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Implementation of Modular Algebraic Specifications 

N.W.P. van Diepen 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

The foundation of implementation of algebraic specifications in a modular way is investigated. Given an 
algebraic specification with visible and hidden signature an observing signature is defined. This is a part 
of the visible signature which is used to observe the behaviour of the implementation. 
Two correctness criteria are given for the implementation with respect to the observing signature. An alge­
braic correctness criterion guarantees initial algebraic semantics for the specification as seen through the 
observing signature, while allowing freedom for other parts of the signature, to the extent that even final 
semantics may be used there. A functional correctness criterion allows one to prove the correctness of 
the implementation for one observing function in Hoare Logic. The union over all observing functions of 
such implementations provides an actual implementation in any programming language with semantics as 
described above. 
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1. INTRODUCTION 
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An algebraic specification is a mathematical structure consisting of sorts, functions (and constants) over 

these sorts, and equations describing the relation between the functions and constants. It is a convenient tool 

to specify static and dynamic semantics of programming languages, see e.g. Goguen and Meseguer 
([GM82], [GM84], [MG85]) for more detail on algebraic specification, and [BHK85], [BDMW81] and 

[Die86] for examples. The implementation of an algebraic specification usually consists of the conversion of 

the equations into a term rewriting system, either directly or through the completion procedure of Knuth­

Bendix. More details can be found in [H080] and [0Do85]. The performance of such an implementation is 

rather slow in general, compared with algorithms written in conventional programming languages, while the 
specification must have certain properties to be implemented in this way at all. The aim of this paper is to 
provide another implementation strategy, based on pre- and postconditions, allowing the application of more 

classical programming and optimization techniques. 
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The research for this paper was motivated by ESPRIT Project 348 - Generation of Interactive Program­
ming Environments -, in which the implementation of various aspects of programming languages from for­
mal definitions (including modular algebraic specifications) plays a key role. The project is reported upon in 
[GIP86] and [GIP87]. This paper has independent significance and can be read without knowledge of the 
project. 

1.1. Modular algebraic specifications 
Algebraic specifications have been introduced to provide a description style for data types in an algebraically 
- mathematically- nice way. The mathematical notion of a (many-sorted) algebra used here is a structure 
consisting of carrier sets and typed functions (including constants) over these sets, together with a set of 
equations, specifying the behaviour of the functions. The combination of a set of sorts (the names of the car­
rier sets) and a set of functions (which include constants, unless stated otherwise), is called the signature of 
the algebra. 

The algebraic specifications studied in this paper have additional organization primitives, prompted by 
both theoretical and practical considerations. Central issue is the modular structure imposed on the algebraic 
specifications. An algebraic specification can import another algebraic specification as a module, meaning 
that it adds the sorts, functions and equations of the imported specification to its own. Sorts or functions with 
the same name are only allowed when they are the same (they must originate in the same module), otherwise 
they must be renamed. 

The modular approach naturally leads to two other primitives, a parameter mechanism, and the occurrence 
of hidden (local, auxiliary) sorts and functions. Hidden sorts and functions are used in the equations of the 
module in which they are defined, but they are not included in the exported or visible sorts and functions. 
Only the latter are included in the algebra associated with the module. Hidden sorts and functions make it 
easier to write many specifications by providing local definitions. Also, they are necessary to specify proper­
ties needing an infinite number of equations (when defined without hidden sorts and functions) in a finite way 
(see Bergstra and Tucker [BT83], [BT82]): 

The equations used are conditional equations, i.e. equations which are valid only when certain conditions 
are satisfied. The semantics provided are of an initial nature, though this will be modified in the paper. Initial 
algebra semantics are described by 'no junk', meaning that there are no more sorts than specified and that for 
the sorts specified all elements can be reached via functions specified, and 'no confusion', meaning that 
everything which is equal in the algebra can be proved equal with the equations provided. These semantics 
are usually intuitively clear. 

1.2. lmplementation of algebraic specifications 
Once an algebraic specification has been written there is no clearcut way to derive a working program from 
it. In general, any model of the algebra can be seen as an implementation. Certain models are preferable, 
though. 

A strategy followed quite often to implement a model satisfying initial semantics (an initial model) is to 
transform the specification into a term rewriting system. The easiest way to do this is to give every equation a 
direction, say from left to right, and to view the set of directed equations as a set of rewrite rules, transform­
ing one term over the signature into another. This system can be found in various places in the literature 
([BK86], [DE84], [FGJM85], [GMP83], [0Do85], [Die86]), but the success of this method depends on the 
properties of the directed version of the (in principle undirected) set of equations, combined with the tech­
nique used for rewriting. Turning an equation around (writing B=A instead of A=B) or writing the equations 
in a different order may have significant consequences for the behaviour (both in speed and in termination) 
of the implementation, while the specification has not been changed, except textually. 

An additional problem is what to do with the modular structure when fitting a modular specification in a 
term rewriting system. Transparent semantics can be obtained by a normalization step (as described by 
Bergstra, Heering and Klint [BHK86]), flattening all imports into one module (renaming hidden functions 
and sorts where necessary). The approach above can be applied to the normalized module. It may be 
debated whether the loss of the structure in the specification is sufficiently motivated by the transparency of 
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the semantics. 
The present paper aims at a more module-oriented implementation, giving semantics to implement an 

observing signature (a signature through which one can observe the visible signature, of which it is a subsig­

nature) in a functional way, using descriptions of the observing functions in Hoare Logic (see e.g. the text 

books [LS84], [Bac86]). The significance for the semantics of the import construct will be touched upon 

briefly. The main advantage of this approach is that it permits the implementation of modules in a, possibly 

low-level, efficient way from the high-level specification. This allows the construction of a library of 

efficient basic modules upon which more sophisticated algebraic specifications may depend. 

1.3. Related work 
Implementation techniques for pure initial semantics are burdened with the obligation to implement the 

initial algebra semantics faithfully. This generally slows down the implementation, since often an initial 

specification demands too much detail, as has been discussed by Baker-Finch [Bak:84]. 

Meseguer and Goguen [MG85] also provide an implementation criterion for algebraic specifications. They 

focus on observable sorts, while the present paper takes a functionally oriented point of view. Their 

approach is a special case of the approach presented here. They retain initial algebra semantics for their 

specifications but loosen the restriction on the models for implementation. In the present paper the semantics 

are modified. 
There is a strong resemblance to abstract data type theory as practiced in the verification of correctness of 

programs (cf. Jones [Jon80]). After all, an algebraic specification is a nice way to describe a data type. 

While the specifications look similar, the point of view is different. Constructor functions (i.e. functions 

describing the data type) really construct the type in algebraic specifications, while they only serve as a 

description tool in [Jon80]. 
Techniques which use term rewriting systems have the advantage of allowing (semi-)automatic translation 

schemes, but pay the price with severe restrictions on the set of equations allowed. Perhaps the overhead of a 

completion procedure for generation of rewrite rules is needed, e.g. the Knuth-Bendix procedure (see 

[H080] and [0Do85] for more detail). The technique presented here allows for faster implementations, but 

does not support automatic translation. 

1.4. An outline of this paper 
In the next section brief introductions to both specification formalisms used (the algebraic specification for­

malism ASF and Hoare Logic) are given. 
Section 3 starts with an example to illustrate certain disadvantages of the initial algebra approach to 

motivate the theoretical framework leading to an algebraic implementation notion in the second half. An 

example giving an implementation according to this notion follows in section 4, which may be read before 

section 3.2 to get the flavour, or in the order provided to convince oneself of the rigour of the approach. 

The functional implementation notion is described as an extension of the algebraic notion in section 5, pre­

ceded by an example to show the insufficient strength of the latter notion for our purpose. The example of 

section 4 is implemented in an imperative language in the following section according to this notion. 

Finally some remarks are made and areas of further research indicated in section 7. 

2. THE FORMALISMS INFORMALLY 

2 .1. Algebraic specifications 
The algebraic specifications in this paper are presented in the specification formalism ASF (for Algebraic 

Specification Formalism), of which a complete treatment of syntax and semantics is given by Bergstra, Heer­

ing and Klint in [BHK87]. The choice of ASF is not essential to the paper, so there is no need to explain this 

formalism in great detail. Various features (renaming, infix operators) are not used in the paper and will not 

be discussed here at all. 
A specification in ASF consists of a list of modules. Every module has a unique name and contains the fol­

lowing sections, all of them optional: 
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• A parameters section. which contains a list of sorts and functions to be bound to fully define the current 
module. For instance, a stack may be parameterized by the sort of the items to be put on it. Binding the 
items to some particular sort produces a full definition. 

• An exports section, containing the sorts and (typed) functions visible to the outside world (which is an 
importing module). 

• An imports section. containing a list of modules. The sorts and functions exported by the modules in the 
list are imported in the current list and exported again. Parameters can be bound in this section. The sorts 
and functions of this and the preceding section provide the visible signature in the corresponding formal 
treatment of the algebraic specification. 

