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1 . INTRODUCTION 

In the formal amllog of Mllner's Calculus of Communicating Systems 
(see [M]), as th1s is described by Bergstra and Klop in (BK], one builds large 
systems of processes by assembllng together atomic processes (or 
actions) chosen from a finite set A of such atomic processes (see [HJ). 
These systems of processes satisfy a set of equational laws, caned the 
axioms of the theory of the algebras of communicating processes 
(or theory of process algebras). The models of this theory are called 
process algebras. Its axioms are described in a signature that includes: 
+ (alternat1ve composition or sum), · (sequential compos1t1on or product), 
II (parallel composition or merge), II.. Cleft merge), I (communication 
merge), Ow (encapsulation, for H a subset of A), s (deadlock or fa11ure) and 
the atom a (for each a E A) (the atomic processes). In the table below the 
equational laws for process algebras are given; the list (A) consists of 
the basic axioms, (C) the axioms of communication, (CM) the axioms of 
merge, and (0) the axioms for the encapsulation. The communication 
function I : As x As ... As (where As consists of the atoms in A including S) 

is initially given on atomic processes. In the absence of communication, 
axiom (CM1) should be replaced with x II y = y II.. x + x II.. y. The theory (in the · 
signature +, ., II, 11.., a (with a e A)) consisting of the first five axioms in 
(A) plus the r1rst four ax1oms 1n (CM) 1s known as (bas1c) process algebra 
and ts abbreviated by PA; ACP (algebra of communicating processes) 
consists of the axioms in (A), (C), (CM) and (0). As usual, the 

multiplication sign as well as the universal quantifiers, which quantify 
the variables x, y, z, will be omitted. The letters a, b range over A5. 

(A): x + y = y + x (C): a I b = b l a 
x + (y + z) = (x + y) + z (a I b) I c = a I (b I c) 
x+x=x Sla=S 
(x + y)z = xz + yz 
Cxy)z = xCyz) 
x+S=S 
Sx = S 

(0): C.. (a) = a if a E H 
C.. (a)= s if a ~ H 
0.. (X + y) = 0.. (X) + 0.. (y) 

e,.. Cxy) = Ow (x) Ow Cy) 

(CM): x II y = y II.. x + x II.. y + x I y 
atLx=ax 
Cax) II.. y = a (x II y) 
(X + y) II.. Z = X lL. Z + Y lL Z 

(ax) I b = (a I b) x 
a I (bx) = (a I b) x 
(ax) I (by) = Ca I b)(x II y) 

ex + y> I z = x I z + y I z 
x I (y + Z) = x I y + x I z 
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The underlying signature for a11 the results of the present paper w111 be 
any subset of the s1gneture of the obove theory, 1.e. +, ., II. IL L <\, 6, a 
Cwith a e A). 

In this ex1omaUc fremework the term (or initial) model Aw is defined 

as the set of an processes bu1Jt-up from the atom1c processes a e A6• via 

the operations in the given signature. If one thinks of the elements of Aw 

as fin1te trees w1th edges labeled by the atoms 1n A6 then one can also 

consider the model An consisting of those trees wh1ch have he1ght at most 

n (see [BK]). More formally, fo11ow1ng [BK], for each n > O let the 
projection funct1on C>n be def1ned on Aw as follows: 

(a)0 = a, 

(at> 1 =a, 

(at)n = a(t)n_ 1, for n > I, 

(t + t')n = <t>n + (t')n for n > o. 

The finite process algebras An are defined by An= {(t)n : t e Awl· A1so for 

any binary (respectively unary) operation * (respectively rr) in the given 
signature define an operation *n (respectively rrn> as follows: 

x *n y • (x * Y>n, 

Tln (x) = ( rr (x))n· 

It is now easy to show (see [BK]) that (for finite A) each An is a finite 

model of the theory of process algebras. The projective (or standard) 
modet denoted by A~. consists of all infinite sequences <p 1.P2 ..... Pn····> 

such that Pn e An and <Pn+ 1>0 = Pn, for all n > O. 

