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ABSTRACT

In this paper we use a Von Mises transformation to study brine transport in porous media.

The model involves mass balance equations for uid and salt, Darcy's law and an equation

of state, relating the salt mass fraction to the uid density. Application of the Von Mises

transformation recasts the model equations into a single nonlinear di�usion equation. A further

reduction is possible if the problem admits similarity. This yields a formulation in terms of

a boundary value problem for an ordinary di�erential equation which can be treated by semi-

analytical means. Three speci�c similarity problems are considered in detail: (i) One-dimensional,

stable displacement of fresh water and brine in a porous column, (ii) Flow of fresh water along

the surface of a salt rock, (iii) Mixing of parallel layers of brine and fresh water.

1991 Mathematics Subject Classi�cation: 35K65, 58G11, 76S05

Keywords and Phrases: Brine transport, Von Mises transformation, Similarity trans-

formation, Groundwater.

Note: Work carried out under project MAS1.3 "Partial Di�erential Equations in Porous

Media Research".

1 Introduction

Brine transport in porous media is a process which is described by the uid and salt mass
balance equations, the uid movement equation and an equation of state, relating the salt mass
fraction to the uid density, see e.g. Hassanizadeh & Leijnse [12]. This yields a mathematical
model consisting of a system of coupled partial di�erential equations which has to be solved in
the ow domain, subject to appropriate boundary and initial conditions.

In a heterogeneous, multi dimensional ow domain the model equations have to be solved
numerically in order to determine the spreading of salt in the subsurface. However, under
simpli�ed and highly idealized conditions it is possible to reduce the partial di�erential equations
by means of Von Mises and similarity transformations to a single ordinary di�erential equation,
which can be solved by semi-analytical means. The purpose of this paper is to draw attention to
such transformations. We shall work out three speci�c cases for which we give an interpretation
of the results in the physical sense.

The idea behind the Von Mises transformation is to take the stream function of the ow
as one of the unknowns and to reduce the partial di�erential equations to a single nonlinear
di�usion equation. To illustrate this procedure we recall the example of a laminar, stationary
and two-dimensional ow over a at plate. Let U; V denote the velocity components in the
x; y-direction and let the plate be situated along the positive x�-axis. Following for instance,
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Chorin & Marsden [5] or Curle [9], one has to consider the Prandtl boundary layer equations

8>><
>>:

@U

@x
+
@V

@y
= 0

U
@U

@x
+ V

@U

@y
= �

@2U

@y2

(1.1)

for (x; y) 2 R+ �R+, subject to the boundary conditions

U(x; 0) = 0 for x 2 R+ (1.2)

and

U(0; y) = U0(y) for y 2 R+ (1.3)

where U0 is the velocity distribution at the leading edge of the plate. In (1.1), � denotes the
viscosity of the uid. Assuming the existence of a stream function  =  (x; y) satisfying

U =
@ 

@y
and V = �@ 

@x
; (1.4)

one introduces the change of variables

x = x and  =  (x; y) =

Z y

0
U(x; s) ds (1.5)

and the Von Mises transformation

~U(x;  ) = ~U(x;  (x; y)) = U(x; y): (1.6)

Under this transformation we obtain for ~U the nonlinear di�usion equation

@ ~U

@x
=
�

2

@2 ~U2

@ 2
with (x;  ) 2 R+ �R+; (1.7)

and the conditions

~U(0;  ) = ~U0( ) := U0(y) for  2 R+; (1.8)

and

~U(x; 0) = 0 for x 2 R+: (1.9)

Note that if U0 is a positive constant, say U0(y) = U�0 > 0 for all y > 0, this initial-boundary
value problem can be reduced to a boundary value problem for an ordinary di�erential equation
in terms of the similarity variable  =

p
x. The solution of this boundary value problem describes

the behavior of the solution of problem (1.7)-(1.9) for large values of x, provided U0(y) ! U�0
as y ! 1. Such convergence results are well known for nonlinear di�usion problems, see for
example Van Duijn & Peletier [10], who studied the large time behavior of a uniformly parabolic
version of problem (1.7)-(1.9) in terms of such a similarity solution.

Thus the combination of Von Mises and similarity transformations provides a straight forward
way to establish the large time behaviour of the original system. With this in mind, we return
to the transport of brine and consider as examples three time dependent problems that allow
Von Mises and similarity transformations. These problems are: (i) Brine displacing fresh water
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in an in�nitely long porous column, (ii) Flow of fresh water along a salt dome and (iii) Mixing
of parallel layers of brine and fresh water. The ow geometry of (i) is one-dimensional while
the ow domains of (ii) and (iii) are two dimensional. However, in all three problems the
boundary conditions are chosen such that the resulting uid and salt balance equations are
one-dimensional. The unknowns are the density and the speci�c discharge.

Analogous to the Prandtl system one can reduce the two balance equations to a single nonlin-
ear di�usion equation for the density. Here the uid balance equation suggests the existence of a
modi�ed stream function which serves as the new independent Von Mises variable. Considering
in addition a piecewise constant initial condition for the density a further reduction is possible
in terms of a similarity variable. A boundary condition for the speci�c discharge is used in the
(back) transformation to the original variables, yielding semi-analytical expressions in terms of
the similarity solution. This is illustrated in Section 3.

Characteristic for the brine model is the nonlinear coupling between uid density and speci�c
discharge which is caused by gravity and salinity induced uid volume changes. Gravity causes
enhanced rotational ow in regions where horizontal density variations occur and local high
density gradients induce volume changes in the uid which in turn may cause enhanced uid
ow as well. Because the three example problems to be discussed are essentially one-dimensional,
gravity will not play a role and only the second mechanism causes enhanced uid ow.

