLY * CONTINUOUS SEMIGROUPS 

Ph. Clement, 0. Diekmann, M. Gyllenberg, 
H.J .A.M. Heijmans and H. R. Thieme 

0. Introduction. 

In this paper we consider a class of weak * continuous semigroups of 
bounded linear operators on the dual of a Banach space X which are not neces
sarily the adjoints of Co -sernigroups on X. Such semigroups arise in a natural 
way as perturbations (in an appropriate sense) of adjoint C0 -sernigroups: see 
Clement, Diekmann, Gyllenberg, Heijmans and Thieme [4-7]. There the per
turbed semigroup is constructed by exploiting a variation-of-constants formula 
and duality arguments. 

Here we shall introduce the notion of an integral weak * generator and 
use this to characterize the aforementioned class of weak * semigroups in a one
to-one manner. 

Finally, we refer to Jefferies [12] for some related results. 

1. Formal calculations with w *-semigroups 

A family Tx = {Tx(t): t ~ O} of bounded linear operators on a dual 
Banach space X * such that 

(i) TX(O) =I 
(1.1) (ii) Tx(t + s) = Tx(t)Tx(s), t,s ~ 0 

(iii) t - (x, TX(t)x*) is continuous for any given x Ex and x· EX* 
is called a weakly * continuous semigroup or, in abbreviated form, a w*
semigroup. The operator Ax defined by 

(1.2) A xx• = w* - lim -h1 (Tx (h)x* - x*) 
hj,0 

with 'D(A x) = {x*: w* - lim t(Tx(h)x* - x*) exists} is called the infinitesimal 
h!O 

weak *generator or, in abbreviated form, the w *-generator. 
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The standard example of a w*-semigroup is a dual semigroup, i.e. 

where {T(t)} isa Co-semigroupon X. In that case Ax= A*, where A is 
the infinitesimal generator of T( t) and one can easily verify all the elegant and 
powerful relations between semigroup and generator which are familiar from C0 -

semigroup theory provided one replaces strong differentiation and integration by 
the corresponding weak* analogs (see Butzer and Berens [3, §1.4]). In particular, 
a dual semigroup is uniquely determined by its w *-generator. It is tempting to 
conjecture that this situation extends to w *-semigroups in general. 

However, an easy counterexample can be constructed as follows. Con
sider the Co -semigroups T(t) of translations on X = Co(R), the space of 
continuous functions defined on R which vanish at infinity. So (T(t)x)(a) = 
x(t +a) and the dual semigroup T* on X* is defined by 

{x, T*(t)x*) = {T(t)x,x*) = l x(t + a)x*(da). 

It is well known that x0: = 'D(A*) is the maximal subspace of X* on which 
T*(t) is strongly continuous in t. In this particular case X 8 is the subspace 
of measures which are Lebesgue absolutely continuous (so X0 '.'.:::'. L1 (R)) and 
one has the direct sum decomposition 

X* = X 8 EB XJ_ 

where X J_ denotes the subspace of measures which are singular with respect to 
the Lebesgue measure. We emphasize that both X0 and X J_ are closed in X * 
and invariant under T*(t). So for any o: ER we can define a w*-semigroup 
T; on X* by 

(1.3) x • _ { T*(t)x* 
T,, ( t)x - T*( o:t)x* 

if x* E X8 

if x* E XJ_. 

Obviously the maximal subspace of strong continuity does not depend on a 
and on this space X0 the action does not depend on o: either. So all these 
semigroups do have the same w*-generator! 

How can one distinguish the "bad" semigroups T'/;" ( t) with o: f. 1 from 
the "good" semigroup T*(t) in a direct way, without invoking duality? The re
quirement that the semigroup operators are the solution operators corresponding 
to the Cauchy problem 

d* 
dt u(t) = Axu(t) 

u(O) = x* (1.4) 

is as such of not much help since in order to solve (1.4) one has to assume that 
x* E VI A.*) (and even that does not guarantee that a solution exists since 
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D( A*) is not necessarily invariant under Tx ( t) ). However, if we integrate ( 1.4) 
formally we obtain 

u(t) - x• =Ax 11 u(r)dr 

and it seems reasonable to require that this should hold for u(t) = Tx(t)x* and 
all x* E X*. But with T: ( t) defined by ( 1.3) we find 

T;(t)x*-x*={ AxfiT:(r)x*dT forx*EX0 
a:Ax f 0 T:(r)x*dr for x* E X.L, 

showing that the requirement is fulfilled iff a = 1. 
In order to rewrite the requirement in terms of semigroup operators only, 

we continue our formal calculations. If x* E D( Ax) we write 

(1.6) 

even though a justification cannot be given. If we now consider the identity 

and take x* of the special form 

we obtain 

Tx(t) ih Tx(r)y*dr = 1h Tx(r)y*dr +it Tx(r)Ax 1h Tx(O')y*d(J dr 

= 1h Tx(r)y*dr + ih Tx(r){Tx(h)y* - y*}dr 

= 1h Tx(t + (J)y*d(J. 

This formal calculation motivates the introduction of property 

(Sl) 

for all x E X*, t 2: 0, h 2: 0. 
We will c<tll w*-semigroups with property (Sl) integral w *-semigroups. A 
straightforward calculation shows that T;: defined by (1.3) is an integral w*
semigroup iff a: = 1. 
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Remark . De£ne 

Sx(t)x* = lt Tx(r)x*dr. 

Then {Sx(t)} is an integrated .semigroup in the sense of Arendt [2], Kellermann 
and Hieber [13] and Neubrander [15] iff {Tx(t)} is an integral w*-semigroup. 