Throughout the present paper T(x 1"··,xn), S(x 1, ... ,xn> (with or without 

subscripts) wiJJ always denote {poJynomiaO operators, i.e. terms 
bui Jt-up from the variables x v··,xn, the atoms a (with a e A6) and the 

operations of the given signature. 

,, 
The class P of positive formulas is the smallest class of wel1 founded 
f ormuJas in the signature +, .• II, IL I, ~, s. a (with a e A), which satisfies 
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the following properties: 
(1) For all polynomial operators T, S and any var1ables v 1, .... v0 , 

T (v l·····Vn) = s (v 1, ... ,Vn) E P. 

(il) ~. t E p ~ ~ v t E P. 
(111) For any countable !:::. ~ P, the conjuction of the formulas in !:::. 

belongs to P. 
(lv) If m <v, •...• vn,. .. ) E p and {u1···.,uk,...} t: {vl·····Vn··..} then both 

formulas (3u 1 ... 3uk ... ) m (v l•····Vn1 •• J, (Vu 1 ... Vuk .. .) m (v l·····Vn,...) e P. 

The class Po of finite positive formulas is the sma11est class of well 

founded formulas in the signature +, .• H. (L I. Ci.. 8, a (with a e A); which 
satisfies the fo11owing properties: 

(i) For a11 polynomial operators T. 5 and any variables v1 •...• vn, 

T <v 1, ... ,vn> = s <v 1, ... ,vn) e P0. 

( 11) m. t E P 0 ~ ~ v t. ~ A t E PO· 

(iii) If ~Cv 1 , .. .,vn> e Po and {u 1,.:.,uk} t: {v1"···vn} then both 

formulas (3u1 ... 3uk) m <v1 .... ,Vn), (Vu1 ... Vuk) m <v1, ... ,Vn) E P. 

Most of section 3 will be dedicated to a proof of the following theorem. 

Theorem 1.1 [Approximation Theorem] 
Any formula ~ (v 1 •... ,vn ... J e P satisfies the fo11owing approximation 

principle: for any convergent sequences {x 1 J, ... , {xk nl,. .. such that xk n e 
I I 3 

An for all k, n, if the set {n > O : An 1= m (x 1 rr··.,xk n •... )} is infinite then it 
I I 

is true that A co 1= ~ (11mn-+co x 1 rr ... , 11mn -+co xk n, ... ). 
I I 

Such formulas m occur when one wants to prove that a system of fixed 
po1nt equations has a solution. e.g. consider the 1nffn1te system I = {xk = 
T k(x 1,. .. ,Xn(k» : k > 0} of fixed point equations, where each T k is a 

polynomial operator in the variables indicated. The assertion "I has a 
solution in (A co)w" can be expressed by the formula (3x1 ... 3xk .. .)t, where t 

is the countable conjunction of all the formulas xk = T k(x 1, ... ,xn<k>'• fork > 

o. Theorem t.1 states that in order to prove that }'.has a solution in A 00
, 1t 
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is enough to show that I has a solution in in infinitely many An's. 

It is also possible to prove a partial converse of the approximation 

principle. This is stated in the theorem below. 

Theorem 1.2 [Converse of the Approximation Principle] 
For any positive formula ~ (v 1, ... ,vk, .. .) E P and any p 1,...,pk, ... E A 

00 
the 

following statements are equivalent: 
(1) A cot= m (pl, ... ,pk, .. J 

(li) {n > 0: Ant= m ((p 1>n,. .. ,(pk)n,. .. )} is inflnlte. 

(110 V n > O[An t= m ((p 1>n, ... ,(pk)n, .. .)]. 

Motivated from the approximation theorem one can define a new process 

algebra, whlch is an extension of the projective algebra A00
• To state the 

next theorem the notion of ultrafilter on the set N of positive integers 

wlll be required. Call D a (nonprincipal) ultrafHter on N if D is a 

nonempty set of subsets of N satisfying the following properties for all X, 
y c N: (1) 0 rJ D (i1} x E D and x c y ~ y E D (110 X, y E D ~ x n y € D (iv) x E 

D or N - X e D (v) X e D ~ is infinite. Notice that the existence of such 
ultrafilters requires the axiom of choice (see [E] or [CK]). 