Raats [25], [29] introduced a similar modi�ed stream function, which he called `parcel func-
tion', when studying one-dimensional transport of uid and solutes in unsaturated soils. The
uid balance equation in unsaturated soils in one space dimension reads

@�

@t
+

@

@z
(�v) = 0 for (z; t) 2 R�R+; (1.10)

where � denotes the volumetric water content and v the velocity of water. Analogous to (1.1)
and (1.4) a function � is introduced which satis�es

� =
@�

@z
and �v = �@�

@t
: (1.11)

Integration of the total di�erential d� gives

�(z; t) = �(0; 0) �
Z t

0
�0v0 d� +

Z z

0
� d�; (1.12)

which e�ectively labels all members of a collection of parcels of water. The function � can be
interpreted as a measure of soil water storage in a region or as the cumulative ux across a
surface. Raats [26] does not consider coupling between uid velocity and solute concentration
in the solute mass balance equation. This assumption only is valid when the uid density is not
a�ected by of the solute concentration. In brine transport however the coupling between salt
concentration and uid density is an essential property.

This paper is organized as follows. In Section 2 we give the mathematical formulation
of the brine model. In Section 3 we explain the details of the Von Mises transformation for
one-dimensional problems and in Section 4 we study the application to the three examples with
similarity, thus specifying the large time limit of three corresponding classes of problems. Finally,
in Section 5, we present the conclusions.

2 The brine equations

A general study of the transport of brine through porous media was presented by Hassanizadeh
& Leijnse [12]. Simplifying their formulation by taking Fick's law for the di�usive salt ux and
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the conventional form of Darcy's law for the uid momentum equation we arrive at the following
set of equations:
Mass balance equation for the uid

n
@�

@t
+ div (�q) = 0; (2.1)

where � denotes the density of the uid, q the speci�c discharge vector and n the porosity of
the porous medium.
Mass balance equation for the salt

n
@(�!)

@t
+ div (!�q� �ID grad !) = 0; (2.2)

where ! denotes the mass fraction of the salt and ID the hydrodynamic dispersion tensor. The
mass fraction is de�ned as the concentration of the salt component divided by the density of the
uid.
Darcy's law

�

�
q+ grad p� �g = 0; (2.3)

where � denotes the intrinsic permeability of the porous medium, � the dynamic viscosity of
the uid and g the acceleration of gravity.
Equation of state

� = �fe
!; (2.4)

where �f denotes the density of fresh water and  a constant: � 0:6923 � ln(2). In writing
(2.4) we implicitly assumed that the density is a function of ! only (no pressure or thermal
e�ects). In the subsequent analysis we also assume that the uid viscosity is constant.

It is common practice to use for the hydrodynamic dispersion tensor ID = (Dij) in (2.2) the
expression, see for instance Bear [3],

Dij = f�T jqj+ nDmolg�ij + (�L � �T )qiqj=jqj: (2.5)

Here �L and �T are the longitudinal and transversal dispersion lengths, and Dmol is the e�ective
molecular di�usivity incorporating the e�ect of tortuosity. Further, �ij denotes the Kronecker �
and j � j the Euclidian norm in R2. However, for mathematical convenience we use in almost all
of this paper the approximation

Dij = nD�ij; (2.6)

where D is a positive constant. If �L and �T are small (�ne granular, homogeneous material),
this approximation is justi�ed for D = Dmol. However, if the inuence of the heterogeneities is
signi�cant, then D in (2.6) accounts for dispersion in an averaged sense. Only when discussing
the examples in Sections 4.2 and 4.3 we allow for some velocity dependence of Dij , however
di�erent from (2.5).

As in Van Duijn et.al. [11] we �rst rewrite equations (2.1)- (2.4). Expansion of equation
(2.2) gives

n�
@!

@t
+ n!

@�

@t
+ !div (�q) + �q � grad ! � div (�IDgrad !) = 0 (2.7)
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Multiplication of equation (2.1) by ! and subtracting the result from equation (2.7) results in

n�
@!

@t
+ �q � grad ! � div (�IDgrad !) = 0: (2.8)

Next we substitute the equation of state (2.4) in (2.8) and obtain

n
@�

@t
+ q � grad �� div (IDgrad �) = 0; (2.9)

as a second equation for the unknowns � and q. Note that equation(2.9) is no longer in diver-
gence form and that the constant  has vanished from the equations. The latter is due to the
exponential form of the equation of state. Hence, the resulting system of equations is

8>>><
>>>:
n
@�

@t
+ div (�q) = 0

n
@�

@t
+ q � grad �� div (IDgrad �) = 0

(2.10)

In view of the applications in Section 4 we con�ne ourselves to the analysis of (2.10) in one space
dimension. After appropriate scaling, imposed by the geometry and hydrology of each individual
application in Section 4 and assuming (2.6) for the moment, we obtain the dimensionless system8>>>><

>>>>:

@u

@t
+

@

@z
(qu) = 0 (z; t) 2 
�R+

@u

@t
+ q

@u

@z
� @

@z

�
@u

@z

�
= 0 (z; t) 2 
�R+

(2.11)

where 
 denotes the one-dimensional domain R or R+. Details of the scaling rules for each
problem will be given in Section 4. Equations (2.11) can be combined to give

u
@q

@z
� @

@z

�
@u

@z

�
= 0 (z; t) 2 
�R+: (2.12)

This expression shows that in order to solve (2.11) uniquely, one has to prescribe initial-boundary
conditions for u and a single boundary condition for q. Speci�cally, if 
 = R we consider (2.11)
subject to the conditions

u(z; 0) = u0(z) for z 2 R (2.13)

and

q(�1; t) = q0(t) for t 2 R+; (2.14)

where u0 and q0 are the given, scaled initial density distribution and limiting discharge value.
If 
 = R+, we consider (2.11) subject to initial condition

u(z; 0) = uf for z 2 R+; (2.15)

and the boundary conditions

u(0; t) = us and q(0; t) = q0(t): (2.16)
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Here uf and us are the scaled densities of fresh water and brine. Concerning the behavior of
solutions of these problems we assume that for all t � 0:

uf � u(z; t) � us for z 2 
; (2.17)

and

lim
z!�1

u(z; t) = us (if 
 = R); lim
z!+1

u(z; t) = uf : (2.18)

Remark: Introduction of the material derivative

D

Dt
=

@

@t
+
q

n
� grad (2.19)

in the uid balance equation (2.1) results in

n

�

D�

Dt
+ div q = 0: (2.20)

This expression shows that density variations may e�ect the divergence or local volume of the
uid, which in turn can cause additional movement of uid. This e�ect will be investigated in
the examples presented in Section 4.