Up to now we are neither able to prove that (1.6) holds for all integral 
w*-semigroups nor to £nd a counterexample within this class. So we are led to 
introduce the following concept of a generator. 

Definition 1.1. x* E 'D(A~) and y* =A~ x* iff 

(1. 7) 

Note that, for x• E 'D(A~), y* is uniquely determined by (1.7). We will call 
A; the integral generator of Tx . Observe that ( 1. 7) is equivalent to 

and that automatically 'D(A;) is invariant under Tx(t) and A~Tx(t)x* = 
Tx (t)A~x*. Obviously Ax is an extension of A~. 

One objective of this paper is to single out a large class of integral w *
semigroups for which the two generators Ax and A~ are actually the same. 
The theory of dual semigroups suggests a way to achieve this end. For those we 
have [3, Corollary 2.1.5] 

V(A*) = Fav(T*) = {x* EX*: t 1-+ T*(t)x* is Lipschitz on [O, 1]}. 

The fact that Ax extends A~ and the uniform boundedness principle imply 
that in general 

'D(A~) c 'D(Ax) c Fav(T><). 

Therefore our strategy will be to forget about the w*-generator for a while and 
to characterize those integral generators for which the domain coincides with 
the Favard class. The w*-generator then coincides with the integral generator 
automatically. 
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2. The characterization theorem 

Theorem 2.1. Let Ax be a linear operator on X*. The following sets (G) 
and (S) of properties are equivalent: 

(G1) (.\ - Ax )-1 is an everywhere defined bounded operator such that for 
some M > 0, w ER, 

(G2) If (i) x~ E '.D(Ax), (ii) [[x~ - x*[[ -t 0 as n -t oo and (iii) 
[[Axx~[[:::::; C for some C > 0, then x* E 'D(Ax) and Axx~ -t AXx* 
weakly * as n -t oo. 

(S) Ax is the w *-generator of an integral w *-semigroup Tx which in 
addition to 

(S1) Tx(t)f0hTx(r)x*dr=f0hTx(t+r)x*dr, x*EX*, t,h?,0, 
satisfies 

(S2 ) If (i) x~ is a bounded sequence in X* and (ii) sx(t)x~ = J; Tx(r)x~dr 
converges strongly as n -t oo, uniformly in t ?. 0 after scaling with 
a factor e->.t with Re .\ sufficiently large, then there exists x* E X* 
suchthat x~-tx* weakly*as n-too and [[Sx(t)x~-Sx(t)x*[[-tO 
as n -too. 

In the following we shall abbreviate the sentence "Let Ax be the w *
generator of an integral w *-semigroup such that ( G) or, equivalently, (S) in 
Theorem 2.1 is satisfied" to "Assume G /S". 

Theorem 2.2. Assume G/S. Then 
a) Ax is the integral generator of Tx. Hence '.D(A x) is invariant under 

Tx(t) and ~:Tx(t)x* = AxTx(t)x* = Tx(t)Axx* for x* E '.D(Ax) 
and t > 0. 

b) [[Tx(t)[[:::::; Mewt and (.\ -A.x)- 1 x* = J0
00 e->.rTx(r)x*dr 

for .\ > w. 

c) )(0:= 'D(AX) is the maximal subspace of strong continuity of Tx. 

d) '.D(Ax) = Fav(Tx) = {x*: [[Tx(t)x* - x*[[:::::; Ct for 0:::::; t:::::; 1} 
= {x*: t 1--+ Tx(t)x* is locally Lipschitz on [O, oo)}. 

e) For x* EX*, J0tTx(r)x*dr E 'D(Ax) and 

Ax(f0t Tx( r )x* dr) = Tx ( t)x* - x*. In particular '.D(A x) is w *-dense 
in X*. 

f) Tx(t)x*=w*- lim(I-1.Ax)-»x*. 
n--+oo n 

Proof. Let A0 denote the part of Ax in X 8 = 'D(A x). Assume ( Gi). 
The Hille-Yosida theorem shows that A8 generates a C0 -semigroup T0(t) on 
x0. 

We claim that '.D(Ax) C Fav(T8 ) = {x 8 E X 8 :1imsupt[[T8 (t)x 8 -
t!O 

x0[[ < oo} = {x0 E X0: t 1--+ T0(t)x0 is locally Lipschitz on [O, oo)}. Take 
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any t?:: s ~ 0 and x0 E V(Ax); then 

T 8 (t)x 8 -T8 (s)x0 = lim (T8 (t)-T8 (s)),\(,\ -A8 )-1x0 
A-oo 

Since x0 E 'D(Ax) we have A8 .>-(,\ -A8 )- 1 x8 = ,\(,\ -Ax)-1 Axx0 and 
this remains bounded for ,\---+ oo. Hence llT8 (t)x 8 - T8 (s)x8 11 :S Git- s\ 
and the claim is proved. 

Any x0 E x0 can be strongly approximated by elements 
t J;T0(s)x0ds E V(A0). If x0 E Fav(T8 ), then A8 t J0tT8 (s)x0ds = 
t(T0( t)x0 - x0) remains bounded as t i 0. Assume ( G2 ). It follows that any 
x0 E Fav(T0) necessarily belongs to V(Ax). Hence V(Ax) = Fav(T0). 