• A sorts section, and a functions section, providing the hidden signature of the algebraic specification. 
These two sections together are often informally dubbed the hidden section. Definitions here are local to 
the module. 

• A variables section, which quantifies the list of typed variables universally over the equations presented in 
the 

• equations section, containing positive conditional equations (i.e., equations of the form A =B or A =B when 
Pi =Qi A··· AP11 =Q11 ). Equations consist of open terms generated by all exported functions (these 
include imported functions), and all hidden functions. Every equation is labeled for easy reference. 

The equations which hold in a module are all equations of the module itself and the equations of the (directly 
and indirectly) imported modules with proper renaming of hidden functions, sorts and variables from the 
imported modules to ensure independence. 

A special place in ASF has the function if, which is predefined. if has three arguments of which the 
first must be of type BOOL and the second and third of the same, but arbitrary, type. It is approximately 
defined by the following equation scheme: 

For every sort (with variables x, y of this sort) one adds: 

[if.l] if(true, x, y) = x 
[if.2] if(false, x, y) y 

The semantics of a module is defined by the initial algebra over the export (visible) signature and the func­
tion if as defined by the equations above. This will be encountered in more detail in the remainder of the 
paper. 

Various ASP-specifications will appear in the sequel, to which one is referred for examples. 

2.2. Hoare logic and abstract data types 
Hoare logic is a well-known technique to describe the behaviour of programs in both imperative and func­
tional languages. It has found its way into various text books, e.g. [LS84] and [Bac86], which provide more 
rigour. Briefly, Hoare logic allows one to write 

{P} S {Q}, 
meaning that evaluation of program S in a state in which precondition P holds results in a state in which 
postcondition Q holds. These conditions describe the state vector, i.e., the variables and their contents, of the 
program. Various proof rules and proof techniques are available to verify such a program. 

In the paper some functions specified in an algebraic way will be specified in an equivalent Hoare logic 
way by giving conditions on its input terms and its output. Such a specification is independent of the actual 
implementation program, which may be changed (and preferably optimized). Since Hoare logic techniques 
can be formulated for many languages the ultimate program could be written in any appropriate language, at 
a cost in interfacing. Hence a large degree of language independence for the implementation is achieved, 
allowing various kinds of optimization strategies. 

One way to interpret an algebraic specification is as a high level specification of an abstract data type. 
Hence the implementation strategy for algebraic specifications presented here bears a more than casual 
resemblance to the theory of implementation of abstract data types. An abstract data type is some type 
together with a set of functions on the type. An implementation is a more concrete (i.e., closer to machine 
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level) type with a corresponding set of functions which model the abstract type and functions. This is done 

by providing a translation back and forth between the abstract and concrete types, such that the abstract func­

tions are simulated correctly by the combination of the translation to the concrete type, application of the 
concrete function and the translation back to the abstract type {cf. Jones [Jon80]). 

The scheme in the paper basically relaxes the translation conditions for all terms in the initial model of the 
algebraic specification by demanding translations for specific terms only. This stems from the functional 

orientation: only the input terms need to be translated and only the output terms need to be translated back. 

Section 5 provides more detail. 

3. ALGEBRAIC IMPLEMENTATION 

3.1. lnitial algebra semantics and reusability 
The question we want to consider is the following. Suppose we have an algebraic specification and we want 

to make in some way an efficient implementation for further use by someone else, as in a library. What is 

the interaction between efficiency and semantics? 
Initial algebra semantics have much in favour. They are characterized by 'no junk', i.e., it is clear which 

objects exist, and 'no confusion', i.e., closed terms (terms without variables) are only equal if they can be 
proved equal using equational logic. While these two characterizations are clearly desirable in many cir­

cumstances this is not always the case. 
The 'no confusion' condition generates overspecification in the sense that terms might be distinguished 

from each other without necessity. If the writer of a specification does not care about whether two terms are 

equal or not {in the common case that their usage is identical), and hence does not specify their equality, they 

are unequal. This puts a burden on the implementor of the specification to provide this inequality, not allow­
ing a possibly more efficient identification. Since it is not possible to specify which terms must be unequal 

the only tool available is the precise definition of the opposite property - equality - by extending the number 

of equations. This puts a burden on the shoulders of the specifier, who has to provide these additional equa­

tions. While the extra amount of work is undesirable it is also not clear in general what additional equations 
are necessary and whether a sufficient set can be found at all. For discussions see [Bak84], [Kam83] and 
[Wan79]. 

An example will serve to illustrate this. A very common datatype is the bounded array. Suppose a 
specifier wants to define an array of natural numbers of length ten, indexed from 0 to 9. It should be possible 
to put natural numbers into the array at certain indices and to retrieve them again, getting the last one. Ini­
tially, all entries are set to 0, and of course they can be reset to this value, simply by entering a 0 in every 

slot. Out of bound indices are simply ignored. In practice one would probably want to have a more robust 
version, but this will be at the cost of a longer specification. The following specification is a natural way to 

describe such a bounded array. 

module Bounded.Array 
begin 

exports 
begin 
sorts ARR 
functions 

newarr 
put 
maxindex: 

-> ARR 
NAT # NAT # ARR -> ARR 

-> NAT 
get NAT # ARR -> NAT 

end 

imports Booleans, Natnumbers 
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variables 
i, j, v 
arr 

equations 
[1] maxindex = 9 

-> NAT 
-> ARR 

[2] get(i,newarr) = 0 
[3] get{i,put(j,v,arr)) 

[4] put{i,v,arr) arr 

if{greater{i,maxindex), 
0, 
if{equal{i,j), 

v, 
get{i,arr))) 

when greater{i,maxindex) =true 

end BoundedArray 

This specification contains just about what one wants to specify if the output behaviour of function get is 

the only thing of concern. Equation 1 fixes maxindex and equation 4 says that additions above this key 

have no effect. Equations 2 and 3 describe the behaviour of function get. If a user imports this module and 

restricts the use of the result of functions in the module to get only, it will behave as a bounded array, so no 

need is felt to extend the specification. 
The problem is, that function put is hardly specified. This is natural, since the writer of module Baun -

dedArray concentrated get, the function he wanted to specify. Indeed, in terms of functionality of get 

there is nothing wrong with the specification of put as it is. However, since we are using initial semantics, 

it is possible for someone importing module BoundedArray to extend the number of functions on sort 

ARR with 

sum 

and to add the following equations: 

[5] sum{i,newarr) = 0 
[6] sum(i,put (j,v,arr)) 

NAT # ARR -> NAT 

if{greater{i,maxindex), 
0, 
if{equal{i,j), 

add{v,sum{i,arr)), 
sum{i,arr))) 

This new function makes a summation over all entries ever put into a certain index value of the array. It is a 

well-defined new function in the sense that no unexpected identifications of terms in other sorts than ARR 

(which we are redefining) occur. Of course, the writer of module BoundedArray intended to have only 

the last entry in hand. 
How can the specification be remedied? The straightforward way to get rid of function sum is to put res­

trictions on the terms of sort ARR allowed. Old entries should be forgotten. The following equation specifies 

that: 

[7] put{i,vl,put(j,v2,arr)) if{equal(i,j), 
put(i,vl,arr), 
put{j,v2,put{i,vl,arr))) 

Now the definition of sum would result in undesired identifications in sort NAT. Hence the function is ruled 
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out (it is still allowed to define it like this, but the resulting module will have unintended properties). 

Addition of this one equation seems to be fine, but how can we be sure that the story ends here? This 

requires a non-trivial proof, for instance giving an isomorphism between the initial algebraic model gen­

erated by the specification, and the data type to be modeled. 

In the example, the combination of equations 1 through 4 and 7 does not allow that. The terms newarr 

and put ( 7, 0, new arr) cannot be proved equal by these equations, though they both describe the array 

containing exclusively zeros. Of course, the equation 

[8] newarr = put(i,O,newarr) 

can be added , but then the question whether the set of equations (now 1 through 4 and 7 and 8) fixes what 

was intended returns again. 
Actually, these six equations are sufficient. A proof could proceed as follows. First a set of canonical 

forms is defined, e.g. the set of terms with at most one put for every key in order of the keys and without 

entries of value O. Obviously a bijection between the set of canonical forms and arrays of length ten can be 

found. It also can be proved that every well-formed term of sort ARR is equationally equal to exactly one of 

these canonical terms. So the term model has exactly the same structure. 