The main theorem of section 4 is the following: 

Theorem 1.l 
For any ultrafilter D on the set N of positive integers there exists a 

process algebra AD, which is a proper extension of the projective algebra 

A 0
0

• Moreover, for any finite, positive formula m (v 1, .. .,vk) e Po and any 

P1 ..... Pk e A00 the following statements are equivalent: 

( i) AD t= m (p 1, ... ,pk ). 

(ii) Aoo I= m (pl,...,pk). 

(111) {n > 0: An I= m ((pl)n, ... ,(pk)n)} e D. 

(lv) {n > 0 : An I= m ((p l)n, .. .,(pk)n)} is infinite. 

(V) V n > O[An I= m ((p 1>n1 ••• ,(pk)n)]. 
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2. TOPOLOGY OF THE PROJECTIVE MODEL 

As expla1ned before the project1ve model A 
00 

cons1sts of all 1nf1n1te 
sequences <p 1,p2, ... ,p0, ... > such that Pn e An and <Pn+ 1>n = Pn, for all n > 0. 

The term model A(J) can be embedded 1n a natural way 1n the project1Ve 

model; because of this, 1t is cons1dered a subset of the project1ve model 
(see [BK]). For any such p = <p 1,p2, .. .,Pn, ... > e A00 put (p)n = Pn· For any p,q e 

A 00 such that p ~ q let k(p,q) = the least n > O such that (p)n ~ (q)0. The set 

A00 can be endowed with a metric space structure by defining a 
distance function d as fol1ows: d(p,q) = 2-k(p,q) if p :z: q, and d(p,q) = o 
otherwise. 

This metric was used by Arnold and Nivat (see [AN]) in the context of 
denotational semantics of concurrency. An equivalent metric was also 
used by de Bakker and Zucker (see [dBZ]). For add1tfona1 information the 
interested reader is advised to consult [L] and [Ro]. 

The foJlowing result summarizes all the basic properties of the metric 
space (A00,d) and will be used frequently in the sequel. 

Theorem 2.1 [In the signature+, ., II, IL L ~. 6, a (with a e A)] 
(1) (Aco. d) is an ultrametric space, 1.e. It satisfies the fol1ow1ng 
properties: 

(a) d(p,q) = O .. p = q. 
(b) d{p,q) = d (q,p). 
(c) d(p,q) ~ max {d(p,r), d(r,q)}. 

(ii) p<r> ~ p .. Vn 3m Vk} m (p<k»n = (p)
0

. 

(iii) (Aco, d) is the metric completion of the metric space (Aw ,d'), where 

d' 1s the restriction of d on Aw· 

(lv) For all p e A co, n > 0, d(p,{p)n) ! 2-n. Hence, lfm~co<P>n = p. 

(v) The operations (.)n: A co~ An are continuous. 

(vi) Any operator T (x 1,. .. ,xn) is continuous in the variables x 1, ... ,x0. In 

fact, for any p 1 •...• Pn· q 1 .... ,q0 e A 
00

, 

d(T(p 1, ... ,p0 ), T(q 1, ... ,q0 )) ! max {d{p 1, q 1>, ... ,d(p0 ,q0)}. 

Proof: The proof is omitted. For more details of the proof the reader can 



consu 1 t [K], [L] and [AN]. 

Theorem 2.2 [In the signature+, ., II, lL I, Oii, 5, a Cw1th a e A)] 
A is finite ~ (A 00,d) is compact. 
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Proof: (<=)Assume on the contrary that A is infinite and 1et a1, ... ,a0, ... be 

an infinite list of pairwise distinct atoms in A Then the sequence {an} 

cannot have any convergent subsequence s1nce d(an, am> = 1 /2, for n ;!!: m. 

Clearly, this is a contradiction. 
(~) Thls is immediate from [Du], page 429. 

In v1ew of the prev1ous theorem from now on and for the rest of 
the paper it wH1 a1ways be assumed that A is finite. This wiH 
guarantee that A co is compact. 

