
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

T. Tomiyama, P.J.W. ten Hagen

Representing knowledge in two distinct descriptions:
extensional vs. intensional

Computer Science/Department of Interactive Systems Report CS-R8728 June

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the· Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyrigllt © Stichting Mathematisch Centrum, Amsterdam

Representing Knowledge in Two Distinct Descriptions:
Extensional vs. lntensional

Tetsuo Tomiyama, Paul J.W. ten Hagen
Centre tor Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper describes a theory of knowledge on which future CAD systems can stand. First, we present
two distinct description methods, viz. extensional and intensional. Second, these two are compared in the
context of CAD applications and their advantages and disadvantages are clarified. Finally, we propose a
new data description method which combines extensional and intensional description methods.

1982 CR Categories: H.1.2, H.2.1, 1.2.4, J.6

Key Words & Phrases: conceptual modeling, data modeling, knowledge engineering, knowledge
representation, CAD.

Note: This report will be submitted for publication elsewhere.

1. Introduction
Developing intelligent CAD (Computer Aided Design) systems is crucial in order to achieve high
productivity and better quality products. Knowledge engineering is considered one of the key issues [8, 9].
In developing such systems we must be aware that designing is a highly intellectual activity. This requests a
clean, sound, and robust theoretical basis to capture design knowledge.

For this purpose, we have been involved in establishing a theory of CAD as a part of the IIICAD
(Intelligent Integrated Interactive CAD) project [15, 17, 18]. Since there are two aspects in designing,
namely, design objects and design processes, we need one theory to describe design objects and the other to
formalize design processes. The latter might be called design theory (20] and it can be domain independent
The former might be called theory of design objects and is domain dependent. In case of VLSI this must be
"VLSI theories" and should be replaceable by "mechanical engineering theories" if we need CAD systems
for machine design. In addition to these two, there might be more general theories as long as we deal with
physical world. Perhaps we need theories about the underlying principle of the world, e.g., naive physics [3].

Knowledge engineering as a technique to describe design knowledge is probably regarded as software
developing methodology and environment [4, 18]. Although it tells what kind of techniques to use, it does
not tell how to describe the knowledge. For example, even if we are given a knowledge engineering tool,
e.g., a frame system [13], we still have difficulties in codifying knowledge: What comes as a frame? What
comes as a slot? This problem is relevant to the problem of knowledge acquisition and few solutions have
been proposed. We realize that we should have a theory to describe knowledge in a given scheme. We call
it theory of knowledge and this paper is a first approach to it

Report CS-R8728
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 Introduction

In CHAPTER 2 we begin with formalizing our recognitions of the world. We shall see that there are
entities and their properties. Then we shall acknowledge two distinct description methods, an extensional
description and an intensional one, and follow with a comparison of them.

CHAPTER 3 discusses CAD applications. We categorize logical manipulations into two categories; add
and renewal operations. In extensional descriptions, data operations that are important for CAD applications
can be implemented by add operations, while intensional descriptions are implemented by renewal
operations. Add operations are cheaper than renewal operations in terms of performance. This implies that
CAD data structures should be based on extensional descriptions.

However, for simple inquiries, an intensional description is more convenient than an extensional one.
We, therefore, propose in CHAPTER 4 a new data description method to take advantage of both extensional
and intensional descriptions. This new approach is employed in the design of IDDL (Integrated Data
Description Language), the kernel language of III CAD [18].

2. Description of the World

In this chapter we begin with a metaphysical discussion in order to clarify two important and opposing
concepts in describing knowledge in general. Next, we try to formulate those two concepts mathematically
and compare them, so that we can identify their differences. We shall also find outt that they are equivalent
in principle.

2.1. Entities, Attributes, and Relationships

It may be reasonable to start the discussion by admitting that in our world we have entities such as a dog, the
Sun, a shaft, etc. These entities might be categorized or classified by observation and abstraction. As a
result of categorization we will have a group of entities which have common nature or behavior. By doing
so, we recognize a relationship which characterizes that group and we form an abstract concept. This
further results in the concept of attributes, such as weight, length, color, etc., which may or may not have
values and which are attributed to entities. We can introduce secondary relationships and attributes as well;
i.e., relationships among relationships, relationships among attributes, and attributes of relationships. This
recognition of the world has been dominant for many centuries in history.

Entity Concept Abstract Concept

Abstract Concept Entity Concept

(a) Extensional Description (b) Intensional Description

FIGURE 1. Two opposing ways of describing the world

Entities, Attributes, and Relationships 3

Next we formalize this perception mathematically. Set notation has been the most basic and powerful
tool among others. In set theory, elements of a set are treated, more or less homogeneously, as symbols
which has no inner structure. Elements of a set are "equal" and there is no way to compare or modify
elements; we can only create and remove elements. On the other hand, subsets (or topology, base, etc.) can
be manipulated by set operations such as conjunction, disjunction, negation, etc. Hence subsets can be
compared and modified.

We notice two opposite ways for describing the world (16] as shown in FIGURE 1.
(1) Extensional description: Entities are primary (FIGURE 1 (a)). Therefore, entities are the elements, and

attributes and relationships form the topology of the entity set.

(2) Intensional description: Abstract concepts are primary (FIGURE 1 (b)). Therefore, relationships and
attributes are the elements, and entities form the topology of the world set

In our view, distinguishing these two description methods is the key to solve the knowledge
representation problem. In the following sections, we will examine and compare them more precisely.

