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Let M be a counting process with the compensator A and let N be the Poisson process with the compensa­
tor B. We give an upper bound for the Prohorov distance between the two processes in terms of the com­
pensators, when the other process is a Bernoulli process with dependency. 
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1. INTRODUCTION 

I.I. Let (Mn,Fn)n>l be a sequence of counting processes with the compensators An. Let N be a non­
homogeneous Poisson process with the compensator B. BROWN (1978 , 1981) and KABANOV et al 
(1980, 1983) proved the following weak convergence result. If for all 1;;;,o we have 

A7 -+P B, , as n....+oo, 

where -+P means convergence in probability, then 

Mn -+D N, as n....+oo, 

(1.1) 

(1.2) 

where -+D means weak convergence of the distributions of the sequence (Nn) to the distribution of M 
in the Skorohod space D. 

1.2. BROWN (1983) and KABANOV et al (1983) discuss also the proximity of the distributions of the 
sequence (Mn)n>l and the distribution of the limit process N. To estimate the distance between Mn 
and N they use the variation distance between the finite dimensional. distributions of the processes. 
These methods give also some results for the variation distance between the distributions on the inter-

. val [O, T] , where T >0 is some constant. Later it turned out that in some cases it is more convenient 
to work with the Hellinger distance instead of the variation distance. For more details of the Hel­
linger distance and the associated Hellinger process in this context see KABANov et al (1986) and 
VALKEILA and VosTRIKOVA (1986). Note, however, that the topology induced by the variation dis­
tance or the Hellinger distance is stronger than the topology of weak convergence in the space D. 

The following simple example clarifies the discussion above. Let ( Xk,n )i <.k <n be independent Ber­
noulli variables with P( Xk,n=l) = l/n, where k = l, ... ,n and put Xo,n = 0. Define the Ber­
noulli process with jump probability l/n by 

Report MS-R8701 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



2 

[nt] 

M~ = ~ Xk,n• 
k=O 

where [x] is the integer part of x . Then the compensator A~ of Mn is [ nt] / n • Let N be the standard 

Poisson process with unit intensity. If n~oo then the condition (1.1) above is fulfilled, but the 

sequence (Mn) does not converge strongly (i.e. in the variation norm) in the space D. So the results of 

BROWN (1983) and KABANOV et al (1983) mentioned above can not be used to estimate the rate of 

convergence in (1.2) in the space D. 

1.3. In NIKUNEN and V Al.KEILA (1985) we gave a rate for this convergence in terms of the Prohorov 

distance in the space D under the assumption that the compensator processes An are continuous func­

tions of t. So the bound derived there can not be applied to the above case, either. Now we can 

modify the method of the proof in NIKUNEN and VALKEILA (1985) to get an upper bound for the 

Prohorov distance, even when the compensator processes can have jumps( and no continuous increas­

ing part). In our proof we benefit a lot from the work of KABANov et al (1983). We have from our 

general bound the following special result, which has been dealt with DUDLEY (1972) by another 

method. Let N be the standard Poisson process with unit intensity and M a Bernoulli process with 

jump probability 1 / n. Then 

p(PM,PN) ~ 4/n, (1.3) 

where p is the Prohorov distance between the distributions of M and N in the unit interval [O, I]. We 

give more applications of our bound given in Theorem 2.1 in the last section of this paper. 

1.4. The next section contains the formulation of our results after some notation and definitions. The 

third section contains the proofs. In the fourth section we prove (1.3) and apply our general bound in 

(2.1) to give estimates between the Prohorov distance between sums of N-valued random variables 

and a Poisson process. 

1.5. I want to thank Martti Nikunen for reading the first draft of this note. His comments lead to 

some improvements in representation and to correct formulations of the results. 

2. NOTATION, DEFINmONS AND THE RESULTS 

2.1. Denote by D [O, T] the space of right continuous real functions x on [O, T] with left hand limits. 

Let x,y ED and denote by mr(x,y) the uniform distance between x and y . We recall the 

definition of the Skorohod distance . Let A be the class of strictly increasing, continuous mappings of 

[O,T] onto itself. If A.EA, then A.(O)=O and A.(T)=T. Define the Skorohod distance dr by 

dr(x,y) = inf {mr(A0 x,y)+mr(A0 l,I)}, 
AEA 

where A.0 x(t)=x(A.(t)) and I is the function I1=t. Then the space (D[O,T] ,dr) is a separable metric 

space (BILLINGSLEY (1968)). Note also that dr(x,y) ~ mr(x,y). 

