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Abstract 

Transition systems can be viewed either as process diagrams or as Kripke structures. The first perspective is that of 

process theory, the second that of modal logic. This paper shows how various formalisms of modal logic can be brought 

to bear on processes. Notions of bisimulation can not only be motivated by operations on transition systems but can 

also be suggested by investigations of modal formalisms. To show that the equational view of processes from process 

algebra is closely related to modal logic, we consider various ways oflooking at the relation between the calculus of basic 

process algebra and propositional dynamic logic. More concretely, the paper contains preservation results for various 

bisimulation notions, a result on the expressive power of propositional dynamic logic, and a definition of bisimulation 
which is the proper notion of invariance for concurrent propositional dynamic logic. 

Keywords: Modal logic, transition systems, bisimulation, process algebra. 

1 Introduction 

The purpose of this paper is to compare two traditions of thinking about transition systems 
(roughly speaking, the computer science tradition and the tradition from modal logic), to bring 
out analogies, and to further investigate transition systems from a (modal) logical point of view. 
We will try to demonstrate that existing logical formalisms can go a long way in the study 
of transition systems, that there is less need for inventing new formalisms in this area than is 
often realised, and that the perspective of modal logic suggests some interesting further research 
questions. 

The connection between process theory and modal logic is already made in [29, 32], where 
modal languages for internal description of transition systems are reinvented, so to speak. Modal 
analogies are suggested in many other places in the process literature as well (see for instance 
[23]). 

The modal perspective on the study of transition systems that is advocated in this paper can also 
be found in [ 45], where expressibility issues stemming from modal and temporal logic are brought 
to bear on the study of processes. Our aim in this paper is to look at the connection between 
modal logic and process theory in a more systematic way and to point out further questions that 
are suggested by the modal perspective, answering some of them as we go along to illustrate our 
purposes. 

An important research direction in modal logic is analysis of the expressive power of modal 
formalisms. This issue can be pursued for basic modal formalisms or for extended formalisms. 
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In classical correspondence theory [3, 4] one studies the way in which modal formulas can be 
used to formulate first-order and higher-order relational constraints. The key research question 
here is: which modal formulas define first-order relational conditions, and how do they do it? 
Completeness questions involve proposals for axiomatisation and their investigation. See [26] 
for an overview. 

Both of these directions can also be discerned in the study of newer richer formalisms. Ex
tended formalisms of modal logic consider alternative relations other than the binary accessibility 
relations considered so far. It turns out that adding a modal operator D for the binary relation 
of inequality (so Dtp holds in s if there is an s' different from s where <p holds) increases the 
expressive power of the modal language (39]. Modal logics with ternary accessibility relations 
(many-dimensional modal logics) are studied in [46]. In Section 5 we will look at an example of 
a two-dimensional tense logic. In [25] still another extension, with binary accessibility between 
states and sets of states, is considered. This logic will be briefly discussed in Section 10. 

There are two directions of thought concerning processes: from a notion of bisimulation to a 
language and from a language to a notion of bisimulation. Also there are two versions of such 
characterization results: directly on models, or via a preservation theorem in first-order logic (or 
an even broader formalism). Preservation results linking a modal language L to a bisimulation 
notion B take the form: a formula of first-order logic is invariant for a bisimulation of kind B iff 
that formula is equivalent to a translation of a formula from the modal language L. 

So here is a whole range of new logical questions that modal logic suggests in connection 
with the study of transition systems: find preservation results in first-order logic, or higher order 
logics for the bisimulation notions used to study these transition systems. Also, modal languages 
suitable for talking about transition systems, or fragments of such languages, may suggest their 
own bisimulation notions, for which similar questions may be asked. 

After a short survey of some standard results on the connection between equivalence relations on 
transition systems and modal languages, we will explore these further questions, first in connection 
with some fragments of temporal logic which have proved useful in theoretical computer science, 
then in connection with programming constructs that are studied in another branch of modal logic, 
propositional dynamic logic, and finally in connection with process theory. From the standpoint 
of general modal logic, these are just different, progressively richer formalisms for bringing out 
relevant structure of transition systems - and we urge our readers to abstract resolutely from the 
usual competitive discussions concerning their ideological merits. 

2 Transition systems and process equivalences 

2.1 Transition systems 

Transition systems are the basic stuff that processes are built of. We start with some definitions. 

DEFINmON 2.1 

By a transition system or TS we shall mean a triple (S, A,-+), where Sis a set of states, A is a 
set of labels. and -+ ~ S x A x S. 

The relation -+ is the labelled transition relation. If (s, a, s') E -+ we write 8 ~ s' and we call 
a the label of the transition from s to s1• 

DEFINmON 2.2 

A rooted or pointed TS is a TS with one state singled out as the root. 
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We will use M, N to refer to TSs, and S ( M), S (N) to refer to their state sets. For the description 
of operations on TSs (to be introduced in Section 7) it is necessary to be able to mark states in 
a TS with a ..j for 'success'. But because we may need other marks later on, we introduce the 
concept of a valuation for a TS. 

DEFINITION 2.3 
Let P be a set of proposition letters and M a TS with state set S. Then V is a valuation for M 
if Vis a function from P to POW S. 

Intuitively, s E V(p) means that proposition p is true in states. We will sometimes call a TS M 
together with a valuation for it an interpreted transition system. A TS with an interpretation for 
..j is a TS where states may be marked with ..j. We will use M, N without further ado for TSs 
with an interpretation for ..j. Instead of s E V ( .../) we will write s E ..j. 

2.2 Varieties of process equivalence 

We look at TSs as process diagrams, so TSs represent processes. However, the question which 
process is pictured by a given TS has no general answer. We have to bear in mind that processes 
are identified on the basis of a similarity notion defined on TSs, and there are many such similarity 
notions. In this paper, we will present a hierarchy of stronger and stronger equivalences. In this 
section, we start with a brief discussion of three well-known ones. 

We will define process equivalences as relations between TSs. Note, however, that it does not 
matter whether we compare TSs M, N or look within one TS. We can always combine two TSs 
M, N into one TS by taking their disjoint union. 

DEFINITION 2.4 
If Mis a transition system and sis a state in M, then T 8 , the set of (finite) traces from s, is the 

set of all sequences a 1 · · · an E A* such that for some s' with s' E ..j, s ~ · · · ~ s'. 

We writes ai::..+an s' for s ~ · · · ~ s'. 

DEFINmON 2.5 

A state s in M is finite trace equivalent with a state r in N if Ts = Tr. 

Possible variations here are to also consider infinite traces, and/or to drop the requirement that 
the finite traces end in a ..j state. Finite state machines are examples of rooted TSs (the root is the 
start state, and the ..j states are the accepting states). Finite state machines accepting the same 
language are finite trace equivalent. 

DEFINmON 2.6 

A relation G s; S(M) x S(N') is a simple left-right simulation if whenever sGr then s and 

r have the same valuation, and for every s' E S(M) with s ~ s' there is an r' E S(N) 
with r ~ r' and s' Gr'. A simple right-left simulation is defined similarly. A pair of relations 
G 1 , 0 2 s; S ( M) x S (N) is a simple simulation equivalence if G 1 is a simple left-right simulation 
and 02 a simple right-left simulation. 

OBSERVATION 2.7 

Simple simulation equivalence is a stronger notion than finite trace equivalence. 

PROOF. Obviously, simply simulation equivalent TSs have the same finite traces. But simple 
simulation equivalence is stronger, for consider Figure 1, which gives an example of finite trace 
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FIG. t. Finite trace equivalent TSs which are not simply simulation equivalent 

FIG. 2. Simply simulation equivalent, but not simply bisimilar, TSs 

equivalent TSs which are not simply simulation equivalent. Corresponding numbers on the nodes 
indicate the finite trace equivalence. To see that there is no simple simulation equivalence, observe 
that the 2 node on the left has no choice-preserving counterpart on the right. I 
DEFINITION 2.8 

A relation C between S(M) and S(N) is a simple bisimulation if the following three clauses 
hold: 

l. If sCr, then V(s) = V(r), 

2. if sCr and s 4 s', then there is a state r' in N with r 4 r' and s' Gr', 
3. clause (2) vice versa. 

If C is a bisimulation of kind K which relates s and r then we say that s and r are K bisimilar. 
The key distinction between a simple (right-left or left-right) simulation and a simple bisimu

lation lies in the presence of a reverse clause in the latter. Thus, a bisimulation of kind K always 
brings a simulation equivalence of kind K in its wake: leave out the reverse clause from the 
bisimulation definition to get a 'directed' simulation definition. 

OBSERVATION 2.9 

Simple bisimulation is a stronger notion than simple simulation equivalence. 

PROOF. Obviously, simply bisimilar TSs are simply simulation equivalent. But the converse does 
not hold: Figure 2 gives an example of simply simulation equivalent TSs which are not simply 
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bisimilar. A simple left-right simulation: map numbered states to their counterparts on the right. 
A simple right-left simulation: map numbered states to their counterparts on the left, and the 
states without numbers to the states indicated by the dotted arrows. Note that the second mapping 
is not the converse of the first (the dotted arrow pointing to 2 is not reversible). This shows that 
the two TSs are simply simulation equivalent. Still, the TSs are not simply bisimilar, for there is 
no way to relate the state in the right TS with ~ as its only outgoing arrow to a simply bisimilar 

~oo~~ I 

3 Modal logic 

3.1 Key notions 

Modal logic studies the relation between operator languages and structures of possible worlds 
with alternative relations between them. The semantics of modal logic uses Kripke frames, which 
are in fact TSs (where the states are the possible worlds), and Kripke models, which are in fact 
interpreted TSs. Logical description languages for TSs were developed in [29] and [ 17]. 

If A is a set of labels and P a set of proposition letters, then the modal language L over A, P 
is given by the following BNF definition (assume a E A,p E P): 

L <p ::=PI -i<.p I (<.p /\ 'P) I (a)<.p. 

We add the usual abbreviations: ..L is short for p /\ -.p, T is short for -...L, r.p V 'lj; is short for 
•(•<p /\-.'lj;), <p-+ 'ljJ is shortfor-.(r.p/\ •'lf;), and [a]<.p is shortfor-.(a)-.r.p. 

If we wish to forget about the valuations again, we can consider the modal language with 
just one proposition constant T which holds in every state. To apply modal logic to processes, 
we employ a modal language with one propositional constant ..j (and we consider T as an 
abbreviation of ..j V -...j and ..L as an abbreviation of ..j /\ -...j). 

The key semantic notion is the relation of truth of a formula <p in a state s of an ITS M, V, 
with notation M, V, s f= r.p. This relation is defined inductively as follows. 

DEFINITION 3.1 (Truth) 

1. M, V, sf= ..L never. 

2. M, V, sf= T always. 

3. M, V,s f=piffs E V(p). 

4. M, V, sf= •<p iffnot M, V, sf= <p. 

5. M, V, sf= <p /\ 'ljJ iff M,V, sf= <p and M, V, sf= 'If;. 

6. M, V, sf= (a)<.p iffthere is some s' among the states of M with s ~ s' and M, V, s' f= <p. 

If M , V, s f= <p for every s in the state set of M we say that <p is true in M, V, notation 
M, V f= <p. If M, V f= <p for every valuation V, we say that <p is true on the TS M, notation 

MF i.p. 

