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This paper describes a theory of knowledge on which future CAD systems can stand. First, we present 
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1. Introduction 
Developing intelligent CAD (Computer Aided Design) systems is crucial in order to achieve high 
productivity and better quality products. Knowledge engineering is considered one of the key issues [8, 9]. 
In developing such systems we must be aware that designing is a highly intellectual activity. This requests a 
clean, sound, and robust theoretical basis to capture design knowledge. 

For this purpose, we have been involved in establishing a theory of CAD as a part of the IIICAD 
(Intelligent Integrated Interactive CAD) project [15, 17, 18]. Since there are two aspects in designing, 
namely, design objects and design processes, we need one theory to describe design objects and the other to 
formalize design processes. The latter might be called design theory (20] and it can be domain independent 
The former might be called theory of design objects and is domain dependent. In case of VLSI this must be 
"VLSI theories" and should be replaceable by "mechanical engineering theories" if we need CAD systems 
for machine design. In addition to these two, there might be more general theories as long as we deal with 
physical world. Perhaps we need theories about the underlying principle of the world, e.g., naive physics [3]. 

Knowledge engineering as a technique to describe design knowledge is probably regarded as software 
developing methodology and environment [4, 18]. Although it tells what kind of techniques to use, it does 
not tell how to describe the knowledge. For example, even if we are given a knowledge engineering tool, 
e.g., a frame system [13], we still have difficulties in codifying knowledge: What comes as a frame? What 
comes as a slot? This problem is relevant to the problem of knowledge acquisition and few solutions have 
been proposed. We realize that we should have a theory to describe knowledge in a given scheme. We call 
it theory of knowledge and this paper is a first approach to it 
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2 Introduction 

In CHAPTER 2 we begin with formalizing our recognitions of the world. We shall see that there are 
entities and their properties. Then we shall acknowledge two distinct description methods, an extensional 
description and an intensional one, and follow with a comparison of them. 

CHAPTER 3 discusses CAD applications. We categorize logical manipulations into two categories; add 
and renewal operations. In extensional descriptions, data operations that are important for CAD applications 
can be implemented by add operations, while intensional descriptions are implemented by renewal 
operations. Add operations are cheaper than renewal operations in terms of performance. This implies that 
CAD data structures should be based on extensional descriptions. 

However, for simple inquiries, an intensional description is more convenient than an extensional one. 
We, therefore, propose in CHAPTER 4 a new data description method to take advantage of both extensional 
and intensional descriptions. This new approach is employed in the design of IDDL (Integrated Data 
Description Language), the kernel language of III CAD [18]. 

2. Description of the World 

In this chapter we begin with a metaphysical discussion in order to clarify two important and opposing 
concepts in describing knowledge in general. Next, we try to formulate those two concepts mathematically 
and compare them, so that we can identify their differences. We shall also find outt that they are equivalent 
in principle. 

2.1. Entities, Attributes, and Relationships 

It may be reasonable to start the discussion by admitting that in our world we have entities such as a dog, the 
Sun, a shaft, etc. These entities might be categorized or classified by observation and abstraction. As a 
result of categorization we will have a group of entities which have common nature or behavior. By doing 
so, we recognize a relationship which characterizes that group and we form an abstract concept. This 
further results in the concept of attributes, such as weight, length, color, etc., which may or may not have 
values and which are attributed to entities. We can introduce secondary relationships and attributes as well; 
i.e., relationships among relationships, relationships among attributes, and attributes of relationships. This 
recognition of the world has been dominant for many centuries in history. 

Entity Concept Abstract Concept 

Abstract Concept Entity Concept 

(a) Extensional Description (b) Intensional Description 

FIGURE 1. Two opposing ways of describing the world 
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Next we formalize this perception mathematically. Set notation has been the most basic and powerful 
tool among others. In set theory, elements of a set are treated, more or less homogeneously, as symbols 
which has no inner structure. Elements of a set are "equal" and there is no way to compare or modify 
elements; we can only create and remove elements. On the other hand, subsets (or topology, base, etc.) can 
be manipulated by set operations such as conjunction, disjunction, negation, etc. Hence subsets can be 
compared and modified. 

We notice two opposite ways for describing the world (16] as shown in FIGURE 1. 
(1) Extensional description: Entities are primary (FIGURE 1 (a)). Therefore, entities are the elements, and 

attributes and relationships form the topology of the entity set. 

(2) Intensional description: Abstract concepts are primary (FIGURE 1 (b)). Therefore, relationships and 
attributes are the elements, and entities form the topology of the world set 

In our view, distinguishing these two description methods is the key to solve the knowledge 
representation problem. In the following sections, we will examine and compare them more precisely. 

2.2. Extensional and Intensional Descriptions 

From now on, we use the words entity concept instead of entity and abstract concept instead of attribute and 
relationship, because we are going to discuss concepts, not the real world. 