The surest way to supply a structural answer in initial algebra semantics is to add a constructor function 

actually making an isomorphic image of the object wanted. In the example this is a bounded array of length 

maxindex+ 1, so for instance a function with 10 holes in it. Then the suitable additional specifications must 

be provided in terms of this constructor function. In the example this would become a function: 

arr: NAT # NAT # NAT # NAT # NAT # NAT # NAT # NAT # NAT # NAT -> ARR 

and in addition to equations 1through4 the equations (v0 ... v9 are variables of sort NAT): 

[nO] newarr = arr(0,0,0,0,0,0,0,0,0,0) 

[pO] put(O,v,arr(v0,vl,v2,v3,v4,v5,v6,v7,v8,v9)) 

= arr(v,vl,v2,v3,v4,v5,v6,v7,v8,v9) 

[pl] put(l,v,arr(v0,vl,v2,v3,v4,v5,v6,v7,v8,v9)) 

= arr{v0,v,v2,v3,v4,v5,v6,v7,v8,v9) 

[p9] put{9,v,arr(v0,vl,v2,v3,v4,v5,v6,v7,v8,v9)) 

= arr{v0,vl,v2,v3,v4,v5,v6,v7,v8,v) 

Apart from the question whether such an ad hoe solution can be found in general this is contrary to the 

amount of detail one wants to specify algebraically. For this two important considerations can be given, one 

philosophical and one practical: 
- Algebraic specification is a higher level programming formalism. While the formalism is powerful enough 

to express a computer up to bit level if necessary, this is a waste of effort. There are more than enough 

lower level programming languages already. 

- An algebraic specification (and indeed any specification) is made with a certain use in mind. This use is 

what has to be specified in detail, since that is what has to be implemented. Other details specified are peri­

pheral in the sense that one might have chosen another description. The less detail is fixed in these peri­

pheral specifications the more freedom an implementor has for optimizing it. The choice of models for 

implementation should not be restricted to one model (up to isomorphism), but rather be as broad as the 
- - -· - . -
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we only wanted a convenient function to enter natural numbers in a "behind-the-screen" data representa­
tion. 

The exact form of the data representation is of little interest to the user of function get, as long as this use 
is not affected. In this example probably a simple array of length 10 is what you want. But changing the 
value of rnaxindex to some large number might make a sparse array approach or a hash-table the better 
implementation. 

For the remainder of the paper we distinguish three important subsets in the signature of an algebraic 
specification: 
- The visible signature which generates the terms existing in the specification for the outside world. 
- The hidden· signature, which is necessary to obtain finite initial algebra specifications on the one hand and 

handy as a shorthand mechanism and alternative data description on the other hand. The complete signa­
ture is the union of the visible and the hidden signature. 

- The observing signature, which restricts the terms generated by the visible signature. It contains the func­
tions through which visible terms may be used and the sorts with terms which may be used as observing 
terms. A term is an observing term if both the head function and its sort are in the observing signature. 
This signature is the subset of the visible signature one wants to be implemented as specified. In the 
example this is the signature with sort NAT and function get. 

The choice of the functions and sorts in the observing signature depends on the goal one has in mind for the 
specification. Making this signature bigger enhances the possibilities for use but restricts the freedom of the 
implementor. So one can opt for a fast, but narrowly applicable implementation, or for a more generally 
usable, but slower implementation. 

Of course, the speed of a certain function in an observable signature is not only dependent on the signature 
but also on the implementations of other (not necessarily observing) functions. One can for instance trade the 
speed of an insertion function for the speed of a retrieval function by gearing the underlying data structure (at 
this level of abstraction represented by the visible functions that are not observing and the hidden functions) 
to the other task. 

The consequences of this tripartition for the theory are investigated in the next section. 

3 .2. A theory of algebraic implementation 
This section is devoted to the development of a theory for the subsequently introduced notion of algebraic 
implementation with respect to an observing signature. Roughly speaking two algebraic specifications are 
algebraic implementations of each other when the behaviour of the observing functions is the same in both 
specifications. An annotated example is provided in section 4. The reader may wish to read the example 
first, referring back to notations and details in this section when necessary. 

3.2.1. Notations (algebraic specifications) 
In the rest of the paper the following conventions are used: 
a. A signature l: is a tuple (S,F) in which Sis a set of sorts and Fa set of typed functions. (Note that there is 

no intrinsic relation between the sorts in Sand F.) Often an element of Fis denoted by its name only, pro­
viding typing when necessary. Two functions with the same name, but different typing are different func­
tions. 

b. A complete signature l: = (S,F) is a signature in which for all/: s 1 x · · · x St-7S e F holds that all sorts in 
the typing off are available in S, so s 1, · · · , St, s e S. 

c. For a signature 1: is T(l:) the set of closed terms; Ts(l:) is the subset of terms of sorts from T(l:). 
d. Union, intersection and inclusion are defined for signatures l:i. I:i (l:; = (S;.F;)), as: 

2:1 u:I:i = (S1VSz, F1VF2) 

1:1 n:I:i = (S1nS2, F1nF2) 

l:1 &;;l:i = S1&;;S2 A F1~2 
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e. An algebraic specification is a tuple (:Ev. :EH, E) with 
- l:v = (Sv, Fv) a complete signature (the visible signature), 

- EH= (SH, FH) a signature (the hidden signature) such that :Evu:EH (the internal signature) is a complete 

signature, and 
- Ea set of equations over T(:Evu:EH)· 

f. Let (:Ev, :EH, E) be an algebraic specification and let t, t' e T(:Evu:EH). For an equation eeE, t and t' are 

equal through direct substitution in equation e (i.e., in one step) is written as: 

t =et'. 

t and t' are equationally equal, i.e., equal through zero or more direct substitutions in one or more equa­

tions from E, is written as: 

t =Et'. 

3.22. Definitions ("£o-observability and -equality) 

Let (:Ev. :EH, E) be an algebraic specification and 1:0 = (S0 , F0 ) (the observing signature) a signature such 

that l:o ~ l:v. 

a. The set of closed 1:0 -terms over :Ev. also called the set of observing terms is the set of terms in T(l:v) of 

sort in S0 and head function symbol in F0 . It is defined as: 

T("£o, l:v) = {teT(:Ev) I 3f:s1X ... XSk-7S EFo. sESo 3u1ET(:Ev) ... 3U,tET(:Ev) 

[te Ts(:Ev) A t=f(u 1, • • • ,U,t)] } . 

The set of closed :E0 -terms over :Ev of sorts is written as Ts(:E0 , :Ev ). 

Note that it is possible to have functions in F0 whose output sort is not in in S0 , or sorts in So which can­

not be reached from F0 . This choice of notation is motivated by the function-oriented approach of this 

paper. By choosing a set of observing functions F0 and all visible sorts Sv for S0 all sorts in Sv which 

cannot be reached do not influence T(:E0 , :Ev ). For symmetry reasons the definition is formulated in such a 

way that one can also restrict the sorts and not the functions, as will be done in point e below. Alterna­

tively, it is possible to define S0 as the set of sorts in the range of F0 . This does not affect the theory. 

b. Where no confusion can arise the following abbreviations are used: 

To= T(:Eo, :Ev) 

Tv = T(:Ev) 

Ts,O = Ts<:Eo. :Ev) 

Ts, V = Tsf:Ev) 

c. A context (for sorts) T(•6 ) is a term with a missing subterm of sorts. The empty context (i.e., a context in 

which the top term is missing) is written as •s· 
A term tETs,v is I:o-observable if and only if there exists a context T(9s) such that T(t)eT0 ; 

a :E0 -observable term te Ts, v is directly ::E0 -observable if and only if te T 0 (hence the empty context 

T(•s) =•s satisfies T(t)eTo); . 
a :E0 -observable term teTs,v is indirectly I:o-observable if and only if t~ T0 (hence the empty context T 

does not satisfy T(t)eT0 ). 

d. I:o-equality (i.e., equality with respect to observations through the observing signature :E0 ) is defined as 

follows for two terms t, t' e Ts, v: 

t-E,l:,, t' <=> V'T(•s) [T(t), T(t')e To -7 T(t)=E T(t') ]. 

Where no confusion can arise-E,r., is abbreviated to-0 . 
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e. Let f e Fy. A term t e T(:Ey) is /-observable if and only if t is (Sy, {/})-observable; 
two terms in T(:Ey) are /-equal if and only if they are (Sy, {/})-equal. 
Lets e Sy. A term t e T(:Ey) is s-observable if and only if t is ({s }, Fv )-observable; 
two terms in T(:Ey) are s-equal if and only if they are ( { s } , Fy )-equal. 
Since the definition in case c ignores unreachable sorts and functions to unavailable sorts, only terms with 
head symbol fin the first two cases, and with range s in the last two, are relevant 
The notion of observability via a sort corresponds to the notion in [MG85], and is underlying the 
behavioural equivalence notion in [ST85]. In the latter paper, the observational equivalence notion is very 
general, since it is parameterized with the logic used to reason about observations. Thus :Ea-equality 

corresponds to observational equivalence under conditional equational logic in the terms of [ST85]. By 
concentrating on one logic more can be said about the implementation in the present paper. 