3 Von Mises transformation

To reduce system (2.11) to a single, nonlinear di�usion equation we apply a coordinate
transformation which is a variant of the Von Mises transformation, see e.g. Mises & Friedrichs
[21]. Considering the uid balance equation in (2.11) as the divergence operator in the (t; z)-
plane, acting on the vector (u; uq), we introduce a modi�ed stream function 	 = 	(z; t), which
satis�es

u =
@	

@z
and uq = �@	

@t
: (3.1)

The new independent variables are

t = t and 	 =

Z z

h(t)
u(s; t) ds; (3.2)

where h(t) is a yet unknown function of time which will be determined later on from the boundary
condition on q. It will be normalized such that h(0) = 0. The Von Mises transformation is

û = û(	; t) = û(	(z; t); t) = u(z; t): (3.3)

We use it to rewrite system (2.11) into the equation

@û

@t
= û

@

@	

�
û
@û

@	

�
with 	 2 Q; t 2 R+: (3.4)

Here Q denotes the range of 	.
First we consider the case 
 = R. Properties (2.17),(2.18) and de�nition (3.1) imply that 	 is
monotonically increasing in z with 	(�1; t) = �1 and 	(+1; t) = +1 for all t > 0. Hence
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Q = R in (3.4). To �nd the initial condition corresponding to (3.4) we need to transform the
function u0. To this end we consider (3.2) at t = 0:

	 =

Z z

0
u0(s) ds: (3.5)

This expression de�nes the function z = z(	) for �1 < 	 < +1, which we use to obtain the
transformed initial condition

û(	; 0) = u0(z(	)) for 	 2 R: (3.6)

The initial value problem (3.4),(3.6) admits a similarity solution for piecewise constant initial
data. If u0 is given by

u0(z) =

(
us for z < 0
uf for z > 0

(3.7)

then the same is true for û(	; 0): i.e.

û(	; 0) =

(
us for 	 < 0
uf for 	 > 0

(3.8)

The corresponding solution is a similarity solution of the form û(	; t) = f(�) with � = 	=
p
t.

Having obtained a solution û = û(	; t) we use (3.1) to return to the original variables.
Integrating the �rst equation of (3.1) gives

z =

Z 	(z;t)

0

1

û(s; t)
ds+ h(t) for (z; t) 2 R�R+; (3.9)

where h(t) is an integration constant depending on t only, satisfying h(0) = 0 (which implies
	(0; 0) = 0). If the function h(t) were known, then (3.9) would de�ne the modi�ed stream
function 	 = 	(z; t) and the solution in terms of the original variables would be given by

u(z; t) = û(	; t) for (z; t) 2 R�R+: (3.10)

To �nd h(t) we di�erentiate (3.9) with respect to t and use the second equation in (3.1). This
yields an expression for q which is given by

q(z; t) = h0(t)�
Z 	(z;t)

0

ût

û2
(s; t) ds: (3.11)

where ût denotes the partial derivative of û with respect to t. Next we use the discharge boundary
condition (2.14) to determine h(t). Letting z ! �1 in (3.11) we �nd upon integration

h(t) =

Z t

0

�
q0(�)�

Z 0

�1

ût

û2
(s; �) ds

�
d�; (3.12)

provided that this integral exists. Substituting (3.12) in (3.11) gives for the discharge the
expression

q(z; t) = q0(t)�
Z 	(z;t)

�1

ût

û2
(s; t) ds; (3.13)

which completely determines the solution of the problem on R.
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Next we consider 
 = R+. This case is more involved because the presence of the boundary
at z = 0 which implies that the domain Q becomes time dependent. Using boundary condition
(2.16) and integrating the second equation in (3.1) yields for Q = Q(t)

Q(t) = (	(0; t);1) for t � 0; (3.14)

where

	(0; t) = �us
Z t

0
q0(�) d�: (3.15)

Let û = û(	; t) denote the solution of (3.4) subject to (3.6), now with 	 > 0, and the boundary
condition û(	(0; t); t) = us. Similarly to (3.12) we introduce

h(t) =

Z t

0

(
q0(�) +

Z 	(0;�)

0

ût

û2
(s; �) ds

)
d�; (3.16)

and de�ne 	 = 	(z; t) for (z; t) 2 R+ �R+ by

z =

Z 	(z;t)

0

1

û(s; t)
ds+

Z t

0

(
q0(�) +

Z 	(0;�)

0

ût

û2
(s; �) ds

)
d�: (3.17)

Then u is given by

u(z; t) = û(	(z; t); t) (3.18)

and

q(z; t) = q0(t)�
Z 	(z;t)

	(0;t)

ût

û2
(s; �) ds: (3.19)

If q0 is not explicitly given but, as in the salt dome problem in Section 4.2, a function of @u=@z
at the boundary z = 0, then 	(0; t) denotes a free boundary in the (	; t)-plane. The position
of the free boundary is a priori unknown and is part of the solution of the problem. When, as
in Section 4.2, the discharge q0 is given by

q0(t) = �C @u

@z
(0; t) for all t > 0; (3.20)

where C denotes a positive constant, then the following Stefan condition holds at the free
boundary:

d'(t)

dt
= C û2('(t); t)

@û

@	
('(t); t) = C u2s

@û

@	
('(t); t); (3.21)

where '(t) := 	(0; t). This condition relates the speed of the free boundary in the (	; t)-plane
to the spatial derivative of û at the free boundary.