2.2.1. Extensional Description 

An extensional description is defined as a situation where an entity concept is an element of the entity 
concept set and abstract concepts are its topology (FIGURE 1 (a)). This description method has the following 
properties: 

(1) Entities are primary. They are dealt with just as symbols and have no meaning other than just being 
symbols. There is no predefined attributes inside an entity and it is impossible to decompose entities 
into smaller parts. This means that the extensional description is holistic, implying that the world is 
built only from .a collection of facts about relationships among (symbolic) entities. 

(2) Mathematically, this situation is described as follows. Let ei and Ai be an entity concept and an 
abstract concept, respectively. Then, Ai is defined extensionally, by 

Ar={ei.e2 , ••• }. 

(3) This definition suggests that first a common property (or relationship) is found by an observation and 
then named Ai. In other words, an abstract concept Ai is stating a relationship between entities, ei. 

(4) Descriptions of an entity concept, therefore, consist of facts each of which is dependent on other 
entities. In this sense, an extensional description is relative. 

2.2.2. Intensional Description 

An intensional description is defined to be a situation where an abstract concept is an element of the abstract 
concept set and entity concepts are its topology (FIGURE 1 (b)). This description method has the following 
properties. 

(1) Attributes and relationships are primary, which means they are dealt with as symbols which have no 
meaning other than being symbols. On the other hand, entities are considered to be somewhat 
structural, because they are described by predetermined abstract concepts. This further suggests that 
an entity is decomposable into smaller parts (reductionism). 

(2) The situation in FIGURE 1 (b) is defined mathematically as follows. Let ai and Ei be an abstract 
concept and an entity concept, respectively. Then, using a;, Ei is defined intensionally by 

Ej={ai.a2 , • •• }. 

(3) An entity concept in an intensional description is generated from abstract concepts which are 
predefined, hence absolute. An intensional description is absolute. 

(4) An entity concept can be often described by a fixed number of abstract concepts as a Cartesian product 
set, like 
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E;={(ai.a2, ···)I l:Cat>a2. ··· )}, 

where l:: indicates additional constraints. In an intensional description, an entity concept is equivalent 
to a collection of attributes. 

(5) In summary, an intensional description embodies predefined concepts (intensions) which must be 
explicitly expressed in an extensional description. 

2.3. Hierarchical Example 

Let us compare an extensional description and an intensional description. In the following discussion we 
employ predicate logic instead of set notation; yet we are not trying to discuss the descriptive power of 
predicate logic. 

Consider a car which consists of lots of parts, from an engine to a radio. The engine itself can be 
decomposed into thousands of smaller parts. We have traditionally been calling these part-assembly 
relationships a hierarchy (FIGURE 2). 

2.3.1. Extensional Description of the Example 

In an extensional description method, the most natural interpretation for FIGURE 2 is as follows: 

(1) First we regard a symbol, such as CAR, as an atom which cannot be further decomposed. Thus, CAR 
is an identifier and can be replaced by any character string such as @AB5306. 

(2) A line that connects two symbols is regarded as the relationship between them. We can use the binary 
relationship, has, (or belongs-to which is the other way around) for the time being, although its 
meaning cannot be directly defined at the moment 

(3) For example the relationship between CAR and ENGINE will be interpreted such that CAR and 
ENGINE make a subset called has, ie., 

has= {CAR, ENGINE}. 

(4) Because the relationship has is specific to CAR and ENGINE, we may want to introduce as many 
names as the relationships. However, this is not necessary; we can use the same name for all other 
relationships, as far as we understand that implicitly the meaning of these relationships are the same. 

(5) Therefore, this hierarchy will be denoted as follows: 

FIGURE 2. An abstraction of a car 
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has(CAR, ENGINE), 
has(CAR, BODY), 
has(CAR, WHEEL), 
has(CAR, SEAT), 
has(CAR, RADIO), 
has(ENGINE, CYUNDER), 
has(ENGINE, PLUG). 

2.3.2. Intensional Description of the Example 

In an intensional description method, FIGURE 2 will be interpreted in a totally different way: 

5 

(1) In this description method, there is an underlying belief that a CAR is decomposable into fragmental 
parts such as ENGINE, BODY, etc. A CAR is built from those parts. 

(2) A symbol, such as CAR, is not a mere identifier. It has an inner structure which can be further 
decomposed. Therefore, an intensional description method may lead us to the idea of typing or 
classes. 

(3) The relationship has of SECTION 2.3.1. is hidden in the structure of entities. 

( 4) The following is an intensional notation of this hierarchy: 

Abstract Concept 

Abstract Concept Entity Concept 

(a-E) Extensional Description (a-1) lntensional Description 

Entity Concept Abstract Concept 

Abstract Concept Entity Concept 

(b-E) Extensional Description (b-1) lntensional Description 

FIGURE 3. Comparison of extensional/intensional descriptions 
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CAR=(ENGINE,BODY, WHEEL, SEAT,··· ,RADIO) 
ENGINE= (CYUNDER, · · · , PLUG) 

2.4. Some Problems 

2.4.1. Rigidity of lntensional Descriptions 

Description of the World 

Comparing the extensional and intensional descriptions of the previous sections, we can detect problems with 
an intensional description. Consider CAR=(ENGINE,BODY, WHEEL, SEAT, ···,RADIO). We might 
assume the second term of this expression refers to the body concept no matter what identifier comes. It 
might be hard to insert a new term between ENGINE and BODY. 

