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1. INTRODUCTION

in the formal analog of Milner's Calculus of Communicating Systems
(see [M]), as this is described by Bergstra and Klop in [BK], one builds large
systems of processes by assembling together atomic processes (or
actions) chosen from a finite set A of such atomic processes (see [H]).
These systems of processes satisfy a set of equational laws, called the
axioms of the theory of the algebras of communicating processes
(or theory of process algebras). The models of this theory are called
process algebras. Its axioms are described in a signature that includes:
+ (alternative composition or sum), - (sequential composition or product),
|l (parailel composition or merge), [L (left merge), | (communication
merge), 3, (encapsulation, for H a subset of A), 8 (deadlock or failure) and
the atom a (for each a € A) (the atomic processes). In the table below the
equational laws for process algebras are given; the list (A) consists of
the basic axioms, (C) the axioms of communication, (CM) the axioms of
merge, and (D) the axioms for the encapsulation. The communication
function | : Ag X Ag = Ag (where Ag consists of the atoms in A including B)

is initially given on atomic processes. In the absence of communication,
axiom (CM1) should be replaced with x | y=y | x + x |L y. The theory (in the -
signature +, ., ||, IL, a (with a € A)) consisting of the first five axioms in
(A) plus the first four axioms in (CM) is known as (basic) process algebra
and is abbreviated by PA; ACP (aigebra of communicating processes)
consists of the axioms in (A), (C), (CM) and (D). As usual, the
multiplication sign as well as the universal quantifiers, which quantify
the variables x, y, z, will be omitted. The letters a, b range over A8-

(A x+y=y+x (Cx: alb=bla
x+(y+z)=(x+yl+z (a]b)]c=a|]c)
X+ X=X 5|a=56
(x+y)z=xz+yz
(xy)z = x(yz) CM:xfly=ylLx+xlLy+x]y
X+86=8 allx=ax
X =5 (@x)Ly=axly
x+llz=xlLz+yl z
(D) 3, (a)=aifaeH (ax) |b=(a]b)x
(a)=8ifa¢H al(bx)=(a]|b)x
3 (X ) =23, () + (Y (ax) | (by) = (a| bXx ]| y)
3 (xy) = g, (x) 3, (y) (x+y)|z=x]z+y|z

x| (y+rz2)=x|y+x|z




The underlying signature for all the results of the present paper will be
any subset of the signature of the above theory, ie. + , |, L, |, &, 6, a
(witha € Al.

In this axiomatic framework the term (or initial) moedel A is defined
as the set of all processes built-up from the atomic processes a € Ag, via
the operations in the given signature. If one thinks of the elements of A,
as finite trees with edges labeled by the atoms in Ag then one can also
consider the model A, consisting of those trees which have height at most

n (see [BK]). More formally, following [BK], for each n > O let the
projection function (), be defined on A, as follows:

@), = a,

(at)y = a,

(at), = a(t),_y, forn> 1,

(t+ ), = (), + V'), forn>o.

The finite process algebras Ay, are defined by A, = {(t), : t € A} Also for

any binary (respectively unary) operation * (respectively 1) in the given
signature define an operation *,, (respectively rrn) as follows:

X *ay=(x*y),
My 0 = (11 ()
[t is now easy to show (see [BK]) that (for finite A) each A, is a finite

model of the theory of process algebras. The projective (or standard)
model, denoted by A™, consists of all infinite sequences <py.pp,....P...>

such that p,, € A, and (pp, ), =Py, foralln> 0.

Throughout the present paper T(xi,..Xy), S(xXy,.,X,) (with or without

subscripts) will always denote (polynomial) operators, ie terms
built-up from the variables xi,..,x,, the atoms a (with a € Ag) and the

operations of the given signature.

The class P of positive formulas is the smallest class of well founded
formulas in the signature +, ., |I, IL, |, &, 8, a (with a € A), which zatisfies




the following properties:
(i) For all polynomial operators T, 3 and any variables vy,..,Vp ,

T(Vy,.vy) =S (V1,Vp) € P.