Obviously Fav(T0) is invariant under T 8 and so the following 
definition makes sense: 

(2.1) 

for ,\ E p(Ax). The resolvent identity shows that this definition does not 
depend on the choice of >.. Clearly {Tx (t)} is a semigroup. Because of 
(Gr), >.T0(t)(,\ -Ax)-1 x* remains bounded as ,\---+ oo. Since Tx(t)x* 
is independent of ,\, AXT0(t)(>. -Ax)-1 x• has to remain bounded as well. 
( G1 ) implies that T 8 (t)(,\ - Ax)-1x* tends to zero strongly as >----+ oo. It 
then follows from ( G2 ) that Ax T 8 ( t )( ,\ - Ax )- 1 x* tends to zero in the weak* 
topology. We conclude that 

(2.2) Tx(t)x* =w*- lim >.T0(t)(,\-Ax)-1x*. 
A-oo 

Using ( G1 ) once more we obtain the estimate 

(2.3) 

which shows that llTx(t)ll is exponentially bounded. Since t 1-+ T0(t)(,\ -
Ax )-1 x* is norm continuous we deduce from ( G2) that t 1-+ yx ( t)x* is weak* 
continuous. We now know that {Tx(t)} is a w*-semigroup. In order to verify 
( S 1 ) we need a lemma. 

Lemma 2.3. Let Ax satisfy ( G2 ). Let x*: [t1 , t 2 ] ---+ X* be continuous 
with values in D(A x) and such that llAxx•(t)ll :SC for some C > 0 and 

t1:::; t:::; t2. Then t 1-+ Axx*(t) is w*-continuous on [t1,t2], J/1
2 x*(r)dr E 

D(Ax) and Ax ftt1
2 x*(r)dr = ftt1

2 Axx*(r)dT. 

Proof. The w*-continuity of Axx*(t) is an immediate consequence of 

(G2). As x*(t) is strongly continuous the integral ftt1
2 x*(r)dr is strongly 

approximated by Riemann sums I:x*(ti)(tj+i - tj) E V(Ax). Similarly 

L:Axx*(tj)(tj+I - ti) approximates J1t1
2 Axx*(r)dr in the weak* sense since 

Axx*(t) is weakly* continuous. The assertion now follows from (G2 ). II 
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Armed with this lemma we can write 

rh h 
Tx(t) Jo Tx(r)x*dr = Tx(t)(>.. -Ax) 1 T 8 (r)(>. - A x)- 1 x*dr 

=(>.-Ax)T8 (t) 1h T 8 (r)(>.-Ax)- 1x*dr 

=(>.-Ax) lh T 8 (t+r)(>.-Ax)- 1x*dr 

= fo\>.-Ax)T 8 (t+r)(>.-Ax)- 1x*dr 

= lh Tx(t + r)x*dr 

which is exactly ( S1 ). It remains to verify ( S2 ). 

The definition (2.1) implies that 

Hence, for Re >. sufficiently large, 

Consider any bounded sequence x~ in X* such that e->-.rsx(t)x~ converges 
strongly as n--+ =, uniformly in t 2:'. 0. Put y~ = (>. -Ax)- 1 x~. Then 
y~ converges strongly to a limit, say y*. Moreover, A xy~ is bounded since 
x~ is bounded. So (G2) implies that y* E V(Ax) and Axy~ --+ Axy• 
weakly *. Hence x~ = ( >. - Ax )y~ = >.y~ - Ax y~ --+ >.y* - Ax y* weakly 
*.Put x* = >.y* -Axy*; then y* = (>.-Ax)- 1 x*. From (2.1) we deduce 
sx(t) = (>. - A0)S0(t)(>. - Ax)-1 = (>.S0(t) - T0(t) +I)(>. - AX)- 1 and 
consequently sx(t)x~ --+ (>.S0(t) - T0(t) + I)y* = (>.S0(t) - T0(t) +I)(>. -
AX)-1 x• = sx(t)x*. Hence (S2) holds. This concludes the (G) implies (S) part 
of the proof of Theorem 2.1. 

Let Tx be a w *-semigroup with integral generator A~. Applying 
the uniform boundedness theorem twice we deduce that llTx(t)ll is bounded 
on [O, l]. The semigroup property then implies that llTx(t)ll is exponentially 
bounded. Assume(S 1 ). We claim that sx(t)x* E'.D(A;) and A;sx(t)x*= 
TX(t)x* - x*. In order to prove this claim we first note that sx(t + h) = 
sx(t)Tx(h) + sx(h). Hence (S1 ) can be rewritten as 

Therefore TX(t)SX(h) - sx(li) = sx(t)(Tx(h) - I) ' which, by the very 
definition of an integral generator, proves the claim. 
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Define x0 = I>(A~). If x* E V(A;), then Tx(t)x* - x* == 

sx(t)A;x• and consequently t ~ yx(t)x* is norm continuous. As TX(t) 

is exponentially bounded, this property extends to the closure I>( An. Assume, 

conversely, that llTx(t)x* - x*ll-+ 0 as t l 0. Then lltSx(t)x* - x*ll-> O 

as t l 0 as well. Since sx(t)x* E V(A;) we conclude that x* E I>(A~). So 

X 8 is the maximal subspace of strong continuity for yx. If we restrict Tx 

to the invariant subspace x0 we obtain a Co -semigroup which we call r0. 
The definition of integral generator is such that it immediately follows that A0 

is the part of A; in X 8 . We now want to use the Hille-Yosida estimates for 

A0 to prove ( G1 ). 
We show that ,\ E p( A;) if Re ,\ > w. Define, for Re ,\ > w and 

x* EX*, 

We note that, by an approximation argument, 

for every strongly continuous X* -valued function f. In particular, 

Tx(t) 100 e->.syx(s)x*ds=100 e->.syx(t + s)x*ds 

=loo e->.(s-t)yx(s)x*d.s, 

which is weakly* differentiable with weak * derivative .\Tx ( t)R; :r* - yx ( t)x*. 