Intensional descriptions are, therefore, inflexible and rigid. 

2.4.2. Data Deterioration in lntensional Descriptions 

FIGURE 3 shows another disadvantage of the intensional description method. FIGURE 3 (a-E) shows that two 
different abstract concepts are denoting an entity. This situation can be also identically depicted in the 
intensional description as in FIGURE 3 (a-1). However, as in FIGURE 3 (b-E), if two similar or hierarchical 
abstract concepts are denoting an entity, the similarity or the hierarchy cannot be expressed so well in the 
intensional description (see FIGURE 3 (b-1)); they are just represented in the same way as in FIGURE 3 (a-1). 

Thus, in case of the intensional description method, slight differences in meaning would be lost or 
ignored and similar concepts would be recognized differently. 

2.4.3. Information Loss in Data Exchange between Extensional and Intensional Descriptions 

As pointed out in SECTION 2.2.2, an intensional description embodies predefined concepts which must be 
explicitly expressed in an extensional description. Because of these predefined concepts, data exchanges 
among different CAD systems might result in loss of information when both intensional and extensional 
descriptions are involved. 

Let us consider a plane s in three-dimensional space defined by three points, or by a normal vector and 
a point, or alternatively by two vectors originating from the same point. We have two ways of representing 
this fact: 

(1) In an intensional description, s will be represented by three points, Pt> pz, and p 3 • In a relational 
database system, this is expressed by a tuple plane(p1,p2 ,p3). Note that swill not explicitly appear 
in this tuple. 

(2) In an extensional description, we use the facts that s has Pi. s has p 2 , and s has p 3• Relations for this 
case can be three tuples PLANE(s), POINT(p), and HAS(s,p), and the entire fact will be represented 
by 

V s[PLANE(s )]3p 1• p 2 • p 3 [POINT(p 1), POINT(pz), POINT(p3), p 1 *-pz, Pz :F-p3, p3 *-P l • 
HAS(s, P1). HAS(s, p 2), HAS(s, p3)]. 

Note that we can think of s regardless of Pt> pz, or p 3; i.e., to defines, we do not need to know its 
intension. 

Now, we can point out a problem. It is possible to define a planes intensionally both by three mutually 
different points, p 1, pz, and p 3, and by a normal vector v and a point p. Suppose we have a CAD system A 
which employs the former description, B which uses the latter description, and C which uses an extensional 
description method (see FIGURE 4). In system A, swill be described by 

plane(p1 ,pz,p3), 

and in system B by 

plane(p, v). 

In system C, it will be described extensionally as 

PLANE(s), POINT(p),HAS(s,p), VECTOR(v),DEFINED-BY(s,pi. v), v=(p 2 -p1)x(p3 -pi) 



Some Problems 

CAD System A CADSystemB 

plane(v,p) 

\ 

Intensional Expression I 
---------- ---------------- -----------

Extensional Expression 

CADSystemC 

PLANE(s) 

POINT(p) 

HAS(s,p) 

VECTOR(v) 

DEFINED-BY(s,p, v) 

v=(pz-P1)X(p3-p1) 

FIGURE 4. Data exchange between two CAD systems 
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to make it possible to transfer data from A to B via C. In this transformation we have completely lost 
information about p 2 and p 3 • This means there will be a loss of information and inevitable confusion in data 
exchange shown in FIGURE 4, if there are two different intensional descriptions and an extensional 
description. 

This problem is caused by a fundamental problem in conversion between intensional and extensional 
descriptions. The intensional descriptions of the systems A and B assume predefined concepts Ca and Cb. 
Between these two there is an incompatibility which causes the problem. A mathematical explanation is 
given below. Let .Lx be an intension of x, and ix be an extension of x. Then i .Lx=x always holds. 
Conversely .L ix=x does not always hold. A famous example is the morning star and the evening star. The 
morning star has an extension, Venus. The evening star is an intension of Venus. Thus, an intension of an 
extension of an entity is not always identical to the entity. 

3. CAD Applications 

In this chapter, we discuss what kind of data operations and data description methods are required for CAD 
systems. We compare extensional and intensional data descriptions in the context of CAD applications. 

3.1. Characteristics of CAD Applications 

CAD applications request several considerations about the data description method, because they are 
different from business applications in many respects [7, 11]. The followings are some important differences 
which effect the data description method: 
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(1) Diversity: There are many ways of representing the design objects, e.g., machinery. Those 
representations are called models or views. Although they represent the identical object, syntactically 
they are different from each other. 

(2) Dynamic changeability: Models are changing dynamically during the design process from a vague 
initial one to detailed final drawings. 