(ii) &, ¥YeP=23v¥ePl

(iii) For any countable A ¢ P, the conjuction of the formulas in A
belongs to P.

(iv) If & (v},..vp.--) € P and {uy,..u,..} € {vy,...¥p,.} then both

formulas (Juy..3uy...) B (Vy,..,Vp,..), (VU VU ) B (V§per¥pye) € P

The class Pg of finite positive formulas is the smallest class of well

founded formulas in the signature +, ., [I, L, |, 3, 8, a (with a € A), which
satisfies the following properties:
(i)  For all polynomial operators T, S and any variables vy,...,vg ,

T (VyVy) =S V.,V € Py

(i) & ¥ePy>3vY¥ Ba¥ePy

(iii) If @(vy,.,vy) € Pg and {up,.,yld < {vy,...vy} then both
formulas (3uy..3u) & (vy,..,vp), (Vuy. vy ) @ (vy,..,vq) € P.

Most of section 3 will be dedicated to a proof of the following theorem.

Theorem 1.1 [Approximation Theorem]
Any formula @ (v],...,vn,...) € P satisfies the following approximation

principle: for any convergent sequences {xy ..., (¥ p},. such that x , €
A, forall k, n, if theset{n>0:A k& (Xl,n"-’xk,n"")} is infinite then it
is true that A™ k & (M o0 X1 s V1M S00 Xk o)

Such formulas & occur when one wants to prove that a system of fixed
point equations has a solution, e.g. consider the infinite system I = {x, =

Tk(x,,...,xn(k)) : k > 0} of fixed point equations, where each T, is a

polynomial operator in the variables indicated. The assertion "2 has a
solution in (A" can be expressed by the formula (3xy..3%..)¥, where ¥

is the countable conjunction of all the formulas x = Tk(x],...,xn(K)), fork >
0. Theorem 1.1 states that in order to prove that I has a solution in A™, it




is enough to show that X has a solution in in inf initely many A's.

It is also possible to prove a partial converse of the approximation
principle. This is stated in the theorem below. .

Theorem 1.2 [Converse of the Approximation Principle]
For any positive formula & (v,,...,vk,...) € P and any py,....Pg, € A the

A

fO”OWing statements are equivalent:

(i) {n>0: ALk 3 ((py)y,-.{Py)p,-- )} is infinite.
(ii1) v n>OlA, kB ((pp,-.(Py -k

Motivated from the approximation theorem one can define a new process
algebra, which is an extension of the projective algebra A% To state the
next theorem the notion of ultrafilter on the set N of positive integers
will be required. Call D a {(nonprincipal) ultrafilter on N if D is a
nonempty set of subsets of N satisfying the following properties for all X,
YCN()BED(DXeDandXcY=>YeD(i)X,YeD=2XNnYeD(iviXe
DorN-XeD(v)XeD = is infinite. Notice that the existence of such
ultrafilters requires the axiom of choice (see [E] or [CK]).

The main theorem of section 4 is the following:

Theorem 1.3

For any ultrafilter D on the set N of positive integers there exists a
process algebra AD, which is a proper extension of the projective algebra
A®°. Moreover, for any finite, positive formula & (vy,..,vi ) € Pg and any

P1.-.Px € A% the following statements are equivalent:
(i) APk & (py,..pp).
(i) A% E B (Pp,..0):
(i) {n>0: AL E @ (PP )} € D.
(iv) {n>0:A k2 {(pPh-.(p)y)} is infinite.
(v)  ¥n>O0lA, k& (D Pp- (P )p)k




2. TOPOLOGY OF THE PROJECTIVE MODEL

As explained before the projective model A™ consists of all infinite
sequences <py,Pp,...,.Pp-> such that py, € A, and (pn+ I)n = Prys for alln»> O,

The term model Aw can be embedded in a natural way in the projective

model; because of this, it is considered a subset of the projective model
(see [BK]). For any such p = <py,p,...,.0p,-.> € A% put (P), = Py For any p,q €

A™ such that p = q let k(p,q) = the least n > 0 such that (p), = (q),. The set
A% can be endowed with a metric space structure by defining a

distance function d as follows: d(p,q) = 27k(P.@) i p 2 q, and d(p,q) =
otherwise.