Therefore R; x* E 'D( A;) and A~ R; x* = >.R; x* - x*, which yidds that 

(A - A;)R; = I. On the other hand, if Tx(t) is a weakly * continuous 

semigroup satisfying (S 1), then e->.tTx(t) is a weakly* contirmous sf'migroup 

satisfying (S1 ) and its integral weak * generator is A~ - ,\ with domain 
V(A;). Thus 

for x* E V(A~). If Re ..\ > w we can take 

x* = Rr(>- -A;)x*. This shows that for Re,\> w 

and 

-+ oo and get that 
we have ,\ E p(A.~) 

R(.\,At}x* = R;x• = 100 e->.syx(.s)x*ds. 

Now note that for µ E p(A~) we have 
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We want to control the term A0(>. -A0)- 1(µ -A;)- 1 . Since 

A0(>. -A0)-lx0 = >.(>. -A0)-lx0 - x0 =>.loo e->.rT0(T)x0dT - x0 

= lim -(e->.(t-h) - e->.t)T8 (t)x0dt- x8 100 1 
hLO 0 h 

= lim e->.t_(T0(t + h) -T0(t))x8 dt 100 1 

hLO o h 

= lim100 e->.tT0(t)I_(T8 (h) - I)x0dt 
hLO o h 

we obtain llA8 (>.-A0 )-1x8 11 ~ >.~wllx8 11 provided T 8 (t)x 8 is Lipschitz. 
The definition of integral generator implies at once that Tx(t)x0 is Lipschitz 
for x8 E 'D(A;). Hence (G 1 ) is a corollary of the Hille-Yosida estimates for 
A0 

Assume (82). Consider x~ E 'D(A;) such that x~ -+ x* strongly 
while llA; x~ II is bounded. The identity 

and ( 82 ) imply that A~ x~ converges weakly * to a limit, say y*, and that 

By the definition of integral generator this implies that x* E 'D(A~) and 
y* = A~x*. Hence (G2) holds. 

Finally we claim that 'D( A~) = Fav(T8 ). We know already that 
'D(A;) C Fav(T0). The fact that x0 E Fav(T0) implies x0 E 'D(A;) 
follows from (G2 ) exactly as before. Let Ax be the w*-generator of Tx; 
then 'D(A~) C 'D(Ax) C Fav(Tx) = Fav(T0). We conclude that A;= Ax. 

We have now proved Theorem 2.1 but during the proof we have also 
shown that Theorem 2.2 a,b,c,d,e are true. It remains to prove Theorem 2.2 f. 
From the theory of Co -semigroups we know that 

(I - .!.A0)-n(>. -Ax)-lx*-+ T0(t)(>. - Ax)-lx* 
n 

strongly for n -+ oo. By ( G1 ) 

remains bounded as n -+ oo. The assertion now follows from ( G2) and the 
intertwining formula ( 2 .1). • 

Remark . (i) If T is a C0 -semigroup on X with generator A, then T* 
satisfies (81 )- (82) and A* satisfies (Gi)- (G 2 ). 

(ii) If Ax satisfies ( G1 )-( Gz) and BX: x0-+ X* is a bounded linear operator, 
then Ax + Bx satisfies ( G 1 )- ( G2) as well. 
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3. Duality 

Throughout this section we assume that ( G1 ) is satisfied. Let A0 be 
the part of Ax in x0. Then A 0 is a densely defined operator on x0 
(even more, A 0 is the generator of a C 0 -semigroup T 8 ) and so we can define 
its adjoint A0*. Let x00 = D(A0*) and define A00 to be the part of A0* 
in x00. Then A00 satisfies the Hille-Yosida conditions and therefore is the 
generator of a C0 -semigroup r00 on x00 . 

In this section we show that X 8 0 can be continuously embedded in 
X** if ( G1) is satisfied and that TX is the restricted dual of r0° if G/S 
is satisfied. To begin, let us assume ( G1 ) and define a pairing between x 0 0 
and X* in the following way. Choose µ E p(A x). For x* E X* and 
x00 E V(A88 ) we define 

(3.1) [ 00 *] - (( A00) 00 x ,x - µ - x ' 

(note that (µ - AX)-1 x* E D(AX) c x0). Our first result implies, among 
other thing, that this expression is independent of µ. 

Lemma 3.1. For every x* EX* and x00 E D(A00), 

[x00,x*]= lim(x00, >.(>.-Ax)-lx*). 
A-+oo 

Proof. [x00, x*] = ((µ -A00)x00, (µ -Ax)-lx*) = 

lim ((µ-A00)x00, ..\(,\-Ax)-1(µ-Ax)-lx*) = 
A-+oo 

lim (x00, >.(..\ - Axr1x*). 
)._,oo 

Using this characterization the following estimate is easily derived: 

(3.2) l[x88 , x*JI :'.S Mllx00 11 llx*ll 

1111 

for x* EX* and x00 E D(A08 ). Since D(A00) is dense in x00 we 
can extend the continuous linear functional x00 -+ [x00, x*] to the whole 
space X08 . Using the same notation for this extension we find that for every 
x88 E X 88 and x* E X*, 

(3.3) [x08 , x*] = lim (x08 , >.(>. - Ax)-1x*) 
A-+oo 

and (3.2) holds. Furthermore, 

(3.4) 
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if x0 E X 0 and x88 E x00 . Let k be the embedding of x00 into X** 
given by 

(3.5) k 00( *) - [ 00 *] X X -X ,x, 

then, by (3.2), jjkx88 jj :::;; Mjjx00 jj. Furthermore, 

(3.6) llkx0011;::: sup l[x00, x0]1=11x0011. 
llx01!9 

Theorem 3.2. Assume (G 1). Then 
a) (A0•x00, x0) = [x00, Axx0], x00 E 'D(A0*), x0 E 'D(Ax). 
b) [(.A-A0•)-1x0*, x*]=(x8 *, (.A-A*)-1x*}, x0*EX0*, x*EX*. 