The nonlinear di�usion problems that arise from these transformations are well known and
received much attention in the existing literature, for instance see the book of Crank [6] on the
mathematics of di�usion or the book of Meirmanov [20] on the Stefan problem. Considering the
role of similarity solutions as large time solutions of nonlinear di�usion problems we refer to the
paper of Van Duijn & Peletier [10] and the book by Barenblatt on intermediate asymptotics [2].

The initial and boundary conditions of the ow problem discussed in the next section are
chosen such that the corresponding nonlinear di�usion problems are solvable in terms of similar-
ity solutions. With the Von Mises transformation as intermediate step such similarity solutions
are natural to the problem and straight forward to �nd. Moreover, we know that they represent
the large time behavior of the corresponding ow problem with more general (i.e. non-constant)
boundary/initial data.
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4 Applications

4.1 Flow in a porous column

In the �rst application we study brine transport in an in�nitely long, one-dimensional porous
column. From a practical point of view it would be more realistic to study a column with �nite
length. But when the phenomenon to be studied occurs at a su�ciently large distance from
the inlet and outlet of the column one expects only minor di�erences between the results for a
�nite and an in�nite column. The column is in vertical position, directed along the z-axis, and
gravity points downwards in the negative z-direction. The porous medium is saturated with
uid. The ow is in the positive z-direction, such that brine displaces fresh water in a stable
manner. Initially the region z > 0 is �lled with fresh water (� = �f ), and the region z < 0 with
brine (� = �s), such that the uids are separated by a sharp transition at z = 0. At z = �1
the column is in�ltrated with brine, with constant density �s and constant speci�c discharge qs.
The mathematically relevant initial-boundary conditions for this problem are

q(�1; t) = qs; with t 2 R+ (4.1)

and

�(z; 0) =

(
�s for z < 0
�f for z > 0

(4.2)

Note that the initial condition implies �(�1; t) = �s for t > 0, implying that indeed brine is
injected into the column. Assuming the column to be �lled with homogeneous, �ne granular
material we consider a constant dispersivity according to (2.6). This choice is also motivated by
the fact that in this application the Von Mises transformation is not applicable for a velocity
dependent dispersivity.

Next we introduce the dimensionless variables

u =
1

"
+

�� �f

�s � �f

 
=

�

�s � �f
=

1

"

�

�f

!
; q� =

q

qs
; t� = t

q2s
nD

; z� = z
qs

D
: (4.3)

where " is the relative density di�erence

" =
�s � �f

�f
: (4.4)

Typical values of the relative density di�erence are: " � 0:025 for sea water and " � 0:2 for
saturated brine; hence (0 �)" � 0:2. Applying this scaling to (2.10) (in one space dimension),
(4.1) and (4.2), and dropping the asterisks again in the notation, we obtain the mixed initial-
boundary value problem 8><

>:
@u

@t
+

@

@z
(qu) = 0

@u

@t
+ q

@u

@z
=
@2u

@z2

(4.5)

for (z; t) 2 R�R+, with

q(�1; t) = 1 for t 2 R+; (4.6)

(4.7)

and

u(z; 0) =

(
1 + 1

" for z < 0;
1
" for z > 0:

(4.8)
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The Von Mises transformation (3.1)-(3.3) now gives the initial value problem8>>><
>>>:

@û

@t
= û

@

@	

�
û
@û

@	

�
for (	; t) 2 R�R+;

~u(	; 0) =

(
1 + 1

" for 	 < 0;
1
" for 	 > 0:

(4.9)

The special form of the initial condition implies similarity. Let

� =
	p
t
and û(	; t) = f(�); (4.10)

then f(�) should satisfy the boundary value problem

1

2
�f 0 + ffff 0g0 = 0 for � 2 R (4.11)

with

f(�1) = 1 +
1

"
and f(+1) =

1

"
: (4.12)

Here the primes denote di�erentiation with respect to �. No explicit solution to this boundary
value problem is known. However, qualitatively the picture is quite complete: we know that
there exists a unique C1 solution, strictly decreasing on R, and much is known about the
asymptotic behavior of f(�) as � ! �1, see Van Duijn & Peletier [10], Atkinson & Peletier [1].

We will solve problem (4.11), (4.12) numerically. For this purpose it is convenient to trans-
form the problem to one on a bounded domain, by considering a equation for the ux with f
as independent variable. This transformation and the resulting ux equation have been studied
in detail by Atkinson & Peletier [1], Van Duijn et.al [11] and Bouillet & Gomez [4]. Since f is
strictly decreasing on R we can de�ne the inverse

� = �(f); with � = f�1; (4.13)

and the ux function

w(f) := �ff 0(�(f)) for
1

"
� f � 1 +

1

"
: (4.14)

For w we �nd the boundary value problem8>><
>>:
�wffw0g0 = f

2
w(f) > 0
w(1" ) = w(1 + 1

" ) = 0

(4.15)

for 1=" < f < 1+1=", where now primes denote di�erentiation with respect to f . The sign of w
implies that fw0 is decreasing. We use this observation to determine f = f(�) from the identity

� = 2fw0(f); (4.16)

which also shows that w0 changes sign at f(0) = f0 2 (1="; 1+1=") and that limf#1=" w
0(f) = +1

and limf"1+1=" w
0(f) = �1.