J. THE APPROXIMATION PRINCIPLE 

Intuitively, the approximation principle enables one to verify assertions 
in the projective mode1 by proving that the same assertion is valid in 
infinitely many An. To be more precise a formula m (v 1, ... ,vn, ... ) satisfies 

the approximation priniple, and this w111 be abbreviated by ll(~), if the 
following property holds: for any convergent sequences {x 1 r} .... , {xk n}, ... , , 
such that xk n e An for a11 k, n, if the set {n > o : An 1= ~ (x 1 rr····xk 0 , ... )} is 

1 I I 

infinite then it is true that A
00

1= g? Oim0 ~00 x1 rr ... , llmn~oo xk n,. . .). 
I I 

Now it is possible to prove theorem 1.1 

Proof of theorem L 1: It is enough to show that for any formula~ e P, 
fl(~) holds. The proof 1s by 1nduct1on on the construct1on of the formula ~. 

For any operator T Cv v··,vm) let r° Cv v··,vm> denote the interpretation of ,, 

T tn the model A0. Us1ng induction on the construct1on of T and the 
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def1n1t1ons of the operations 1n the process algebras Arl <see sect ton t > tt 

1s easy to show that 

Now, it is required to show that the formula T(v 1, ...• vm> == S(v 1, ... ,vm> 

satisfies the appriximation principle ll. Indeed, let {x t ,J, ... , {xk,n}, ... be 

any convergent sequences such that xk n e An for all k, n and the set 
1 

J = {n > o : An I= T<x 1 rr····Xm n> = S(x 1 rr .... xm n>l 
I I I I 

is 1nf1nite. It is enough to show that 
A

00

'F T(11mn ... co x1 rr .. .,l1mn ... co Xm n> = S(Hmn ... co x1 rr ... ,Hmn ... 00 Xm n>· 
I I I I 

Fork= 1, ... ,m put xk = 11mn ... co xk n· It 1s clear that for all n e J, , 
Tn(X 1 rr ... ,Xm n) = 5n(X 1 rr ... ,Xm n)· 

' , . . 
Using thts last equatton and lemma 3.1 1t ts easy to show that for all n e J, 

<T<x 1 rr ... ,Xm nHn = <S<x 1 rr ... ,Xm n»n· 
I I I 1 

However. the follow1ng result ts an easy consequence of the def1n1t1on or 
convergence 1n A co v1a the metric d: 

lemma J.2 For any sequence {un} of terms in Aw if Un ... u then <un>n ... u. 

Using the cont1nu1ty of the operators T, S (see theorem 2.1) 1t follows that 
T(x 1 rr ... ,Xm n> ... T(x 1, ... ,xm>, 

• • 
sex, ff"•Xm n)-11 SCX1, ... ,Xm)· 

I 1 

Hence. us1ng lemma 3.2 and the last equation tt follows that 
A co F T(x 1""•Xm) = S(x t·····Xm), 

wh1ch completes the proof 1n case 1. 

Case 2: ~ = H v t. 

Let {x 1 J, ... , {xk nl, ... be convergent sequences such that xk n e An for a11 k, 
J J J 

n. and the set J = {n > o : An F m Cx 1 rr····xk n .... n 1s tnnntte. To show that 
I I 

Aco'F ~ (Jimn_.oo XI rr ... ,limn-.oo Xk n, ... ). 
J , 

Put 
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K = {n > 0 : An 1= H (x 1 ,.., ... ,xk n, .. .)}, L = {n > O : An 1= 't <x 1 ,.., ... ,xk n, .. .)}. 
1 I 1 1 

S1nce, J = K u L it is clear that at least one of the sets K, L (say K) must 
be infinite. It follows from the induction hypothesis that 

A 
00

1= H (limn _. 00 x1 ,.., ... , 11mn -+oo xk n, ... ), 
I 1 

and hence a 1 so 

A
00

1= m (limn-+oo X1 ,.., .. .,limn-+oo Xk n, ... ), 
I 1 

whlch completes the proof in case 2. 