Proof. We only prove a). 
Let x00 E 'D(A0*) and x0 E 'D(Ax). Then 

(A0*x00,x0} = lim (A0*x00, .A(.A-A0)-1x0} 
>.-->oo 

= lim (x00,.A(.A-Ax)-1Axx0) = [x00,Axx0]. 
>.-->oo 

Our next result gives a rather useful characterization of Ax . 

• 

Theorem 3.3. Assume (G1). Let X be a closed subspace of x00 which 
is invariant under T00 and separates point in X*. Let x*, y* E X* be such 
that 

[A00 A *] _ [A *] x,x - x,y 

forall xEXn'D(A00). Then x*E'D(AX) and AXx*=y*. 

Proof. Let f be the restriction of T00 to X and let A be the generator 
of f. Then 'D( A) = X n 'D( A 0°). Assume that x*, y* E X* are such that 
[Ax, x*] = [x, y•] for all x E 'D(A). From Theorem 3.2.b we get that 

(x, (.A-Ax)-1y*} =[(.A -X)-1x,y*] = 

[A(.A - A:)-1 x, x*J = [.A(.A - A:)-1 x - x, y*J = 

[x, .A(.A-Ax)-1x* - x*] 

for all x E X. Since X separates points in X* this yields 

• 
From this point on we assume that G/S is satisfied. Let Tx be the 

w*-continuous semigroup generated by Ax. 
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Theorem 3.4. If G/S is satisfied, then 

for all x88 E X 88 and x* E X* . 

Proof. [T00(t)x08 ,x*] =Jim (T00(t)x00 1 ,\(..\-Ax)- 1x*) = 
A-+00 

lim (x88 ,T8 (t)..\(,\ -A x)- 1x*) = 
A-+oo 

lim (x08 ,..\(..\-Ax)-1 Tx(t)x*) = [x88 , Tx(t)x*]. 
A-+oo 

Here we have used the intertwining formula (2.1). 

In Sections 1 and 2 we have seen two different characterizations of A. x, 
namely as the w*-generator of Tx and as the integral generator of yx. The 
next theorem gives a third characterization, namely as the derivative of Tx(t) 
with respect to the CT( X*, x0° )-topology at t = 0. 

Theorem 3.5. Assume G /S and let x*, y* E X*. Then x* E 'D( Ax) and 

Axx* = y* if and only if 

(3.8) [x00, ~(Tx(h)x* - x*)] __, [x88 ,y*] ash l 0, 

for every x 88 E X 8 0 . 

Proof. "if". Suppose (3.8) is satisfied. If x00 E 'D( A 00), then 

[x88 , ~(Tx(h)x* -x*)] = [l(T08 (h)x88 - x88 ), x*] 

---[A00x00, x*], hlO. 

Hence [A88x08 ,x*] = [x 8 0,y•] for x88 E 'D(A00). Thus by Theorem 3.3 

with X=X88 , we get that x* ED(Ax) and Axx*=y*. 

"only if". Assume that x* E V(Ax) and Axx• = y*, and let x00 E 'D(A80). 
Then 

[x88 , ~(Tx (h)x* - x*)] = [ l(T88(h)x88 - x88 ), x*] 

[A00 00 *] _ [ 00 Ax *] __, x ,x - x l x 

as h l 0. Since '.D(A00) is dense in x00 and {h- 1 (TX(h)x* - x*):O < 
h < 1} is bounded (recall that V(Ax) = Fav(Tx)) this result holds for every 
x00 E x00 which proves the "only if' part. • 

Theorem 3.6. Assume G/S. Then 
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for every x00 E x00 and x* E X*. 

Proof. Let x* E X*, x88 E X 88 , and >. E p(A x). Define y0 = 
(A - Ax )- 1 x* . Then y0 E 'D( Ax). The characterization of Ax as the integral 
generator of Tx yields that 

T0(t)y0 - y0=1t Tx(s)A xy0ds = 

1
1 

Tx(s)(>.y8 - x*)ds =A 1
1 

T 8 (s)y 8 ds -1
1 
Tx(s)x*ds. 

This yields that 

[x 8 0, 1t Tx(s)x*ds] = 

[x00, A 1t T0(s)y0ds] - [x00,T0(t)y0 -y0] = 

1t[x00,>.T0(s)y0]ds-[A001tT00(s)x00ds, y0]= 

1t [x00' >.T0(s )y0]ds - [1t T00(s)x00ds, A xy0] = 

1t[x00, >.T0(s)y0]ds -1t[T00(s)x00, Axy0]ds = 

fo 1 [T88 (s)x88 , (>.-Ax)y 8 ]ds = fo 1
[x88 , Tx(s)x*]ds. 

Ill 

An immediate consequence of this result is the following characterization 
of the pairing [ ·, ·] : 

(3.10) l lt [x8 0 x*] = lim(x88 - Tx(s)x*ds) 
' tlO ' t o ' 

for every x00 E x00 and x* EX*. 
In the practically important case that Ax is the adjoint of a generator 

of a Co -semigroup on X (or a bounded perturbation of it: see Clement et al 
[5]), this space X is continuously embedded in x00. Below we present two 
assumptions, one on Ax and one on Tx , both of which guarantee that X 
lies embedded in x00 . 