3 2 .3. Some facts about :Ea-observability and -equality 
In final algebra semantics terms are equal unless they can be proved different, so in models with final seman­
tics there is the maximum amount of 'confusion' consistent with the inequalities which must exist in the. 
model. As such, :Ea-equality is a notion from final algebra semantics. If you want to show that two closed 
terms are different you have to find a context for which these terms behave differently, thus proving their 

inequality. If no such context can be found the terms cannot be distinguished from each other. In initial 

semantics, on the contrary, they are distinguished unless they are equationally equal, in other words, unless 
they can be transformed into each other via equations from E, thus proving their equality. 

Let (:Ey, :EH, E) be an algebraic specification, :Ea ~y, and t, t' e Ts,Y• then the following facts hold: 
a. T(I:y, :Ey) = T(l:y} 

Observing through the visible signature gives all visible terms. This follows immediately from definition 
3.2.2.a. 

b. If l:' a !;;;;; l:o then T(I:' a. l:y) !;;;;; T(l:o. l:y ). 
A smaller observing signature results in less observing terms. Again this follows from definition 3.2.2.a. 

c. If l:' a !;;;;; l:o then t -E,I,, t' ~ t -E,I.' 
0 

t'. 
This follows from the definition of :Ea-equality and fact b, since there are less contexts in T(l:' a.l:y) than 
in T(l:a, l:y) to show the difference between tan t'. 

d. If t and t' are not l:0 -observable they are :Ea-equal. 
Since there is no context to show the difference between t and t' this follows from the definition. 

e. If t is Ea-observable and t' is not then they are Ea-equal. 
The argument for fact d holds here also. 

f. It should be noted that in cases d and e both t -E,I.v t' and-... t -E.I.v t' can be true. Take for example: 

:Ey=((s}, {a, b}) with a, bes, and 

Ea= ( {s }, {a}) for case e, or 

l:a=({s}, 0) for case d. 

When the set of equations is empty the following holds: 

a - 0 .z, b and -... a - 0 .r.. b, 

while E ={a =b} has as result: 

a -ia=b},I,, b and a -ia=b},I.,. b. 

The following lemma states that the initial algebraic structure is retained on directly observable terms. So 
only indirectly observable and unobservable terms can lose their initial behaviour. It follows immediately 
(corollary 3.2.5) that no restriction on the observability (i.e., Ea= :Ey) retains the initial algebraic structure. 



3.2.4. Initial Algebra Lemma 
Fort, t'eT3 ('1:.o, '1:.v): 

t-E,l:,,t' ~ t=Et'. 

Proof: 
::::> Immediately from definition 3.2.2.d. 
~ For all contexts T(•s) such that T(t), T(t') e T('l:.o, '1:.v ), t =Et', and hence T(t) =E T(t'), holds.D 

3.25. Corollary ('J:.o = '1:.v preserves initial algebra semantics) 
For t, t' e Ts('J:.v ): 

t-E,l:,. t' ~ 11i t'. 

3.2.6. Witness Existence Lemma 

11 

The following lemma formulates a nice fact for proofs with observable terms. Two terms are '1:.0 -equal 

unless there is a context proving the opposite. Hence two terms are '1:.0 -equal when there is no common con­

text. So it is important to have at least one common context In this lemma existence of a witness context is 

proven for '1:.0 -observable terms of the same sort. 
Lemma: For two 'J:.o-observable terms t, t' e Ts,v there exists a context T(•5 ) such that T(t), T(t') e T 0. 

Proof: 
a. If t, t' e Ts,o the empty context T(•s) = 9s is fulfilling the condition. 
b. If t is indirectly '1:.0 -observable there exists a non-empty context T(•5 ) such that T(t) e T 0. Since T is non­

empty the head function/is in F0 with range in S0 . Hence T(t') eT0 .D 
In the proof, case a corresponds to the initial algebra equality, and case b to the final algebra (observable 

only) equality. 

3 .2.7. '1:.0 -equality as congruence: a problem with transitivity 
We would have liked to use the notation of =o instead of - 0 since it should define a congruence similar to 

=E· However, there are some problems connected with the final nature of - 0 and the initial nature of =E· A 

congruence - satisfies the following laws: 
- symmetry, i.e., t- t; 
- reflexivity, i.e., if t - t' then also t' - t; 
- transitivity, i.e., if t-t' and t' -t"; then also t-t"; 
- the substitution property, i.e., if t 1 - t 1' /\ • • • A t11 - tn' holds then also f (t 1' · · · ,t11)- f(t {, · · · ,t/) holds. 
For terms in T('J:.y) reflexivity, symmetry and the substitution property of - 0 follow immediately from the 

corresponding properties of =E and definition 3.2.2.d. However, in section 3.2.3 facts d and e show that tran­
sitivity is not guaranteed on T('l:.v ). Since these facts deal with terms that are not observable, this is no real 

problem. However, - 0 is also not transitive on the subset of '1:.0 -observable terms in T('l:.v ). This is illustrated 

in the following example. 
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s 

x: 
FIGURE3.l 

Let ::Ev = ( {s }, {a, b, c, z, /}) with a, b, c, z e sand f: s-+ s, E consists of the equation f (x)=z with x a 

variable of sorts, and :Eo = ({s }, {a, b, z,f}). This structure is shown in FIGURE 3.1. Then a - 0 c, since 

f (a)=Ef (c),f (f (a))=E/ (f (c)), etc., and similarly c -o b, though-.a-0 b. 
Still, this is not unreasonable. If one only looks at :E0 any relation involving c is irrelevant. The new struc­

ture is given in FIGURE 3.2, forgetting the dashed arrow. 

FIGURE3.2 

If later on one would want to add a new constant named c in FIGURE 3.2 then c could be a new name for 

an old constant like a, b, or z, or even a completely new constant. So if c is observably not equal to one or 

more of constants, this would rule out some of the possibilities. Hence, the freedom allowed when introduc­
ing c would be limited in an undesirable way. 

The precise criteria conserving transitivity, and hence making - 0 a congruence are given in Theorem 

3.2.8. Some important classes of observable signatures that are transitivity conserving are given in a corol­
lary (3.2.9). 

3.2.8. Transitivity Theorem 
Lett, t', t" be ::E0 -observable terms of sorts such that t - 0 t' and t' - 0 t", then 

-.t-o t" <=> t, t" e To At' E Ty-To A V'T(•s)T(t), T(t") E To -7 [T(t).CE T(t") H T(•s)=•sJ 

Proof 
<= The empty context T(4ts) = 9s is a context for t and t", since they are directly ::E0 -observable. Hence 

t *E t" and thus -, t-0 t". 
=> The three parts of the conjunction are treated in sequence. 

If t is indirectly ::Eo-observable all contexts T(•s) such that T(t), T(t") e T0 are non-empty and hence 

satisfy T(t') e TO· Hence for any such context T(t) =E T(t') =E T(t"), and thus t - 0 t". From this 
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contradiction it follows that t (and by symmetry t") is directly :E0 -observable. 
If t' is directly :E0 -observable, t =E t' and t' =E t" hold, since t and t" are directly observable, and hence 
t - 0 t". Hence t' must be indirectly 1:0 -observable. 
Since -,t-0 t" there exists a context T(•s) such that T(t) ;tE T(t") and T(t), T(t") e T0 . If T(•s) is non­

empty then also T(t') e T 0, and hence T(t) =E T(t') =E T(t"). Thus T(•s) must be the empty context •s.D 

3.2.9. Transitivity conserving constraints 
The transitivity theorem states that two directly :Ea-observable terms can be :Ea-unequal, even though there is 
an indirectly :E0 -observable term which is :E0 -equal to both. This is the case in the example in 3.2.7. Hence 

:E0 -inequality is stronger for directly observable terms than for indirectly observable terms. 
The theorem above provides necessary and sufficient conditions for transitivity. This may be unwieldy to 

use in practice. However, it is conveniently possible to give criteria, that are important from the point of 

view of implementation, to check whether -a is an equivalence relation. Intuitively, the implementation of 

directly observable terms only has to follow the initial algebra semantics (Lemma 3.2.4), while indirectly 

observable and unobservable terms are less demanding for the implementation. The criteria are formulated 

below: 
Corollary: 
Let Ts be the subset of :Eo-observable terms from Ts,V· The relation -E,I:,, is an equivalence relation on Ts if 

either of the following holds: 
a. T8,o =0; 
b. Ts,0 =Ts; 
c. for all te Ts there is precisely one t' e Ts,o such that t' -o t; 
d. :E0 = (Sa.Fv) for some S0 ~Sy. 
Notes: 
ad a. Sort s is not directly observable. Consequently its internal representation may be changed without 

altering the directly observable sorts. 
ad b. Ts has to be implemented with initial algebra semantics. 
ad c. There is exactly one directly observable term :E0 -equal to any term of Ts. This term plays the role of a 

canonical form and has to be implemented faithfully. All other terms may be implemented by their 

canonical equivalent. 
ad d. Ifs e S0 then all constructor functions for terms of sorts are available, hence Ts = Ts,o (case b). 