2.2. Extensional and Intensional Descriptions

From now on, we use the words entity concept instead of entity and abstract concept instead of attribute and
relationship, because we are going to discuss concepts, not the real world.

2.2.1. Extensional Description

An extensional description is defined as a situation where an entity concept is an element of the entity
concept set and abstract concepts are its topology (FIGURE 1 (a)). This description method has the following
properties:

(1) Entities are primary. They are dealt with just as symbols and have no meaning other than just being
symbols. There is no predefined attributes inside an entity and it is impossible to decompose entities
into smaller parts. This means that the extensional description is holistic, implying that the world is
built only from .a collection of facts about relationships among (symbolic) entities.

(2) Mathematically, this situation is described as follows. Let ei and Ai be an entity concept and an
abstract concept, respectively. Then, Ai is defined extensionally, by

Ar={ei.e2 , ••• }.

(3) This definition suggests that first a common property (or relationship) is found by an observation and
then named Ai. In other words, an abstract concept Ai is stating a relationship between entities, ei.

(4) Descriptions of an entity concept, therefore, consist of facts each of which is dependent on other
entities. In this sense, an extensional description is relative.

2.2.2. Intensional Description

An intensional description is defined to be a situation where an abstract concept is an element of the abstract
concept set and entity concepts are its topology (FIGURE 1 (b)). This description method has the following
properties.

(1) Attributes and relationships are primary, which means they are dealt with as symbols which have no
meaning other than being symbols. On the other hand, entities are considered to be somewhat
structural, because they are described by predetermined abstract concepts. This further suggests that
an entity is decomposable into smaller parts (reductionism).

(2) The situation in FIGURE 1 (b) is defined mathematically as follows. Let ai and Ei be an abstract
concept and an entity concept, respectively. Then, using a;, Ei is defined intensionally by

Ej={ai.a2 , • •• }.

(3) An entity concept in an intensional description is generated from abstract concepts which are
predefined, hence absolute. An intensional description is absolute.

(4) An entity concept can be often described by a fixed number of abstract concepts as a Cartesian product
set, like

4 Description of the World

E;={(ai.a2, ···)I l:Cat>a2. ···)},

where l:: indicates additional constraints. In an intensional description, an entity concept is equivalent
to a collection of attributes.

(5) In summary, an intensional description embodies predefined concepts (intensions) which must be
explicitly expressed in an extensional description.

2.3. Hierarchical Example

Let us compare an extensional description and an intensional description. In the following discussion we
employ predicate logic instead of set notation; yet we are not trying to discuss the descriptive power of
predicate logic.

Consider a car which consists of lots of parts, from an engine to a radio. The engine itself can be
decomposed into thousands of smaller parts. We have traditionally been calling these part-assembly
relationships a hierarchy (FIGURE 2).

2.3.1. Extensional Description of the Example

In an extensional description method, the most natural interpretation for FIGURE 2 is as follows:

(1) First we regard a symbol, such as CAR, as an atom which cannot be further decomposed. Thus, CAR
is an identifier and can be replaced by any character string such as @AB5306.

(2) A line that connects two symbols is regarded as the relationship between them. We can use the binary
relationship, has, (or belongs-to which is the other way around) for the time being, although its
meaning cannot be directly defined at the moment

(3) For example the relationship between CAR and ENGINE will be interpreted such that CAR and
ENGINE make a subset called has, ie.,

has= {CAR, ENGINE}.

(4) Because the relationship has is specific to CAR and ENGINE, we may want to introduce as many
names as the relationships. However, this is not necessary; we can use the same name for all other
relationships, as far as we understand that implicitly the meaning of these relationships are the same.

(5) Therefore, this hierarchy will be denoted as follows:

FIGURE 2. An abstraction of a car

Hierarchical Example

has(CAR, ENGINE),
has(CAR, BODY),
has(CAR, WHEEL),
has(CAR, SEAT),
has(CAR, RADIO),
has(ENGINE, CYUNDER),
has(ENGINE, PLUG).

2.3.2. Intensional Description of the Example

In an intensional description method, FIGURE 2 will be interpreted in a totally different way:

5

(1) In this description method, there is an underlying belief that a CAR is decomposable into fragmental
parts such as ENGINE, BODY, etc. A CAR is built from those parts.

(2) A symbol, such as CAR, is not a mere identifier. It has an inner structure which can be further
decomposed. Therefore, an intensional description method may lead us to the idea of typing or
classes.

(3) The relationship has of SECTION 2.3.1. is hidden in the structure of entities.

(4) The following is an intensional notation of this hierarchy:

Abstract Concept

Abstract Concept Entity Concept

(a-E) Extensional Description (a-1) lntensional Description

Entity Concept Abstract Concept

Abstract Concept Entity Concept

(b-E) Extensional Description (b-1) lntensional Description

FIGURE 3. Comparison of extensional/intensional descriptions

6

CAR=(ENGINE,BODY, WHEEL, SEAT,··· ,RADIO)
ENGINE= (CYUNDER, · · · , PLUG)

2.4. Some Problems

2.4.1. Rigidity of lntensional Descriptions

Description of the World

Comparing the extensional and intensional descriptions of the previous sections, we can detect problems with
an intensional description. Consider CAR=(ENGINE,BODY, WHEEL, SEAT, ···,RADIO). We might
assume the second term of this expression refers to the body concept no matter what identifier comes. It
might be hard to insert a new term between ENGINE and BODY.

Intensional descriptions are, therefore, inflexible and rigid.