(3) Bulkiness: Usually, amount of information used in a CAD system is enormous. 

(4) Integrity and consistency: Despite the diversity and dynamic changeability of models, we need to keep 
integrity and consistency of the information. This means that any change should propagate through all 
the models and be inherited from an earlier version to later versions. 

(5) Long transaction: Compared with business applications, transactions take a longer time; for instance, 
from one day to a couple of years. Because of multi-user access this becomes a problem. 

(6) Multimedia: Information is of multimedia nature; it will include text information, numerical 
information, graphical information, and so on. 

Our new data description method for future CAD systems should satisfy these requirements (see 
CHAPTER4). 

3.2. Data Operation in CAD Systems 

In this section, first we categorize operations used in predicate logic. We will see that there are two types, 
add and renewal. Second, we compare data operations of conventional CAD and future CAD to discuss the 
nature of data operations specific to CAD systems. From this discussion, we see that extensional data 
description methods have good properties for CAD applications. 

3.2.1. Add and Renewal Operations 

Let us consider data operations in predicate logic (TABLE 1). Except for query operations, those operations 
may change the state of the knowledge base (or database). For example, assertions add new facts to the 
knowledge base. Creation of terms simply adds new objects to the system, which may result in additional 
assertions about those terms. On the other hand, modification of predicates may result in rewriting the whole 
predicate system. 

From this point of view, we can classify operations into two categories: Does it rewrite the predicate 
system or not? Is it a mere addition/removal of facts? The "Change?" column of TABLE 1 answers to 
these questions. Following this categorization, let us call logical operations which simply add or remove 
facts add operations and those which may rewrite the knowledge renewal operations. 

FIGURE 5 illustrates these two types of operations. Add operations simply add new facts to the 
database and do not have any side effect on the existing parts, whereas renewal operations reorganize of the 

TABLE 1. Classification of operations in predicate logic 

Obiect Oooration Examole Chan2e? Classification 
formula assertion assert(p(a, b)) No add 

deletion retract(p(a, b )) No add 
query ?p(a,b) - -

predicate creation q(X):- ... Yes renewal 
deletion retractall (q) Yes renewal 
modification q(X)~q'(X) Yes renewal 

term creation o~ti.tz, . .. No add 
deletion ti.tz, · · · ~o No add 
modification t1 ~tz No add 
copy t1 =tz No add 
instantiation X=t - -
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A + B A B 

(a) Add operation 

A + B c 

(b) Renewal operation 

FIGURE 5. Add operations and renewal operations 

database. Apparently, renewal operations are much more expensive than add operations. For instance, terms 
in predicate logic are ordered, which represents the semantics for us; i.e., they have strong mutual 
dependencies. Changing a predicate structure requires changing the constraints .I: as well (see SECTION 
2.2.2). It might even be possible that renewal operations cannot be done automatically. Consequently, if it is 
possible, we would better avoid those expensive operations. 

3.2.2. Data Operations in Conventional and Future CAD Systems 

In most of the conventional CAD systems, the following operations are possible. 

• Creation of elements (e.g., points, lines, surfaces, volumes, and parts) 

• Deletion of elements 

• Copying of elements 

• Modification of elements 

• Simple queries 

For instance, moving a line is classified as modification of elements. Note that in conventional systems 
queries are possible, as far as they are so-called yes/no questions and the simplest what questions. General 
what/why/how questions are unfortunately impossible. Thus, we can ask questions like: 

What is the name of this part? (An answer might beP0013.) 
ls this line crossing that surface? (An answer might be YES.) 

Future CAD systems will be realized based on knowledge engineering techniques as pointed out in 
CHAPTER 1. In knowledge engineering, the basic operation is pattern matching. (Maybe, unification, 
instantiation, and backtracking are more fundamental, but to do unification pattern matching is indispensable. 
We do not mention instantiation and backtracking here, because they are not relevant to knowledge 
representation.) For example, if we want to design a machine quite similar to another designed in the past, 
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we must be able to choose the most similar candidate from a database. Thus, the following operations based 
on pattern matching will be necessary (in addition to operations available in conventional CAD systems): 

• Comparison of elements based on pattern matching 

• Complex query based on pattern matching 

Among the above mentioned operations, query and comparison operations do not actually modify the 
knowledge; however, the remaining operations change the state of the knowledge. We can categorize these 
operations into two categories, i.e., add operations and renewal operations discussed in SECITON 3.2.1. 

In an intensional description these operations (i.e., creation, deletion, copying, and modification 
operations) are all renewal operations, because in this case entities are predicates which are actually changed. 
On the other hand, in an extensional description, all of these operations are categorized as add operations, 
since predicates which denote abstract concepts will not be changed. This is an interesting difference 
between an extensional description and intensional description methods. 

3.3. Data Modeling in CAD Systems 

Consider the cube shown in FIGURE 6 and its data modeling methods. We will see in this section that they 
are in fact based on intensional description methods. Next a data modeling of the same cube based on an 
extensional description method will be presented. Finally, we shall compare these two description methods 
and discuss their problems in the context of CAD applications. 