This metric was used by Arnold and Nivat (see [AN]) in the context of
denotational semantics of concurrency. An equivalent metric was also
used by de Bakker and Zucker (see [dBZ]). For additional information the
interested reader is advised to consult [L] and [Ro].

The following result summarizes all the basic properties of the metric
space (A®,d) and will be used frequently in the sequel. ~

Theorem 2.1 [in the signature +, ., ||, IL, |, &, 8, a (with a € A)]
(i) (A%, d) is an ultrametric space, i.e. it satisfies the following
properties:
(a)d(p,q)=0«p=q.
(b) d(p,q) = d (q,p).
(c) d(p,q) < max {d(p,r), d(r q)}
(ii) p( )-apﬁVanszm(p( Ih = (Pl

(iii) (A, d) is the metric completion of the metric space (A , ,d), where
d" is the restriction of d on A,
(iv) Forall p € A%, n> 0, dip,(p),) < 27" . Hence, lim, ..(p), = P.
(v) The operations (), A% A, are continuous.
(vi) Any operator T (xy,..X,) is continuous in the variables xj,..x, In
fact, for any py,....0p, Q.0 € A™,
d(T(py,...pH),T(qy,....a)) < max {d(py, qy),...,d(pp,a,)1

4

Proof: The proof is omitted. For more details of the proof the reader can




consult [K], [L] and [AN].

Theorem 2.2 [in the signature +, , I, IL, |, &, 8, a(with a € A)]
A is finite & (A®,d) is compact.

Proof: («) Assume on the contrary that A is infinite and let Ay be
an infinite list of pairwise distinct atoms in A. Then the sequence {an}
cannot have any convergent subsequence since d(a,, ap,) = 172, for n = m.

Clearly, this is a contradiction.
(=) This is immediate from [Du], page 429.

in view of the previous theorem from now on and for the rest of
the paper it will always be assumed that A is finite. This will
guarantee that A™ is compact.

3. THE APPROXIMATION PRINCIPLE

Intuitively, the approximation principle enables one to verify assertions
in the projective model by proving that the same assertion is valid in
infinitely many A, To be more precise a formula & (v,,...,vn,...) gatisfies

the approximation priniple, and this will be abbreviated by 0(®), if the
following property holds: for any convergent sequences {x{ .},.., {% ).

such that X, , € Ay for all k, n, if the set {n> 0: Ay & (%) Xy o)} 1S
infinite then it is true that A® k & (lim X1 s 1M o Xk,nr--)-

Now it is possible to prove theorem 1.1

Proof of theorem 1.1: It is enough to show that for any formula & € P,
(@) holds. The proof is by induction on the construction of the formula &.

Case 1: &= T(vl,‘..,vm) = 3(Vy,..,Vp), Where T, S are polynomial operators.

For any operator T (v],...,vm) let TV (v,,...,vm) denote the interpretation of
T in the model A, Using induction on the construction of T and the




?

definitions of the operations in the process algebras A, (see section 1) it
is easy to show that

Lemma 3.1 For all X ... Xy € A, TD (X, Xp) = (T (X e X gy

Now, it is required to show that the formula T(v,,...,vm) = S(v 1,...,vm)

satisfies the appriximation principle 0. Indeed, let {x{ ..., (% p},.. be

any convergent sequences such that x, , € A, for all k, n and the set
J={n>0: A,k T(x, ,n---'»xm,n) = S(x,)n...,xm’n)}

is infinite. It is enough to show that
A% E TAIM, o X1 1M oo Xp,n) = SCHMY oo X9 1y 1My o0 X )

Fork =1,..,mput X, = lim, o, Xk v It is clear that for alln € J,
Tn(XI ,n...,Xm’n) = Sn(Xl,n...,Xm’n).