3.2 Semantic invariances 

We will now look at suitable modal languages for the equivalences mentioned earlier. The general 
strategy for linking a similarity notion to a modal language is as follows. See what is needed for 
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the induction step and impose the appropriate requirement on the similarity notion, or the other 
way around, see what the similarity notion gives us as material to base an induction argument 
on, and find the language fragment for which this is precisely what is needed. This strategy is 
illustrated in the arguments in the proofs of Theorems 3.2 and 3.4 below. We note here that the 
results in this section are well known from the literature: see in particular Hennessey and Milner 
[29]. 

Note that for the application to processes with just../ markings on their states the condition that 
bisimilar states have the same valuation boils down to the condition that bisimilar states agree in 
their ..J markings. Consider the language Lm defined as follows. 

Lm <p ::= ..JI -.<p I (cp A cp) I (a)ip. 

Lm is built from ..J with the Booleans and the modal operators. The language Lm gives rise to 
the notion of simple bisimulation from Section 2. 

THEOREM3.2 
Ifs in M is simply bisimilar to r in N, then all Lm-formulas have the same truth value in M, s 
and.N,r. 

PROOF. Induction on the structure of an Lm-formula cp. If cp is ..J, ip will hold ins iff ip holds in 
r by the bisimulation requirement on valuations. If ip is -.,,µ or 'lji A x the result follows from the . 
induction hypothesis. The crucial case is that of the modal operator. If cp has the form (a)'l/J and 
c.p holds in s, then this means that there is an s' with s ~ s' and 'I/; holds ins'. But because sCr 
there is an r' with r ~ r' and s' Cr', so by the induction hypothesis, 'I/; holds in r'. This shows 
that (a)'!/J holds in r. For the other direction, use the other bisimulation clause. I 

Flo. 3. TSs that are invariant for Lm-formulas but not bisimilar 

I 
I 

t 
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OBSERVATION 3.3 
Invariance for Lm-formulas does not in general imply simple bisimulation. 

PROOF. Figure 3 gives a counterexample. The difference between the two TSs is that the right
hand one has an infinite branch which the other TS is lacking. The idea of the equivalence is 
roughly this. Lm-formulas have finite modal operator depth, so every Lm-formula whose truth 
(falsity) involves the infinite branch will also be verified (falsified) using a long enough finite 
branch as a substitute on the left. I 

The counterexample from Observation 3.3 uses infinitely branching TSs (in some label a). For 
TSs which are finitely branching in every label a (i.e. for every state s and every label a, the set 
{ t J s ~ t} is finite) we have the following 

THEOREM 3.4 
On TSs which are finitely branching in every label, invariance for Lm -formulas implies simple 
bisimulation. 

PROOF. Assume M, s and N, r are finitely branching in every label, and no Lm -formula sees a 
difference between M, sand N, r. Call u = t if u and t satisfy the same Lm-formulas. We 
show that = itself is a simple bisimulation which relates s and r. First, it is clear that s = r. 
To see that = is a simple bisimulation, we have to verify the bisimulation requirements. First 
it is obvious that s f= Jiff r f= J. Next, assumes ~ s'. Then because M, s f= (a)T 
and s = r, the set R = {r' J r ~ T'} is non-empty. Because N is finitely branching in a, 
R = { T1 , •.. , rn}, for some n > 0. Suppose no Ti has s' = ri. Then there are i.p1, ... , 'Pn with 
s' f= 'Pi and Ti f= -,'Pi· But then sf= (a)(t,01 /\ · · · /\ 'Pn), and r f= ...,(a)(c.p1 /\ · · · /\ 'Pn), and 
we have a contradiction with s = r. So there is an r' with r ~ r' and s' = T 1 • I 

Proceeding according to the general strategy for linking equivalence notions to modal lan
guages, it is not difficult to find the appropriate language for finite trace equivalence. 

Ltra cp ::= '!/; I ...,cp J 'P /\ 'l/J 'l/J ::= JI (a)'lj;. 

The language Ltra is the language of Boolean combinations of path modalities, where a path 
modality is a formula of the form (a1) · · · (an)J. 

PROPOSITION 3.5 
M, sand N, rare finite trace equivalent iff they are invariant for Ltra formulas. 

Similarly, it is easy to see that the appropriate language for simple simulation equivalence is 

the language L sim. 

Lsim 'P ::= .../ I -.,..j I ( 'P /\ 'P) I (a)cp. 

THEOREM 3.6 
If M, 8 and N, rare simply simulation equivalent then they are invariant for Lsim formulas. 

PROOF. Induction on the structure of an Lsim formula c.p. I 

THEOREM 3.7 
If M, 8 and N, r are finitely branching in every label and invariant for L sim formulas, then they 

are simply simulation equivalent. 
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PROOF. Assume M, s and N, T are finitely branching in every label, and no L sim formula sees a 
difference between M, s andN, T. Call u => t ift satisfies any Lsim formula that u satisfies. We 
show that=> is a simple left-right simulation which relates s and T. First, it is clear that s => T. 

To see that => is a left-right simulation, we have to verify the requirements on the relation. It 
follows from the fact that J and -.J are in Lsim that s f= ../ iff T F V· Next, assume s ~ s'. 
Assume for convenience that s' f= J (otherwise, substitute -...; for../ in what follows). Then 

because M,s f= (a)J and s => r, the set R = {T' I r ~ T1} is non-empty. Because N is 
finitely branching in a, R = {T1, ... , Tn}. for some n > 0. Suppose no Ti has s1 => Ti. Then 
there are cpi, ... ,cp ... in Lsim with s' f= 'Pi and Ti f= -.cp;.. But then s F (a)(cp1 /\ · · · /\ 'Pn). 
and T f= -.(a)(cp1 /\ · · · /\ 'Pn). and contradiction with s => T. So there is an T 1 with T ~ T1 

and s' => T'. The proof that there is a simple simulation in the other direction is completely 

analogous. I 

3.3 Embeddings in standard logic 

It is well known that modal languages are fragments of the full standard predicate logic over TSs. 
A modal formula cp can be given a first-order translation through the following clauses: 

p• = Px 
T• = x=x 
(-.1/J)• = -.11i· 
( 1/J " x)• = 11i· " x· 
((a)1/J)• = 3y(RaXY /\ 1/J•[yjx]) where y is some fresh variable. 

Here, variables range over states while the ~ transitions return as two-place predicate symbols 
Ra· The translation uses a one-place predicate letter P for every atomic proposition p, and a 
two-place predicate letter Ra for every modality (a). 

An obvious question now is: which fragment of full predicate logic does this define? Again, 
bisimulation provides the answer here, which takes the form of a model-theoretic 'preservation 
theorem'. Theorem 3.9 below tells us which part of standard logic is appropriate for the description 
of the TSs, if one insists on simple bisimulation as the basic process equivalence. The backbone 
of the argument for Theorem 3.9 is formed by the following claim (see also (4, 41, 39]). 

CLAIM 3.8 
If M, s and N, T agree on all Lm formulas, then there are elementary extensions M * , N* with 
M*, s = N*, r (where = denotes a simple bisimulation). 

PROOF. By a standard result in the model theory of first-order logic, any first-order model M 
has an w-saturated elementary extension M* with the property that if r(x) is a countable set 
of formulas with only x free and involving at most finitely many state parameters, and r(x) is 
consistent with the theory of M, then r ( x) is realized in M *, i.e. there is a state s in the domain 
of M* of which every 'YE r(x) is true in M* (see [13]). 

Take two w-saturated elementary extensions M*, N* of M and N. We show that the relation = of agreeing on all (translations of) Lm-formulas is a simple bisimulation between M* and 
N* relating s to r. 

First observe that M*, sand N•, r verify the same translations of Lm-fonnulas, by definition. 
(It follows, for example, that s has Jiff T has.) 

If there is an s' E S ( M *) with s ~ s', then each finite subset 6- of the modal theory of s1 

is satisfiable in some u with r ~ u, because of the fact that (a) /\ 6- holds at s and therefore at 
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r. But then, by w-saturation, the full modal theory of s' must then be satisfiable at some stater' 
with r ~ r', which means that s' and r' bisimulate. The same argument in the other direction 
takes care of the reverse clause. This proves that = is a simple bisimulation. I 
THEOREM3.9 
For any formula r.p of predicate logic with at most one variable x free, r.p is e4u1valent to some 'ljl• 
with 'ljJ E Lm, iff r.p is invariant for simple bisimulations. 

PROOF. (Sketch) First note that the direction from left to right is already taken care of in the 
argument for Theorem 3.2. 

For the other direction, assume that r.p ( x) has only x free and is invariant for bisimulations. 
Let £( r.p) be the set of semantic consequences of r.p which are translations of modal formulas. 
We show L( r.p) f= r.p. Compactness then gives us 'l/;1, ... , Wn E £( r.p) with 1/;1, ... , 1/Jn f= r.p, 
whence the modal formula /\i 'I/Ji defines r.p. 

AssumeM,s f= L(r.p). We have to show: M,s f= r.p. 
From M, s f= L(c.p) plus the fact that every member of L(cp) is a logical consequence of 

<p, it follows that the following set of formulas must be finitely satisfiable: { r.p} U { 1/J" I 'ljJ any 
Lm -formula with M, s f= 'ljJ}. Therefore, by compactness, this set has a model}.[ with a state 
r where <p holds, and which agrees completely with s on all Lrn -formulas. 

By Claim 3.8, there are elementary extensions M* ,N* of Mand N for which the relation 
of agreeing on all Lm formulas is a simple bisimulation. 

Thus, we had N f= r.p [r], by construction. Therefore N* f= r.p[r] by elementary extension. 
Now M*, s f= r.p because s and r are simply bisimilar and r.p is invariant for bisimulations. 
Finally, M, s f= c.p by elementary descent (the converse of elementary extension). I 

3.4 From description languages to process equivalences 

For appropriate description languages we have found that finite trace equivalence, simulation 
equivalence and simple bisimulation imply that the same formulas of an appropriate modal 
description language are satisfied. The languages for finite trace equivalence, simple simulation 
equivalence, and simple bisimulation are all (fragments of) multimodal languages. We will 
extend the picture as we go along and consider more powerful modal languages. This much is 
well known from the literature (see Hennessey and Milner [29]). 

The standard way of reversing the direction of these results has been the method of Theorem 
3.4 (also in [29]). The relationship between our approach and that of [29) is somewhat delicate. 
Finite branching does not imply w-saturation, and the converse does not hold either. Thus the 
scope of Claim 3.8 and Theorem 3.4 is different. Nevertheless, the connection can be made 
tighter. The argument for Claim 3.8 really requires only '2-saturation' [22] which applies to 
satisfiability at R-successors of some point only. Now, finitely branching TSs are all 2-saturated, 
and thus the Hennessey and Milner result becomes an instance of the modal analysis. 

4 Simulation, invariance and logical definability 

4.1 Temporal notions of bisimulation: future and past 

The first use of modal logic in computer science has been via 'temporal logic,' a version of modal 
logic where the basic modal operator (F) (at least once in the future) has a counterpart (P) (at 
least once in the past), which is interpreted via the converse of the relevant transition relation. 
Thus, we can look in the forward direction s ~ and in the backward direction s +:- from any 
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FIG. 4. TSs which are F bisimilar but not PP bisimilar 

state s. In the following we assume a transition system with a single label a, and we interpret F 
as the~ relation, and Pas the f:.- relation (the converse of~). Thus, (F) equals (a). However, 
as long as we are dealing with TSs with a fixed label a we will suppress the label and use < for 
the 'later than' relation, and > for its converse. 

Here is the modal language with unary temporal operators: 

Lpp cp ::= p 1-.cp I (cp /\ cp) I (F)cp I (P)cp. 