We solve (4.15) numerically by discretizing the derivatives central in f on a equidistant
grid. The discretization of (4.15) leads to a set of nonlinear algebraic equations which we
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solve iteratively using a standard multi-dimensional Newton method. Once accurate numerical
approximations of w(f) and thereby of w0(f) are obtained we compute �(f) directly using (4.16)
and f = f(�) by inverting the result. Figure 1 shows w(f) and f(� for " = 0:2. The singular
nature of w0 at the boundary points is not visible in Figure 1. This is due to the asymptotic
behavior of w0, which is proportional to

p
ln(1=w(f)) for f # 1=" and f " 1 + 1=", i.e. for

w(f) # 0.
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Figure 1. The functions w(f) and f(�) for " = 0:2

Introduction of the similarity variables (4.10) in (3.13),(3.9) and (3.12) yields

q = q(	; t) = 1 +
1

2
p
t

Z 	p
t

�1

sf 0

f2
ds for all �1 < 	 < +1; t > 0; (4.17)

and

z = z(	; t) =
p
t

Z 	p
t

0

1

f(s)
ds+ t+

p
t

Z 0

�1

sf 0

f2
ds for all �1 < 	 < +1; t > 0: (4.18)

This completes the construction of the solution of the column problem with piecewise constant
initial data. The solution is given as parametric pairs (z(	; t); u(	; t)) and (z(	; t); q(	; t)).
Figure 2 shows the results of u = u(z; t) and q = q(z; t) as function of z at �xed time levels, for
" = 0:2.

When using v := (���f )=(�s��f) in the scaling (4.3), we arrive at the dimensionless system

8>><
>>:

@v

@t
+

@

@z
(qv) +

1

"

@q

@z
= 0

@v

@t
+ q

@v

@z
� @

@z

�
@v

@z

�
= 0

(4.19)

for (z; t) 2 R�R+. Note that the same result can be achieved by setting u = v+1=" in (2.11).
When passing to the limit "! 0 (4.19) reduces to8>><

>>:
@q

@z
= 0

@v

@t
+ q

@v

@z
� @

@z

�
@v

@z

�
= 0

(4.20)

for (z; t) 2 R�R+, implying upon integration q(z; t) = qs and

v(z; t) =
1

2

�
1� erf

�
z � t

2
p
t

��
: (4.21)
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A formal justi�cation of this limit is given in Van Duijn et.al. [11]. We refer to (4.21) as the
Boussinesq solution of the column problem.

The dashed line in the u-plot in Figure 2 corresponds to the Boussinesq solution (4.21) at
t = 1. The di�erence between (u(z; 1) and v(z; 1) is small but noticeable, e.g. up to � 5% in
this example. The results in Figure 2 clearly demonstrate the e�ect of a high concentration
(or density) gradient on the uid ow. At the short time scale of the problem, the deviation
from the background ow (qs = 1) is signi�cant. As time proceeds, di�usion attens the density
pro�le, which in turn causes decay of the speci�c discharge distribution towards its limiting
value q(z;1) = qs = 1.

At the short time scale of the problem q(1; t) is negative which means that uid enters the
column at z = +1. After t = t̂, de�ned by

t̂ =
1

4q2s

�Z +1

�1

sf 0

f2
ds

�2
; (4.22)

q(1; t) changes sign and outow will occur at z = +1.

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3 4 5

u

z

t = 1

0:1
0:01

0:001

Boussinesq

0.6

1

1.4

1.8

2.2

2.6

-1 -0.5 0 0.5 1 1.5

q

z

0:001

0:01

0:1
t = 1

Figure 2. Scaled density and velocity pro�les for column problem at t = 0:001; 0:01; 0:1 and 1.

Remark:

In his study of the laminar boundary layer equations, Crocco [7] introduced a transformation, in
literature referred to as the Crocco transformation, which is related to the Von Mises transfor-
mation. Crocco takes the velocity in the x-direction and the x-coordinate as new independent
variables and the viscous stress and enthalpy as dependent variables. For the case of zero pres-
sure gradient, Crocco [8] proposed a solution procedure which resembles the solution procedure
given in this paper. He also derives an equation which is similar to the di�erential equation in
(4.15). For details we refer to Crocco's original paper [8] or to the book by Curle [9]

4.2 The salt dome problem

The salt dome problem models the ow of fresh groundwater along the surface of a salt rock;
see Van Duijn et.al. [11] for a detailed description. A sketch of the ow geometry is given in
Figure 3.
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Figure 3. Flow geometry of the salt dome problem.

The ow domain consists of the upper half space fz > 0g and is bounded below by an imper-
meable salt rock ( = the salt dome) which has the inclination � with the horizontal plane.

Initially fresh water, � = �f , is present in the ow domain which is maintained at a constant
ow, qy = qf , far above and parallel to the salt rock boundary. Further, the presence of the salt
rock ensures that � = �s along the boundary fz = 0g. Because �f , �s and qf are constant and
because the y�coordinate ranges from �1 to +1, we look for solutions with the dependence

� = �(z; t) and q = q(z; t); (4.23)

satisfying

�(z; 0) = �f for z 2 R+; (4.24)

�(0; t) = �s for t 2 R+; (4.25)

and

qy(1; t) = qf for t 2 R+: (4.26)

Under assumption (4.23) we obtain a linear relation between the y-component of the speci�c
discharge and the uid density, see e.g. De Josseling De Jong & Van Duijn [16]. It is found by
eliminating the pressure from Darcy's law. Taking the curl yields

@

@z
fqy �

�

�
�gyg �

@

@y
fqz �

�

�
�gzg = 0; (4.27)

which implies after integration

qy +
�

�
�g sin� = C; (4.28)

where C is a constant. Initial condition (4.24) implies

�(+1; t) = �f for t 2 R+; (4.29)

which we use, together with (4.26), to determine the constant C in (4.28). This yields in the
linear relation

qy = qf �
�

�
(�� �f )g sin�: (4.30)