2.4.2. Data Deterioration in lntensional Descriptions

FIGURE 3 shows another disadvantage of the intensional description method. FIGURE 3 (a-E) shows that two
different abstract concepts are denoting an entity. This situation can be also identically depicted in the
intensional description as in FIGURE 3 (a-1). However, as in FIGURE 3 (b-E), if two similar or hierarchical
abstract concepts are denoting an entity, the similarity or the hierarchy cannot be expressed so well in the
intensional description (see FIGURE 3 (b-1)); they are just represented in the same way as in FIGURE 3 (a-1).

Thus, in case of the intensional description method, slight differences in meaning would be lost or
ignored and similar concepts would be recognized differently.

2.4.3. Information Loss in Data Exchange between Extensional and Intensional Descriptions

As pointed out in SECTION 2.2.2, an intensional description embodies predefined concepts which must be
explicitly expressed in an extensional description. Because of these predefined concepts, data exchanges
among different CAD systems might result in loss of information when both intensional and extensional
descriptions are involved.

Let us consider a plane s in three-dimensional space defined by three points, or by a normal vector and
a point, or alternatively by two vectors originating from the same point. We have two ways of representing
this fact:

(1) In an intensional description, s will be represented by three points, Pt> pz, and p 3 • In a relational
database system, this is expressed by a tuple plane(p1,p2 ,p3). Note that swill not explicitly appear
in this tuple.

(2) In an extensional description, we use the facts that s has Pi. s has p 2 , and s has p 3• Relations for this
case can be three tuples PLANE(s), POINT(p), and HAS(s,p), and the entire fact will be represented
by

V s[PLANE(s)]3p 1• p 2 • p 3 [POINT(p 1), POINT(pz), POINT(p3), p 1 *-pz, Pz :F-p3, p3 *-P l •
HAS(s, P1). HAS(s, p 2), HAS(s, p3)].

Note that we can think of s regardless of Pt> pz, or p 3; i.e., to defines, we do not need to know its
intension.

Now, we can point out a problem. It is possible to define a planes intensionally both by three mutually
different points, p 1, pz, and p 3, and by a normal vector v and a point p. Suppose we have a CAD system A
which employs the former description, B which uses the latter description, and C which uses an extensional
description method (see FIGURE 4). In system A, swill be described by

plane(p1 ,pz,p3),

and in system B by

plane(p, v).

In system C, it will be described extensionally as

PLANE(s), POINT(p),HAS(s,p), VECTOR(v),DEFINED-BY(s,pi. v), v=(p 2 -p1)x(p3 -pi)

Some Problems

CAD System A CADSystemB

plane(v,p)

\

Intensional Expression I
---------- ---------------- -----------

Extensional Expression

CADSystemC

PLANE(s)

POINT(p)

HAS(s,p)

VECTOR(v)

DEFINED-BY(s,p, v)

v=(pz-P1)X(p3-p1)

FIGURE 4. Data exchange between two CAD systems

7

to make it possible to transfer data from A to B via C. In this transformation we have completely lost
information about p 2 and p 3 • This means there will be a loss of information and inevitable confusion in data
exchange shown in FIGURE 4, if there are two different intensional descriptions and an extensional
description.

This problem is caused by a fundamental problem in conversion between intensional and extensional
descriptions. The intensional descriptions of the systems A and B assume predefined concepts Ca and Cb.
Between these two there is an incompatibility which causes the problem. A mathematical explanation is
given below. Let .Lx be an intension of x, and ix be an extension of x. Then i .Lx=x always holds.
Conversely .L ix=x does not always hold. A famous example is the morning star and the evening star. The
morning star has an extension, Venus. The evening star is an intension of Venus. Thus, an intension of an
extension of an entity is not always identical to the entity.

3. CAD Applications

In this chapter, we discuss what kind of data operations and data description methods are required for CAD
systems. We compare extensional and intensional data descriptions in the context of CAD applications.

3.1. Characteristics of CAD Applications

CAD applications request several considerations about the data description method, because they are
different from business applications in many respects [7, 11]. The followings are some important differences
which effect the data description method:

8 CAD Applications

(1) Diversity: There are many ways of representing the design objects, e.g., machinery. Those
representations are called models or views. Although they represent the identical object, syntactically
they are different from each other.

(2) Dynamic changeability: Models are changing dynamically during the design process from a vague
initial one to detailed final drawings.

(3) Bulkiness: Usually, amount of information used in a CAD system is enormous.

(4) Integrity and consistency: Despite the diversity and dynamic changeability of models, we need to keep
integrity and consistency of the information. This means that any change should propagate through all
the models and be inherited from an earlier version to later versions.

(5) Long transaction: Compared with business applications, transactions take a longer time; for instance,
from one day to a couple of years. Because of multi-user access this becomes a problem.

(6) Multimedia: Information is of multimedia nature; it will include text information, numerical
information, graphical information, and so on.

Our new data description method for future CAD systems should satisfy these requirements (see
CHAPTER4).

3.2. Data Operation in CAD Systems

In this section, first we categorize operations used in predicate logic. We will see that there are two types,
add and renewal. Second, we compare data operations of conventional CAD and future CAD to discuss the
nature of data operations specific to CAD systems. From this discussion, we see that extensional data
description methods have good properties for CAD applications.

3.2.1. Add and Renewal Operations

Let us consider data operations in predicate logic (TABLE 1). Except for query operations, those operations
may change the state of the knowledge base (or database). For example, assertions add new facts to the
knowledge base. Creation of terms simply adds new objects to the system, which may result in additional
assertions about those terms. On the other hand, modification of predicates may result in rewriting the whole
predicate system.