Let j: X -+ X 8 * be the embedding jx(x8 ) = (x, x8 ), for x E X, 
x0 E x0. If we give X the new but equivalent norm 

llxll' = sup{l(x, x8 )1 : x 8 E X 8 , llx8 ll::; l} 
then j is an isometry from X onto j(X) (see Hille and Phillips [11, Chapter 
XIV]). We introduce the following assumptions. 
(Go) For each x EX, (x, >.(>. - Ax)- 1 x* - x*) -+ 0, A -+ oo, uniformly in 
llx*ll S: 1. 
(So) Foreach xEX,(x,Tx(t)x*-x*)-+O, tlO,uniformlyin llx*llS:l. 
Note that both (Go) and ( S0 ) are trivially satisfied if Tx is the adjoint of a 
Co -semigroup on X. 
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Lemma 3.'7. Assume G/S. For every x EX and x* EX*, 

lim (x,){\ - Ax)-1 x* - x*) = 0. 
>--oo 

Proof. Take x*EX*.Then x*=(>.-Ax)x).., where x)..=(>.-Ax)-1 x*. 
Then Ji(µ-Ax)- 1 :z:).. = x)..+(µ-Ax)Axx)..----) x).., µ--> oo, in norm. 
Furthermore, Axµ(µ-Ax)- 1 x).. = µ(µ-Ax)- 1 Axx).. is bounded for µ----) oo. 
Thus, by (G 2) , x).. E 'D(Ax) and 

with respect to the weak * topology. We already saw that 

m norm. By subtraction we get, 

in the weak * sense. Thus 

in the weak * sense. 111 

Theorem 3.8. AMume G/S. Then (Go) and (So) are equivalent. Moreover, 
if one {hence both) of these assumptions is sati4i.ed, then j(X) i;::; x00 and 
[jx,x*] = (x,x*) for x EX and x* EX*. 

Proof. Assume ( G0 ). We first show that j(X) <;;; x00. For x E X, 

ll>.(..\-A8 *)- 1jx-jxll= sup l(..\(.A-A8 *)-1jx-x, x8 )1= 
llx0119 

sup l(x, >.(.A -A0 )-1x8 - x8 )1--> 0, ..\--> oo 
llx0\\9 

by (Go), hence jx E x00. Furthermore, 

[jx,x*]= lim(jx,>.(.A-Ax)- 1 x*) 
>--oo 

= lim (x,..\(.A-Ax)- 1x*) = (x,x*) 
.>.-oo 

by Lemma 3.7. 
We show that (So) is satisfied. 

l(x, Tx(t)x* - x*)I = l[jx, Tx(t)x* - x*]I = 

l[T88(t)jx - jx, x*]I ::; llT88 (t)jx - jxllllx*jj----) 0, t 1 0, 

uniformly for llx* 11 ::; 1. Thus (So) is satisfied. 
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Assume (S0 ). We first show that j(X) ~ x00 and that [jx,x*] = 
(x, x*) 

llT8 *(t)jx - jxll = sup l(T8 *(t)jx - jx, x8 )1 = 
Jlx0Jl9 

sup l(x, T 8 ( t)x 8 - x 8 ) I -> 0, t l 0, 
llx0119 

by (So), hence jx E X 8 0. Furthermore, by (3.10), 

[jx,x*] = lim(x, ~ t Tx(s)x*dx) = 
tlO i lo 

lim ~ t (x, Tx(s)x*)ds = (x, x*). 
tlO t lo 

Finally we prove ( G0 ). 

l(x, >.(>. - Ax )-1 x* - x*)I =I[>.(>. -A88)- 1jx - jx, x*]I ~ 

II>.(>. - A88 )- 1jx -jxllllx*ll-> 0, >.-> 00 

uniformly for llx* II ~ 1. 

4. An alternative characterization of x00 

II 

In the previous section we have seen that x00 lies continuously 
embedded in X**, the embedding operator being denoted by k. In this section 
we give a direct definition of k(X00) in terms of the adjoint of (>. - Ax )- 1 . 

Throughout this section we assume that ( G1 ) is satisfied. 
We define 

(4.1) x·0 = {x** EX**: II>-(>. -Ax)-1*x•· - x**ll-> 0 as>. ...... oo}. 

From ( G1 ) one easily derives that X*8 is a closed subspace of X** 
which is invariant under ( >. - Ax )-i.. For future use we prove the following 
lemma. 

Lemma4.1. Let x**EX*8 satisfy (:r**,x*)=O forevery x*EV(Ax). 
Then x** = 0. 

Proof. From the assumption it follows that (x**,(>. - A.x)-1 x*) = ((>. -
Ax )-hx••, x*) = 0 for every x* E X*. Taking the supremum over all x* EX* 
we get that Ii>.(>. -Ax)-1 x**ll = 0. Now letting >.-> oo and using that 
x** E )(•0 we find that x** = 0. II 

Let p: X** -> x0• be the projection operator given by 

(4.2) p:r**(x0) = (x**,x 8 ). 