If s E So then no constructor function for terms of sort s qualifies as outermost function in T 0 and 

hence Ts,o = 0 (case a). 
This case states that for s-observability - 0 is a congruence for terms of any sort s'eSy, including s 
itself. Hence it is a rephrasing of the well-known fact that observability through a sort conserves the 

congruence (see [MG85]). 
Generally - 0 will be a congruence. If that is the case it is usually written as =o in the sequel. Similarly -E.I:o 

becomes =E.I:,, and ~.Iv becomes =E,i:,.. 

3.2.10. Definition (Algebraic Implementation) 
The following definition represents the central notion in this section, namely the notion of implementation for 
an algebraic specification relative to an observing signature. Intuitively, two specifications are algebraic 

implementations of each other when they have the same congruence on the observable terms. This is 
inherently an almost symmetric notion: if a small specification implements part of a large one then the large 

specification implements the same part of the small one (and more, but that is redundant) if the set of observ­

able terms is the same. We provide the following definition: 
- Let {l:y, :EH, E) and (:E'v. l:'H, E') be algebraic specifications and :E0 be a signature such that 

:Eo ~:Evn:E'v· 
<l:'v. :E'H• E') is a :E0 -implementation of (l:y, r.H, E) if and only if for alls e Sv and for all :E0 -observable 

terms t, t' e T9 (:Ev ): 
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3 2 .11. Some facts about algebraic implementations 
a. If 1:0 i;;;; l:v then an algebraic specification (l:y, l:n. E) is a 1:0 -implementation of itself. As an even more 

trivial special case {l:y, l:n, E) is a :Ev-implementation of itself. 
b. If (l:' v, l:' n. E') is a :Ea-implementation of (l:v, l:n, E) and l:' o i;;;; l:o then (l:' v, l:' n, E') is also a l:' o­

implementation of (l:v, l:n, E). 
c. :Ea-implementation is a symmetric relation on the class of algebraic specifications with the same set of 

:Ea-observable terms. 
d. :Ea-implementation is also a transitive relation under the conditions of case c. 
While the facts above provide some idea about the usefulness of the definition two important properties have 
to be proved. Of course we want to conserve the property in initial algebra semantics that the hidden signa­
ture and the set of equations may be changed as long as this does not affect the congruence on the visible sig­
nature. This is proved in lemma 3.2.12. 

Next, in the centtal theorem a functionally oriented criterion is given for an algebraic implementation. 
This serves as a starting point for section 5, in which a notion of functional implementation will be given. 

3 .2 .12. initial Algebra Implementation Lemma 
Let (l:y, l:'n. E') be a I:y-implementation of (l:y, l:H, E), then for alls E Sv and for all t, t' E Ts,v: 

t=B t' <=> t=B' t'. 

Proof: 
All terms in T v are l:v-observable. Hence for all s E Sv and for all t, t' e Ts, v: 

t =E,l:y t' <=> t =E',l:y t'. 

According to corollary 3.2.5 t =B.Iv t' <=> t~ t' and t=E',l:v t' <=> t=B' t', hence t =B t' <=> t=B' t'.O 

3.2.13. Algebraic Implementation Theorem 
Let Cl:v, l:n, E) and (l:' v, l:' H, E') be algebraic specifications and l:o i;;;; I:v n I:' v. 
If for all f e F0 , f: s 1x • · · xsk ~so, with so e So, for all t E Ts

0
(I:v) and for all (u1> · · ·, uk) E (T(:Ev)l 

f(u 1, • • • ,uk) =Et <=> f(u 1, • • • ,uk) ~· t holds, then (I:' y, :E' H• E') is a :Eo-implementation of (l:y, l:H, E). 
Proof: 
Lets e Sv and t, t' e Ts(I:v) be :Eo-observable, then 

t-E,!.,, t' <=> 'VT(•5 ) [T(t), T(t')e T(I:o, l:v) ~ T(t)=E T(t')] 

<=> 'VT(•5 ) T(t), T(t') E T(I:o, I:v)[3g EFo, U1> ···,Uk E T(l:v) 

(g(u 1, • • • ,uk) = T(t) A g(u 1, • • • ,uk) =E T(t'))] 

<=> 'V T(•5 ) T(t), T(t') E T(I:o, l:v) [3 g E Fo, u 1> • • • , uk E T(l:v) 

(g(u 1' • · · ,uk) = T(t) A g(u 1' • · · ,uk) =E' T(t'))] 

<=> 'VT{•s)T(t), [T{t')E T(I:o,l:v)~T(t)=E'T(t')] 

(by 3.2.2.d) 

(by 3.2.2.a) 

(by 3.2.2.a) 

(by 3.2.2.d) 

0 
Note: this theorem is sufficiently strong to describe the behaviour of a function up to the congruence defined 
by -E.r.,,, if such a congruence exists. An example of the use of the theorem is given in the next section. A 

more restrictive definition of implementation, strong enough to describe functional implementation, is given 
in section 5. 
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4. AN EXAMPLE: TABLES 
In this section, two definitions of elementary data structures for objects of arbitrary sort ELEM are given. 

Both data structures support storage and retrieval with elements of an arbitrary sort KEY as selection cri­

terion. Equality is defined on this sort through function eq. 

The first specification describes a sort TABLE. An element of this sort is a list of all entries with 

corresponding keys in the data structure. This data structure can be searched from the last entry to the first, 

but anything faster than linear search is not accommodated for. 

The second specification uses a hidden sort TREE to implement the same data in a search-tree. This is pos­

sible when we have a total ordering on sort KEY. In the example function lt, combined with eq, provides 

such an ordering. 
The specifications below are parameterized with sorts KEY and ELEM at the specification level. To guide 

the intuition, one should think of two (perhaps equal) sorts which are already well-known, e.g. CHAR for 

ELEM and INT for KEY. ASF does not provide a semantics for unbound parameter sorts, since there is no 

mechanism to force restrictions on the actual parameter (like the total ordering in the example). In the paper 

restrictions are given in the commentary, so it will be clear what the semantics should be. 

The remainder of this section is devoted to a fairly detailed proof sketch of the fact that the modules 

Tables and Tables-as-trees are algebraic implementations of each other when one observes through 

the retrieve function lookup only, in other words, with respect to lookup-equality. So we take for the 

observing signature ({BOOL, ELEM, KEY, TABLE}, {lookup}), or ((ELEM}, {lookup}), since ELEM is 

the range of lookup. 
The simple specification is given below: 

module Tables -- original specification 

begin 
parameters Keys-and-Elements 

begin 
sorts KEY, ELEM 
functions eq: KEY # KEY -> BOOL -- equality 

end Keys-and-Elements 
exports 

begin 
sorts TABLE 
functions 

nulltable: -> TABLE 

tableadd : KEY # ELEM # TABLE -> TABLE 

lookup KEY # TABLE -> ELEM 

errorelem: -> ELEM 

end 
imports Booleans 

variables key, keyl, key2: -> KEY 
elem -> ELEM 
table -> TABLE 

equations 
[l] lookup(key, nulltable) = errorelem 

[2] lookup(keyl, tableadd(key2,elem,table)) 
if(eq(keyl,key2), 

elem, 
lookup(keyl,table)) 

end Tables 
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This specification speaks for itself. It is similar to the first Bounded.Array specification in section 3.1. 
Function tableadd gives the same problems as function put in that module. To avoid them we restrict 

the set of observing terms to those with function lookup as outermost symbol. Hence an implementor of 
this module can concentrate on the correct implementation of lookup. 

To get an efficient implementation of lookup more detailed information about sort KEY is needed. If 
KEY is a small set something similar to a bounded array is feasible. If a hash function could be defined, a 
hash table might be used as implementation. Each of these structures can be algebraically specified as hid­
den structure, thus providing an algebraic specification which upon implementation gives an equivalent, but 
more efficient, implementation of lookup. 