Using this last equation and lemma 3.1 it is easy to show that for all n € J,
(T(x4 ,n""xm,n))n = (3(x4 ,n"-»xm,n))n-

However, the following result is an easy consequence of the definition of
convergence in A% via the metric d:

Lemma 3.2 For any sequence {u,} of terms in A, if u, - u then (up)y -~ u.

Using the continuity of the operators T, S (see theorem 2.1) it follows that
T(x‘ ,n...,Xm,n) i T(X ],...,Xm),

S(X1 ,n...,xm,n) - S(X,,...,xm).

Hence, using lemma 3.2 and the last equation it follows that
A% E T(X 00Xy = S, Xpy),

which completes the proof in case 1.
Case 2:.8=H}v V.

Let {xq ..., (% nl-- De convergent sequences such that x , € A, for all k,
n, and the set J = {n> 0: Ay k @ (X ... % -0} 1S INfinite. To show that
AED (limn =00 X,}n...,limn_m Xk,n"")'

Put




K={n>0: An EX (X] ’n...,Xk n,...)}, L={n>0: An EY (X' n...,Xk n,...)}‘

Since, J= K U L it is clear that at least one of the sets K, L (say K) must
be infinite. It follows from the induction hypothesis that
ATE R (h'mn o0 X1 n,...,h’mn o0 X n,...),

and hence also
AT E & (1M 00 X1 1My Lo0 Xk ppeeds

which completes the proof in case 2.

Case 3: §E/\{§i:i>0}.

Let {xy ..., (¢, n},;.. be convergent sequences such that x , € A, for all k,
n,andthe set J={n>0: Ak B (x, Xk n,...)} is infinite. To show that
AT E B (1M oo X1 s MY Lo Xig o)

For each i > O put
Ji ={n>0: An E @i (Xl,n""xk,n"")}'

Clearly, each J; is infinite and hence the induction hypothesis implies that

foralli> O,
fe ] . .
AT E 8 (limg ., L "k,n»"-)-

This completes the proof in case 3.

Case 4: = (Juy.u..) ¥ (Uy,.. U, Ve Vo).

Actually, this is the only part of the proof which requires the
compactness of A™. Let {x| n} {xk n},... be convergent sequences such

that Xn € An for all k, n, and the set J = {n>0: ALE (xl,n---’xk,n»-")} is

infinite. To show that
AT E & (1M o0 X1 el IMp L 00 X o)

By assumption, for each n € J there exist elements Uk n € An such that

An EY (91,n...,gk,n,...,x] ,n...,Xk’n,...)‘
The sequences ({y, n} : k > 0) need not be convergent. However, using the
compactness of the metric space A®™ (in fact one can define a compact
metric on the cartesian product of countably many copies of A™) there
exists an infinite subset L of J such that each of the sequences {Y nhnel
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is convergent. Let y, = limneL,n o0 Yk 1 for k > 0. Now apply the induction
hypothesis to the sequences {X nine| . (U ninel, for k > 0, and the formuia
¥ to obtain that

AT E ¥ (Yipslprs X oo Xpgoner):
This completes the proof of case 4.

Case 5: &=(Vu ]...Vuk...) Y (U, UV eV

This is similar to the cases above and it is left to the reader. Now the
proof of theorem 1.1 is complete.

The two examples given below show that theorem 1.1 would not be true if
the class P of formulas defined above were assumed to be closed either
under negations or under countable disjunctions.

Example 3.3 The approximation principle cannot be valid for formulas

involving infinitary disjunctions. To see this consider the formula
(x)=V{x=a":n>0}

i.e. @ is the countable disjunction of the formulas x = a' forn> 0. Itis

clear that A ¢ & (a¥). Moreover, consider the sequence Xn = al It is then

true that for all n > 0, Ay F & (x,). Hence, & does not satisfy the
approximation principle O, X, - a¥.  Another example (communicated to

the author by H. Mulder), which provides a similar formula but with no
free variables is the following:

¥Y=V{IWxa=a":n>0}
It is clear that A ¢ ¥ and for alln> 0, A, E ¥. Hence, ¥ does not satisfy

the approximation principle 0L

Example 3.4 The approximation principle cannot be valid for formulas
involving negations. To see this consider the formula