3.3.1. Data Modeling in Conventional CAD Systems 

In three-dimensional solid modeling, hierarchical modeling techniques are often used (e.g., FIGURE 5). The 
hierarchy may consist of part, volume, surface, edge, and vertex levels. At each level there are loops which 
represent relationships in that level; for example, edge information is predefined such that an edge has two 

4 

3 
1 

6 4 11 
9 I 

3 I 10 5 8' 
).. -,,,. -,,,. 

,,,. ,,,. 

--7-- ---
7 

5 

FIGURE 6. A cube 
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1 3 
2 5 5 

2 
3 4 

11 x 
4 6 

6 y 
5 2 

10 z 
6 1 Edge 

Edge List Vertex 
Surface List 

FIGURE 7. Simple hierarchical example of data structure of a cube 

points and its direction. This will be implemented using pointers and lists. 
The pointer-list structure can be used and typically implemented by the record data structure as in 

Pascal, such as: 

type edge = record 

end; 

Id: integer; 
StartPoint: Apoint; 
EndPoint: Apoint; 
PreviousEdge: Aedge; 
NextEdge: Aedge 

Instead of using the pointer-list structure, we may use a relational data model [12]. An example of surface 
information is shown in TABLE 2. This implementation requests ordering of items; otherwise, there is no 
concept of PreviousEdge or NextEdge. These two types of implementation imply typing in advance 
which results in a rigid data structure. They can be categorized as intensional descriptions mentioned in 
SECTION 2.2.2 for the following reasons: 

TABLE 2. Relational data structure for surfaces (cf. FIGURE 6) 

Surface edge 1 edge2 edge3 edge4 
1 1 2 3 4 
2 5 8 7 6 
3 1 9 5 10 
4 3 11 7 12 
5 2 10 6 11 
6 4 12 8 9 



12 CAD Applications 

(1) An entity, such as an edge, has predefined abstract concepts. For instance, an edge has one attribute 
(Id) and four relationships (StartPoint, EndPoint, PreviousEdge, NextEdqe) and these 
descriptions construct a hierarchy with a lower level (e.g., point). 

(2) An edge structure, for instanee, is a type which can be regarded as an element of a Cartesian product 
set. Therefore, once an edge structure is fixed with fixed number of attributes and relationships, it is 
very difficult to modify this rigid structure. 

(3) This structure also represents constraints at the same time. For example, 

StartPoint: Apoint 

indicates nothing but the constraint that the value of this field must be a pointer to a point. 
(4) Thus, conventional data description methods are equivalent to the following intensional expression: 

cube {(1, 2, · · · , 6, l, 2, · · · , 12, 1, 2, · · · , 8) 
11:(1, 2, ... '6, 1,2, ... '12, l, 2, ... '8)}, 

where :E implies the necessary conditions for this object to exist as a cube. 

Note that we are insisting neither the pointer-list structure nor the relational database implementation is 
an intensional data description but the way we implement entities and its abstract concepts by them is 
intensional. It is even possible to implement an extensional data description using those types of data 
structure. 

3.3.2. A Data Modeling Based on an Extensional Description Method 

In an extensional description, predicates denote abstract concepts of an entity. The following facts represent 
the cube of FIGURE 6 in an extensional way. (Once again, notice that the use of predicate logic does not 
mean that this is the only way to describe things in an extensional way. These predicates might be 
implemented, for example, in a relational data model.) 

vertex(l). · · · vertex(8). 
line(l). · ; · line(J2). 
surface(l). · · · surface(6). 
Cube( cube). 
has(9, 1). has(9, 5). · · · 
has(l, 1). has(1, 2). · · · 
has(cube, 1). • · · has(cube, 6). 

This representation has the advantage that it is easy to add new facts about entities. For instance, if this cube 
is a part of another complex object, the only thing we have to do is to add a new fact has( complex-object, 
cube), and we do not have to modify all other predicates. All the operations are realized by add operations. 

This representation has disadvantages as well. We shall examine them more precisely in the next 
section. 

3.3.3. Comparison of Extensional and Intensional Descriptions in CAD Applications 

As pointed out in SECTION 2.4, intensional description methods which are used quite commonly in 
conventional CAD systems ignore slight differences in entity concepts and judge similar entities as different. 
We have seen in SECTION 3.2.2 that future CAD systems need a data description method which allows 
pattern matching. If we want pattern matching, it is fatal that we cannot precisely see slight differences and 
similarities of entity concepts. 

In SECTION 3.1 the nature of CAD data operations was discussed. In particular, diversity and dynamic 
changeability are crucial in CAD applications. We need an integrated set of models each of which represents 
a different view of the design object, and might change during the design process. From this viewpoint, the 
facts that the data structure of intensional descriptions is rigid (see SECTION 2.4.1 and 3.3.1) and that data 
exchange between models may cause information loss and twist make intensional descriptions unsuitable for 
future CAD systems (see SECTION 2.4.2 and 2.4.3). 