For this example it is assumed that a total ordering can be defined on the set KEY with the functions eq 
and lt (lower-than). The total ordering allows the definition of a binary search-tree. This is done in module 
Tables-as-trees below: 

module Tables-as-trees 
begin 

parameters Keys-and-Elements 
begin 

sorts KEY, ELEM 
functions eq: KEY # KEY -> BOOL -- equality 

lt: KEY # KEY -> BOOL -- lower-than --new 
-- eq and lt must provide a total ordering on sort KEY 

end Keys-and-Elements 

exports 
begin 

sorts TABLE 
functions 

nulltable: 
tableadd : KEY # 
lookup KEY # 
errorelem: 

end 
imports Booleans 

-- hidden section 
sorts TREE 
functions 

tree TREE 
nil tree 
treeadd KEY # 
lookuptr KEY # 
tbltotree: TABLE 

# KEY 

ELEM 
TREE 

variables key, key2 
elem, elem2 
table 
treel, tree2: 

-> TABLE 
ELEM # TABLE -> TABLE 
TABLE -> ELEM 

-> ELEM 

# ELEM # TREE -> TREE 
-> TREE 

# TREE -> TREE 
-> ELEM 
-> TREE 

-> KEY 
-> ELEM 
-> TABLE 
-> TREE 

--new 

--new 
--new 
--new 

--new 
--new 



equations --all new 

[hl] tbltotree(nulltable) = niltree 
[h2] tbltotree(tableadd(key,elem,table)) 

= treeadd(key,elem,tbltotree(table)) 

[h3] treeadd(key,elem,niltree) 
= tree(niltree,key,elem,niltree) 

[h4] treeadd(key,elem,tree(treel,key2,elem2,tree2)) 
if(eq(key,key2), 

tree(treel,key,elem,tree2), 
if(lt(key,key2), 

tree(treeadd(key,elem,treel), 
key2,elem2,tree2), 

tree{treel,key2,elem2, 
treeadd(key,elem,tree2)))) 

[h5] lookuptr(key,niltree) = errorelem 
[h6] lookuptr(key,tree{treel,key2,elem,tree2)) 

if(eq(key,key2), 

[h7] lookup{key,table) 
end Tables-as-trees 

elem, 
if(lt(key,key2), 

lookuptr(key,treel), 
lookuptr(key,tree2))) 

lookuptr(key,tbltotree(table)) 

Note that all equations contain hidden sorts. Equation h7 defines lookup in terms of lookuptr, the 

retrieval function on trees, itself defined in h5 and h6. Equations hl through h4 define the build-up of a tree 

from a table. 
It is possible to declare all hidden sorts and functions visible rather than hidden. The effect would be that 

module Tables-as-trees would still be an implementation with respect to lookup-observability of 

module Tables, but not the other way around. The reason for the latter is the existence of observable terms 

containing constructor functions for TREE in module Tables-as-trees, terms which are not existent in 

module Tables. 
The following proof sketch first defines a well-formedness predicate searchtree for terms of sort TREE, 

since not all constructible terms are search-trees. Then it is proved that the predicate searchtree is invariant 

over the insertion function treeadd, and that the retrieval function lookuptr is well-defined for single 

additions to a tree which satisfies this predicate. Finally the equivalence between the two specifications is 

proved with induction on the number of insertions. 

4.1. Definition (well1ormedness of searchtrees) 
The predicate searchtree(t) for a term t of sort TREE describes the well-formedness of a tree as search-tree. 

It will be used in the proof to derive properties about the behaviour of the data structure generated by func­

tion treeadd. This holds in particular for the behaviour observed through function lookuptr, which is 

needed to derive the behaviour of function lookup. The predicate is defined as follows (with t 1, t2 of 

sort TREE, j, k, 1 of sort KEY, and e of sort ENTRY): 
- searchtree(niltree) =true; 
- searchtree(tree (tl, k, e, t2)) = 

searchtree(tl) A searchtree(t2) A 

TI j e set-o/-keys(tl)[lt (j,k) true] A 

TI 1 e set-of-keys(t2) [lt {k, 1) = true], 
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with set-of-keys(t) for terms t of sort TREE a set containing all keys in t. Formally: 

- set-of-keys(niltree) = 0; 
- set-of-keys(tree (tl, k, e, t2)) = set-of-keys(tl) u {k} u set-of-keys(t2). 

42. Wellformedness lemma/or trees 
Two important properties of the behaviour of well-formed trees (i.e., terms satisfying predicate searchtree) 

are formulated. Case a states that the predicate searchtree is an invariant under insertion in the tree. Case b 

states that a well-formed tree behaves properly with respect to function lookuptr after insertion. These 

facts provide technical steps for the proof of lookup-equivalence in section 4.3. 

For the remainder ofsection4, letk, k', ... be of sort KEY, e, e', ... be of sort ENTRY, and t, tl, ... be of 

sort TREE, then we can formulate the following 
Lemma: 
a. searchtree(t) ~ searchtree(treeadd(k', e', t) ). 
b. searchtree(t) ~ 

[eq(k,k') =true ~lookuptr(k,treeadd(k' ,e' ,t)) = e']A 

[eq(k,k') =false ~lookuptr(k,treeadd(k',e',t)) = lookuptr(k,t)]. 

Proof by induction on the number of nodes in the tree (omitted). 

4.3. Proof of lookup-equality 
The following proof uses induction with respect to the number of insertions using function tableadd. The 

well-formedness predicate searchtree makes the proof straightforward. 
In this proof the equivalence defined by the equations from module Tables is called =Tb and from 

module Tables-as-trees =Tr· Equivalence according to an equation numbered i is written =i· 

According to Theorem 3.2.13 it is sufficient to prove for all pairs (k, t) e T KEY,V x T TABLE,V and for all 

terms e e T ELEM,V 

lookup (k, t) =Tb e ~ lookup (k, t) =Tr e. 

First we assume that e does not contain the function lookup. The proof then proceeds with induction on 

the length of terms in T TABLE,V• which is defined in the obvious way, with multiple occurrences of the same 

key counted for every occurrence separately. 
For the table of length 0, null table, both lookup (k, null table) =Tb errorelem and 

lookup (k, null table) =Tr errorelem obviously hold. Now let 

lookup (k, t) =Tb e ~ lookup (k, t) =Tr e 

be proved for all tables oflength n ~O and e not containing lookup, and let t' = tableadd (k', e', t), 

with e' not containing function lookup, be a table oflength n + 1. 

- If eq (k, k') =Thrrr true then 
lookup (k, t') =2 e', and 
lookup (k, t') =h7 lookuptr (k, tbltotree (tableadd (k', e', t))) 

~2 lookuptr(k,treeadd(k' ,e' ,tbltotree(t))) 

=Tr e' • 
with the last equation following from lemma 4.2. 

- Ifeq(k,k') ~rrrfalsethen 
lookup (k, t') =2 lookup (k, t), and 
lookup (k, t') =h7,h2 lookuptr (k, treeadd (k', e', tbltotree (t))) 

=Trlookuptr(k,tbltotree(t)) 
according to lemma 4.2. The induction hypothesis states that lookuptr (k, tbltotree (t)) =Tr 

lookup (k, t). 
The proof can now be extended to general terms e e T ELEM, v by replacing such terms by terms not contain­

ing function lookup, starting with the innermost occurrence(s) of this function. It can easily be seen that 

any term in T ELEM,V containing one occurrence of lookup is equivalent in either module to a term contain­

ing no occurrence of lookup. The soundness of such a replacement per term with one lookup was proved 



19 

above. Since e contains a finite nwnber of occurrences of this function this series of replacements terminates. 
Hence the proof sketch is complete for general e e T ELEM.V· 

5. FlJNCTIONAL IMPLEMENTATION 

5 .1. The functional view 
The implementation Theorem (3.2.13 in section 3.2) gives an algebraically clean criterion for implementa­
tion. However, it is not sufficient as a tool to fix implementations of functions in the classical sense: a func­
tion has a certain result value for every combination of input values. Of course the result value should 
depend on the input values, but it should not depend on the implementation. 

The violation of this property is shown in the example below: 
Let 

I:y = ({s, t}, {a, b,p, q, f}) witha,b e s,p,qe tand f:s-H, 
I:o = ({s, t}, {a, b, f}), 
:En= 0, 
E= {f(a)=p, f(b)=p},and 
E' = {f(a)=q, f(b)=q}. 

The I:0 -observable terms in Tv are a, b, f(a) and f(b). Obviously f(a) =E,r.,, f(b) and f(a) =E',to f(b). Hence 

(I:v. 0, E) and (I:y, 0, E') are I:0 -implementations of each other. However, f clearly has different result 
values. 

Additional restrictions are needed to be able to view a term in T 0 as a function (the header function) 
defined on tuples in Ty and with range Ty. In initial algebra semantics the 'result' is the congruence class 
defined by the set of equations E. Hence any term in the congruence class will do, since it fixes (for specific 
E and I:v) the class. So we need a canonical form, which is a representative for every congruence class. In a 
confluent and terminating term rewriting system this canonical form is called 'normal form', and it is defined 
by the system itself. 

The following three sets of terms within Ty are induced by I:0 : 

- the directly :to-observable terms, 
- the indirectly I:0 -observable terms, and 
- the terms reachable from T 0, i.e., terms not necessarily in T 0 but in the congruence class of some term in 

To. 
Note that the last two sets may overlap. The input values for functions in Fo with range in S0 form a subset 
of the union of the first two sets. Any element of the first and the third sets could be in the range of a function 
inFo. 

The directly :to-observable terms do not necessarily contain a desired result value. For example, a 
specification of string-of-characters might contain a function length from strings to integers. The set of 
length-observable terms contains the length function applied to numerous strings of various length, but it 
does not contain the integers, which is clearly the desired set of result values. 