To apply the earlier first-order translation function • to this language, we add the following 
clauses: 

( (F)'l/J)• 
( (P)'l/J)• 

= 3y(x < y /\ 'l/J•[y/x]) 
= 3y(x > y /\ 'l/J'[y/x]) 

where y is some fresh variable, 
where y is some fresh variable. 

The presence of the two modal operators (F), (P) calls for a modification of the relation of 
bisimulation, because the definition must reflect that the 'later than' and 'earlier than' relations 
are each other's converse. In other words, the notion of an F bisimulation (or that of a P 
bisimulation) misses the connection between the two operators. Here is the appropriate notion 
for LFp: 
DEANffiON 4.1 

A relation G between S ( M) and S (JV) is an FP bisimulation if the following three clauses hold: 

I. If sGr, then V(s) = V(r), 

2. • if sGr and s < s', then there is a stat~ r' in N with r < r' and s' Gr', 
• if sGr and s' < s, then there is a stater' in N with r' < r and s' Gr', 

3. clause (2) vice versa. 

In Figure 4, corresponding numbers indicate an F bisimulation. There is no PP bisimulation 
between the TSs, however, for any PP bisimulation has to link the state marked with 1 in the left 
TS to the 'earliest' state on the right (this is the only state with no incoming arrows), and the 
earliest states in the two TSs are not F bisimilar. 

Again we can prove that no formula of L F p will see a difference between PP bisimilar states, 
that for TSs which are both 'finitely branching' and 'finitely converging' in every label (every 
state has a finite number of outgoing and incoming~ arrows), states that cannot be distinguished 
by any tense logical formula are PP bisimilar, and that being equivalent to a first-order translation 
of a tense logical formula coincides with being invariant for PP bisimulations. 

4.2 Temporal notions of bisimulation: until and since 

For further applications of temporal logic in computer science it is useful to be able to talk about 
'intermediate stages' of a computation. For this purpose an additional binary modal operator U 
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(until) may be introduced (see [31, 36]) with the following semantic clause: 

Until M, V, s f: cpU'!j; if there is some s' with s < s' and M, V, s' f= '!j;, and for all s" with 
s < s" < s' it holds that M, V, s" f= cp. 

Note that (F)cp is definable in terms of U, as TUcp. 
The counterpart for U in the other direction of time is the S operator. Intuitively, cpS'!j; expresses 

that <p holds since '!/J. The semantic clause is as follows. 

Since M, V, s f: cpS'!j; if there is some s' with s' < s and M, V, s' f= '!j;, and for all s" with 
s' < s" < sit holds that M, V, s" f= cp. 

Note that (P)cp is definable in terms of U, as T Sep. Note also that the semantic clause for S 
can be obtained from that for U by replacing all occurrences of < by >. 

Here is a first attempt at formulating an appropriate notion of bisimulation for tense logic with 
U. 
DEFINffiON 4.2 

A relation G between S ( M) and S (N) is an U bisimulation if the following three clauses hold: 

1. If sGr, then V(s) = V(r), 

2. • if sGr and s < s', then there is a state r1 in S (N) with r < r' and s' Gr', 
• if sGr, s < s', r < r', s' Gr' and s < s" < s', then there is a state r" in S(N) with 

r < r" < r' and s" Gr", 

3. clause (2) vice versa. 

THEOREM4.3 

U formulas are invariant under U bisimulations. 

PROOF. The proof uses an induction argument. We just treat the crucial clause. Assume M, s f: 
cpU'!j; and suppose sGr, with C an U bisimulation. Then by the semantic clause for U, there 
is an s' with M, s' f: 'ljJ such that for all s" with s < s" < s', M, s" f: ip. Therefore, by 
the first part of the first clause of the bisimulation definition, there is an r' with r < r' and 
s' Gr', and we get from the induction hypothesis that M, r' f: 1/;. Now take an arbitrary r" with 
r < r" < r'. By the second part of the second clause of the bisimulation definition, there is 

an s" with s < s" < s1 and s" Gr". By the fact that s < s" < s', M, s" f: cp, and by the 
induction hypothesis for cp, M, r" f: <p. This establishes that M, r f= cpU'!/J. To derive from 
M, r f: cpU'lj; that M, s f: cpU'!j;, use the bisimulation clauses in the other direction. I 

FIG. 5. TSs which are FP bisimilar but not U bisimilar 

Figure 5 gives an example of a pair of TSs that are FP bisimilar but not U bisimilar. To see 
that the roots do not U bisimulate, note that in the right-hand TS, J_UT is true at the root, while 
in the left TS this formula is false. 
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Now we would like to prove a converse result. We extend the earlier translation function • 
with a translation clause for U formulas. 

(1/JUx)• = 3y(x < y /\ x•[yjx] /\ 'v'z((x < z A z < y) ~ -iµ•[zjx])). 

The • translation clause for S formulas is similar. What we would like to prove is something 
like the following: a predicate logical formula c.p ( x) with one free variable is equivalent to a 
first-order translation of a formula in the U language iff cp( x) is invariant for U bisimulations. 

The above argument involving saturation will not work, however. Saturation guarantees us 
only that every type in x which is consistent with a given set of formulas will be realized, but that 
is not quite enough to get at an U bisimulation. The problem is that the U bisimulation condition 
relates a state to two other states (by betweenness), and the satisfiability of formulas with one free 
variable does not provide us with such a link to a pair of individuals. 

OPEN PROBLEM 4.4 
Find a notion of U bisimulation that admits a preservation result. 

4.3 Decomposition of 'until': two-dimensional temporal logic of statements 
and procedures 

The trouble with the U operator is that it involves a combination of an existential and a universal 
quantification, as its translation clause shows, while our model-theoretic analysis only works 
smoothly for one existential quantification. Taking our cue from [5] we can remedy this by 
decomposing theU operator. We shall pursue this issue here, to demonstrate our earlier point about 
'designing bisimulations for languages', but also to show how a new conception of bisimulation 
will emerge in the process as a relation between tuples of states, rather than single states. We 
introduce the following two sorted language B of temporal logic with composite 'between' 
procedures. 

B formulas <p ::= y' I -.c.p I (c.p /\ c.p) I Do(a:). 
B procedures a ::= Rc.p I a I an a I a; a. 

The format for a truth definition here is that of a more-dimensional modal logic. The semantic 
clauses for the Boolean combinations of formulas are as before. The clause for the 'domain' 
modality Do runs as follows: 

• M, s I= Do( a) iffthere is some s' E S(M) with s < s' and M, s, s' I= a. 

The semantic clause for the domain modality is stated in terms of a satisfaction relation M, s, s' f= 
a: for the B procedure a. Intuitively, Do(a:) is true for the domain of the relation given by 
M, s, s' I= a:. The satisfaction relation for B procedures is given by the following clauses: 

• M, s, s' I= Rip if! M, s' I= c.p. 
• M, s, s' I= a iffit is not the case that M, s, s' I= a. 
• M, s, s' I= 01n02 if! M, s, s' I= a:1 and M, s, s' I= a 2 • 

• M,s,s' I= 01;0:2 if]' there is some s" with s < s" < s' and M,s,s" I= o 1 and 
M, s", s' I= 0:2. 

The crucial clause is the one for the composition 01 ; 0:2. It refers to a state in between the 
beginning and end state of the 0:1 ; a2 relation. Intuitively, the modality a 1 ; a2 gives the pairs of 
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states s, s' having a states" in between, i.e. a state such that s < s" < s'. The other modalities 
are for bookkeeping. R (Right-hand) is for making statements about right-hand members of state 
pairs, and - and n are for making Boolean combinations. Note that the mention of the temporal 
accessibility relation < in the interpretation of a 1 ; a2 ensures that M, s, s' I= a1 ; a 2 iff for all 
s" with s < s" < s' it holds that M, s, s" ~ a 1 or M, s", s' ~ a 2 , and this is precisely what 
we need to express the meaning of 'until'. ('Until' is also definable in the language of [ 40], a 
dynamic modal language along the same lines as our B language but considerably stronger.) 

We give some examples of B formulas and B procedures with their meanings. Let 'iJ be short 
for RT, which denotes the universal relation. Then we have, for example, the following: 

M, s, s' I= 'iJ 
M, s, s' I= Rep; 'iJ iff 
M, s, s' I= Rep; R'lj; iff 

M, s, s' I= R-,ep; 'iJ iff 
M, s, s' I= (R...,ep; 'iJ) n R'lj; iff 

M, s I= Do('iJ) iff 
M, s I= Do( Rep; 'iJ) iff 
M, s I= Do(Rcp; R'lj;) iff 

M, s I= Do(R...,cp; 'iJ) iff 

M, s I= Do((R...,cp; 'iJ) n R'lj;) iff 

always, 
3s" with s < s" < s' and M, s" I= cp, 
M, s' I='!/; and 3s" with s < s" < s' 
and M, s" I= ep, 
-,3s" with s < s" < s' and M, s" I= -,ep, 
M, s' I= 'If; and 
Vs" with s < s" < s' it holds that M, s" I= cp, 

3s': s < s', 
3s', 3s" : s < s', s < s" < s' and M, s" I= cp, 
3s' : s < s' and M, s' I= 'l/,J and 
3s" with s < s" < s' and M, s" I= cp, 
3s' : s < s' : -,3s" with s < s" < s' and 
M,s" I= ...,cp, 
3s' : s < s' and M, s' I= 'l/,J and 
'rls" with s < s" < s' it holds that M, s" I= cp. 

The examples make clear that we can define the modality (F)cp as Do(Rcp), while cpU'l/,J is 
rendered in the language B as Do( (R-.ep; 'iJ) n R'lj;). 

REMARK4.5 
The evaluation of a B procedure a may be rephrased in terms of an accessibility relation Ra., 
which is the propositional dynamic logic format. In fact, the 'between' language bears quite a bit 
of similarity to the language of propositional dynamic logic (Section 5 below), for the composite 
temporal procedures are like program modalities. In the program view, Rep; R'lj; is interpreted as 
a procedure to go to a < successor! check if ep is true, then go to a next < successor and check if 
'l/,J is true. 

The B bisimulation notion that works for this language does not only relate states to states, but 
also pairs of states to pairs of states. 

DEFINITION 4.6 
A relation C between states in M and .N, and also between pairs of states (s, s') in M and 
( r, r') in .N is a B bisimulation if the following clauses hold: 

1. If sCr, then V(s) = V(r), 
2. •if sCr and s < s', then there is an r' with r < r' and (s, s')C(r, r'), 

•if (s, s')C(r, r'), then sCr and s' Gr' 
• if (s, s')C(r, r'), then for all s" with s < s" < s1 there is an r" with r < r" < r', 

(s, s")C(r, r") and (s", s')C(r", r). 
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.IJ. 
1 

FIG. 6. TSs which are both U bisimilar and B bisimilar 

3. clause (2) vice versa. 

Figure 6 gives an example of a pair of TSs that are both U bisimilar and B bisimilar. 

OPEN PROBLEM 4.7 

From the fact that M, sand J./, rare B bisimilar, does it follow that they are also U bisimilar? 

PRorosmoN 4.8 
Every U bisimulation can be strengthened to a B bisimulation. 

PROOF. Assume C is a U bisimulation between M and J./. Define C' by: (s, s')C'(r, r') if 
s < s', r < r', sCr and s' Gr'. We claim that T = CU C' is a B bisimulation. 

If sTr and s < s' then sCr, so by the fact that C is an U bisimulation, there is an r' with 
r < r' and s'Cr'. It follows that (s, s')T(r, r') by the definition ofT. 