From this point of view, we can classify operations into two categories: Does it rewrite the predicate
system or not? Is it a mere addition/removal of facts? The "Change?" column of TABLE 1 answers to
these questions. Following this categorization, let us call logical operations which simply add or remove
facts add operations and those which may rewrite the knowledge renewal operations.

FIGURE 5 illustrates these two types of operations. Add operations simply add new facts to the
database and do not have any side effect on the existing parts, whereas renewal operations reorganize of the

TABLE 1. Classification of operations in predicate logic

Obiect Oooration Examole Chan2e? Classification
formula assertion assert(p(a, b)) No add

deletion retract(p(a, b)) No add
query ?p(a,b) - -

predicate creation q(X):- ... Yes renewal
deletion retractall (q) Yes renewal
modification q(X)~q'(X) Yes renewal

term creation o~ti.tz, . .. No add
deletion ti.tz, · · · ~o No add
modification t1 ~tz No add
copy t1 =tz No add
instantiation X=t - -

Data Operation in CAD Systems 9

A + B A B

(a) Add operation

A + B c

(b) Renewal operation

FIGURE 5. Add operations and renewal operations

database. Apparently, renewal operations are much more expensive than add operations. For instance, terms
in predicate logic are ordered, which represents the semantics for us; i.e., they have strong mutual
dependencies. Changing a predicate structure requires changing the constraints .I: as well (see SECTION
2.2.2). It might even be possible that renewal operations cannot be done automatically. Consequently, if it is
possible, we would better avoid those expensive operations.

3.2.2. Data Operations in Conventional and Future CAD Systems

In most of the conventional CAD systems, the following operations are possible.

• Creation of elements (e.g., points, lines, surfaces, volumes, and parts)

• Deletion of elements

• Copying of elements

• Modification of elements

• Simple queries

For instance, moving a line is classified as modification of elements. Note that in conventional systems
queries are possible, as far as they are so-called yes/no questions and the simplest what questions. General
what/why/how questions are unfortunately impossible. Thus, we can ask questions like:

What is the name of this part? (An answer might beP0013.)
ls this line crossing that surface? (An answer might be YES.)

Future CAD systems will be realized based on knowledge engineering techniques as pointed out in
CHAPTER 1. In knowledge engineering, the basic operation is pattern matching. (Maybe, unification,
instantiation, and backtracking are more fundamental, but to do unification pattern matching is indispensable.
We do not mention instantiation and backtracking here, because they are not relevant to knowledge
representation.) For example, if we want to design a machine quite similar to another designed in the past,

10 CAD Applications

we must be able to choose the most similar candidate from a database. Thus, the following operations based
on pattern matching will be necessary (in addition to operations available in conventional CAD systems):

• Comparison of elements based on pattern matching

• Complex query based on pattern matching

Among the above mentioned operations, query and comparison operations do not actually modify the
knowledge; however, the remaining operations change the state of the knowledge. We can categorize these
operations into two categories, i.e., add operations and renewal operations discussed in SECITON 3.2.1.

In an intensional description these operations (i.e., creation, deletion, copying, and modification
operations) are all renewal operations, because in this case entities are predicates which are actually changed.
On the other hand, in an extensional description, all of these operations are categorized as add operations,
since predicates which denote abstract concepts will not be changed. This is an interesting difference
between an extensional description and intensional description methods.

3.3. Data Modeling in CAD Systems

Consider the cube shown in FIGURE 6 and its data modeling methods. We will see in this section that they
are in fact based on intensional description methods. Next a data modeling of the same cube based on an
extensional description method will be presented. Finally, we shall compare these two description methods
and discuss their problems in the context of CAD applications.

3.3.1. Data Modeling in Conventional CAD Systems

In three-dimensional solid modeling, hierarchical modeling techniques are often used (e.g., FIGURE 5). The
hierarchy may consist of part, volume, surface, edge, and vertex levels. At each level there are loops which
represent relationships in that level; for example, edge information is predefined such that an edge has two

4

3
1

6 4 11
9 I

3 I 10 5 8'
).. -,,,. -,,,.

,,,. ,,,.

--7-- ---
7

5

FIGURE 6. A cube

Data Modeling in CAD Systems 11

1 3
2 5 5

2
3 4

11 x
4 6

6 y
5 2

10 z
6 1 Edge

Edge List Vertex
Surface List

FIGURE 7. Simple hierarchical example of data structure of a cube

points and its direction. This will be implemented using pointers and lists.
The pointer-list structure can be used and typically implemented by the record data structure as in

Pascal, such as:

type edge = record

end;

Id: integer;
StartPoint: Apoint;
EndPoint: Apoint;
PreviousEdge: Aedge;
NextEdge: Aedge

Instead of using the pointer-list structure, we may use a relational data model [12]. An example of surface
information is shown in TABLE 2. This implementation requests ordering of items; otherwise, there is no
concept of PreviousEdge or NextEdge. These two types of implementation imply typing in advance
which results in a rigid data structure. They can be categorized as intensional descriptions mentioned in
SECTION 2.2.2 for the following reasons:

TABLE 2. Relational data structure for surfaces (cf. FIGURE 6)

Surface edge 1 edge2 edge3 edge4
1 1 2 3 4
2 5 8 7 6
3 1 9 5 10
4 3 11 7 12
5 2 10 6 11
6 4 12 8 9

12 CAD Applications

(1) An entity, such as an edge, has predefined abstract concepts. For instance, an edge has one attribute
(Id) and four relationships (StartPoint, EndPoint, PreviousEdge, NextEdqe) and these
descriptions construct a hierarchy with a lower level (e.g., point).