In the subsection below this idea is formalized for a specific observing function. The function has input 
terms, which should be well-typed, and an output term, depending on the input terms and the set of equa­
tions, which must be in a certain set of canonical terms. There is an obvious link with the theory of abstract 
data types (cf. Jones [Jon80]) here. The well-typedness of the input terms serves as precondition and the 
equations and a characterization of the set of canonical terms serve as postcondition. 

In general one has more than one observing function, so some preliminary work has to be done to allow a 
decomposition of the observing set of functions into singletons. 
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5.2. A theory of functional implementation 

5.2.1. Definitions (input-, reachable and canonical terms) 
Let ('f..v, r.H, E) be an algebraic specification and '£0 i;;;; 'f..v. Then 
a. the set I (:E0 , 'f..v) of '£0 -input terms over 'f..v is defined as: 

l('f..o, 'f..v) = {tET('f..v) l 3/EFo /: S1X ••. XS1c-?S, sESo 3i ~k tETs,('f..v) }. 

b. the set R (:E0 , 'f..v) of '£0 -reachable terms over 'f..v is defined as: 

R('f..o. 'f..v) = {tET('f..v) I 3t'ET('f..o, 'f..v) t=Et'J. 

Note that tenns containing hidden functions and sorts are not considered reachable. 
c. A set C('f..0 , I.v) i;;;;R('f,0 , 'f..v) is a set of canonical terms if and only if 

'V t, t' e C('f,0 , 'f..v) [ t=Et' --? t=t']. 

d. A sei of canonical tenns C('f..0 , 'f..v) is complete if and only if 

'VteT('f..o, 'f..v) 3t'eC('f..o, 'f..v) t=Et'. 

e. A reduction to canonical terms ~CCI,,. Iv> (abbreviated ~c or even -7>) is defined as follows: 

t ~CCI,,, I,,) t' <=> tER(I.o. 'f..v) At'EC('f..o. 'f..v) At=Et'. 

f. Analogous to the definitions ofT0 and Ts('f..0 , 'f..v) the following shorthand conventions are adopted: 

lo =I(I.o, 'f..v). 

Ro =R('f..o, 'f..v). 

Co= C('f..o, 'f..v). 

ls,o = ls(Lo, I:v) = l(I.o. I:v) n Ts('f..y), 

Rs,O =Rs('f..o, 'f..v) = R('f..o, I:v)ri Ts('f..v) and 

Cs,O = Cs('f..o, I.v) = C('f..o, 'f..v) n Ts('f..y). 

5.2.2. Some facts 
a. R('f..o. 'f..v) :! T(r.o. 'f..v). 
b. Every tenn in/(E0 , I.v) is '£0 -observable. 
c. The converse of fact b does not hold, i.e., not every r.0 -observable tenn is a '£0 -input tenn. 

5 .2 .3. Lemma 
Let C(:E0 , 'f..v) be a complete set of canonical tenns. The tenns in C('f..0 , 'f..v) with the (adapted) functions on 
R('f..o, 'f..v) fonn a canonical tenn algebra if the operation of these functions on R(I.0 , :Ev) is restricted to 
reach C('f..0 , 'f..v) by application of the reduction to canonical tenns -7>c after the normal application of the 
function inR('f..o, :Ev). Then C('f..0 , I:v) as a tenn algebra is isomorphic to R('f..o, 'f..v)l=E· 
Proof (sketch): 
Since C('f..0 , 'f..v) is complete the following diagram commutes: 
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5.2.4. Functional decomposition of a reduction to canonical terms 
Next we want to pursue a 'divide and conquer' strategy to provide an implementation of a reduction to 

canonical terms """*c· The decomposition chosen is made on the typed head symbol (the "function") of the 

term to be reduced. This allows for a separate implementation for each function. The total implementation 

of """*c can be constructed from the union of these separate implementations. 

It should be noted that a reduction to canonical terms """*c as a total map from R0 to C0 is fixed by C0 and 

the congruence /=E· This follows from the definition of C0 , since for every term in R0 exactly one term in 

C0 is in the same congruence class. So it is possible to define the map ~>c as a union of partial maps to the 

set of canonical terms. 
It is also possible to define a complete set of canonical terms implicitly by defining a (possibly partial) map 

"""* from T 0 to R0 for which the following holds: 

1) \:/teTo,t'ERo [t"""*t' <=> t=E t1 

2) \:/teT0 card({t'eR0 13t"eT0 [t=Et" A t"""*t']}) = 1. 

It can easily be seen that the range of ~> is a complete set of canonical terms. So a reduction to canonical 

terms can be described by its behaviour on terms in T 0 • A well-known example of such an implicit 

definition is the set of normal forms defined by a confluent and terminating tenn rewriting system. 

5.25. Definitions (functional implementation) 
a. Let """*c be a reduction to canonical tenns and let :E~:E0 • Then """*:t,c is defined as the restriction of ""*c to 

the domain T(I:, :Ev ). 
b. Let (:Ev, I:H, E) be an algebraic specification, :E0 be a signature such that :E0 ~:Ev. and C0 be a complete 

set of canonical terms. Then a map ~> is a functional implementation if and only if 

\:/teT0 , t'eC0 [H>t' H f:=£t']. 

5 .2 .6. Some facts about functional implementations 
a Let (:Ey, :EH, E) be an algebraic specification, I:0 ~:Ev. C0 a set of canonical terms, and ""*c I To the restric­

tion of reduction to canonical terms ~>c to domain T 0 . Then: 

"°*C IT0 = U °""*(So,{/}),C· 
/eF0 

Hence ""*c I To - and according to section 5.2.4 thus by extension ~>c - can be defined for each function in 

I:0 separately. 
b. Let (:Ev. :Em E) and <:E'v, :E'H, E') be :Ea-implementations of each other (so I:o ~ :Eyri:E'v). Then a func­

tional implementation ~>c ~ T0 xC0 of (:E'v. :E'H, E') is also a functional implementation fo (:Ev. :Em E) if 
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for all te T 0 , t'e C0 t=Et' H t=E't' holds. 
c. If two algebraic specifications are I:o-implementations of each other and both have a functional imple­

mentation then these implementations are isomorphic. 

5.2.7. Concrete representation 
Eventually, we want to convert an algebraic specification into a working computer program. For this a 

representation function 1. from the set of input terms I 0 to the concrete representation of input terms is needed 

to be able to execute implemented functions. When confusion arises the restriction of 1. to the domain ls,o 

will be written as 1.9 • Additionally, a set of retrieval functions Ps from concrete representations of output 

terms to the set of canonical terms Cs,o is needed. 
This is formalized in the following 

Definitions: 
Let I be a set of data types for a programming language L. I is an implementation in L of I 0 and R0 if there 

is a total function t: 10 -7 I (the implementation function) and a set of (partial) functions {p5 : 

1--+ls,oURs,o lseS0 ) (the retrieval functions) such that ps{t(t))=o tfor all t e 15,0 • 

Generally, if ls,o is not empty then t{/5 ,o) will correspond to a subset of a data type in L. It could very well 

happen that two different input types are implemented by the same data type, so differently named retrieval 

functions are needed for every sort. Only one name (t) is needed for the implementation function, since the 

sort of the argument provides type information. 

5.2.8. Implementation theorem 
Let (:Ev, :EH, E) be an algebraic specification, :E0~:Ev, and C0 a set of canonical terms. Let I be an imple­

mentation in a programming language L of I 0 and R0 with implementation function t and retrieval functions 

{p5 lseS0 }, and S(x 1, • · • ,xn), storing its result in c, a program operating on I. Then the statement 

S(xt> · · · ,xn), describes a functional implementation ~cs0,!fn,c for /:s 1x · · · XSn -7s, seSo, ifthe following 

·holds: 

S(kt> ... ,kn) 

{p3 (c)eCs,O A/(cl> ... ,Cn)=EPs(c) }. 

Proof: Let function F: s 1x · · · Xsn --+s be defined by F(at> ... ,an)= a if and only if p5 (c)=a after execu­

tion of S(t(a i), ... , t(an)), i.e., F is the function defined by S. Then f(a 1, ••• , an) =E F(a t> ... , an) and 

F(a l • •.• 'an)E cs,O. Hence f(a l • ••• 'an) ~(So, (/)),C F(a l • ••• 'an) holds.0 

5 .2 .9. Decidability of the conditions 
It is a pleasant property of Theorem 5.2.8 that in practice satisfaction of the precondition can be computed if 

the implementation function t can be computed. Since the terms in I 0 are typed, a typechecking algorithm 

provides the statements on membership of the input terms. Generally there are no extra restrictions to ensure 

computability, since obviously the implementation has to be computed anyway. 
The decidability of the postcondition depends on the computability of the retrieval function p5 , the decida­

bility of the check on membership of the set of canonical terms C0 , and the decidability of the congruence 

=E· The first condition is necessarily fulfilled for the same reasons as the computability of the implementation 

function. The second depends on the definition of C0 , which will allow computation in practical cases (who 

wants a canonical form wild enough to be unrecognizable as such?). The decidability of =E is not ensured in 

general. So a separate proof may be needed. Of course, for many classes this congruence is decidable. For 

specifications where the congruence is undecidable, e.g. an algebraic specification of a programming 

language, an implementation will to provide at least a partial decision procedure, even when it cannot be 

completed. 
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6. AN EXAMPLE: TABLES REVISITED 

To illustrate the use of Theorem 5.2.8 an implementation of module Tables in an imperative language is 
given. Though the implementation again uses trees there is an important difference with the algebraic imple-
mentation in section 4 in the sense that recursion is eliminated. . 