For the dynamic changeability of models, intensional descriptions are again not favorable. We have 
seen in SECTION 3.2 that in an extensional data description method most of CAD operations can be realized 
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by add operations which are less expensive than renewal operations. On the contrary, intensional 
descriptions make it difficult to modify the data schema. 

Therefore, intensional descriptions must be avoided in future CAD systems and we should use 
extensional descriptions instead. However, we cannot simply replace intensional descriptions with 
extensional ones, because sometimes in practice intensional descriptions are than extensional ones. 

Suppose we have the pointer-list data structure described in SECITON 3.3.1 and we must answer simple 
queries. For the question, "What is the line next to line L0035?", the only thing we need to do is to trace the 
NextEdge pointer, which is reduced to just address computation. In an extensional description, we need 
explicit information about two adjoining edges, E 1 and E 2, like nextEdge (El, E2). If we do not have 
this information explicitly, we need to infer it using rules. In this case, clearly the intensional description is 
much faster. 

Furthermore, extensional descriptions may sometimes lose computational semantics. For instance, in 
the example in SECITON 3.3.2, attributes of the cube, such as coordinates, edge length, etc., were not 
explicitly described. In case of the predicate logic representation we have to write three predicates which 
respectively correspond to the x, y, and z coordinates of a point. This apparently makes the performance of 
the system inefficient, as long as simple queries about coordinate values are concerned. 

To sum up, although intensional data description methods have many disadvantages for the use in 
future CAD systems, they have also advantages in terms of implementation and efficiency. Therefore, we 
need to invent a new method somewhat in-between. This will be proposed in the next chapter. 

4. A New Data Description Method 

We have pointed out in SECITON 2.2 that an extensional description focuses only at the relationships among 
entities, while an intensional one focuses at the structure of entities. In SECTION 4.1, we shall try to combine 
these two methods into a new data description method. In SECITON 4.2, we consider an example of our 
method and show its power in solving many problems of conventional CAD systems as well as its ability to 
provide necessary functions for future systems. 

4.1. Objects, Functions, and Predicates 

An extensional description could be implemented naturally by a logic programming language such as Prolog 
[6]. On the other hand, an intensional description considers only entities and their attributes; .even 
relationships are treated as if they were a kind of attributes (see the pointer-list implementation in FIGURE 7). 
It could be implemented by an object oriented language such as Smalltalk-80 [10]. From AI techniques, we 
may use MINSKY'S frame theory [13]. 

Our goal is to integrate these two programming paradigms in the most natural way. There are a couple 
of results aimed at this goal [2, 14]. FIGURE 8 shows our solution which combines the object oriented 
programming paradigm with the logic programming paradigm. Small circles in this figure correspond to 
crosses in FIGURE 1 (a) which indicate entities, and an eclipse to topology which indicates abstract concepts 
of entities. 

From now on, we call an entity an object. An object may have internal memory to store information 
just like slots in MINSKY'S frame theory. But the internal structure of an object does not really matter, 
because we are interested not in how to store the information but in how to use it. In order to represent 
relationships among entities, we introduce predicates. This idea is similar to the entity-relationship model in 
database theory [5], but there is quite a difference in that in our paradigm relationships can be created, 
modified, and deleted all the time during the execution. In conventional database systems once the data 
schema is fixed, it will never be changed. 

For instance, a fact that an object A is an automobile is denoted by automobile(A). We can naturally 
introduce the concept of class into our syntax; for example, the fact that all the automobiles are vehicles can 
be denoted by vehicle(X) :-automobile(X), where":-" has the same meaning as in Prolog. 

Access to the internal information of objects is done by invoking a function, such as 
function(object)~ value for inquiry, or function(object)1,-(any procedural definition) for definition. We 
can even define a function about relationships such as a function to compute the distance between two points, 
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distance (p 1 , p 2) f- sqrt((x-coord (p 1 )-x-coord (p 2) )** 
+(,y-coord(p 1)-y-coord(pz))** 
+ (z-coord(p 1 )-z-coord(pz))**), 
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A Symbol (Entity) 
=An Object 

Relationship 
between Symbols 

where x-,y-, and z-coord(p) are functions to get the x-, y-, and z-coordinate of a pointp, respectively, sqrt 
is a function of square root, and x** indicates the square of x. 

We can generate a complex clause by combining simple clauses. Between the object and the predicate 
world, we have functions, and we can define complex functions by combining simple functions. In this 
context, we may have the following distinctions: 

(1) A function is an intensional description of an entity and of a relationship between entities. It will be 
defined procedurally and reduced to primitive functions (built-in functions) so that they are finally 
executable. 

(2) A function, fi(o ), for an object, o, is expressing the value of an attribute Ii of o. It is also possible to 
express constraints among items, such asfi(o)=fz(o)+/J(o)/2. 

(3) A predicate is an extensional description of objects. It will be defined declaratively by using primitive 
predicates. 