Ty =x=aay=a"lax=y
Clearly, for alin> 0, A, k ¥ (a", 2" 1), But A% ¢ ¥ (a¥, a). Hence, ¥ does

not satisfy the approximation principle 0L

Proof of theorem 1.2: In view of theorem 1.1 it is enough to prove that
(i) implies (iii). In fact, it is enough to show by induction on positive
formulas @(vp...,vk,...) that for all py,...,py,.- € A%
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AT E B Py, Py) 2 Y 02 OLAL E & (D (P Iy )]
The initial step of the proof is for formulas of the form & =T(vy,.,v)) =
S(v,,...,vk), where T, S are polynomial operators. Suppose that A™ k
T(Py,...P) = S(Py,....py). However, if p = g then (p), = (q),, for all n> 0.

Hence, .
(Tn((pl)n,u,(pk)n))n = (T(p ],...,Dk))n =

(S(P 4P My = (S P P py

for all n> 0. It follows that ¥ n > O[A, k & ((py)p,...(p)y)) This completes
the proof in the case where & is an equality between two polynomial
operators. The proof of the other cases in the inductive proof create no
particular difficulties and are left as an exercise to the reader. Moreover,

the compactness of A® is not necessary for this proof. This completes the
proof of the theorem.

4. THE ULTRAPRODUCT MODEL

Perhaps the most natural way to interpret the approximation principle is
via the ultraproduct model. According to [CK], the ultraproduct
construction (to be outlined below) was originally discovered by Skolem
and used to construct nonstandard models of Peano arithmetic. It was
later further extended and used by tos to prove his seminal fundamental
theorem for ultraproducts (see [E] or [EK]); its definition, although
algebraic in nature, arose from mathematical logic.

Given an ultrafilter D on the set N of positive integers, define an
equivalence relation =p on the product set ﬂ{An :n > 0} (= the set of all

functions f : N~ U{A, : n> O} such that for all n> 0, f(n) € A,) as follows:
f=pge{n>0:f(n)=gln)}eD.

Clearly, =p is an equivalence relation on the set TI{A, : n> O}. For each f €

H{An :n> 0}, let [f]D denote the equivalence class of f modulo =p and let

AD be the set of all such equivalence classes. For each binary
(respectively unary) operation * (respectively 1) define an operation *D

(respectively 1p) on AD as follows:
[f]D *D [Q]D = [«(f(n) *n g(n))n ‘N> 0>]D,

F




S

1B

Tip(fly) = [« (f(n)) :n> Ol

These operations are well defined on AD (see [E]) moreover the following
fundamental theorem holds (see [E]):

Theorem 4.1 [Fundamental Theorem for Ultraproducts, ¢.0§]
For any functions f,..,f and any well founded, finite formula (v ,..,v) in

the given signature the following result holds:
AP £ (T ..., [Ty Jp) @ I > 0 Ak &(T4(N),... T (M) ) €D.

As an immediate consequence of the fundamental theorem, one obtains
that AP is a model of the theory of process algebras. In fact , iemma 42
implies that it is an extension of the projective model A%,

Lemma 4.2 The mapping F : A% - AD . p- [<(p)n ‘N 0>]D is an embedding
of A= into AP.

Proof: It is easy to show that F is a homomorphism (one merely has to go
through the definitions of the operations in the projective model as given
in [BK]). To show that it is injective notice that for any p, g € A™,
F(p) = F(q) & [<(p),: n> O]y = [«(q), : n> O]

«{n>0:(p),=(a),} €D

# {n>0:(p), = ()} is infinite

*p=q
This completes the proof of the lemma.

In view of lemma 4.2, the elements of A™ will be identified with their
corresponding images in AD via the embedding F. Moreover, A™ will be
considered a subset of AD.

Now it is possible to prove the main resulf of this section.