(2) An edge structure, for instanee, is a type which can be regarded as an element of a Cartesian product
set. Therefore, once an edge structure is fixed with fixed number of attributes and relationships, it is
very difficult to modify this rigid structure.

(3) This structure also represents constraints at the same time. For example,

StartPoint: Apoint

indicates nothing but the constraint that the value of this field must be a pointer to a point.
(4) Thus, conventional data description methods are equivalent to the following intensional expression:

cube {(1, 2, · · · , 6, l, 2, · · · , 12, 1, 2, · · · , 8)
11:(1, 2, ... '6, 1,2, ... '12, l, 2, ... '8)},

where :E implies the necessary conditions for this object to exist as a cube.

Note that we are insisting neither the pointer-list structure nor the relational database implementation is
an intensional data description but the way we implement entities and its abstract concepts by them is
intensional. It is even possible to implement an extensional data description using those types of data
structure.

3.3.2. A Data Modeling Based on an Extensional Description Method

In an extensional description, predicates denote abstract concepts of an entity. The following facts represent
the cube of FIGURE 6 in an extensional way. (Once again, notice that the use of predicate logic does not
mean that this is the only way to describe things in an extensional way. These predicates might be
implemented, for example, in a relational data model.)

vertex(l). · · · vertex(8).
line(l). · ; · line(J2).
surface(l). · · · surface(6).
Cube(cube).
has(9, 1). has(9, 5). · · ·
has(l, 1). has(1, 2). · · ·
has(cube, 1). • · · has(cube, 6).

This representation has the advantage that it is easy to add new facts about entities. For instance, if this cube
is a part of another complex object, the only thing we have to do is to add a new fact has(complex-object,
cube), and we do not have to modify all other predicates. All the operations are realized by add operations.

This representation has disadvantages as well. We shall examine them more precisely in the next
section.

3.3.3. Comparison of Extensional and Intensional Descriptions in CAD Applications

As pointed out in SECTION 2.4, intensional description methods which are used quite commonly in
conventional CAD systems ignore slight differences in entity concepts and judge similar entities as different.
We have seen in SECTION 3.2.2 that future CAD systems need a data description method which allows
pattern matching. If we want pattern matching, it is fatal that we cannot precisely see slight differences and
similarities of entity concepts.

In SECTION 3.1 the nature of CAD data operations was discussed. In particular, diversity and dynamic
changeability are crucial in CAD applications. We need an integrated set of models each of which represents
a different view of the design object, and might change during the design process. From this viewpoint, the
facts that the data structure of intensional descriptions is rigid (see SECTION 2.4.1 and 3.3.1) and that data
exchange between models may cause information loss and twist make intensional descriptions unsuitable for
future CAD systems (see SECTION 2.4.2 and 2.4.3).

For the dynamic changeability of models, intensional descriptions are again not favorable. We have
seen in SECTION 3.2 that in an extensional data description method most of CAD operations can be realized

Data Mode/ing in (;AD Systems 13

by add operations which are less expensive than renewal operations. On the contrary, intensional
descriptions make it difficult to modify the data schema.

Therefore, intensional descriptions must be avoided in future CAD systems and we should use
extensional descriptions instead. However, we cannot simply replace intensional descriptions with
extensional ones, because sometimes in practice intensional descriptions are than extensional ones.

Suppose we have the pointer-list data structure described in SECITON 3.3.1 and we must answer simple
queries. For the question, "What is the line next to line L0035?", the only thing we need to do is to trace the
NextEdge pointer, which is reduced to just address computation. In an extensional description, we need
explicit information about two adjoining edges, E 1 and E 2, like nextEdge (El, E2). If we do not have
this information explicitly, we need to infer it using rules. In this case, clearly the intensional description is
much faster.

Furthermore, extensional descriptions may sometimes lose computational semantics. For instance, in
the example in SECITON 3.3.2, attributes of the cube, such as coordinates, edge length, etc., were not
explicitly described. In case of the predicate logic representation we have to write three predicates which
respectively correspond to the x, y, and z coordinates of a point. This apparently makes the performance of
the system inefficient, as long as simple queries about coordinate values are concerned.

To sum up, although intensional data description methods have many disadvantages for the use in
future CAD systems, they have also advantages in terms of implementation and efficiency. Therefore, we
need to invent a new method somewhat in-between. This will be proposed in the next chapter.

4. A New Data Description Method

We have pointed out in SECITON 2.2 that an extensional description focuses only at the relationships among
entities, while an intensional one focuses at the structure of entities. In SECTION 4.1, we shall try to combine
these two methods into a new data description method. In SECITON 4.2, we consider an example of our
method and show its power in solving many problems of conventional CAD systems as well as its ability to
provide necessary functions for future systems.

4.1. Objects, Functions, and Predicates

An extensional description could be implemented naturally by a logic programming language such as Prolog
[6]. On the other hand, an intensional description considers only entities and their attributes; .even
relationships are treated as if they were a kind of attributes (see the pointer-list implementation in FIGURE 7).
It could be implemented by an object oriented language such as Smalltalk-80 [10]. From AI techniques, we
may use MINSKY'S frame theory [13].

Our goal is to integrate these two programming paradigms in the most natural way. There are a couple
of results aimed at this goal [2, 14]. FIGURE 8 shows our solution which combines the object oriented
programming paradigm with the logic programming paradigm. Small circles in this figure correspond to
crosses in FIGURE 1 (a) which indicate entities, and an eclipse to topology which indicates abstract concepts
of entities.