2.2. If x,y ER then let min(x,y)=x/\y and max (x,y)=xVy. For a nonnegative random variable X 

defined on a probability space (0 , F , P) we put 

v (X) = inf {£;;;;;.: 0: P(X;;a.:£).;;;;; £}. 

It is easy to see that v (X)2 ~ E(X) and for any £ > 0 we have v (X) ~ £V P(X ;;;;;.: £). If Y is 

another nonnegative random variable, then v (X + Y)..;;;v (X)+v (Y), and if X.;;;;; Y (P-a.s. ) , then 

p (X)..;;;p (Y). 
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Let (S,d) be a separable metric space and X, Y random elements from a probability space (0 ,F, P) 
into S. Define the Ky-Fan metric a (X, Y;d) by 

a (X, Y;d) = v (d(X, Y)). 

Recall that this metric metricizes convergence in probability. 

Let B(S) be the a-algebra of Borel sets of S. For a Borel set C denote by C( the set 

C( =~xE S: d(x,C) < t: ~· 

H R and Q are two probability measures defined on (S, B(S)) then define the Prohorov distance 
p(R,Q;d) by 

p(R,Q;d) = inf {t: >0 :R(F) ~ t: +Q(F) for all closed F}. 

We use the following device to estimate the Prohorov distance. Let X and Y be S-valued random ele­
ments defined on a common probability space such that X induces the measure R and Y induces the 
measure Q on S. The pair (X, Y) is called a coupling of the measures R and Q. Let C (R, Q) be the set 
of all possible couplings of R and Q (where also the space (O,F,P) may vary). Strassen and Dudley 
(see DuDLEY (1968)) proved that 

p(R,Q;d) = inf ( a(X, Y;d): (X, Y) E C(R,Q) ~ 

Hence p(R,Q;d) .s;;; a(X, Y;d) for any coupling (X, Y). 

2.3. Let (0,F,P) be a probability space with a filtration (F,)1 ;;..0 • We suppose that the filtration is 
right continuous and that F 0 contains all P - null sets. A counting process N adapted to the filtra­
tion (F,)1 ;;..o is a process having right continuous increasing piece-wise constant paths with unit jumps 
and N 0 = 0. We suppose that P(N,<oo) = 1 for each t ;i.: 0. The compensator A with respect to 
the filtration (F,)1;;..o and the measure P is a predictable increasing process such that the process 
N - A is a square-integrable local martingale. It can be shown that aA., ~ 1 (P -a.s. ) , where 
4A, =A, - A,_ . H A is a deterministic and continuous function then the process N is a non­
homogeneous Poisson process. We say that Mis a Bernoulli process with dependency, if there exists 
fixed time points { s., ... , Sm} and s; <s1+ 1 for i = 1, ... ,m - 1 and a sequence of 0, I-valued random 
variables X; such that 

and M is constant between the intervals [s; _ 1,s1[ • Note that the distribution of M as a random ele­
ment may depend of the order of the sequence (X;). In below, when we speak about a Bernoulli pro­
cess, we assume that we are given the fixed jump times {s 1, ••• ,sm}· Note also that the compensator 
A of M has the form 

A,= ~4As,. 
s,<t 

For more details on counting processes we refer to LIPTSER and SHIRYAYEV (1978). 

2.4. Now we formulate the results. The counting process induces a measure on the space (D [O, T] ,dT) 

and we denote it by PN. For two counting processes N and M defined on the same probability space 
we write PT(PM,PN) instead of p(PM,PN;dT) and similarily aT(A,B) = a(A,B,mT) for two increasing 
funtions A and B. 

THEOREM 2.1. Let (M,,F,)1 ;;..o be a Bernoulli process on the space (0,F,P) with the compensator A and 

let N be a nonhomogeneous Poisson process on the same space with a strictly increasing compensator B. 

" 
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Then we have for T>sm 

Pr(PM,PN).;;;; tx.r (B- 10A,I) +E IAr -Brl + 2E~(AA1)2. (2.1) 
t<:;,T 

REMARK 2.1. We prove the bound (1.3) in the section 4. We give other examples in the same section. 

REMARK 2.2. Given any f: > 0 we can replace the term 

EI Ar - Br I 
in (2.1) by 

REMARK 2.3. In NIKUNEN and V ALKEILA (1985) we showed that for continuous compensator A the 
bound (2.1) involve8 only the first two terms. We were not able to combine the two different bounds 
to a single bound. 