Assume (s,s')T(r,r'). Then by the definition ofT, sCr, s < s', r < r', s'Cr', and by the 
fact that C is a U bisimulation, for all s" with s < s" < s' there is an r" with r < r" < r' and 
s"Cr". Hence (s,s")T(r,r") and (s",s')T(r",r'). I 
THEOREM4.9 

Let C be a B bisimulation between Mand N with sCr and (s, s')C(r, r'). Then for all B 
formulas <p it holds that M, s F= <p iff N, r F= <p, and for all B procedures a it holds that 
M, s, s' F= o: iff J./, r, r' f= a. 

PROOF. The proof again uses an induction argument, but now we need simultaneous induction on 
formulas and procedures. The interesting cases are the cases of a modal formula Do( a) and of a 
modal procedure o:. 

First the case of a modal formula. Assume M, s f= Do( a). This means that there is some 
s' with s < s' and M, s, s' F= o:. From sCr, s < s' and the fact that C is a B bisimulation, 
there is an r' with r < r' and (s, s')C(r, r'). Now the induction hypothesis for a yields that 
J./, r, r' f= o:, and from this plus r < r' we have that J./, r F= Do(o:). The other direction is 
similar. 

Next the case of a B procedure. Assume that a has the form Rip, and the induction hypothesis 
holds for <p. Then M, s, s' f= o: implies M, 8 1 p <p, so from the induction hypothesis, plus the 
fact that (s, s')C(r, r') implies s'Cr', we have /1./, r' F= <p, and thus, N, r, r' f= a. 

Boolean cases a, 0:1 n 0:2 follow directly by the induction hypothesis. 
Finally, for procedures of the form o:1 ; 0:2, the reasoning is as follows. Assume M, s, s' f= 

0:1; 0:2. Then there is an s" with s < s" < s' and M, s, s" F= a 1 , M, s", s' F= a 2 . Applying 
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the B bisimulation clause to ( s, s') C ( r, r') and s < s" < s', we conclude that there is an r" 
with r < r" < r' and ( s, s") C ( r, r"), ( s", s') C ( r", r'). Use the induction hypothesis twice to 
obtain N, r, r" I= 0:1 and N, r", r' I= 0:2. It follows that N, r, r' I= o:. I 

4.4 First-Order Analysis 

We are now in the position to prove a preservation result for the B language, using the following 
translation from B to first-order logic (note that the translations of B formulas have one free 
variable, while the translations ofB procedures have two): 

Formula translations: 
p• 
( •'l/J). 
('t/J /\ x)• 
(Do(a))9 

Procedure translations: 
(R'l/;)" 
(a)" 
(a1 no:2) 0 

(a1; 0:2) 0 

= Px 
·'t/J· 
't/J" /\ x· 

= 3y(x < y /\ a"[y/x]) 

= 'l/J"[y/x] 
= -.o:• 
= 0 r /\ 0 2 
= 3z(x < z /\ z < y /\ o:;'.[z/y] /\ a2[z/x]). 

Now the saturation argument works. The following theorem shows that the B language and 
the notion of B bisimulation 'fit'. 
THEOREM 4.10 
A first-order formula i.p with at most two free variables x, y is equivalent to a• translation of a 
formula or procedure of the B language iff t.p is invariant for B bisimulations. 

PROOF. The left to right direction is taken care of by Theorem 4.9. 
For the other direction, we demonstrate the case of B procedures. Assume that i.p( x, y) has at 

most x, y free and is invariant for B bisimulations. Let L( t.p) be the set of semantic consequences 
of t.p which are translations of B formulas, with at most x, y free. We show that L(t.p) I= t.p. 
Compactness then gives us 't/J1, ... , 'I/Jn E L( t.p) with 't/J1, ... , 't/Jn I= t.p, whence the modal 
procedure /\i 't/Ji defines t.p. 

Assume M, s, s' I= L(t.p). We have to show: M, s, s' I= <p. Now the following set 
of formulas must be finitely satisfiable: { t.p} U { 1/J" I '!/J any B formula or procedure with 
M, s, s' I= '!/J"}. Therefore, by compactness, this set has a modelN with a state pair r, r' where 
~ holds, and which agrees completely with s, s' on all translations of B formulas. Take two 
w saturated elementary extensions M* ,N* of Mand N (see again [13]). We claim that the 
relation 

(M*, s) satisfies the same (translations of) B formulas as (N*, r), and 
(M*, s, s') satisfies the same (translations of) B procedures as (N*, r, r') 

is a B bisimulation between M * and N* relating s to r and s, s' to r, r'. Call this relation =· 
• Ifs = r then V ( s) = V ( r), because of the agreement for translations of atomic formulas. 

• Ifs = r and s < s' then for each finite subset A of the modal theory of s, s' there is an 
r' > r such that r, r' satisfy A. The reason for this is that Do(n .6.) holds ins and hence in 
r. By saturation, there must be some r' > r such that r, r' satisfy the full modal theory of 

s, s'. But then (s, s') = (r,r'), as required. 
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•Assume (s, s') = (r, r'). Then for all modal formulas t.p, M*, s, s' f= Ri.p iff N*, r, r' f= 
Ri.p. Hence for all modal formulas <p, M *, s' f= t.p iff N*, r' f= <p. Hence s' = r'. 

•Assume (s, s') = (r, r'), and there is ans" with s < s" < s'. Then for each pair of 
finite subsets .6.1 , t..2 of the modal theories of s, s" and s", s', respectively, there is an r'' 
with r < r" < r' for which r, r" satisfies .6.1 and r", r' satisfies A2. The reason is that 
M*, s, s' F= n A1; n A2, so N*, r, r' F n A1; n A2, by the assumption. But then by 
saturation, there must be some r" with r < r" < r' such that r, r" satisfy the full modal 
theory of s, s", and r", r' the full modal theory of s", s'. This gives ( s, s") = ( r, r") and 
( s", s') = ( r", r'), as required. 

Thus we have N, r, r' f= t.p, by construction. Therefore N*, r, r' f= t.p by elementary 
extension, Therefore M*, s, s' f= <p because s, s' and r, r' are B bisimilar and 'P is invariant for 
B bisimulations. Finally, M, s, s' f= t.p by elementary descent. I 

Many details of the above first-order analysis could be changed easily. As a final illustration, 
we consider a two-sided 'temporal' variant. A temporal language in which the operators S, U are 
both definable is obtained by extending the B language as follows. 

Bv formulas cp ::= J 1-ii.p I (i.p/\i.p) I Do(o:) I Rn(o:). 
Bv procedures 0: ::= Ri.p I Lcp I a I an 0: I o:; a:. 

The semantic clause for the new B v formula construct will run as follows: 

• M, sf= Rn( a) iffthere is some s' E S(M) with s' <sand M, s', sf= o:. 

The interpretation of the new procedure is given by: 

• M, s, s' F= Li.p iff M, sf= r.p. 

Now we can define the modality (P)i.p as Rn(Lrp) and i.pS'lj! as Rn((R-.ip; V') n L'ljJ). 
Again, this language gives rise to a notion of Bv bisimulation which can be shown to be the 

proper notion of semantic invariance for the language, while it also allows for a preservation 
result. 

REMARK4.ll 
It can be shown that on transitive structures, Bv bisimulation is equivalent to the 'trisimulation' 
from [5]. In fact, using the techniques explained there, one may show that our B v language is 
expressively complete over suitable linear orders. 

5 Programming constructs and bisimulation 

5.1 Programs and modal operators 

The second variety of modal logic that has been applied to problems of theoretical computer 
science with considerable success is dynamic logic [26, 38]. Here, as in the case of the temporal 
languages B and B v , the modal operators have internal structure: they are in fact based on 
programs whose structure becomes a second main concern of the formalism. Propositional 
dynamic logic (PDL) has the following two-sorted language of fonnulas and programs. 

PDL formulas 'P ::= p j -.ip I (r.p /I. cp) I (w)r.p. 
PDL programs 7r ::= a 1 ?T* I ?Ti 7r I 7r U 1T I ip? 
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We use the same abbreviations as before. 
PDL formulas are evaluated in TSs as follows. The clauses for propositional atoms, Booleans 

and simple modalities are as before. Using Ra for the set of~ arrows in a TS M, we define the 
relations [rr]M (i.e. the sets of.; arrows) of M. 

• [a]M =Ra. 
• [rr1; rr2]M = [rr1]M o [rr2]M. 

• [rr1 U rr2]M = [rr1]M U [rr2]M. 

• [rr*]M = ([7r]M)* (thereflexivetransitiveclosureof[rr]M). 

• [c,o?]M = {(s,s) I M,s I= cp}. 

The [rr]M relations give the sets of state pairs s, s' that are related by the program 11". Note that 
we might just have well have phrased the the truth definition in terms of a two-dimensional modal 
scheme M, s, s' I= rr, as we did above for many-dimensional temporal logic. In the present 
set-up with accessibility relations [7r]M, the clause for program modalities becomes: 

• M, s I= (rr)cp if there is some s' among the states of M with s[rr]Ms' and M, s' I= cp. 

We will use the operator A as an abbreviation of ai U · · · U an. where a1, ... , an enumerates 
the set A of action labels, in case A is finite. If A is infinite, allowing A as an operator amounts 
to an extension of the language, with the stipulation: M, s I= (A)cp iff there is an s' with 
(s, s') E UaeA Ra and M, s' I= cp. 

There exists a so-called 'filtration technique' by which an infinite TS M for which M, s I= cp, 
with t.p a PDL formula, can always be compressed to a finite TS M' with a state s' in which 
cp holds, whose size is bounded by a function involving the length of cp only. It follows that 
universal PDL validity is decidable. There are also explicit sound and complete axiomatizations 
of PDL (see [26]). 

5.2 Bisimulationfor PDL 

Perhaps surprisingly, the same relation of simple bisimulation of Section 2 is the appropriate 
notion of similarity for PDL as well. We have the following observation. 

LEMMA5.l 

If C is a simple bisimulation between M, N with sCr, then: 

1. For all PDL formulas c,o: M, s I= c,o iff N, r I= i.p, 

2. For all PDL programs 11", if there is ans' with s[rr]M s' then there is an r' with r[7r]N r'. 

PROOF. Simultaneous induction on the structure of c,o and rr. I 

In this induction, simple bisimulation turns out to be preserved under the relational operations 
ofU, o, * (compare the concern of process algebraists about bisimulation being a congruence for 
process operations; see [27] and [20] for further analysis). It is easy to see that simple bisimulation 
is not preserved under, for example, intersection of relations, in the sense that not every simple 
bisimulation for Ra and Rb is a simple bisimulation for Ra n Rb. Also, bisimulation is not 
preserved under taking the reversal Rv of a relation R, as is shown by the fact that not every 
F bisimulation is an F P bisimulation. These observations in fact suggest a new way in which 
bisimulation invariance affects one's choice of a computational programming repertoire: 
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DEFINmON 5.2 
An operation 0( R1 , ... , Rn) on two-place relations is safe for bisimulation of kind K if every 
bisimulation of kind K for Ri, ... , Rn is also a bisimulation of kind K for 0( Ri, ... , Rn). 

In order to prove negative results about safety for bisimulation, i.e. in order to show that certain 
operations are unsafe for bisimulations of certain kinds, one needs to agree on a language first. 
For the language of first-order logic the following result was proved in [7] (see also [8]). 