The language Pascal (described in [JW78]) is chosen for the imperative implementation. This choice is 
motivated by its availability and by its convenient type system. Of course, any other imperative language 
would serve as well. It should be noted that a functional implementation is very well possible, even in Pas­
cal, but we want to illustrate the possibility to give a correct implementation in a non-functional way. 

Generally it is easier to derive a functional program from an ASF-specification, since writing an algebraic 
specification has strong similarities to functional programming. The specification of Tables-as-trees, 
for instance, is easily converted into a functional program for lookup. Thus a functional implementation 
has the advantage of being easily derived from the specification, and also of being faster in general than a 
term rewriting implementation. 

The first step in the implementation is the choice of a data structure. This is provided for by the following 
data type declarations: 

type key= integer; 
elem =char; 
pointer= itree; 
tree =record 

end; 

l,r: pointer; 
k: key; 
e: elem; 

In a concrete program it is necessary to bind the sorts key and elem. The choice for integers and characters is 
arbitrary; the only prerequisite is that an ordering must be established on the keys. A node in a tree has four 
fields, a left and right pointer to subtrees, and information fields for key and element. 

The values nil tree and errorelem require different treatment in Pascal. For the first we can use the 
standard notion nil, the second has to be declared as variable and set to some unused value. 

The auxiliary functions on key pose no problems with the current choice, since integers are already 
ordered, though of course this could be much more complicated: 

function eq (a,b:key): boolean; 
begin eq := (a=b) end,· 

function lt(a,b:key): boolean; 
begin lt := (a<b) end; 

Next the implementation function t must be defined. The domain of t is T KEY, vu T ELEM, vu T TABLE, v and 
its range is the union of the data types key, elem and tree (or rather pointer to tree) already indicated above. 
Since a specification of the terms of type ELEM and KEY has not been given in section 3 an identification 

with elem and key is assumed, sot is 'defined' backwards by t(t)=t forte T KEY,vuT ELEM,V· Hence also 
PELEM(t)=t, the only retrieval function needed for the example. Forte T TABLE,V a definition oft can be pro­
vided as follows: 

t(nulltable) =nil 

t(tableadd (key, elem, table))= ptr 

when treeadd(t(key),t(elem),ptr) 

is executed withptr =t(table). 
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This definition uses procedure treeadd defined below. It should be noted that function t restricted to terms of 

type TABLE plays the same role as function tbltotree in section 4. Evidently, procedure treeadd below 

and function treeadd in section 4 are closely related also. A procedure with a variable parameter is a com­

mon way to handle data structures in a language like Pascal. A function definition would have the advantage 

of a more elegant definition of function t, but the definition below shows that other programming styles can 

be handled too. 

procedure treeadd (ky:key; el: elem; var root: pointer); 
var cur, anc: pointer; 

inserted: boolean; 
begin 

cur:= root; 
inserted:= false; 
while not inserted do 
begin 

if cur= nil 
then 

begin 
new( cur); 
curl.I:= nil; curi.r:= nil; 
curi.k:= ky; curi.e:= el; 
if root= nil 
then root:=cur 
else 

if lt(ky, anci.k) 
then anci.l:=cur 
else anci.r:=cur; 

inserted:= true 
end 

else 
begin 

if eq(ky,curi.k) 
then begin curi.e:= el; inserted:= true end 
else 

end 
end 

end; 

begin 
if lt(ky,curi.k) 
then begin anc:=cur; cur:=curi.l end 
else begin anc:=cur; cur:=cur i.r end 

end 

The proof of correctness of this implementation closely resembles the proof sketch in section 4. Hence it 

will be an even more concise sketch. Following the lead in section 4.1 we provide two well-formedness 

predicates on structures of type pointer (to tree), again called searchtree and set-of-keys. They are defined as 

follows (ptr of type pointer to tree andj, k, l, resp. e, of type key, resp. entry): 

- searchtree(nil) = true; 
- searchtree(ptr) = searchtree(ptr i .l) " searchtree(ptr i .r) A 

\I j e set-of-keys(ptri.l) [lt(j,ptri.k) =true]" 
\I le set-of-keys(ptri.r) [lt(ptri.k,l) =true]; 
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and 
- set-of-keys(nil) = 0; 
- set-of-keys(ptr) = set-of-keys(ptri.l) u (ptri.k} u set-of-keys(ptri.r). 

This allows us to state the well-formedness of implemented terms by providing the following parallel to 

Lemma 4.2.a: 

6.1. Second well-formedness lemma for trees (part a) 

Let ptr be of type pointer and t e T TABLE, v. Then 

ptr=l(t) ~ searchtree(ptr). 

Proo/by induction on the number of nodes in the list (omitted). 

Next we provide the function lookuptr: 

function lookuptr (Icy: key; root: pointer): elem; 

var cur: pointer; 
searched: boolean; 

begin 
cur:= root; 
searched:= false; 
while not searched do 
begin 

if cur= nil 
then begin lookuptr:= errorelem; searched:= true end 

else 

end 
end; 

begin 
if eq(ky,curi.k) 
then begin lookuptr:= curi.e; searched:= true end 

else 

end 

begin 
if lt(ky,curi.k) 
then cur:= curt.I 
else cur:= curi.r 

end 

Presently, a lemma similar to lemma 4.2.b can be formulated. It states that lookuptr is well-defined for 

single additions to a well-formed tree. 

6.2. Second wellformedness lemma/or trees (part b) 

Let k, k' be of sort KEY, e of sort ENTRY, and t of sort TREE, andletptr'=t(treeadd (k', e, t) ). Then 

ptr=t(t) ~ 
[eq(t(k),t(k')) =true ~ lookuptr( t(k), ptr') = e] A 

[eq(t(k),t(k')) =false ~ lookuptr( t(k), ptr') = lookuptr( t(k), ptr)] 

The proof follows directly from the observation that ptr' =t(treeadd (k', e, t)) is defined in terms of 

ptr=t(t). 

According to Theorem 5.2.8 it is now sufficient to prove (E the set of equations from module Tables): 
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{ke KEY/\ tble TABLE/\ ky =l(k) /\root =l(tbl)} 

elt := lookuptr(ky,root) 

{PELEM(elt)e C ELEM,O /\ lookup ( k, tbl) =E PELEM(elt)}. 

This follows immediately from lemma 6.2, and the definition of PELEM· 

7. CONCLUSIONS 

7.1. The results 
The paper provides a functionally oriented (black box) approach to the implementation of modular algebraic 

specifications. The main advantages are listed below. 
• It provides a theoretical background for the separate implementation of modules. 
• The implementation above is based on the initial behaviour of certain functions, the observing functions. 

This provides an intuitively clear semantics. 
• A correctness criterion for implementations is given in Hoare logic, allowing the application of standard 

optimization techniques. In algebraic terms this means that functions which are not observing may have 

more or less final semantics. 
• The combination of separate implementation and (hence separate) optimization allows the construction of 

a library of (possibly optimized) modules. 
The loss of the initial algebra semantics might instead be listed as a disadvantage. Terms are only judged dif­

ferent when they have different effects (confusion is allowed) and other invisible terms (junk) may be intro­
duced. On the one hand, precisely these two "undesirable" effects allow the introduction of optimal imple­

mentations. On the other hand, they make the semantics of a module less clear to the user {i.e., someone 
writing a module importing the optimized module). This problem is minimized by the fact that the criteria 

for use of the module, allowing the set of observing terms only, are rather easy. 

7.2. Further research 
Both theoretical and practical extensions of the work in this paper are planned for. The former include: 
• Investigation of the significance for import semantics in an algebraic specification formalism with initial 

algebra semantics, except for observable imports. 
• The combination with an implementation as a term rewriting system of the importing module of an observ­

able implementation has to be investigated to allow for automatic translation of modules built around an 

observable module. 
Of more practical nature are 
• The design and implementation of a module library, containing efficient (e.g. built-in) implementations. 
• The construction of an implementation of modules on top of the module library, using the normalization 

(i.e., elimination of imports, renamings and bindings by combining modules) semantics from ASF 
[BHK.87] for the top level modules. 
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