3. PROOFS 

3.1. We start the proof and give some notation, which will be used later. If X is a process and 
{O=t0, ... ,tn=T} is a partition of the interval [O,T], then by .f'(X) we mean the discreticized pro­
cess 

f/(X)=X,. if t E [tk>tk+1[ 

fork = o, ... ,n -1. If x and y are two stochastic processes and p is a distance between two proba­
bility measures, then we write p(P'.hP~) for the distance between the finite dimensional distributions 
of the processes X and Y at time points t 0 , ••• , tn in the space Rn+ 1 • 

The next Lemma is almost obvious. 

LEMMA 3.1. Let M be a Bernoulli process with jump times { s i. ... , Sm} and let {O = t0 ,t i. ... , tn = T} 
be a partition of the interval [O,T] with S(=/=tj for i = I, ... ,m and for j =O, ... ,n. Then we have 

Pr(PM,Pj<M».;;;; J?lax lt;-t;-1 I· (3.1) 
1<:;,n 

PROOF Define a scaling function A in such a way that A(t;)=t; , if there is no jump point sj in the 
interval ]t; _ 1,t;[ and >.(sj)=t;,if sj E]t;-i.t;[ (we may assume that s 1 >t2 and that sm<tn _ 1 ) and con­
tinue A to be linear between these points. Then 

M,=fA.<t> and l>-(t)-t I.;;;; J?lax I t;-t;-1 I· 
1<:;,n 

From these observations we have (3.1 ). 0 

3.2. Our next step is to use the following Lemma due to KABANov et al (1983). Before we formulate 
it, we have to make some assumptions. Denote by xr the process xr = x,/\T . Assume that 
BT =B , AT =A and AT .;;;; c, where c is a constant. Let {t0 , ••• , tn} be a partition of the interval 
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[O,T]. We can also assume that P(M,,>0) = 0 for i=I, ... ,n. Finally we assume that on the pro­

bability space (O,F,P) there is a sequence of independent Poisson processes not depending on F 00 . 

We shall use the following notation in below. If /is a bounded predictable process, then by f*N we 

mean the process 
t 

if *N), = j Is dNs, 
0 

where the integral is a Lebesque-Stieltjes integral. Also, if A is a set, then by IA we shall denote the 
indicator function of the set A. In the next Lemma we suppose that a fixed partition of the interval 

[O,T] is given. We denote by Var(Pn(N),Pn(M)) the total variation distance between the finite dimen­

sional distributions of M and N . 

LEMMA 3.2. ( KABANov et al). Let the compensator A of the counting process N satisfy the above 

assumptions . Let S be a predictable stopping time such that for some j <n , 

tj-l < S <tj (P -a.s.) on { S<oo} , 
- -

and Ms >0 (P - a.s.) O"!} { S <:: oo} . Then there exists a counting process N with a compensator A with 

respect to the filtration (F,) (which is finer than the original filtration (F,)) with the following properties: 

Var (Pn(N) ,Pn(N)) ..;;; E(M8)2 , (a) 

A,, = A,, ,i = I, ... ,n , (b) 

{ M >0} = { M >0} \ [S], where [S] = { w EO, t >0: S(w) = t } . (c) 

Moreover, the compensator A can be such that 

- t/\t-S 
A, =A, - (11s1 *A),+ l1s, 001(t)Ms t·-S (3.2) 

'} 

For the proof we refer to KABANOV et al (1983). 

Because we need the concrete form of the process M below, we write it for our case. Let ('1T;)1..;;;.;;;m be 
m independent standard Poisson processes, which are also independent of the a-field F 00 . If 

sj E]t;,t;+i[ then define irj by the following way: irj(t)=O, if t<sj and 

(3.3) 

and after applying Lemma 3.2. m times 

- m 
M= ~:;,j. 

j=l 

3.3. The next Lemma shows how the Prohorov distance can be approximated by the corresponding 
distance between the finite dimensional distributions of the process. 

LEMMA 3.3. (KUBILIUS and MIK.ULEVICIUS). Let X and Y be two processes with paths in D and let 

{ t 0 , • • • , tn } be a partition of the interval [O, T] . Then 
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(3.4) 

PRooF We sketch the proof of Kubilius and Mikulevicius. The space of piece-wise constant functions 
Dn = (x ED :j(x)=x) is a closed subspace of D. Note also that the topologies induced by the 
metrics dr and mr coincide on Dn . It remains to note that the space Dn with metric mr is iso­
morphic to the space Rn+I with the metric r(x,y) = max o..;;.;;;n(lx;-y; I) , where 
X =(xo, ... ,Xn)ERn+I. 0 

REMARK 3.2. Note that we have not used the ordinary metric in the space Rn+I in the proof above. 
Because we apply this Lemma to estimate the distance between finite dimensional distributins in 
terms of the variation metric, we need not take care about this fact in below. 