THEOREM 5.3 
A first-order relational operation O(R1 , ... , Rn) is safe for simple bisimulation iff 0 can be 
defined using the following ingredients: 

• atomic relations Rixy, 

• atomic tests p? (i.e., x = y A Px), 

•relation composition R1; R2 (i.e., 3z(R1xz /\ R2zy)), 

•relation union R1 U R2 (i.e., R1xy V R2xy), 

• counterdomain ""' (R) (i.e., x = y A -,:JzRxz). 

Theorem 5.3 can be viewed as a property of the relation of simple bisimulation, but it also 
is a reflection of the expressive power of first-order logic. This means we can pose the same 
question for other definition languages (e.g. higher-order logics) and obtain different answers. 
Also, the same question can be asked for different bisimulation notions, both for first-order and 
higher-order formalisms. Here is a sample 

OPEN PROBLEM 5.4 
Which first-order definable operations on relations are safe for B bi simulation? 

5.3 Standard logical analysis 

In order to get a preservation result in standard logic, we need a translation function to the 
language Lw, w, the language of predicate logic with infinite disjunctions. Here are the translation 
clauses: 

Formula translations: 
Atoms and Booleans: as before 
((1r)cp)" = 3y(1r0 A cp 0 [y/x]) 

Operator translations: 
a' = Ra(X, y) 
(7!'1; 7!'2) 0 = 3z(1ri[z/y] A 1r2[z/x)) 
(7!'1U1r2)' = 7l'i v 7!'2 
(cp?)" (r.p'Ax=y) 
( 7!'0). = x=y 
(7l'n+l)• = 3z(7r0 [z/y] A (7rn)•[z/x]) 
( 1T*). = V n=0,1,2,...(7rn)• · 

In the translation instructions, 1l'n is used as an auxiliary operator, to denote the sequential 
composition of n copies of 7l'. We will not pursue the matter of formulating a preservation result 
for PDL here. 
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FIG. 7. TS needing non-Boolean test to distinguish top half from bottom half 

OPEN PROBLEM 5.5 
Give a preservation result characterizing precisely the PDL formulas in Lwiw· 

Mere bisimulation invariance cannot suffice here: Van Benthem and Bergstra [8] characterize 
this notion structurally as the obvious Lw1 w version of basic modal logic, which properly includes 
PDL. In Section 7 we will come back to this matter and address the question of a first-order 
translation for PDL fragments with just one r* program, for which we do have a preservation 
result (in first-order logic). 

5.4 Appendix: traces versus choices 

We have seen that all PDL program operations share the property of being safe for bisimulation. 
This shows that PDL is closely tied up with the branching structure of possible choices in TSs. 
Nevertheless, some people think of PDL programs in terms of typical 'trace languages' that would 
be closer to finite trace equivalence. The key issue is the role of tests: with only non-modal tests 
we have pure trace languages, with full modal tests, choices become important. In [28] there is 
a proof that PDL without test is essentially weaker than full PDL. But we can say more. The 
ability to perform tests on the branching structure ofTSs (by means of 'non-Boolean' tests such 
as ( ( a)p) ?) is an essential feature of PDL. We will now show that testing for just trace structure 
reduces expressive power. This illustrates that PDL is essentially a 'branching language'. Our 
proof is an adaptation of Harel's proof that PDL without test is weaker than full PDL [28]. 

THEOREM 5.6 
PDL with non-Boolean test has greater expressive power than PDL with only Boolean test. 

PROOF. Consider the TS from Figure 7. Take a PDL language with labels a, band with p as 
its only proposition letter. Assume that in the TS of the picture p is true everywhere. Then all 
Boolean tests trivialize, by the following equivalences: 

(p)? 
(-ip)? 
(<p/\?.j;)? 
(<pV?./J)? 

++ 
++ 
++ 
++ 

Id 
J._ 

<p?; 'ljJ? 
cp? u ?./;? 

With respect to the TS from Figure 7, the language with Boolean test reduces to a language 
without Boolean test. 
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Still we can distinguish the top part from the bottom part of the TS by means of the following 

modal test formula: 

cp:::: (((--i(b)T)?;a)*)((b)T /\ (a)(b)T). 

Next one proves, along the lines of the proof in [28] for Boolean test, that cp cannot be equivalent 

with a test free formula '!/J, as any such W. would be true in both halves of some suitably large TS 

as in Figure 7, with the size depending on 'lj;. I 

6 Intermezzo: tense logic and propositional dynamic logic 

6.1 A choice of perspectives 

We will now briefly return to the use of 'temporal' operators in talking about TSs. There are 

several different ways to make the connection between tense logic and propositional dynamic 

logic. 
In the first place, the temporal operators can be used to describe the 'internal and backward 

structure' of transitions for some action a. The method here is: fix a transition label a and read 

the relation < as ~ and > as !!-. This is a first-order perspective, with the relation symbol Ra 
substituted for < in the • translation for the temporal operators. 

As we did not assume the temporal precedence relation to be transitive, (F)cp, when interpreted 

in terms of ~ transitions, does not express that cp is true at some state that can be reached by 

following an ~ path, but rather that cp is true in some immediate ~ successor. Of course, if the 

~ relation is transitive this makes no difference, but in general it does. 
This reflection leads to a second perspective. We can single out special relations < and > 

with reasonable properties as a 'flow of time' and let F and P refer to those. This gives rise to 

possible interactions between Ra and<, for example, it is reasonable to ask that< be transitive, 

and that the transitive closure of every ~ transition relation be included in <. The following 
axioms accomplish this much: 

cp-+ [P](F)cp 
cp-+ [F](P)cp 
(F) (F)cp -+ (F)cp 
(a; a*)<p-+ (F)<p 
(av; av*)<p-+ (P)rp 

Rp <;R~ 
Rp <;R'f, 
transitivity of < ( = Rp) 
Rt<;< 
R~v <; > 

TSs satisfying these axioms have one distinguished transition relation ~ to monitor the passing 
oftime. Time is viewed as having an intrinsic quality of its own. The 'action' that gets performed 

by making a move along a 1~ transition is the action of 'moving into the future', i.e. of doing 
what we all do by doing nothing at all. 

The F operator is very useful to describe properties ofTSs having to do with the availability of 
J states, for it enables us to express things like 'some J state is reachable', by means of (F) J, 
and 'all reachable states without outgoing arrows are J states', by means of [FJ([A]l. -+ J). 

In the perpective just sketched temporal transitions stand apart from the other transitions of a 
TS. It is also possible to think of time as generated by action. This leads to a third perspective on 

the connection between temporal logic and dynamic logic. In this view, the temporal operator F 
is interpreted using the relation of 'being reachable via a finite number (one or more) of transitions 
from the current state, no matter what their labels are'. Now the temporal languages L FP and 



Modal Logic, Transition Systems and Processes 83 l 

U that we have consi~ered are fragments of PDL. (A; A *)cp expresses precisely what (F)cp 

express~s. For translatmg the past operators, use propositional dynamic logic with reversal. The 

appropnate fragments of PDL for the 'temporal' similarity notions under this perspective are 
given in Figure 8. 

similarity notion language for this notion 

F bisimulation <p ::= y' I -icp I ( <p /\ <p) \ (A; A *)<p. 

FP bisimulation t.p ::= J \ -icp I ( t.p /\ t.p) \ (A; A *)<p \ (A v; Av*)<p. 

FIG. 8. Temporal Fragments of PDL 

Reading < as (LJ Ra)+, which is what this third perspective amounts to, makes for a big 

increase in the computational complexity of the resulting version of temporal logic. This is 

not surprising, as the logic becomes infinitary, in the sense that the tense fragments of PDL are 

fragments of Lw1 w. See [ 43] for some comparisons. Also, some temporal modalities still elude 

us. To see why this is so, we must look briefly at the distinction between linear time and branching 

time temporal logic. 

6.2 Linear time, branching time and PDL 

In linear time temporal logic one considers just one execution sequence of a process, in branching 

time temporal logic one looks at the several possible futures of a process that might go different 

ways. A logic for the study of branching time was introduced by Clarke and Emerson [15] (see 

also [26]). 
The temporal languages that we have considered are certainly appropriate for linear time 

temporal logic. For linear time, the unary future operator (F) (at least once in the future) comes 

with a counterpart [F] (always in the future). Using (LJ Ra)+ to interpret the future operator, 

this is reflected in PDL as the distinction between (A; A*) and [A; A*]. 

For branching time, quantification over time points in the future has two dimensions: sometimes 

versus always along one time branch, and sometimes versus always along every time branch. If 

a statement t.p is true somewhere along some time branch, this indicates that <p may happen. If 

<p is true somewhere along every time branch, this means that <p is bound to happen. If ip is 

true everywhere along some time branch, this means that it is possible that cp will hold forever. 

Finally, if r.p is true everywhere along every time branch, then this means that it is inevitable tha1 

<p holds forever. 
Thus, for our unary future modality, we get the following interpretation clauses: 

• 3(F)cp: somewhere along some time path, <p. 

• V(F)r.p: somewhere along every time path, <p. 

• 3[F]r.p: everywhere along some time path, <p. 

• 3(F)r.p: everywhere along every time path, <p. 

It is well known from the theoretical computer science folklore that not all of the unary 

branching operators are expressible in PDL; see [18]. At first sight, [A][((-icp)?; A)*](A*)r.p 
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FIG. 9. TS verifying [a][( ( -.p)?; a)*](a*)p 

looks like a reasonable translation ofV(F)cp. To see why this does not work, consider the TS of 
Figure 9. 

In the root note of this TS, [a][( ( -.p)?; a)*] (a*)p is true, but still, not for all paths through this 
TS does it hold that eventually p will become true on that path, for the process could loop from 
the root state to the root state indefinitely. The problem is that PDL does not allow us to express 
the presence or absence of such loops. 

There are extensions of PDL with constructions for loop detection in which the branching time 
operators are expressible. Such extensions call for generalizations over previous concerns, e.g. 
the study of a notion of 'bisimulation with loop detection'. In Section 8 we return to the topic of 
branching, in connection with the treatment of silent actions in TSs. 

7 Modal Logic and Process Algebra 

7.1 Varieties of Process Semantics 

The process semantics of finite trace equivalence, simulation, simple bisimulation, T bisimulation, 
simple branching bisimulation, and branching bisimulation can all be described as fragments of 
PDL. It will not come as a surprise that it is possible to isolate appropriate description languages 
as fragments of PDL for various other proposals of process semantics. Here are some examples 
of this. 

The appropriate language for 'completed trace equivalence' (a variant of finite trace equivalence 
where the finite traces have to end in states without outgoing transitions): 

Let 'P ::= i/; I cp /\ i/; '1/1 ::= ([A]1- /\ J) j ([A]1- /\ -..J) j (a)'!/J. 
The appropriate language for 'failure semantics' [30]: 

Lis 'P ::= 1f; I 'PA 'I/! I (cp /\ [X]..L) (X £;A) 1f; ::=.JI -.y' j (a)'!jJ. 

To get at the appropriate language for 'ready-trace semantics' [I] (called 'barbed wire seman
tics' in [37]), we take X! to be an abbreviation of 

(A (x)T /\ A [y]..L)?. 
xEX yEA-X 

Lrt 'P ::= 'lf! I cp A 'lf! 7/; ::= v' j -.y' j (a)'lj; j (X!)7/; (X £; A). 