Let {x 1 J, .. ., {xk nl,. .. be convergent sequences such that xk n E An for all k, 
I I I 

n, and the set J = {n > O : An I= Q? (x 1 ,.., ... ,xk n, ... )} is infinite. To show that 
• • 

A 
00 

I= m (I imn _.00 x 1 rr···· limn _. 00 xk n,..J. 
I 1 

For each t > O put 

Ji = {n > O : An I= Q?i (x 1 rr .... xk n ... J}. 
• 1 

Clearly, each Ji is infinite and hence the induction hypothesis imp1ies that 

for a111 > 0, 
A co I= ~i (1 imn -roo x 1 rr ... , I imn -+oo xk n, ... ). 

J J 

This completes the proof in case 3. 

Actually, this is the only part of the proof whlch requires the 
compactness of A 00

. Let {x 1 J ..... {xk nl •... be convergent sequences such 
J • 

that xk n E An for all k, n, and the set J = {n > O: An I= m (x 1 rr···,xk n····)} is 
' . . 

infinite. To show that 
A oo I= Q? (limn -+oo x 1 ,..,. .. , 11mn-+oo xk n, .. J. 

1 1 

By assumptton. for each n E J there ex1st elements Yk n e An such that 
1 

An I= t <y 1 ,.., ... ,yk n'· .,x 1 ,.., .. .,xk n1 ••• ). 
1 1 1 1 

The sequences ({Yk,n} : k > 0) need not be convergent. However, using the 

compactness of the metric space A 00 (in fact one can define a compact 
metric on the cartesian product of countably many copies of A00

) there 

ex1stS' an 1nf1nite subset L of J such that each of the sequences {Yk,nlneL 
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1s convergent. Let Yk = 11mneL n _.00 Yk n' fork > 0. Now apply the induction 
J J 

hypothesis to the sequences {xk nlneL, {yk nlneL' fork> 0, and the formula 
J J 

t to obtain that 
A oo f: t {y 1, ... ,yk,..., X 1,. .. ,Xk, ... ). 

This completes the proof of case 4. 

Case 5: ~={Vu 1 ... Vuk ... ) t (u 1,. .. ,uk, ... ,v 1, .. .,vn, .. J. 

This is similar to the cases above and it is left to the reader. Now the 

proof of theorem 1.1 is complete. 

The two examples given below show that theorem 1.1 would not be true if 

the class P of formulas defined above were assumed to be closed either 

under negations or under countable disjunctions. 

Example 3.3 The approximation principle cannot be valid for formulas 
involving infinitary disjunctions. To see this consider the formula 

m (x) = V { x =an: n > O}, 
i.e. m is the countable disjunction of the formulas x = an, for n > O. It is 
c tear that A 00 V m (aU>). Moreover, consider the sequence Xn • an. It is then 

true that for all n > 0, An f: m <xn>· Hence, m does not satisfy the 

approx1mat1on pr1nc1p1e 11, Xn -. aU>. Another example <commun1cated to 

the author by H. Mulder), whlch provides a sim11ar formula but w1th no 

free var1ables 1s the follow1ng: 
t = v { 3x <xa = an) : n > O}. 

It is clear that A
00 ~ t and for all n > 0, An f: t. Hence, t does not satisfy 

the approx1mat1on pr1nc1p1e 11. 

Example 3.4 The approximation principle cannot be valid for formulas 
involving negations. To see this consider the formula 

i' (x,y) = x = an A y = an-1 A x ;;£! y. 

Clearly, for all n > 0, An 1= t (an, a0- 1>. But A 00 V t (aU>, aU>). Hence, t does 

not satisfy the approximation principle 11. 

Proof of theorem 1.2: In view of theorem 1.1 1t is enough to prove that 
(j) implies (i10. In fact, it is enough to show by induction on positive 

formulas m<v 1,. . .,vk,..J that for all p 1,. . .,pk,··· e A 
00

, 
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A co I= ~ (p l•···•Pk···.) ~ V n > O[An I= ~ ((p 1>n, ... ,(pk)n, .. .)]. 

The initial step of the proof is for formulas of the form ~ = T(v 1, ... ,vk> = 

S(v 1, ... ,vk), where T, S are polynomial operators. Suppose that A00 
1= 

T(p 1, ... ,pk) = S<Pv···Pk>· However, 1f p = Q then <P>n = (Q)n, for all n > O. 