In this example we consider ID to be velocity dependent. However, we cannot treat the full dis-
persion matrix, but we have to make the assumption that the ow in the y�direction dominates
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the induced ow (qz): i.e. jqzj << jqyj. Then the dispersion tensor only has non-trivial diagonal
elements, given by (

Dzz = �T jqyj+ nDmol
Dyy = �Ljqyj+ nDmol

(4.31)

Because � satis�es (4.23), only Dzz appears in the model description. Note that Dzz combined
with (4.30) gives

Dzz = �T jqf �
�

�
(�� �f )g sin�j+ nDmol := D(�): (4.32)

The object is now to solve the balance equations (2.10) (in one space dimension, the z�direction),
with the dispersivity given by (4.32) and subject to conditions (4.24),(4.25). As in the example
treated in Section 4.1, we need an additional boundary condition forqz, here along the salt rock
boundary. Following Hassanizadeh & Leijnse [12] we require for the speci�c discharge along the
salt rock boundary

qz(0; t) = � D(�s)

�sf1� !sg
@�

@z
(0; t) for t 2 R+: (4.33)

Here !s denotes the salt mass fraction of saturated brine, i.e. �s = �fe
!s . To put the equations

in dimensionless form we introduce the variables

q� =
q

q̂
; z� =

z

�T
; t� = t

q̂

n�T
; D� =

D

�T q̂
; " =

�s � �f

�f
and u =

1

"
+

�� �f

�s � �f
; (4.34)

where q̂ = �
�
(�s � �f )g sin�: Dropping the asterisk notation, the dimensionless dispersivity is

expressed as

D(u) = �+ jU � uj; (4.35)

with

� =
nDmol

�T q̂
and U =

qf

q̂
+
1

"
; (4.36)

and the scaled speci�c discharge component in the y-direction is given by

qy = U � u: (4.37)

The scaling proposed here di�ers from the one used in Section 4.1. It allows us to consider
the limit of small molecular di�usion with respect to transversal dispersion, i.e. � = 0, a
mathematically interesting limit because it leads to degenerate di�usion at points where u = U .
As a result we obtain the initial-boundary value problem8>><

>>:
@u

@t
+

@

@z
(qzu) = 0

@u

@t
+ qz

@u

@z
=

@

@z

�
(�+ jU � uj) @u

@z

� (4.38)

for (z; t) 2 R+ �R+, subject to

u(0; t) = 1 +
1

"
for t 2 R+;

qz(0; t) = �"K(")f�+ jU � u(0; t)jg@u
@z

(0; t) for t 2 R+;

u(z; 0) =
1

"
for z 2 R+;

(4.39)
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where, through �s and !s, K is a function of " given by

K(") =
1

(1 + ")( � log(1 + "))
for 0 < " < e � 1: (4.40)

The complete solution of the salt dome problem involves qy, qz and u. The pair (qz; u) solves
(4.38),(4.39), while qy follows directly from (4.37), once u is known. To solve (4.38),(4.39) we
apply the Von Mises transformation and obtain in the (	; t)-plane the problem

8>>>>><
>>>>>:

@û

@t
= û

@

@	

�
(�+ jU � ûj)û @û

@	

�
for f(	; t) : '(t) < 	 < +1; t > 0g

û(	; 0) =
1

"
for 	 > '(0)

û('(t); t) = 1 +
1

"
for t > 0

(4.41)

Here the function '(t) denotes a free boundary in the (	; t)-plane for which we need an additional
condition. This condition is obtained by applying the Von Mises transformation to (4.39). It
takes the from of a Stefan condition:

d'

dt
(0; t) =

(1 + ")2

"
K(")f�+ jU � 1� 1

"
jg @û
@	

('(t); t) for t 2 R+: (4.42)

This expression relates the salt mass ux at the salt rock boundary to the speed of the free
boundary in the (	; t)-plane. It is interesting to observe that the Von Mises transformation in
the salt dome problem reduces to a nonlinear Stefan problem.

The free boundary problem (4.41), (4.42) too allows similarity of the form (4.10), with the
free boundary given by

a =
'(t)p
t

for t 2 R+: (4.43)

The similarity solution f = f(�), � � a, and the free boundary � = a are found from the
transformed ordinary di�erential equation problem:

1
2
�f 0 + f(f�+ jU � f jgff 0)0 = 0 for � > a;

f(a) = 1 +
1

"
; f(+1) =

1

"

(4.44)

and

f 0(a) =
a

2"K(")f� + jU � f(a)jgf2(a) (4.45)

One can show that a solution of (4.44), (4.45) is strictly decreasing with respect to �. Conse-
quently, from (4.45), we �nd a < 0.

As in Section 4.1 we solve the similarity problem by considering the corresponding ux
equation. Setting, again,

w = �(f) and w = w(f) = �2f�+ jU � f jgff 0(�(f)); 1

"
< f < 1 +

1

"
; (4.46)

we obtain for w the boundary value problem

wffw0g0 = �2f�+ jU � f jgf in f 2 (1="; 1 + 1="); (4.47)
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with

w(1 +
1

"
) = � a

(1 + ")K(")
; w0(1 +

1

"
) =

"a

1 + "
< 0 (4.48)

and

w(
1

"
) = 0: (4.49)

To solve this transformed w-problem we apply a shooting procedure: First, for a given a < 0,
we solve the initial value problem (4.47), (4.48) for f 2 (1="; 1 + 1=") and then adjust a such
that (4.49) is satis�ed.