7.2 Operations on transition systems 

An algebraic approach to TSs is provided in process algebra, where TSs are introduced as 
solutions for algebraic equations formulated in terms of construction operations on TSs [2, 10], 
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and processes are defined as equivalence classes of TSs modulo bisimulation. 
The construction operations of process algebra in the spirit of [ 10] work on equivalence classes 

of rooted TSs with an interpretation for J. We prefer to introduce the operations at the level of 
the TSs themselves, so we are looking in fact at graph operations in the spirit of (16]. 

DEFINITION 7 .1 
A basic TS is a TS of the form s ~ J, where s is the root state, a is a label from a set of action 
labels A, and .../ denotes the state that the arrow is pointing to and indicates that it is a success 
state. 

Apart from the basic TSs, there are two special TSs. 

DEFINITION 7 .2 
€ is the TS consisting of one state marked by J and without arrows; 8 is the TS consisting of one 
state not marked by .../ and without arrows. 

Next, we need operations on TSs to construct further TSs. The construction operation+ (sum) 
talces two rooted TSs (with disjoint state sets) and identifies the roots to form a new rooted TS. A 
slight complication here is that the root of one or both TSs may have incoming arrows, spoiling 
the idea of a 'choice' between two processes. Therefore the sum operation has to be defined on 
rooted TSs with roots without incoming arrows. If a rooted TS has a root with an incoming arrow, 
we use the following root unwinding operation p to remedy this. p( M, s) = ( M 1 , s') where 

s1 is a new state which has Jiffs has J and which has an arrows' ~ r in M 1 for all arrows 

s ..; r in M, and where M' is such that all the arrows and states of M which cannot be reached 

from s1 are left out. 

DEFINITION 7 .3 
The construction operation+ (sum) takes two rooted TSs (with disjoint state sets), first unwinds 
the roots and then identifies them to form a new rooted TS. A .../ mark on one of the roots is 

inherited by the new root. 

Because of the way in which J is inherited, 8 is a neutral element for this operation. 

DEFINITION 7 .4 
The construction operation ·(product) takes two rooted TSs (with disjoint state sets) and identifies 
the root of (a copy of) the second one with all nodes of the first which have the J mark, while 

erasing this J mark. 

It is not difficult to see that € is a neutral element for this operation. 
There are also versions of process algebra where the iperation is replaced by operations of 

'action prefixing' a· (see (33]). 

DEFINITION 7.5 
The construction operation II (free merge) takes two rooted TSs and makes a new one by taking 
the Cartesian product of the state sets as the new state set, taking the ordered pair of the two roots 
as the new root, marking (s, r) with J if both sand r have Jin the original TSs, and taking 

(s, r) ..; (s', r') as a new transition arrow if 

• s = s1 and r ..; r1, or 

• r = r' and s ..; s1, or 

• s ..; s' and r ..; r 1 • 

More complex constructions on TSs exist (abstraction, pruning, recursion), but these will not be 

discussed in this paper. 
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7.3 Modal languages and process term languages 

What we would like to do here is to put a new research direction for modal logic on the research 

agenda: the investigation of the connections between the process operations given above on one 

hand and syntactic and semantic operations in modal logic on the other, and of the connections 

between equational process languages and modal languages. There is an intriguing relation 

between the 'process' operations on TSs and various syntactic operations on modal formulas 
satisfying these TSs. 

The key fact in the earlier application of modal logic to process diagrams (rooted TSs) is that 

modal languages give an 'internal' description of a TS, describing possible 'runs' of the associated 
process, while bisimulation invariance gives an 'external' description of the TS, and for suitable 

choices of language and bisimulation relation, these two descriptions match. Let us now consider 

the connections with process algebra. 
For a start, it may seem that there is a difference between our earlier bisimulations and the 

bisimulation notions as employed in process algebra (in [2]), where bisimulation is understood 

to be a relation on one big domain of TSs. But this is not a real difference with the present 

approach, for it is always possible to collect TSs in one super TS, by taking disjoint unions. In 

process algebra, characterization results take the form: s = r in some process algebra calculus 

iff s and r bisimulate in some TS containing both of these states according to some definition of 

bisimulation. We propose to look at s, r in their own TSs, for which we can take the generated 
submodels. 

DEFINffiON 7 .6 
If M is a TS with s E S(M), then M•, the subTS or submodel generated by s, is defined 

as follows. Its domain is the smallest subset of S(M) containing s which is closed under___;_ 

successors for all a E A. The interpretation of .j in Ms is the interpretation of .j in M restricted 

to S(M 8 ). The transitions of M 8 are the transitions of M restricted to S(M 8 ). 

Evidently, the inclusion from M' to M is a simple bisimulation. 
These two links, one between process algebra calculi and bisimulation notions, and the other 

between bisimulation notions and formalisms of modal logic (that can also be axiomatized), sug
gest the possibility of direct translations between process algebra equations and modal formulas. 

We will now explore this idea in several directions. 

7.4 First approach: process term equalities as program equivalences in PDL 

The most straightforward link between process algebra and PDL is a mapping from term equalities 
to PDL equivalences. Here is an example of what we have in mind. 

Term translations: 
ao = a 
(x + y)o Xo U Yo 
(xy)o = xo;yo 
(t:)o = T? 
(5)0 = ..L? 

Equality translation: 
(x = y)o = (xo)y' t+ (yo)-./. 

The following table gives the axioms of basic process algebra, with their PDL counterparts under 
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the 0 translation. 

x+y=y+x - (n1 u n2)v ++ (n2u1f1)v 
(x + y) + z = x + (y + z) - ((n1 u 7r2) u 7r3)v ++ (7r1 u (7r2 u 7r3))v 
x+x=x - {nu 7r)./ ++ {7r)./ 
(x+y)z=xz+yz - { (7r1 u 7r2); 7r3) v t+ {7r1; 7r3 u 7!"2; 7r3).j 
(xy)z = x(yz) - ((7r1; 7r2); 7r3)J ++ (7r1; (7r2; n3))v 
x+o=x - (7r u .L?)v ++ (1f)v 
ox=o - (..L?;7r)./ ++ (-'-?)v 
X€ = X - (7r; T?)v ++ (n)v 
€X = X - (T?;7r)v ++ (n)v 

PRorosmoN 7.7 
I. Translation ° is 'sound'. 2. Translation ° is not 'faithful'. 

PROOF. (1) follows from the fact that the translation of every basic process algebra axiom is a 
valid principle of PDL. 

(2) The translation is too coarse, for it maps process terms which are not equivalent to PDL 
equivalent formulas. For example, x(y + z) =f. (xy + xz), but (x(y + z)) 0 --...+ x 0 ; (y 0 U z 0 ), 

and this PDL program is equivalent to the program ( x 0 ; y 0 ) U ( x 0 ; z 0 ), which is the 0 translation 
ofxy+xz. I 

OPEN PROBLEM 7.8 
Is there a faithful embedding of the basic process algebra axioms in PDL? 

We should look at the process algebra equations as telling the story of the TS operations from 
Section 7.2. The equation x + y = y + x tells us that the rooted TS M, s + N, r cannot 
be distinguished from the rooted TS N, r + M, s. But because of the fact that the notion of 
similarity at the basis of this is the same as the similarity notion of (a suitable fragment of) PDL, 
we can use modal logic to formulate syntactic operations corresponding to the process operations 
on TSs, and then see which modal principles correspond with the process algebra equations. 

7.5 Second approach: canonical approximations at finite depth 

In process algebra, process terms denote rooted TSs, and process equations stipulate which TSs 
are viewed as descriptions of the same process. In modal logic, formulas denote classes of rooted 
TSs, and fragments of the modal languages induce similarity notions telling us which rooted TSs 
cannot be told apart by a formula from the fragment. In general, it is not possible to associate 
'normal form' modal formulas with single TSs, for formulas are inherently finite, and TSs are 
not. However, if we agree not to probe into the TSs beyond a given finite depth n, the situation 
changes. 

The finite depth perspective immediately leads to a parallel between modal logic and process 
algebra. 

DEFlNmON 7.9 
The tree unwinding operation Tofrooted TSs M, sis given by: T(M, s) has a root correspond-

ing to the empty path in M, s, a state () for every finite path of M, s, and an arrow 8 ~ ()' iff the 
path corresponding to(}' in Mis an extension with~ of the path corresponding to (j in M. 
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FIG. 10. TSs that can be unwound to the trees of Figure 11 

FIG. 11. Un windings of the TSs of Figure 10 

The depth of a state in a tree is the length of the (unique) path from the root of the tree to that 
state. Tree unwinding is well known in process theory [9], and pre-existed in modal logic under 
the name of 'unravelling' ([42]; see also [12], Section 13). 

The TSs in Figure 11 give the tree unwindings of the TSs of Figure 10. Note also that for any 
rooted TS M, s it holds that M, s and T ( M, s) are simply bisimilar. 

DEFINmON 7 .10 
The projection up to depth n ofTS M, s, nn(M, s), is obtained by first unwinding M, s to a 
tree M', s', then removing all arrows leaving from a state at depth n, and finally removing all 
inaccessible states and arrows. 

DEFINITION 7.11 (Operator depth) 
The operator depth of a multimodal formula t.p is given by: 

• d(p) = 0, 

• d(-ii.p) = d(<p), 
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• d(cp /\'if;)= max(d(cp),d(1{J)), 

• d((a)cp) = d(cp) + 1. 

PRorosmoN 7.12 
For all cp with d(cp) :$ n: M, sf: <p iff rr.,(M, s) I= cp. 

The next definition is from [21]. 

DEFINmON 7.13 (Bisimilarity up to depth n) 

M,s "'O ./\f,r ~ s E.,/{::::?- r E.,/. 

M .N clef s E I ,.____.__ r E 1, , s "'n+l , r <:==:> v .,,.._..,... V 

The following results are standard: 

LEMMA 7.14 

Va E AVs' E S(M) 
(s .!+ s' => 3r' E S(JV)(r .!+ r' & s' "'n r')), 
Va E AVr' E S(N) 
(r .!+ r' => 3s' E S(M)(s .!+ s' & s' "'n r')). 

For every n, the number of equivalence classes induced by "'"'non the class of rooted TSs is finite. 

PRorosmoN 7.15 
M, s "'n .N,r iffforall multimodal formulas <p with d(cp) = n: M,s f: <p iff N, r f: cp. 

PROOF. From left to right: see [21] for the idea. 
From right to left: For any n ~ 0, associate a normal form formula with any state M, s as 

follows: 

n = 0. cp = { ~.,/ ifs E.,/ 
otherwise. 

n > 0. By Lemma 7.14, there is a finite list '1{;1 , ... ,1/Jm of normal form formulas for 
n - 1. Let a 1 , ... , ak be a finite enumeration of A (the set of labels of the language). Then 
t.p = t.po /\ /\~=l /\i=.1 Xij• where <po is the normal form formula for M, s for the 0 case, and 

Xij = (ai}'l/Jj in case there is some t with s ~ t and 1/Ji is associated with M, t for n - 1, and 
Xii = -.(ai}1/Ji otherwise. 

We can now prove by induction on n that, for any M, s and any TS N, the formula cp associated 
with M, s for n defines the set of states { u E S (N) I N, u ......, n M , s}, in the sense that for all 
andonlytheseu E S(.N) wehave.N, u f: <p. By the constructionofcp, we have thatM, s F= cp. 
Also, d( t.p) = n, so by the assumption of the proposition, .N, u f= cp. Finally, by the fact that cp 
is a normal form formula for n, it follows that M, s ""n N, r. I 

Note that the proof of Proposition 7.15 uses general logic: the notion of operator depth is 
closely related to that of quantifier depth, which makes for obvious connections with the topics 
of Ehrenfeucht games and partial isomorphisms in standard first-order logic. 