Hence, 
(Tn((p 1>n •... ,(pk>n»n = (T(p t, ... ,pk))n = 

(S(p k···pk))n = (Sn((p 1>n, ... ,(pk)n))n, 

for a11 n > 0. It follows that V n > O[An 1= ~ ((p 1>n·····(pk>n>l This completes 

the proof in the case where ~ is an equality between two polynomial 
operators. The proof of the other cases in the inductive proof create no 
particular difficulties and are left as an exercise to the reader. Moreover, 
the compactness of A 00 is not necessary for this proof. Thls completes the 
proof of the theorem. 

4. THE Ul TRAPRODUCT MODEL 

Perhaps the most natural way to interpret the approximation principle is 
via the u1traproduct model. According to [CK], the unraproduct 
construction (to be outlined below) was originally discovered by Skolem 
and used to construct nonstandard models of Peano arithmetic. It was 
later further extended and used by tos to prove his seminal fundamental 
theorem for ultraproducts (see [E] or [EK]); its definition, although 
algebraic in nature, arose from mathematical logic. 

Given an ultrafllter D on the set N of positive integers, deflne an 
equivalence relation =o on the product set TI{An : n > 0} (= the set of all 

functions f : N ... U{An: n > O} such that for alJ n > O, fCn) e An> as follows: 

f =o g ~ {n > o : f(n) = g(n)} e D. 

Clearly, =o is an equivalence relation on the set TI{An : n > O}. For each f e 

n{An : n > O}, let [f]0 denote the equivalence class of f modulo =o and let 

AD be the set of all such equivalence classes. For each binary 
(respectively unary) operation * (respectively rr) define an operation *o 
(respectively rr0) on AD as follows: 

· fflo *o [gl0 = [<(f(n) *n g(n))n : n > 0>10, 
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rro<[f1o> = [<rrn<fCn)) : n > 0>1o· 
These operations are well defined on AD (see [E]) moreover the following 

fundamental theorem holds (see [EJ): 

Theorem 4.1 [Fundamental Theorem for Ultraproducts. tos] 

For any funct1ons f 1, ... ,f k and any well founded, f1n1te formula ~<v 1,. .. ,vk> 1n 

the given signature the following result holds: 
Ao 1= ~([f 110 •... ,[f k1o> ~ {n > o : An 1= ~(f 1Cn). ... .r k(n)) } e D. 

As an immediate consequence of the fundamental theorem, one obtains 

that AD is a model of the theory of process algebras. In fact , lemma 4.2 

implies that it is an extension of the projective model A co. 

Lemma 4.2 The mapping F : A 00
-+ AD : p -+ [ <(p)n : n > O> lo is an embedding 

of A co into Ao. 

Proof: It is easy to show that F is a homomorphism (one merely has to go 

through the deflnitions of the operations in the projective model as given 

in [BK]). To show that it is injective notice that for any p, q e A00
, 

F(p) = F(q) ~ [<(p)n: n > O>lo = [<(q)n: n > O>lo 

~ {n > O : (p)n = (q)n} e D 

<.t {n > O : <P>n = (q)n} is infinite 

~ p = Q. 

This completes the proof of the lemma. 

In view of lemma 4.2, the elements of A 00 will be identified with their 

corresponding images in AD via the embedding F. Moreover, Aco will be 

considered a subset of AD. 

Now it is possible to prove the main result of this section. 

Proof of theorem 1.J: Let mCv 1,. .. ,Vk) be a f1n1te, pos1t1ve formula 1n the 

given signature. The equivalence of (i), (i10 is an immediate consequence 

of the fundamental theorem for ultraproducts (see theorem 4.1 ). Since the 

ultrafilter D is nonprincipal (1.e. all its elements are infinite) the 

implications (v) ~ (iii) ~ (1v) are also immediate. The imp11cation (iv) =* 

(10 is consequence of the approximation theorem (see theorem 1.1) and the 
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fact that limn-... 00 (pj)n =-pj, for j = 1, ... ,k (see theorem 2.1.1v). It remains 

to prove that (10 => (v). But this 1s a special case of theorem 1.2. This 
completes the proof of the theorem. 