For two reasons it is more convenient to solve the w-problem in stead of the f -problem
directly: (i) the domain is �xed and �nite and (ii) the formulation allows to pass to the limit
�! 0 without (numerical) di�culty. To solve the initial value problem (4.47), (4.48) we apply
a Runge-Kutta method with w and w0 as primary unknowns.

Once the solution f(�) is obtained we return to the original variables in the (z; t)-plane,
using expressions (3.18), (3.17), (3.19) combined with the boundary condition (4.39) on qz.
Application of the Von Mises transformation in (4.39) yields

qz(0; t) = q0(t) = �"K(")f� + jU � û('(t); t)jgû('(t); t) @û
@	

('(t); t): (4.50)

Introduction of the similarity variables in (4.50) and using (4.45) in the result gives

q0 = � a

2f(a)
: (4.51)

After rewriting (3.17) in terms of the similarity variables and substitution of (4.51), we obtain

z =
p
t

Z �

0

1

f(s)
ds+

Z t

0

1

2
p
t

�
� a

f(a)
�
Z a

0

�f 0

f2
d�

�
dt; (4.52)

implying

� :=
zp
t
=

Z �

a

1

f(s)
ds for � > a; t 2 R+: (4.53)
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Figure 4. The solutions w(f) and f(�) for di�erent � and U values and " = 0:2, see Table 1.

In a similar fashion, i.e. after combining (3.19), (4.10) and (4.51), we obtain

qz =
1

2
p
t

�
� a

f(a)
+

Z �

a

sf 0

f2
ds

�
for � > a; t 2 R+: (4.54)
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Note that equation (4.53) implies that � (= 	=
p
t) only depends on �, which we write as

� = �(�): Consequently

u(z; t) = û(	(z; t); t) = f(�) = f(�(�)) := r(�); (4.55)

and from (4.54)

qz(z; t) =
1

2
p
t

(
� a

f(a)
+

Z �(�)

a

sf 0

f2
ds

)
:=

1p
t
s(�): (4.56)

The identities (4.55) and (4.56) show the relation between solutions obtained with the Von
Mises transformation and solutions that result from direct similarity transformation of the one-
dimensional balance equations. Properties of the functions r(�) and s(�) have been extensively
studied in Van Duijn et.al. [11]. Parameter values for �, U and computed values of a are given
in Table 1. The labels A-D refer to the corresponding curves in Figures 4 and 5. Case A is
computed with D = � = 1:0, i.e. omiting the density dependent dispersivity term. The other
three degenerate cases B-D are computed with � = 0.

� U a Curve label

1.0 - -1.866 A
0.0 5.0 -1.494 B
0.0 5.5 -0.952 C
0.0 6.0 -1.064 D

Table 1. Parameters and computed a-values.

Parameter Value Unit

� 1:0 10�12 m2

� 1:0 10�3 kg/ms

�s 1200 kg/m3

�f 1000 kg/m3

" 0:2 �
� �=4 450

g 10:0 m/s2

n 0:4 �
Dmol 1:5 10�9 m2=s

�T 0:5 m

(4.57)

Table 2. Parameter values.

In most practical situations, � is small compared to the magnitude of the other dimensionless
parameters. Table 2 lists a set of feasible geohydrological parameters in the vicinity of a salt
dome, mainly adopted from Herbert et.al. [14]. Using the numbers from Table 1 we obtain
q̂ = 1:414 10�6m/s � 45 m/y and thereby � = 8:485 10�4 � 10�3(<< 1!).

Figure 4 shows numerical approximations of the solutions w(f) and f(�) for the parameter
values listed in Table 1. Figure 5 shows the corresponding similarity solution r(z=

p
t) and the

scaled speci�c discharge, plotted as s(z=
p
t) = qz

p
t. We omit the plots of u(z; t) and q(z; t) for

these cases.
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Figure 5. The similarity solutions r(z=
p
t) and s(z=

p
t) for di�erent � and U values and

" = 0:2, see Table 1.

In case of the non-degenerate example (A), both r and s are smooth, continuously di�erentiable
functions. The degeneracy, i.e. � = 0 and u ! U in (4.35), causes singular behavior of the
derivative r0 (and thereby of u0). In case of the examples D and C, r0 becomes in�nite if
r(�) ! U , where respectively U = 6:0 and U = 5:5. The corresponding scaled discharges s
converge towards their limiting value as � !1. The degenerate behavior of case B is di�erent:
at some point, say � = �0, the function r attains the value of the (fresh water) boundary/initial
condition 1=" = 5:0(= U) and remains constant for all � > �0. Moreover, at � = �0 r

0 exhibits a
discontinuity, while r0 = 0 for � > �0. This point corresponds to an interface in the (z; t)�plane
which moves with a �nite speed of propagation. At the left hand side of the interface we have
u > 1=", u0 < 0, and on the right hand side u = 1=", u0 = 0. The scaled discharge s (curve B)
has a constant value for � � �0. The discharges depicted in Figure 5 only result from the volume
changes of the uid due to the presense of (high) density gradients. Moreover, the induced ow
is perpendicular to the main (or back ground) ow qf .