(4) There is a connection between predicates and functions. For example, a predicate greater-than can be 
defined by 

greater-than(x,y)=ifval(x)>val(,y) then true else false, 

using a function val that returns the numerical value of attributes of objects. 

4.2. Example 

4.2.1. Effectiveness of Extensional Description of the Example 

Let us consider a machine part which looks like a triangle. FIGURE 9 (a) is its two-dimensional 
representation. In FIGURE 9 (b), one of its corners is chamfered, while in FIGURE 9 (c) it is rounded. From a 
mechanical engineer's viewpoint, FIGURE 9 (a) is a rough sketch of this part and that FIGURE 9 (b) and (c) are 
more detailed drawings for manufacturing. This means that these three are basically identical and that, if 
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(a) (b) (c) 

FIGURE 9. Three similar figures 

something is changed in FIGURE 9 (a), this change should be propagated to other two properly. 

We use a Prolog-like language; however, there is a difference. Let => be a symbol for an assertion 
operation; i.e., if the left hand side condition holds, the clauses on the right hand side will be asserted. 
Therefore, a rule 

p => q(a), r(X) 

is interpreted as: 

If p is true, then q(a) and r (X) must be true. If either q(a) or r (X) is not known, it is 
added to the database. 

At the moment of assertion, objects might be created as side effect. If q (a) did not exist before the 
assertion, not only clause q(a) but also object a would be created and added to the database. When 
r (X) is asserted, an object would be created with the name X (or with a name given by the system), if it did 
not exist previously. 

A polygon POLG is generated by the following rules (cf. [l]). (In the following pseudo program, 
POLG means a polygon, strings beginning with L and 1 indicate lines, and P and p indicate points.) 

po1ygon(POLG, N) => 
startpoint{P), endpoint(L, P, Pl), 
M is N - 1, create(POLG, L, M). 

create(POLG, L, 0) => 
1ine(L), startpoint{P2), endpoint(L, Pl, P2), 
has(POLG, L), has(POLG, Pl), has(POLG, P2). 

create(POLG, L, N) => 
1ine(L), endpoint(L, Pl, P2), 
has(POLG, L), has(POLG, Pl), has(POLG, P2), 
Mis N - 1, endpoint(Ll, P2, P3), different(L, Ll), 
create(POLG, Ll, M). 

1ine(L) => 
has(L, Pl), has(L, P2), 
point(Pl), point(P2), different(Pl, P2), 
endpoint(L, Pl, P2). 

The fact startpoint (P) is used to mark one of the vertices of a polygon, so that we can draw edges. 
The predicate, endpoint (L, Pl, P2}, reads the line L has two end points, Pl and P2. The 
predicate, has (A, B), is representing so-called a part-assembly relationship that A owns B. The 
predicate, different (X, Y) , is true when x and Y are referring to different objects; otherwise, false. 

A triangle t is created by using the rule; 

triang1e(T) => 
po1ygon(T, 3). 
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and an assertion; 

?- triangle(t). 

Consequently, the following facts will be asserted and added to the database. 

startpoint(pl). . 
has(t, 11). has(t, 12). has(t, 13). 
has(t, pl). has(t, p2). has(t, p3). 
has(ll, pl). has(ll, p2). 
has(l2, p2). has(l2, p3). 
has(l3, p3). has(l3, pl). 
point(pl). point(p2). point(p3). 
endpoint(ll, pl, p2). endpoint(l2, p2, p3). 
endpoint(l3, p3, pl). 

Now, consider rounding comer p2. (Chamfering is described in the same way.) First, we need 
knowledge for rounding a comer {FIGURE 10). 

L2 

T 

round(P, Ll, L2, A, Q, R, L3, L4) => 
point(P), line(Ll), line(L2), point(Q), point(R), 
on(Q, Ll), different(P, Q), on(R, L2), different(P, R), 
tangent(Q, c, Ll), tangent(R, C, L2), circle(C), 
endpoint(A, Q, R), arc(A), has(C, A), 
has(A, Q), has(A, R), 
line(L3), endpoint(Ll, s, P), 
endpoint(L3, s, Q), tangent(Q, C, L3), 
line(L4), endpoint(L2, P, T), 
endpoint(L4, T, R), tangent(R, C, L4). 
convex-arc(A, L3, L4). 

R 

IA 

T 
(a) Before Rounding (b) After Rounding 

FIGURE :rn. Rounding a corner 
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The predicate, on (P, L), holds, when a point P is on a (definite) line L. The predicate, tangent (P, 
C, L), holds, when a line Lis tangent to a circle Cat a point P. The predicate, convex-arc (A, 
L3, L4) , holds, when an arc A fonn a convex arc corner of L3 and L4. 

Let add and remove explicitly add and remove objects to and from the database. Then, we can 
round a corner by the following query. 

?- round(p2, 11, 12, A, R, Q, Ll, L2), 
remove(p2), remove(ll), remove(l2), 
add(A), add(R), add(Q), add(Ll), add(L2). 