From now on, we call an entity an object. An object may have internal memory to store information
just like slots in MINSKY'S frame theory. But the internal structure of an object does not really matter,
because we are interested not in how to store the information but in how to use it. In order to represent
relationships among entities, we introduce predicates. This idea is similar to the entity-relationship model in
database theory [5], but there is quite a difference in that in our paradigm relationships can be created,
modified, and deleted all the time during the execution. In conventional database systems once the data
schema is fixed, it will never be changed.

For instance, a fact that an object A is an automobile is denoted by automobile(A). We can naturally
introduce the concept of class into our syntax; for example, the fact that all the automobiles are vehicles can
be denoted by vehicle(X) :-automobile(X), where":-" has the same meaning as in Prolog.

Access to the internal information of objects is done by invoking a function, such as
function(object)~ value for inquiry, or function(object)1,-(any procedural definition) for definition. We
can even define a function about relationships such as a function to compute the distance between two points,

14

Entity Set: S

An Object
with Structure

~

D D 0

Accessed by Functions

FIGURE 8. Objects and relationships

distance (p 1 , p 2) f- sqrt((x-coord (p 1)-x-coord (p 2))**
+(,y-coord(p 1)-y-coord(pz))**
+ (z-coord(p 1)-z-coord(pz))**),

A New Data Description Method

A Symbol (Entity)
=An Object

Relationship
between Symbols

where x-,y-, and z-coord(p) are functions to get the x-, y-, and z-coordinate of a pointp, respectively, sqrt
is a function of square root, and x** indicates the square of x.

We can generate a complex clause by combining simple clauses. Between the object and the predicate
world, we have functions, and we can define complex functions by combining simple functions. In this
context, we may have the following distinctions:

(1) A function is an intensional description of an entity and of a relationship between entities. It will be
defined procedurally and reduced to primitive functions (built-in functions) so that they are finally
executable.

(2) A function, fi(o), for an object, o, is expressing the value of an attribute Ii of o. It is also possible to
express constraints among items, such asfi(o)=fz(o)+/J(o)/2.

(3) A predicate is an extensional description of objects. It will be defined declaratively by using primitive
predicates.

(4) There is a connection between predicates and functions. For example, a predicate greater-than can be
defined by

greater-than(x,y)=ifval(x)>val(,y) then true else false,

using a function val that returns the numerical value of attributes of objects.

4.2. Example

4.2.1. Effectiveness of Extensional Description of the Example

Let us consider a machine part which looks like a triangle. FIGURE 9 (a) is its two-dimensional
representation. In FIGURE 9 (b), one of its corners is chamfered, while in FIGURE 9 (c) it is rounded. From a
mechanical engineer's viewpoint, FIGURE 9 (a) is a rough sketch of this part and that FIGURE 9 (b) and (c) are
more detailed drawings for manufacturing. This means that these three are basically identical and that, if

Example 15

A

B C B C B c
(a) (b) (c)

FIGURE 9. Three similar figures

something is changed in FIGURE 9 (a), this change should be propagated to other two properly.

We use a Prolog-like language; however, there is a difference. Let => be a symbol for an assertion
operation; i.e., if the left hand side condition holds, the clauses on the right hand side will be asserted.
Therefore, a rule

p => q(a), r(X)

is interpreted as:

If p is true, then q(a) and r (X) must be true. If either q(a) or r (X) is not known, it is
added to the database.

At the moment of assertion, objects might be created as side effect. If q (a) did not exist before the
assertion, not only clause q(a) but also object a would be created and added to the database. When
r (X) is asserted, an object would be created with the name X (or with a name given by the system), if it did
not exist previously.

A polygon POLG is generated by the following rules (cf. [l]). (In the following pseudo program,
POLG means a polygon, strings beginning with L and 1 indicate lines, and P and p indicate points.)

po1ygon(POLG, N) =>
startpoint{P), endpoint(L, P, Pl),
M is N - 1, create(POLG, L, M).

create(POLG, L, 0) =>
1ine(L), startpoint{P2), endpoint(L, Pl, P2),
has(POLG, L), has(POLG, Pl), has(POLG, P2).

create(POLG, L, N) =>
1ine(L), endpoint(L, Pl, P2),
has(POLG, L), has(POLG, Pl), has(POLG, P2),
Mis N - 1, endpoint(Ll, P2, P3), different(L, Ll),
create(POLG, Ll, M).

1ine(L) =>
has(L, Pl), has(L, P2),
point(Pl), point(P2), different(Pl, P2),
endpoint(L, Pl, P2).

The fact startpoint (P) is used to mark one of the vertices of a polygon, so that we can draw edges.
The predicate, endpoint (L, Pl, P2}, reads the line L has two end points, Pl and P2. The
predicate, has (A, B), is representing so-called a part-assembly relationship that A owns B. The
predicate, different (X, Y) , is true when x and Y are referring to different objects; otherwise, false.

A triangle t is created by using the rule;

triang1e(T) =>
po1ygon(T, 3).

16 A New Data Description Method

and an assertion;

?- triangle(t).

Consequently, the following facts will be asserted and added to the database.

startpoint(pl). .
has(t, 11). has(t, 12). has(t, 13).
has(t, pl). has(t, p2). has(t, p3).
has(ll, pl). has(ll, p2).
has(l2, p2). has(l2, p3).
has(l3, p3). has(l3, pl).
point(pl). point(p2). point(p3).
endpoint(ll, pl, p2). endpoint(l2, p2, p3).
endpoint(l3, p3, pl).