3.4. Now we proceed to the proof of Theorem 2.1. Take first a partition {O=t0 , ••• ,tn=T} in such 

a way that Sf=/:=1; and also with the property that ~ I t; - t; - I I <£ for a given £>0 . Then we have 
,..;n 

Lemma 3.1 that 

(3.5) 

~pply now Lemma 3.2 m times and we obtain a counting process M with a countinuous compensator 

A such that 

Var (Pn(M),Pn(M)) ,;;;;; E ~ (Ms
1 

)2 . (3.6) 
j<:.m 

So we have 

According to Theorem I in NnrnNEN and V ALKEILA (1985) we have for the first term on the right 
hand side of (3.7) that given any£ >0 

Pr(PN,Pif ),;;;;;a.r(B-10A,I) + E(d\ IAr-Br I) + P( IAr-Br I;;;;;.£). (3.8) 

- -
Note that A11 = A1, and that Ar=Ar in (3.8). 

Next we show that 

a.r(B- 10A,l) ,;;;;;a.r(B- 10A,l) + ~ax It; - t; - I I· 
1<;n 

(3.9) 

Indeed, if tE[t;-1>t;[, then 

0 < B-1oA1 -t,;;;;;B- 10A1 -t;+t;-t;- 1 =a.r(B- 10A,I)+ max I t;-t;-1 I· 
I i<;n 

and symmetrically, if O<t - B- 1 oA1 , using t; _ 1 in place of t; , we have (3.9). 

To get an estimate for the third term on the right hand side of (3.7) we use (3.6), (3.4) and the fact 
that the Prohorov distance is less than the corresponding variation distance. So we have 

Pr(P j(M)>p j(it}) ,;;;;; E ~ (M,)2 . (3.10) 
t<;T 

Our final step is to prove that 

Pr(Pf<M»Pif),;;;;;E~(Msf+ ~ax lt;-t;-1 I· 
s<;T '<;n 

(3.11) 



To do this, we modify the argument in DUDLEY (1972) a little. Put 

B = LJ {;l;(T);;a.2}. 
j<,m 
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On the complement of the set B the process M increases only by jumps of size 1 in some interval 
]t;-i.t;[. Define A,

1
(6')= inf(s l;Tj(s)=wj(t;)) if there is a jump and A11 (6')=t; otherwise. Extend A("') 

to be linear between these points. Then we have 

dr(M,j"(M)):s;;;. ~ It; - t; -1 I + IB ~ wj(T) . (3.12) 
1<,n j<m 

But .,,j(T) is conditionally on F 00 Poisson distributed with parameter Ms,· Hence we have for any 8 

P(IB ~ wj(T);;a.8):s;;;.P(B):s;;;. ~ E(Ms/ . 
j<m j<m 

From this we have (3.11) using the properties of the function P mentioned in Section 2. Because 
~ I tj-tj-I I <E, we have, through the steps in (3.7) - (3.12), proved the inequality (2.1). 
1<n 

4. ExAMPLES AND APPLICATIONS 

ExAMPLE 4.1. First we give an example, where we get the bound in (1.3) as a special case. Let 
(Xd1<k<n be a sequence of Bernoulli- variables with 

P(Xk = l I Xi. ... ,Xk-1) = Pk(Xi. ... ,Xk-1) =Pk. 

Let X 0 = 0 and define the process M by 
[nt) 

M,= ~ Xk. 
k=O 

(4.1) 

(4.2) 

Note that the distribution of the process M may depend of the ordering of the sequence (Xk) . If 
F1 =F-:' =a(Xk : k:s;;;.[nt]) then the compensator A of the process Mis 

[nt) 

A,=~ Pk• 
k=O 

(4.3) 

where p 0 = 0. Let M be a non-homogeneous Poisson process with the compensator B. Then, from 
(2.1) we have that 

n 

P1(PM,PN) :s;;;.a1(B- 10A,I) +E IAr-Brl + 2E ~pt, (4.4) 
k=l 

provided that Pn =O. If this is not the case, then we can instead of process M consider the process M(, 
which jumps at the time points i / n -E , where O<E< 1 / n and i = 1, ... ,n. It is clear that we have 

Hence we have instead of ( 4.4) the following bound 

P1(PM,PN):s;;;.a,(B- 10A,l)+E IA1 -Bi I+ 2E~(Ms)2 +E( ip.axpk). 
s<l i<n 

(4.5) 

Now suppose that Pk = 1 / n for k = l, ... ,n and M that is a standard Poisson process. Then we 
n 

haveA 1 =B1 = l,a1(A,I):s;;;.I/n, ~pt= l/nandfinally maxPk=l/n.Sowehave 
k=I l<ko;;n 
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P1(PM,PN) :s;;;; 4/n, 

and we have (1.3). WHIIT (1973) gives also this upper bound as a special case of his multivariate 
results. He considers independent Bernoulli processes. To finish this example we note that DUDLEY 
( 1972) showed also that -

P1(PM,PN) > o(l/n) 

in the case, when N is a Bernoulli process with jump probabilities 1 / n and M is a standard Poisson 
process. 