If we only look at finite processes, then we can derive 'normal form' modal formulas from 
process terms, as follows. In the following translation, we assume T to be a proposition symbol 
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(not an abbreviation for J V -iy'). 

r.p, = J 
r.p5 = T 
<fla = (a)J 
<flx+y = <flx /\ <py 

<flx·y = 1Px [r.py I Jl. 
PROPOSITION 7 .16 
BPA f- x = y iff F r.p,, f-t <fly· 

PROOF. From left to right: just check that all BPA axioms yield modal equivalences under this 
translation. 

From right to left: it follows from the definition of <flx, <py that f= 'Px +-+ <py iff there exists 
a simple bisimulation between x and y in the term model P of BPA. Thus f= 'Px +-+ <py iff 
p F x = y iff BPA f- x = y. I 
OPEN PROBLEM 7.17 
Can this translation be extended to other process operators? 

7.6 Behaviour of modal formulas under process operations 

Still another way to study the process operations is by determining which modal formulas they 
preserve. This is in fact a new systematic question for modal logic (for which only a few haphazard 
precedents exist in the literature): given TSs Mi and modal formulas <fli with Mi F 'Pi, what 
happens to the truth of { r.pi} on EBi(Mi), for various operations EB on TSs? 

In modal logic, various operations on Kripke models have been studied, e.g. the 'rooting' of 
M, s and N, r, notation M E9 N, x: combine M, sand N, r by adding a state x and two 
transitions x -+ s, x -+ r. This operation is defined for models with a single accessibility 
relation R, i.e. TSs with one unlabelled -+ transition. But it can also easily be applied to TSs 
with different transition labels, via the following 

DEFINITION 7 .18 
Let M be a TS with an interpretation for P and set of action labels A. Then UM, the unlabelled 
TS based on M, is the TS which has as its set of states 

S(M) U {as,t Is~ tin M}, 

as its accessibility relation 

{s-+ as,t It E S(M),s ~ tinM} U {as,t-+ t J s E S(M),s ~ tinM}, 

and as its valuation the function V: PU A-+ POW (S(U M)) with 

V(p)=VM(P) (pEP) V(a) = {as,t Is~ tinM} (a EA). 

Consider the following translation from the multimodal logic over proposition letters P and action 
labels A to modal logic with proposition letters P U A and modality O. 

Po 
( -ir.p )0 
(r.p (\ 'l/;)O 
( (a)r.p )o 

= 
= 
= 
= 

p 
-ir.po 
(<po/\ 'l/;o) 
O(aA0r.p0 ). 
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PROPOSITION 7 .19 

For all labelled TSs M and all multimodal formulas <p: M, s p <p iff UM, s p <p0 • 

PROOF. Induction on the structure of <p. I 

We can use this translation to apply the 'rooting' operation $, which is defined for TSs without 
labels, to labelled TSs. This leads to the following 

PROPOSITION 7 .20 

If M, s f= t.p then UM EB UN, x f= O<p0 • 

It should be noted, though, that UM EB UN still does not coincide with the process algebra 
operation UM + UN. 

Another well-known construction from modal logic is the 'direct product' of M and N, 
notation M &'! N, which has S(M) x S(N) as its state set and (s, r) 4 (s', r') iff s 4 s' and 

a I . 

r -t r . Here we have the following preservation result. 

PROPOSITION 7 .21 

If <p is of the 'Hom format' (a)p1 /\ · · · (a)pn -t [a]q, then M p <p implies M 0 N p <p. 

But again, the operation @ is subtly different from the nearest process algebra operation II· 
Finally we have the operation of 'glueing at specified positions', M ·pN, of which the process 

algebra operation M · N represents the special case where p = J. 
OPEN PROBLEM 7.22 
What is the precise relation between 'rooting' and 'direct product' and the process algebra 
operations? 

The modal study of the process algebra operations should start with an investigation of their 

preservation properties. Here are some preliminary observations for existential multimodal 

formulas. 

Lex <.p ::= P I <p /\ <p I <p V 'P I (a)cp. 

PROPOSITION 7 .23 

If <p E Lex then M, s f= <p implies M + N, s F <p. 

PROPOSITION 7 .24 

For all <p, 'ljJ E Lex: M, s 'p N, r f= ip['lj;/p] iff M, s F ip and N, T f= 1/J. 

While the above observations focus on preservation, it should be borne in mind that at some 

point reduction questions will have to be tackled as well: how can modal statements about 

some process algebra construct be reduced to statements about its components? This systematic 

question would also be of independent interest in modal logic. 

8 Transition systems with silent steps 

8.1 Silence and branching 

An important theme in the process algebra literature is the treatment of actions which are invisible 

from outside the system, the so-called silent moves. If one considers transition systems with a 

special silent action r, one can study equivalence between TSs 'if r steps do not matter'. We 

review two proposals from the literature and add one of our own. Our main claim in this section 

will be that this extension fits naturally into our framework so far. 
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FIG. 12. T bisimilar, but not simply bisimilar, TSs 

Let s ::+ s' ifs' can be reached from .:; chrough a finite number of T transitions (possibly 0), 
and let s ,.":!!:;* s' ifs' can be reached from s through a finite number of T transitions (possibly 
0) followed by one a transition (we assume a =I T) plus again a finite number of T transitions. 

DEFINillON 8.1 
A relation C ~ S(M) x S(N) is a T bisimulation if the following three clauses hold: 

I. If sCr then V(s) = V(r), 

2. • if sCr and s ::+ s' then there is a stater' with r ::+ r' and s' Gr', 
• ifs ,.":!!:;* s' then there is a stater' with r ,.":!!:;* r' and s' Gr', 

3. clause (2) vice versa. 

Figure 12 gives an example of T bisimilar TSs (corresponding numbers indicate T bisimilar 
states) which are clearly not simply bisimilar. 

The definition of process equivalences that take the 'invisibility' of T steps into account 
is an important topic in the process algebra literature. The definition of T bisimulation is 
from Hennessey and Milner [29]. Process algebraists from Amsterdam have been looking for 
alternatives to ensure that T steps do not discard choice options. Their intuition was as follows. 
To match a T step in the other structure there are two possibilities: (1) in the case that the T step 
didn't change any choice options, don't move, (2) in the case that the T step did make a change, 
then make T transitions through states that are all indistinguishable, until you can match the T 

move on the other side (see [24]). This gives the following definition for branching bisimulation 
(called 'branching' because it preserves choice structure in both directions). 

DEFINITION 8.2 

A relation C between S(M) and S(N) is a branching bisimulation if the following three clauses 
hold: 

1. If sCr then V(s) = V(r), 

2. •·if sCr and s 2t s', then either s' Gr or there is a stater' E S(N) with r 4 r' and either 
s' Gr' or (r' =I r and sCr'), 
"f 7 * t a II th th t 11 • N T* 1 a 11 • 1 s--+ s --+ s en ere are states r, r m with r -7 r ~ r , s'Cr' and s"Cr", 
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s' .................................... . 

r h ~0 
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s' ····~ 

FIG. 13. Relations between T steps for branching bisimulation 

3. clause (2) vice versa. 

Figure 13 gives the relation between T steps that can be made from branching bisimilar states, 

according to this definition. 
This 'symmetric' formulation of the definition of branching bisimulation is slightly more 

general than the definition from the process algebra literature [24, 2]. To establish the precise 
connection, we need the concept of being finitely branching in a non-atomic label. We say that a 

TS is finitely branching in r* if for all of its states s the set { t I s ~ t} is finite. 
We need this concept because from the fact that a TS is finitely branching in the label T it does 

not follow that for every state s the set { t I s ~ t} is finite. See Figure 14 for a counterexample. 

LEMMA 8.3 
If C is a branching bisimulation between S(M) and S(JV), and sCr, s ..:+ s1, and S(JV) is 
finitely branching in r*, then either 

• s'Cr, or 

•there are ro, ... , rn, with n ;'.:: 1, To -4 · · · -4 rn, To = T, Ti = rj implies i = j (i.e. the 
states are all different), sCTi for all i < n, and s'Crn. 

PROOF. Assume s E S(M), r E S(JV) and sCr, with C a branching bisimulation. Suppose 

s -4 s'. Then either s' Gr and we are done, or there is a state T 1 E S(JV) with r ..:+ r' and either 
(i) s' Gr' or (ii) r' =f. rand sCT'. In case (i) we have found our r n and we are done. In case (ii) 
we apply the definition again for the situation where sCT', s ..:+ s' and not s'Cr'. This gives an 
r" with T -4 r' -4 T". Repeating the argument and using the assumption that S (JJ) is finitely 

branching in r* we find To -4 · · · -4 T n with the desired property. I 

We conclude with an equivalence of our own, which lies in between T bisimulation and 
branching bisimulation, and which preserves as much of the choice structure as we will ever 
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' 
FIG. 14. TS which is finitely branching in r but not in r* 

2 

FIG. 15. T bisimilar, but not simply branching bisimilar, TSs 

need. Our intuition is that all r paths should have a match, but that individual r steps need not. It 
does not matter if some individual r steps do not have counterparts, as long as the choice structure 
before and after any visible action is matched. 

DEFINITION 8.4 
A relation C ~ S(M) x S(N) is a simple branching bisimulation if the following three clauses 
hold: 

1. If sCr then V(s) = V(r), 

2. • if sGr and s ::+ s' then there is a state r' with r ::+ r' and s' Gr', 
• ifs ::+ s' ~ s" then there are states r', r" with r .::.+ r' ~ r", s' Gr' and s" Gr", 

3. clause (2) vice versa. 

When commenting on a draft version of this paper, Rob van Glabbeek mentioned to us that this 
notion has already made a brief appearance in the literature (see [14], where this equivalence is 
called 'quasi branching'). 

Note that the r bisimulation from Figure I } is also a simple branching bisimulation. 
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5 

FIG. 16. Simply branching bisimilar, but not branching bisimilar, TSs 

OBSERVATION 8.5 
Simple branching bisimulation is a stronger notion than r bisimulation. 

PROOF. Obviously, every simple branching bisimulation is also a r bisimulation. Figure 15 shows, 
however, that the two notions do not coincide. The corresponding numbers in this figure indicate 
a r bisimulation. To see that there is no simple branching bisimulation, observe that in the TS on 
the right, the ~ step between the nodes marked 1 and 4 cannot be linked to the only ~ step in 
the left TS, for the source states of the ~ steps are not simply branching bisimilar. I 

OBSERVATION 8.6 
Branching bisimulation is a stronger notion than simple branching bisimulation. 

PROOF. Again, it is obvious that every branching bisimulation is a simple branching bisimulation. 
To see that simple branching bisimulation does not coincide with branching bisimulation, consider 
Figure 16, which gives an example of simply branching bisimilar TSs (with the simple branching 
bisimulation indicated by the matching numbers on the nodes) which are not branching bisimilar. 
To see that there is no branching bisimulation, observe that the -:+ step from the state marked 1 
to the state marked 2 in the left TS cannot be matched with a -:+ step in the right TS between a 
pair of states of which the first is branching bisimilar to 1 and the second to 2. I 

REMARK8.7 

Silence is a natural notion from a general logical point of view: 'Flatten' some previous action n 

to some r without internal structure. This operation could be viewed as a kind of 'projection' at 
the level of action labels, which suggests that it is amenable to ordinary model-theoretic analysis. 