Now, consider rounding comer p2. (Chamfering is described in the same way.) First, we need
knowledge for rounding a comer {FIGURE 10).

L2

T

round(P, Ll, L2, A, Q, R, L3, L4) =>
point(P), line(Ll), line(L2), point(Q), point(R),
on(Q, Ll), different(P, Q), on(R, L2), different(P, R),
tangent(Q, c, Ll), tangent(R, C, L2), circle(C),
endpoint(A, Q, R), arc(A), has(C, A),
has(A, Q), has(A, R),
line(L3), endpoint(Ll, s, P),
endpoint(L3, s, Q), tangent(Q, C, L3),
line(L4), endpoint(L2, P, T),
endpoint(L4, T, R), tangent(R, C, L4).
convex-arc(A, L3, L4).

R

IA

T
(a) Before Rounding (b) After Rounding

FIGURE :rn. Rounding a corner

Example 17

The predicate, on (P, L), holds, when a point P is on a (definite) line L. The predicate, tangent (P,
C, L), holds, when a line Lis tangent to a circle Cat a point P. The predicate, convex-arc (A,
L3, L4) , holds, when an arc A fonn a convex arc corner of L3 and L4.

Let add and remove explicitly add and remove objects to and from the database. Then, we can
round a corner by the following query.

?- round(p2, 11, 12, A, R, Q, Ll, L2),
remove(p2), remove(ll), remove(l2),
add(A), add(R), add(Q), add(Ll), add(L2).

After this operation, we have the following facts in the database.

tangent(q, cir, 11). tangent(r, cir, 12).
tangent(q, cir, ml). tangent(r, cir, m2).
circle(cir). has(cir, a). convex(a, 13, 14). arc(a).
has(ml, pl). has(ml, q). has(m2, p3). has(m2, r).
endpoint(ml, pl, q). endpoint(m2, p3, r). endpoint(a, q, r).
has(a, q). has(a, r).
point(q). point(r).
on(q, 11). on(r, 12).
startpoint(pl).
has(t, 13). has(t, pl). has(t, p3). has(l3, p3). has(l3, pl).
point(pl). point(p3). endpoint(l3, p3, pl).

Comparing the state of the database before the rounding and after, we find out the following.

(1) We have obtained complete separation of the states of the database before the rounding and after. This
was achieved by the use of an extensional description; i.e., modification operations were realized by
simple addition and removal of predicates which are cheaper than modifying them.

(2) Before the rounding operation we had the central model M (i.e., the first state of the database), and
after the operation it became M, (i.e., the second state of the database). The transition from M to M,
was carried out by the rounding operation, R; M,=R(M).

(3) Notice that this last operation is executed by add operations rather than renewal operations. Mand M,
are separately established in different worlds. This means we have complete separation of models as
well as inheritance of attributes and their changes. Therefore, if we regard M as the central model
which is necessary for the integration of CAD systems, we can easily obtain different, independent
models by having a function to derive them from M.

In SECilON 3.1, we have pointed out characteristics of CAD applications; i.e., diversity and dynamic
changeability of the models, bulkiness of data, integrity and consistency control, time-spanning transactions,
and multimedia. The first requirement, diversity and dynamic changeability of the models, can be satisfied
by using an extensional data description. An extensional data description may also solve the problems of
integrity and consistency control, because changes in one model can easily propagate to other models. The
complete separation of models will solve the version control and the multiuser access control problems. (We
admit that the problem of bulkiness and multimedia cannot be solved here.)

4.2.2. Introduction of Intensional Description Aspects

The predicate on (P, L) used in the previous example was not defined. It is not easy, if we can use only
predicates. But, if we have data like the point positions and the line equations, the computation itself is by no
means difficult. This problem is regarded as the problem how to integrate extensional information that
predicates have and intensional information that may reside inside the objects. Let us remind that it is
dangerous to simply mix up the object world and the predicate world, because there may be a distortion of
information (SECilON 2.4). Thus, we have a contradictory requirement; we need to separate them, but still
we need to integrate them.

A solution might be to use functions to bridge between the object and the predicate worlds (SECilON
4.1). Let %£ (X) be a function to get information about an item f from an object x. Therefore, a point p
can be associated with three functions, %x(P), %y(P), and %z (P), to obtain its position. Using these
functions, we can implement the predicate on crudely as follows1•

18

on(P, L) =>
endpoint(L, Pl, P2),
A is (%x(P) %x(Pl))/(%x(P2)
B is (%y(P) - %y(Pl))/(%y(P2)
C is (%z(P) - %z(Pl))/(%z(P2)
A = B, B = C.

%x(Pl)),
- %y(Pl)),
- %z(Pl)),

A New Data Description Method

As we have already pointed out in SECITON 4.1, the internal infonnation structure of objects is less important
than the fact that functions can act as a bridge between the object and the predicate worlds which must be
kept separate. In our solution, there still exists a boundary between the predicate and the object worlds. This
separation is effective for the perfonnance.

5. Conclusion

In this paper, we have proposed a new data description method for future CAD applications. The following
are principal results.

(1) To describe entities and their abstract concepts (such as attributes and relationships among entities),
there are two possible ways; i.e., an extensional description where we have abstract concepts as
topology of the entity concept set, and an intensional description where we have entity concept set as
topology of the abstract concept set.

(2) Although, basically, these two description methods are identical, there are several differences. For
example, an extensional description method provides somewhat a wholistic view. On the other hand,
in an intensional description method entities are constructed from predetennined abstract concepts.