ExAMPLE 4.2. SERFLING (1978) discusses the upper bounds in the case, where the jumps of the pro­
cess M can take values in N + . Next we indicate, how our bound (2.1) can be applied to this case. 
Let (Xk)k.;;n be a sequence of integer valued random variables. Put X 0=0 and define the process M 
by ( 4.2). Let Pk be as in ( 4.1 ). Let µ be the jump measure of M and let ii be its compensator with 
respect to the measure P and (Ff'). For details about these conceps we refer to JACOD (1979). Define 
two counting processes M 1 and M 2 by 

Mf = f µ(]O,t],dx)= ~ l{x,=1} 
{x=l} i<;[nt) 

and 

MF= J µ(]O,t],dx)= ~ l{x,;;i.2}. 
{x>I} i<;[nt) 

Then there compensators A 1 and A 2 are 

A} =ji.(]O,t],{1})= ~ p; 
i<;[nt) 

and 

AF=ji.(]O,t],{x;;ai:2})= ~ d;, 
i<;[nt) 

where d;=P(X;;;;i.21 XI> ... ,X;- 1). Put B= U {X;;;ai:2} and then we have that 
i<.m 

(4.6) 

Note that for any 0<8< I we have P(IB(M - M 1 ) 1;;ai:8)=P(Mt;;;i.1) and we have from (4.6) that 

(4.7) 

Then we have, if N is again a Poisson process with a strictly increasing compansator B , from ( 4.5) 
and ( 4.6) the following bound · 

P1(PM,PN):s;;;;a1(B- 10A 1,I)+EIAl-B1 I +2E~(aAf)2+E sup 1.:1.4} I +EAt. (4.8) 
t<.I t<'! 

ExAMPLE 4.3. Our last example shows how we can approximate the Prohorov distance between a 
renewal process and a Poisson process in terms of the interrenewal distributions. First we introduce 
some notation. Let G be the distribution function and suppose that (Uk)k;;i.I are independent and 
identically distributed according to G. We suppose that G(O)=O and that G is either continuous or 
discrete with span d (by this we mean that P ( U E { d, 2d, 3d, ... } ) = 1 ) . Define the integrated hazard H 

of Gby 

_ t G(ds) 
H(t) - £ 1-G(s -) 



and let R be the renewal function. Define the counting process M by 

M, = ~ l{T.<t} ' 
k;;;o.I 
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where Tk=U1 + ···+Uk and put T 0 =0. Suppose that Tisa fixed time such that T=;6d[dT]. 
Then we have R(n=E(Mr+ I) . If N is a Poisson process with strictly increasing compensator 
B,=p.t, then . 

Pr(PM,PN):s;;;;(.B.ill...mr(H,p,/)112 +.B.ill...mr(H,pJ)+2R(n ~ (Mfs>2· (4.9) 
µ µ s<T 

Note that if G is continuous, then the bound involves only the first two terms on the right hand side 
of (4.8). 

We show how to get (4.8) from (2.1). According to BREMAUD and JAcon (1977) the compensator A of 
M with respect the filtration Ff' has the form 

Ar=Ar. +H(t-Tn), if Tn<t:S;;.Tn+l· (4.10) 

Note also that we have B/ 1 =.i. and because t = Tn - t-Tn we have that 
µ 

1 (Mr+l) 
IAr-Brl :S;;.(Mr+l)mr(H,pJ) and mr(B- 0 A,I):s;;;; mr(A,pJ). 

µ 

We have also, if the distribution G is discrete, that 

~ (M8 )
2 :S;;.(Mr+ 1) ~ (Mfs)2. 

s<T s<T 

(4.11) 

(4.12) 

From (4.10) and (4.11) we have (4.8) using the properties of the metric a mentioned at the point 2.2. 

To finish this example suppose that F is an exponential distribution with parameter µ and Gn ~d F , 
as n~oo , where ~d means the weak convergence of distribution functions. Denote by Mn the 
corresponding renewal counting process sequence. We can use then (4.8) to get some information 
about the rate of convergence of Mn to a Poisson limit. 
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