For a Banach space Y we denote by Jy the identity operator on Y. \Ve are 
ready to state the main theorem of this section. 
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Theorem 4.2. 
a) /,:(X00) ~ x•0 and (kx00,x•) = [x00,x•J. 
b) p( X*0) ~ x00 and [px**, x*] = (x**, x*). 

c)kop=Ix•0. 

d) po k = Ix00 . 
Proof. a) Let x08 E x00. Then 

II.\(.\ - Ax)-hkx0011 = 

sup l(.\(.\-Ax)-1*kx88 - kx00,x*)I = 
llx•ll::;i 

sup l(kx88,.\(.\-Ax)-1x*-x*)I= 
Jlx• 11$1 

sup l[x00, .\(.\ - Ax )-1 x* - x*JI = 
llx' 11$1 

sup I[.\(.\ - A00)-1x00 - x00, x*JI :S; 
llx• 11$1 

II.\(.\ - A00)-lx00 - x0011-+ 0, ,\-+ oo, 

which proves the first assertion. The second assertion follows from definition 

(3.5). 
b) Let x•0 E X 8 *. Then 

II.\(.\ -A0*)-Jpx•0 - px*011 = 

sup l(.\(.\-A*0)px*0 - px•0,x0)1 = 
llx011$1 

sup l(x*0,.\(.\ -A0)-lx0 - x0)1 = 
llx011$J 

sup l(.\(.\-Ax)-l*x•0_x•0,x0)1 :S; 
Jlx011$1 

ll.\(.\-Ax)-1*x*8 -x*8 11-+0, A-+ 00 1 

which proves the first part of b). The second part is proved by 

[px*8 ,x*J = lim (px*8 ,.\(.\-Ax)-1x*) = 
x.-oo 

lim (x*C:\.\(.\-Ax)- 1 x*) = lim (.A(.\-Ax)-1*x•8 ,x*) = 
A~oo A-+oo 

(x*8 ,x*). 

c) For every x* 8 E X*8 and x* E X*, 

(k · px*8 ,x*) = [px*8 ,x*] = (x*C:\;r*). 

Here we have used a) and b). 
d) For every x00 E x00 and x* E X*, 

[p · kx88 , x*] = (kx88 , x*) = [x 88, x*]. 

and d) is proved. 
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This theorem says among other things that k: x00 -+ X*0 lS an 
isomorphism and that k-1 = p. 

Now suppose that G/S is satisfied, and define Tx*(t) = Tx(t)*, t > 0. 
One might suspect that 

X*8 = {x** EX** : llTx*(t)x** - x**ll -+ 0, t l 0}. 

And indeed, the inclusion C is proved as follows. By Theorem 4.2b, 

11Tx*(t)x*8 - x*8 jj = sup l(Tx*(t)x*8 - x*8 ,x*}I = 
!1x•119 

sup l(x*8 ,Tx(t)x* -x*}I = sup l[px*8 ,Tx(t)x* - x*]I = 
llx• 119 llx• !19 

sup l[T88 (t)px*0 - px*0 , x*]I ::; llT88 (t)px*0 - px*8 11 -+ 0, t l 0. 
llx• !1::;1 · 

But the reverse inclusion in general does not hold as the example below shows. 

Example . Let 5 1 be the one-dimensional circle group with + being the 
addition modulo 271". For a function y: 5 1 -+ R we define its translate Yt as: 
Yt( B) = y( t + B), 0 ::; e ::; 271". Let Y be some vector space of bounded functions 
on 5 1 such that 

i) Y contains the constant functions, 
ii) y E Y implies Yt E Y, t E R. 

For example, Y = L 00(51 ) or Y = C(51 ). (In what follows we mean by 
C(51 ) the embedding of the space of continuous functions into L 00(51 ).) A 
linear functional y* on Y is called an invariant mean if 

1. y*(yt) = y*(y), y E Y, t ER, 
2. y*(l) = 1, 
3. ly*(y)I::; sup jy(B)I. 

8ES1 

Here 1 stands for the element of Y which is identically one. On C(51 ) the 
only invariant mean is given by the Haar integral. There is also an invariant 
mean on L 00(51), but on this latter space there are many others; see Rudin 
(16]. 

Now let X = L 1 ( 51 ) and let T be the C0 -group of translations on 
X, i.e. 

T(t)x = x1, t ER. 

Then X* = L 00 (51 ), x0 = C(51 ) and X** = L 00(51 )*. By the result of 
Rudin [16] mentioned before there exist at least two different invariant means 
x!*, xi* E X** on X*. 

The restrictions of xi* and x;* to X 8 coincide and correspond 
to the Haar integral. Let v** = xi* - x;* . Then v** E X** and for every 
x* E )(*, 

(T**(t)v** - v**, x*) = (v**, T*(t)x* - x*) = 
(v**, x'.'.:.. 1 - x*) = 0 
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by property 1 of an invariant mean. Thus T**(t)v*• = v**. Suppose v** E X*8 . 

Since ( v**, x0) = O for every x0 E x0, Lemma 4.1 now implies that v** = 0, 
a contradiction. Thus v** rf. x•0. 

We conclude this section with an alternative characterization of A88 . 

Let the operator A x0 on x•0 be defined as follows: if x•8 , y•0 E X*0 
and (x•0,Axx*) = (y*8 ,x*) for every x* E 'D(Ax), then x*8 E 'D(Ax8 ) 
and A x0x•0 = y*0. Lemma 4.1 guarantees that this is a good definition. 

Theorem 4.3. 'D(Ax0) = k('D(A00)) and Ax0ok = koA00 on :D(A00). 

Proof. ":J": Let x00 E 'D(A00) and x* E :D(Ax). From Theorem 3.2.a 
we get that 

(kx88 ,Axx*) = [x88 ,Axx*] = 
[A00x00,x*] = (kA00x00,x*), 

whence it follows that kx00 E 'D(Ax0) and Ax0kx00 = kA00x00. 

" C " is proved analogously. 

5. Generators with non-dense domain 

Ill 

Theclassofgenerators AX on x· satisfying (G1)-(G2) is nothing 
but a special case of a class of generators with non-dense domain on an arbitrary 
Banach space. 

Let (X, II· II) be an arbitrary Banach space and let A: :D(A)-+ X be 

a linear operator satisfying (G 1). By setting A= A - wl and renormalizing 
X by the equivalent norm 

llxll' =sup sup ll(I - h.A)-nxll, x EX, 
h>O n~O 

we may replace this assumption by 
(H1 ) A is m-dissipative on ( X, 11 · 11). 