(3) We found out that extensional data descriptions are more suitable for CAD systems, because difficult
data operations (e.g., modifications) can be done by easy (hence cheap) operations. However,
conventional CAD systems are usually implemented based on intensional data descriptions. This is
primarily due to good perfonnance for simple data operations.

(4) Therefore, we need to invent a new data description method which integrate extensional and
intensional views and which satisfies requirements for future CAD systems. Our solution is to have
two separated world, the object world representing entities and the predicate world representing
abstract concepts, and functions between them.

We are now developing a prototype of IIICAD [17]. As the knowledge representation language for
IIICAD, we are developing a data description language called IDOL (Integrated Data Description Language)
based on the idea depicted in this paper [18, 19].

Acknowledgements

We are very grateful to the members of Bart Veth IIICAD group, Centre for Mathematics and Computer
Science, for their enthusiastic support in completing this paper. Especially, we would like to thank Varol
Akman for his useful critical remarks on an earlier version of the paper.

Reference

1. F. Arbab and J. M. Wing, "Geometric Reasoning: A New Paradigm for Processing Geometric
Information," in Design Theory for CAD, Proceedings of the IFIP W.G. 5 .2 Working Conference I 985
(Tokyo), H. Yoshikawa and E. A. Warman (eds.), North-Holland, Amsterdam, (1987), pp. 145-165.

2. A. Bijl, "An Approach to Design Theory," in Design Theory for CAD, Proceedings of the IFIP W.G.
5.2 Working Conference 1985 (Tokyo), H. Yoshikawa and E. A. Warman (eds.), North-Holland,
Amsterdam, (1987), pp. 3-31.

3. D. G. Bobrow (ed.), Qualitative Reasoning about Physical Systems, North-Holland, Amsterdam,
(1984).

4. D. G. Bobrow, S. Mittal and M. J. Stefik, "Expert Systems: Perils and Promise," Communications of
ACM, 29(9), September 1986, pp. 880-894. ,,

Conclusion 19

5. P. P. Chen, "The Entity-Relationship Model - Toward a Unified View of Data," ACM Transactions
on Database Systems, 1(1), March 1976, pp. 9-36.

6. W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer, Berlin, Heidelberg, New York,
(1981).

7. J. Encarnacao and F. Krause (eds.), File Structures and Data Bases for CAD, Proceedings of the IFIP
WG5.2 Working Conference 1981 (Seeheim), North-Holland, Amsterdam, (1982).

8. J. S. Gero (ed.), Knowledge Engineering in Computer-Aided Design, Proceedings of the IFIP WG5.2
Working Conference 1984 (Budapest), North-Holland, Amsterdam, (1985).

9. J. S. Gero (ed.), Expert Systems in Computer-Aided Design, Proceedings of the IFIP WG5.2 Working
Conference 1987 (Sydney), North-Holland, Amsterdam, (1987).

10. A. Goldberg and D. Robson, Smalltalk-80: The Language and its Implementation, Addison Wesley,
Reading, Mass., (1983).

11. S. G. Leahey (ed.), Proceedings of COMP/NI' 85 (Computer Aided Technologies) (Montreal), IEEE
Computer Society Press, Montreal, Quebec, Canada, (September 1985).

12. R. A. Lorie, ''Issues in Database for Design Applications,'' in File Structures and Data Bases for
CAD, Proceedings of the IFIP WG5.2 Working Conference 1981 (Seeheim), J. Encarnacao and F.
Krause (eds.), North-Holland, Amsterdam, (1982), pp. 213-222.

13. M. Minsky, ''A Framework for Representing Knowledge,'' in The Psychology of Computer Vision, P.
H. Winston (ed.), McGraw-Hill, New York, (1975), pp. 285.

14. E. Shapiro and A. Takeuchi, "Object Oriented Programming in Concurrent Prolog," New Generation
Computing, (1983), pp. 25.

15. T. Tomiyama and H. Yoshikawa, "Requirements and Principles for Intelligent CAD Systems," in
Knowledge Engineering in Computer-Aided Design, Proceedings of the IFIP W.G. 5.2 Working
Conference 1984 (Budapest), J. S. Gero (ed.), North-Holland, Amsterdam, (1985), pp. 1-23.

16. T. Tomiyama and H. Yoshikawa, "Extended General Design Theory," in Design Theory for CAD,
Proceedings of the IFIP W.G. 5.2 Working Conference 1985 (Tokyo), H. Yoshikawa and E. A.
Warman (eds.), North-Holland, Amsterdam, (1987), pp. 95-130.

17. T. Tomiyama and P. J. W. ten Hagen, "The Concept of Intelligent Integrated Interactive CAD
Systems," CWI Report No. CS-R8717, Centre for Mathematics and Computer Science, Amsterdam,
(April 1987).

18. B. Veth, "An Integrated Data Description Language for Coding Design Knowledge," in Intelligent
CAD Systems 1: Theoretical and Methodological Aspects, P. J. W. ten Hagen and T. Tomiyama (eds.),
Springer, (in preparation, 1987).

19. B. Veth, ''The Specifications of Integrated Data Description Language,'' CWI Report, Centre for
Mathematics and Computer Science, Amsterdam, (in preparation, 1987).

20. H. Yoshikawa and E. A. Warman (eds.), Design Theory for CAD Proceedings of the IFIP WG5.2
Working Conference 1985 (Tokyo), North-Holland, Amsterdam, (1987).