Proof of theorem 1.3:Let Q(V],...,Vk) be a finite, positive formula in the

given signature. The equivalence of (i), (iii) is an immediate consequence
of the fundamental theorem for ultraproducts (see theorem 4.1). Since the
ultrafilter D is nonprincipal (i.e. all its elements are infinite) the
implications (v) = (iii) = (iv) are also immediate. The implication (iv) =
(ii) is consequence of the approximation theorem (see theorem 1.1) and the
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fact that limp, , ., (pj)n =‘pj, for j = 1,..k (see theorem 2.1.iv). It remains

to prove that (ii) » (v). But this is a special case of theorem 1.2. This
completes the proof of the theorem.

The result of theorem 1.3 is best possible. It cannot be extended to well
founded formulas with negation.

Example 4.3 Consider the formula
o= (3x, g)[x=axA92=a92Ax=yl
It can be shown that
AD kg and A% a.
To show that APk o it is enough to show that {n> 0: A,k 0} € D (see

theorem 4.1). Indeed, in Ap, €quation x = ax has a unique solution, namely x
= a". But, 92 = ag2 has more than one solution, in A, (if n> 1), namely y =

ak, ak*1 _a", where k is the least integer greater than or equal to (n -
1)/2. Since D is a nonprincipal ultrafilter it follows that {n> 0: AnEO } e

D. This shows that AD k 6. In order to show that A% ¥0 1t is enough to
prove that the only solution (x, y) of the system x = ax a g = ag in A%
must satisfyx =y = a®, Clearlg, x = a¥ is the unique solution of x = ax. Let
p € A% be any solution of g = ag in A%, Then p2 = anp2 and hence p2 =Y,
An easy induction on n > O shows that for all n> 0, (p)n = a". Hence, p = a%

and the unique solution of y2 = ay? in A®® is a%.

The (ultraproduct) process algebra AD makes it possible to define
nonstandard processes, as the example below shows.

Example 4.4 Let a € A be a fixed atom. For any function o : N - N such
that for all n > 0, o(n) < n, define the following element a% € AD.
a% = [@®M 0501,

It can be shown that for any such function o, the following result holds:

Lemma 4.5
0 A » (3 € D) [ 0 is either constant or the identity on XI.

Proof of the lemma: The proof of (&) is trivial. To prove (=) assume
that for some p € A, a7 = [«(p), : n >0 >],. Clearly, the set J=1{n>0:
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%M = (p) } € . Let n <m, withn, m € J. It is then true that
%M = (p), and %M = (p) .

It follows that ‘
20N < (a0(m)) = gmin {n, o(m)}.

and consequently, a(n) = min {n, a(m)}. Write the elements of J in an
increasing sequence: ny <Ny <. <Ny <. If alny) <ny, for some k > O, then

0(n.) = a(ny), for all 1> 0. Otherwise, oln) = ny, for all k > 0. This
completes the proof of the lemma.

It can also be shown that for different size finite sets A the models A%
need not satisfy exactly the same well founded formulas.

Example 4.6 Let a, b be two distinct atoms and consider the formula t =
(I, Y lx= X2 A y= 92 a X 2y 1. Then it is not hard to see that

{a, b}k tand {a}” ¢ T
(This is because in {a}®, with & not occurring in the signature, the
only solution of x = xZ is a®)

5. DISCUSSION AND OPEN PROBLEMS

The proof of the approximation principle (theorem 1.1) requires the
compactness of the topological space A*. This not only forces the set A of
atoms to be finite, (see theorem 2.2) but it also excludes the possibility
of using T (silent or internal action) (see [K], as well as [BK] for the
definition of this last concept). It is not known, however, if the
approximation principle could be proved for the same class of positive
forrmulas without these restrictions.

The ultraproduct construction is quite general and it seems it would be
interesting to study the ultraproduct obtained when one takes countably
many copies of the finite term model A (which, by the way, is not any

longer an extension of the projective model), as well as its relation to the
so called graph models (see [BK]). It might also be possible to use the
ultraproduct construction in order to prove that certain concepts in
process algebras are undefinable in a given signature. (Such a use of
ultraproducts is well-known in model theory, e.g. see [E], corollary 3.4).
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