Following Amann (l], DaPrato and Grisvard [9], Nagel [14] and Walther (17], we 
define 

lllxlll = ll(I -A)-1 xll, x EX 

to get a new norm on X. By (H1 ) 

lllxlll ~ llxll, x EX. 

In general X is not complete with respect to 111 · 111 (it is if and only if A is 
bounded), and we define X as the completion of X. Obviously, X is densely 
and continuously embedded in X. 

Let Xo = :D(A) and let Ao be the part of A in X 0 . Then Ao 
is densely defined and m-dissipative in X 0 • Let T0 be the C0 -contraction 
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semigroup on Xo generated by A 0 • If D(A) is invariant under To, we can 
define 

(5.1) T(t) =(I - A)T0 (t)(I -A)-1 , t?:: 0. 

Then T is a semigroup of bounded linear operators which is not necessarily 
strongly continuous. Clearly 

lllT(t)xlll = llTo(t)(I - A)-1 xll ~ ll(I - A)- 1xll = lllxlll, x EX 

and 

lllT(t)x -T(s)xlll = llTo(t)(I - A)-1 x -To(s)(I - A)- 1 xll-+ 0 as It - sl-+ 0, 

which yields that T is a Co -contraction semigroup on X with respect to 
111 · 111 · Let T be the extension of T to X. Then T is a C0 -contraction 
semigroup on the Banach space X. We denote its infinitesimal generator by 
A. If D(A) is not invariant under T0 , then definition (5.1) makes no sense. 
However, as the theorem below shows, we still have an extension T(t): X-+ X 
of To. 

Theorem 5.1. Assume (H 1 ). Then 

i) Xo is dense in (X, Ill· Ill-) 
ii) 
iii) 
iv) 

v) 
vi) 

vii) 

viii) 

T0 has a unique continuous extension T on ( X, 111 · 111 ). 

T is a Co -contraction semigroup on X. 
D(A) = Xo 

A is the part of A in X. 
T(t) =(I - A)T0 (t)(I - X)-1 , t?:: o. 
limlllT(t)x -To(t)(I- hA)-1 xlll = O, t?:: O, x EX. 
hlO 

x E D(A) and Ax= i) iff T(h)x - x = J; T(s)xds, h > 0. 

ix) X is invariant under T iff D(A) is invariant under T0 • 

From (viii) it follows that for every x E X and t 2: 0, 

S(t)i: = 1t T(s)i ds E D(A) = X 0 

and 
AS(t)x = f(t)x - x. 

Let S(t) be the restriction of S(t) to X. Then S(t) is the integrated 
semigroup associated with A. 

We assume 

{x EX: llxll ~ 1} is closed in (X, Ill· Ill). 

Remark One can easily show that (H2 ) is equivalent to the following. 
Xn E D(A), n 2: 1, Xn -+ x, n -+ oo, and llAxnll bounded implies that 
x E D(A) and 

11(1 - A)xl[ ~ liminf ll(I - A)xnl[. 
n--+oo 
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Theorem 5.2. Assume (H1) - (H2). Then 

i) V(A) = Fav(To). 
So in particular, V(A) is invariant under To and X is invariant 

under T. Let T be the restriction of T to X. 

ii) IJT(t)xJI $ llxll, t?:: 0, x E X. 
iii) T(t)S(h)x == S(h)T(t)x. 

iv) x E V(A) and y =Ax iff T(h)x- x = S(h)y, h > 0. 
v) If {xn} is a bounded sequence in X such that {e-tS(t)xn} converges 

uniformly as n -too, then there exists an x EX such that lllxn -
xJll-tO and IJS(h)xn-S(h)xJl-tO, h>O. 
Weakly* continuous semigroups satisfying (S1) - (Sz) fit into this frame

work surprisingly well. Let Ax be a linear operator on the dual Banach space 
X* satisfying (G1)-(G2 ) (with M = 1, and w = 0). Then (H1) holds. Let 

x• be the completion of x· with respect to the norm 111 · 111-

Lemma 5.3. Let y~ E X*, llY~ II $ M and 11 IY~ - :YI 11 -t 0 as n --> oo for 
some y E X*. Then f.i E X* and y~ -t y weakly * as n -t oo. 

Proof. Define x~ E 'D(Ax) by x~ = (J-Ax)-1 y~. By (G1), llx~ll:::; 
llY~ll $ M, and llAxx~ll = II - y~ + x~ll $ 2M. Since {y~} is a Cauchy 
sequence with respect to Ill· Ill, {x~} is a Cauchy sequence with respect to 
II ·II, hence there exists an x* E X* such that llx~ - x*ll -t 0 as n -too. 
Now (0 2 ) implies that x* E V(Ax) and Axx~-+ Axx• weakly* as n-. oo. 
Thus y~-+ (I -Ax)x* weakly* as n--> oo. From llx~ - x*ll--> 0 we also 
deduce that lllY~ -(I -Ax)x*lll-+ 0 as n-+ oo, hence fj =(I - Ax)x*. 111 

This lemma shows in particular that (H2 ) is satisfied. Thus from Theo
rems 5.1 and 5.2 it follows that Ax generates a semigroup Tx on X* which 
is continuous with respect to 111 · 111, hence weakly * continuous by Lemma 5.3. 
Furthermore, (S1 ) follows from Theorem 5.2(iii) and (S2) from Theorem 5.2(v). 

We would like to thank A.C.M. van Rooy for the reference to Rudin's 
paper [16]. 
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