4.3 Mixing of parallel uid layers

Minor changes to the boundary and initial conditions in the salt dome problem lead to the
problem of mixing of parallel owing layers of fresh and salt water. De Josselin De Jong & Van
Duijn [16] studied this problem for the incompressible case, i.e. div(q) = 0 and Van Duijn et.al.
[11] extended the analyses to the compressible case, when volume changes in the uid occur. We
consider the same ow geometry as is the salt dome problem, but replace the salt rock below the
plane fz = 0g by porous medium initially saturated with brine with density � = �s. Equations
(4.23)-(4.37) hold and the boundary conditions are

u(�1; t) = 1 +
1

"
; u(+1; t) =

1

"
and qz(�1; t) = 0 (4.58)

for t 2 R+, while the initial conditions are given by

u(z; 0) =

(
1 + 1

" for z < 0
1
" for z > 0

(4.59)

The choice of of the boundary condition qz(�1; t) = 0 is arbitrary. When solving (2.11) subject
to (4.58),(4.59) using Von Mises and similarity transformations we obtain (skipping all details)

zp
t
=

Z �

0

1

f(�)
d� +

Z 0

�1

�f 0

f2
d� (4.60)
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and

qz =
1

2
p
t

Z �

�1

�f 0

f2
d�; (4.61)

where f is the solution of the boundary value problem8>>>>><
>>>>>:

1

2
�f 0 + f(f�+ jU � f jgff 0)0 = 0 for � 2 R

f(�1) = 1 +
1

"

f(+1) =
1

"

(4.62)

Notice again the dependence of � on z=
p
t in this example, which is due to the choice of the

boundary condition qz(�1; t) = 0. This implies that the problem also allows a transformation
of type (5.1).

5 Discussion and conclusions

The Von Mises transformation provides a reduction of the governing balance equations to a single
second-order nonlinear di�usion equation, which has been studied extensively in the mathematics
literature. Much is known about the large time behavior of this equation for fairly general
initial functions. In particular, sharp estimates were obtained for the rate at which the solutions
converge to the self-similar pro�le, see e.g. Van Duijn & Peletier [10]. The examples given in
Section 4 are special because they allow similarity transformation. The result is a second-order
ordinary di�erential equation which makes the mathematical analysis more tractable.

When discussing the salt dome problem in Section 4, we observed that the similarity variable
� (= 	=

p
t) only depends on � (= z=

p
t) (see (4.2)), which implies

	(z; t) =
p
t �(�): (5.1)

This is a well known transformation in the theory of boundary layers, usually derived through
scaling arguments, see e.g. Chorin & Marsden [5]. Considering (3.1) and introducing (5.1)
directly, we obtain

u =
d�

d�
:= �0 and qz =

1

2
p
t

�
��0 � �

�0

�
(5.2)

After substitution of (5.2) in (2.11) and using the boundary conditions, we obtain a third-order
initial value problem:

8>>>>>>>><
>>>>>>>>:

1

2

�00�

�0
+ (f�+ jU � �0jg�00)0 = 0 for � > 0

�(0) = �

�0(0) = 1 +
1

"

�00(0) =
1

2(1 + ")K(")f� + jU � �0(0)jg �

(5.3)

which reads: �nd � such that the boundary condition �0(+1) = 1=" is satis�ed.
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A similar transformation is possible in the column problem. From expression (4.18) we
deduce that the similarity variable only depends on (z � t)=

p
t, implying

	(z; t) =
p
t �(�) with � =

�
z � tp
t

�
: (5.4)

The function � satis�es the third order equation

2�000�0 + ��00 = 0: (5.5)

However, the combination of Von Mises and similarity transformations as proposed in Sections 3
and 4 leads to a second-order ordinary di�erential equation, which is preferable to the third-order
equation that results from the direct transformation (5.1).

Van Duijn et. al. [11] studied the one-dimensional balance equations by looking for self-
similar solutions of the form

�(z; t) = u(�) and qz(z; t) =
1p
t
v(�); (5.6)

where � = z=
p
t. This transformation also yields a third-order ordinary di�erential equation.

The latter can be reduced to a second-order equation of the form

�pp00 = 1

2
e2cx; p > 0; (5.7)

where c = log(1 + "). Note that, if we divide equation (4.11) by f , introduce x = log(f) and
de�ne a ux function according to p(x) := �e2xdx=d�(�(x)), where �(x) = x�1, we obtain an
equation which is identical to (5.7), but now with c = 1.

Due to the piecewise constant initial density functions, the examples discussed in Section 4
may be regarded as upper limits of the compressibility e�ect for a given value of ". The induced
speci�c discharge qz is in�nite at t = 0 and decays as 1=

p
t for t > 0 (see expressions (4.17),

(4.54) and (4.61)). However, in most practical situations, the initial density data will be smooth,
which implies that the enhanced discharge remains �nite for all t � 0. Hence, in practice, the
di�erence between Boussinesq solutions (div(q) = 0) and solutions of the balance equations for
uid and salt will be even smaller than predicted by the corresponding similarity solutions. The
compressibility e�ect is noticeable only at the short time scale of the problems studied in Section
4 and has little impact on the density distributions. The fact that ow is induced in a direction
perpendicular to the main groundwater ow direction might be of some practical importance,
in particular in connection with transport of radionuclides, leaking from a salt dome repository.

The problem of brine transport is of utmost interest in the safety and risk assessment stud-
ies of high-level radioactive waste disposal in subsurface salt formations. With this practical
application in mind, many (dedicated) numerical codes have been developed, see e.g. Pinder &
Cooper [24], Voss & Souza [30], Kr�ohn & Zielke [18], Oldenburg & Pruess [22] and Kolditz et.al.
[17]. The intricate character of the problem, i.e. nonlinear coupling between the velocity �eld
and the uid density distribution due to both gravity (free convection) and compressibility ef-
fects, implies that the availability of exact or semi-exact solutions of test problems is rather poor.
In fact, only Henry's [13] semi-explicit solution of dispersive salt water intrusion in a con�ned
aquifer, initially �lled with fresh water, is frequently used as two-dimensional test problem for
code veri�cation. In order to test numerical simulators, a particular series of benchmark prob-
lems has been proposed by the international HYDROCOIN [15] project. These benchmarks are
used for cross-veri�cation of numerical models. Whereas the compressibility e�ect concerned,

20



our semi-explicit results provide both accurate quantitative and qualitative information about
solutions and therefor may contribute to numerical code veri�cation.
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