After this operation, we have the following facts in the database. 

tangent(q, cir, 11). tangent(r, cir, 12). 
tangent(q, cir, ml). tangent(r, cir, m2). 
circle(cir). has(cir, a). convex(a, 13, 14). arc(a). 
has(ml, pl). has(ml, q). has(m2, p3). has(m2, r). 
endpoint(ml, pl, q). endpoint(m2, p3, r). endpoint(a, q, r). 
has(a, q). has(a, r). 
point(q). point(r). 
on(q, 11). on(r, 12). 
startpoint(pl). 
has(t, 13). has(t, pl). has(t, p3). has(l3, p3). has(l3, pl). 
point(pl). point(p3). endpoint(l3, p3, pl). 

Comparing the state of the database before the rounding and after, we find out the following. 

(1) We have obtained complete separation of the states of the database before the rounding and after. This 
was achieved by the use of an extensional description; i.e., modification operations were realized by 
simple addition and removal of predicates which are cheaper than modifying them. 

(2) Before the rounding operation we had the central model M (i.e., the first state of the database), and 
after the operation it became M, (i.e., the second state of the database). The transition from M to M, 
was carried out by the rounding operation, R; M,=R(M). 

(3) Notice that this last operation is executed by add operations rather than renewal operations. Mand M, 
are separately established in different worlds. This means we have complete separation of models as 
well as inheritance of attributes and their changes. Therefore, if we regard M as the central model 
which is necessary for the integration of CAD systems, we can easily obtain different, independent 
models by having a function to derive them from M. 

In SECilON 3.1, we have pointed out characteristics of CAD applications; i.e., diversity and dynamic 
changeability of the models, bulkiness of data, integrity and consistency control, time-spanning transactions, 
and multimedia. The first requirement, diversity and dynamic changeability of the models, can be satisfied 
by using an extensional data description. An extensional data description may also solve the problems of 
integrity and consistency control, because changes in one model can easily propagate to other models. The 
complete separation of models will solve the version control and the multiuser access control problems. (We 
admit that the problem of bulkiness and multimedia cannot be solved here.) 

4.2.2. Introduction of Intensional Description Aspects 

The predicate on (P, L) used in the previous example was not defined. It is not easy, if we can use only 
predicates. But, if we have data like the point positions and the line equations, the computation itself is by no 
means difficult. This problem is regarded as the problem how to integrate extensional information that 
predicates have and intensional information that may reside inside the objects. Let us remind that it is 
dangerous to simply mix up the object world and the predicate world, because there may be a distortion of 
information (SECilON 2.4). Thus, we have a contradictory requirement; we need to separate them, but still 
we need to integrate them. 

A solution might be to use functions to bridge between the object and the predicate worlds (SECilON 
4.1). Let %£ (X) be a function to get information about an item f from an object x. Therefore, a point p 
can be associated with three functions, %x(P), %y(P), and %z (P), to obtain its position. Using these 
functions, we can implement the predicate on crudely as follows1• 
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on(P, L) => 
endpoint(L, Pl, P2), 
A is (%x(P) %x(Pl))/(%x(P2) 
B is (%y(P) - %y(Pl))/(%y(P2) 
C is (%z(P) - %z(Pl))/(%z(P2) 
A = B, B = C. 

%x(Pl)), 
- %y(Pl)), 
- %z(Pl)), 

A New Data Description Method 

As we have already pointed out in SECITON 4.1, the internal infonnation structure of objects is less important 
than the fact that functions can act as a bridge between the object and the predicate worlds which must be 
kept separate. In our solution, there still exists a boundary between the predicate and the object worlds. This 
separation is effective for the perfonnance. 

5. Conclusion 

In this paper, we have proposed a new data description method for future CAD applications. The following 
are principal results. 

(1) To describe entities and their abstract concepts (such as attributes and relationships among entities), 
there are two possible ways; i.e., an extensional description where we have abstract concepts as 
topology of the entity concept set, and an intensional description where we have entity concept set as 
topology of the abstract concept set. 

(2) Although, basically, these two description methods are identical, there are several differences. For 
example, an extensional description method provides somewhat a wholistic view. On the other hand, 
in an intensional description method entities are constructed from predetennined abstract concepts. 

(3) We found out that extensional data descriptions are more suitable for CAD systems, because difficult 
data operations (e.g., modifications) can be done by easy (hence cheap) operations. However, 
conventional CAD systems are usually implemented based on intensional data descriptions. This is 
primarily due to good perfonnance for simple data operations. 

(4) Therefore, we need to invent a new data description method which integrate extensional and 
intensional views and which satisfies requirements for future CAD systems. Our solution is to have 
two separated world, the object world representing entities and the predicate world representing 
abstract concepts, and functions between them. 

We are now developing a prototype of IIICAD [17]. As the knowledge representation language for 
IIICAD, we are developing a data description language called IDOL (Integrated Data Description Language) 
based on the idea depicted in this paper [18, 19]. 
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