The result of theorem 1.3 1s best possible. It cannot be extended to well 
founded formulas with negation. 

Examp1e 4.3 Consider the formula 
cr = (3x, y) [ x = ax A y2 = ay2 A x::t y ]. 

It can be shown that 
AD I= C1 and A 00 ~ 0. 

To show that AD 1= o 1t is enough to show that {n > O : An 1= o } e D (see 

theorem 4.1 ). Indeed, in An, equation x = ax has a unique solution, namely x 

= an. But, y2 = ay2 has more than one solution, in An, (lf n > 1 ), namely y = 

ak, ak+ 1,. .. ,an, where k ts the least 1nteger greater than or equal to Cn -
1 )/2. Since D is a nonprincipal ultrafilter it follows that {n > O: An 1= a } e 

D. Th1s shows that AD t= cr. In order to show that A 00 ~ cr 1t 1s enough to 
prove that the only solut1on (x, y) of the system x = ax A y2 = ay2 tn A00 

must satisfy x = y = a(a). Clearly, x = a(a) is the unique solution of x = ax. Let 
p e A 00 be any solution of y2 = ay2 in A 00

• Then p2 = ap2 and hence p2 = a(a). 
An easy induction on n > O shows that for all n > 0, (p)n = an. Hence, p = a(a) 

and the unique solution of y2 = ay2 in A 00 is a(a). 

The (ultraproduct) process algebra AD makes it possible to define 
nonstandard processes, as the example be low shows. 

Examp1e 4.4 Let a e A be a fixed atom. For any function cr : N .... N such 
that for all n > o. cr(n) ~ n. define the following element a0 e AD: 

acr = [ <a0<n) : n >O >]D. 

It can be shown that for any such function o, the following result holds: 

lemma 4.5 
a0 e A 00 ~ (3X e D) [a is either constant or the identity on X]. 

Proof of the 1emma: The proof of (<=) is trivial. To prove (=>) assume 
that for some p e A 00

, acr = [ <(p)n : n >O >]D. Clearly, the set J = {n > o : 



ao<n> = (p)0} e D. Let n < m, with n, m e J. It is then true that 

ao<n> = (p)n and aO(m) = (p)m· 

It follows that 
aO(n) = (aO(m»n = amin {n, O(m)}

1 
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and consequently, O(n) = min {n, o(m)}. Write the elements of J in an 

increasing sequence: n1 < n2 < ... < nk < .... If o(nk) < nk, for some k > 0, then 

oCnk+i> = o<nk>. for all 1 > o. Otherwise, o<nk) = nk· for an k > o. This 

completes the proof of the lemma. 

It can also be shown that for different size finite sets A the models A00 

need not satisfy exactly the same well founded formulas. 

Example 4.6 Let a, b be two distinct atoms and consider the formuJa t = 
(3x, y) [ x = x2 /\ y = y2 /\ x ;z!y ]. Then it is not hard to see that 

{a, b}00 t= t and {a}00 ~ t. 
(This is because in {a} 00

, with 8 not occurring in the signature, the 
only solution of x = x2 is a<..>.) 

5. DISCUSSION AND OPEN PROBLEMS 

The proof of the approximation principle (theorem 1.1) requires the 

compactness of the topological space A00
• This not only forces the set A of 

atoms to be finite, (see theorem 2.2) but it also excludes the possibi11ty 

of using t (silent or internal action) (see [K], as well as [BK] for the 

definition of this last concept). It is not known, however, if the 

approximation principle could be proved for the same class of positive 

formulas without these restrictions. 

The ultraproduct construction is quite general and it seems it would be 
interesting to study the ultraproduct obtained when one takes countably 

many copies of the finite term model A<..> (which, by the way, is not any 

longer an extension of the projective mode]), as well as its relation to the 

so called graph models (see [BK]). It might also be possible to use the 

ultraproduct construction in order to prove that certain concepts 1n 

process algebras are undefinable in a given signature. (Such a use of 

ultraproducts is we11-known in model theory, e.g. see [El, corollary 3.4). 
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