8.2 Semantic invariances involving silent steps 

The considerations about semantic invariance from Section 3 are easily extended to TSs involving 

silent steps. 

CLAIM 8.8 
Semantic invariances involving silent steps can be described by modal languages which are 

fragments of PDL. 

Inspection of the notion of a r bi simulation readily yields the appropriate modal language for it: 
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L., cp ::=JI -.cp I (cp /\ cp) I (r*)r.p I (r*ar*)r.p. 

The semantic clauses for the new modalities become: 
. T* , d M v , I-I. M, V, sf= (r*)r.p if there is some s' among the states of M with s-+ s an , , s i- cp. 

M "th T*aT* f d 2. M, V,s f= (r*ar*)cp if there is some s' among the states of w1 s -+ s an 
M, V,s' f= cp. 

THEOREM 8.9 
Ifs E S(M) is r-bisimilar tor E S{N), then for all L., formulas cp: M, s f= cp iff N, r f= cp. 

PROOF. Induction on the structure of an L., formula cp. I 
THEOREM 8.10 
On TSs that are finitely branching in every atomic label and also in r*, invariance for L., formulas 
implies r-bisimulation. 

PROOF. Same method as in Theorems 3.4 and 3.7. I 

Let L sb be the following language: 

Lsb cp ::= J 1-icp I (r.p /\ cp) I (r*)cp I (r*; cp?; a)r.p. 

Note that Lsb properly extends L.,: the Lsb formula (r*; T?; a)(r*)cp has the same meaning 
as the L., formula (r*ar*)cp, so we can assume the latter formula to belong to Lsb as well. 

Consider Figure 15 again, of a pair of T bisimilar TSs that are not simply branching bisimilar. 
The following Lsb formula distinguishes between them: 

cp = (r*; ((r*)[r*a)l.)?;a)T. 

Formula cp asserts that some r* path leads to a state from which a ~ transition is possible, and 
from which also is a r* path to a state from which ~ is not reachable anymore via any r* path. 
This holds in the root state of the right TS, but is false in the root state of the left TS. 

THEOREM 8.11 
Ifs and rare simply branching bisimilar then for all cp E Lab: (s f= cp iff r f= cp). 

PROOF. Induction on the complexity of r.p. 
THEOREM 8.12 

I 

If M, N are finitely branching in every atomic label and also in r*, then invariance for L sb 

formulas implies simple branching bisimulation. 

PROOF. Call s = r ifs and r satisfy the same L sb formulas. We show that= is a simple branching 
bisimulation. Assumes E S{M), r E S(N), s = r. 

Assumes ~ s'. Then because s f= (r*)T and s = r, the set R = {r' I r ~ r'} 
is non-empty. Because N is finitely branching in r*, R = {ri, ... , rn }, for some n > 0. 
Suppose no ri has s' = ri. Then there are cpi, ... , 'Pn with s' f= I.pi and ri f= -.cpi. But then 
s F (r*)(c,o1 /\ · · · /\ cpn), and r f= -.(r*)(cp1 /\ · · · /\ cpn), and contradiction with s =: r. So 
there is an r' with r ~ r' and s' =: r'. 

A "* I " II Th R {( t ") I T• a ssume s -+ s -+ s . en = r , r r -+ r' -+ r"} is non-empty. Because N 
is finitely branching in r* and in a, R = {{r1, u1), ... , (rn, un)}, for some n > O. Suppose 
no pair (ri, ui) has both s' = ri and s" = Ui. Then there are cp1 , ... , <pn, 'l/;1, ... , 'I/Jn with 
s' F 'Pi and ri F -icp; ors" F= 'l/J; and u; f= -.'l/J;. Let cp be the conjunction of the cpi, and 
t/Jtheconjunctionofthet/Ji. Thens I= (r*;cp?;a)'l/Jandr f= -.(r*;cp?;a)'l/;,andwehavea 
contradiction with s = r. So there is a pair r', r" with r ~ r' ~ r" and 8 1 = r', s" =: r". I 
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Let Lb be the following language: 

Lb cp ::= v' I -icp I (cp /\ cp) I ((cp?;r)*)cp I (r*;cp?;a)cp. 

Note that Lb properly extends Lsb: the Lb formula ((T?; T)*)cp has the same meaning as the 
Lsb formula (r*)cp, so we can assume the latter formula to belong to Lb as well. 

Consider the TSs from Figure 16. An Lb formula that distinguishes between them is: 

cp = (((r*c)T?; r)*)([r*a]J_ /\ (r*b)T /\ [r*c]j_). 

Formula cp asserts that it is possible to do r steps while a 4 transition is reachable by a T* path 

and arrive at a state with the property that a .!:+ transition is reachable by r* path, but ~ or 4 
transitions are not. This is true in the root state of the left TS (move to the state marked 2), false 
in the root state of the right TS in Figure 16. 

THEOREM 8.13 
If M, N are finitely branching in every atomic label and also in r* and s E S(M) is branching 
bisimilar to T E S(N), then for all cp E Lb: (s I= <.p iff T I= VJ). 

PROOF. Induction on the complexity of <.p. We just give the case of formulas of the form 
((cp?; r)*)'lj;. Assume C is a branching bisimulation relating s and T, and the induction hy
pothesis holds. Supposes I= ((cp?; r)*)'lj;. Then either s I= 'ljJ or there are s1, ... , Sn with 

n ~ 1, so ~ s1 ~ · · · ~ Sn, so :::: s, Si I= cp for all i < n, and Sn I= '!/J. We may assume 
without loss of generality that the Si are all different. Applying Lemma 8.3 n times (here we need 

the assumption that the TSs are finitely branching in r*), we find for each pair Si, s;+1 a finite 

sequence To~ T1 ~···~Tm, with theTj all different, and with for all Tj withj < m, siCT3, 

and Si+l CTm. Applying the induction hypothesis m times, we find Tj I= cp for all j < m. If 
i ":/; n we also have Tm I= cp, otherwise we have Tm I= '!/J. It follows from this that there is a 
finite T path from T with everywhere on the path except in the last state cp, and in the last state '!/J. 
Therefore, TI= ((cp?; T)*)'lj;. I 
THEOREM 8.14 
If M, N are finitely branching in every atomic label and also in r*, then invariance for Lb 
formulas implies branching bisimulation. 

PROOF. Calls = T ifs and T satisfy the same Lb formulas. We show that= is a simple branching 

bisimulation. Assumes E S(M), TE S(N), s = T. 

Let s ~ s'. In case s' = T, there is nothing to prove, so assume that there is a x E Lb with 

s' I= x and TI= -.x. Bys= T, also s I= -.x. Because s I= ((-.x; r)*)x, and s = T, the set 

R ={(To, ... Tn) I ro = r,ro ~Ti ... ~ 1"n,Ti = Tj ==> i = j,i < n ==>Ti I= -,X,Tn I= x} 

is non-empty. Because N is finitely branching in r*, R = { 0-1, ... , o-m}, for some m > 0. 
Suppose no sequence <7; has a;(j) = s (j <last( a-;)) and o-;(last(o-i)) = s'. Then there are 
cp1 , ... , VJm, 'lj;1 , ... 'l/Jm with s I= t.p; and eithewi (j) I= -icpdor some j with 0 ~ j < last( a;), 
or o-i(last(ai)) I= -i'!/Ji· Let t.p be the conjunction of the 'Pi and 'ljJ the conjunctlon of the '!/Ji. 
Then s I= ((cp; r)*)'lf;. and TI= -.((rp; T)*)'!/J. and contradiction with s = T. So there is a state 

r' with T1 ":/; T, T ~ r' and either s = T 1 ors'= T1• 

The reasoning for s 2:.+ s' ~ s" is the same as for the case of simple branching bisimulation. I 

De Nicola and Vaandrager [ 17] prove a similar result for a slightly different language. Our use 
of a fragment of a well-known modal language (PDL) leads to further questions. 
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8.3 First-orderization 

The observation that the languages LT, Lsb and Lb are all fragments of PDL gives rise to a 
broadening of perspective. One would like to know if one can characterize these PDL fragments 

by means of invariance for the corresponding bisimulation notions? A problem here is the 
infinitary character of the operations 7* and ( ip?; 7) * . 

The first-order translation instruction for multimodal languages from Section 3 breaks down 
for the language LT, and for all other fragments of PDL containing the * operator, in fact (cf. 
Section 5.3). The modalities (7*) and (7*a7*) would give rise to infinite disjunctions of the 

form: 

((7*a)'l/;) 0 = 
v 
V3y3z(RaXY /\ RTyz /\ 1,b 0 [z/x]) 
v 
v 

3y(RaXY /\ ,,p• [y / x]) 
3y3z(RTxy /\ RaYZ /\ 'lf;"[z/x]) 

3y3z3w(RTxy /\ RTyz /\ Razw /\ ,,p• [w /x]) 

This shows that the language of first-order logic is not quite appropriate for a translation of 
modalities involving 7*, and it is natural to move to the infinitary version Lw 1 w. 

OPEN PROBLEM 8.15 
Give preservation results characterizing precisely the PDL fragments LT, Lsb and L& in Lw1w. 

Here we will pursue a different question, by attempting to give a first-order analysis after all. 
The problem with a first-order analysis of PDL is that there is no first-order way to describe the 
reflexive transitive closure of a relation. Now, there are various standard options for re-analysing 

this situation, so as to make it first order again. 
One strategy, which works as long as the number of different reflexive transitive closure relations 

remains manageable, is to represent each starred transition by a new two-place relation symbol. 

In the case of LT and Lsb we can get by by just translating 7* as R (for 'silent reachability') and 
making sure that R gets interpreted as a relation that contains the reflexive transitive closure of 
the ~ relation. There is a connection between this strategy and the notion of .6. saturation from 
[11) (see also [8]). 

T \lx\ly((x = y-+ Rxy) /\ (RTxy-+ Rxy) /\ (3z(Rxz /\ Rzy)-+ Rxy)). 

In any first-order model where T holds and where RT is interpreted as the ~ relation, R will 

be interpreted as a relation containing the~ relation. Thus, for the translation of LT and Lsb it 
suffices to restrict attention to models where T holds and translate 7* by means of R: 

Formula translations: 
p" = Px 
T• = x=x 
(-.1,b). = -.'If;" 
( 1J; /\ x)" 'l/J" /\ x· 
(('rr)?./J)" = 3y( 7r 0 xy /\ 7f; 0 [y / x]) 

Program translations: 
( 7* )" = Rxy 
( 7* a7* )" 3z3w(Rxz /\ Razw /\ Rwy) 
(7*; 1,1!?; a)" = 3z(Rxz /\ ,,p•[z/x] /\ Razy). 
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Now we can prove preservation results for r bisimilarity and simple branching bisimilarity. 
Call cp and 'lj; T-equivalent if for every model M for the language and every assignment s: 
M, s I= TI\ cp iff M, s I= TI\ 'lj;. 

THEOREM 8.16 
A first-order formula <.p with at most one free variables x is T-equivalent to a •-translation of a 
formula of the language L., iff c.p is invariant for r bisimulations. 

THEOREM 8.17 
A first-order formula cp with at most one free variable x is T-equivalent to a• translation of a 
formula of the language Lsb iff t.p is invariant for simple branching bisimulations. 

The proofs of these theorems follow a by now familiar routine. 
In the case of Lb we need a translation for (1.p?; r)*, so here a more general account of first

orderizing transitive closures is needed. One possible way to proceed is to add a new relation 
symbol R; for every first-order formula c.p(x, y) with x, y as its only free variables. This gets 
complicated by the fact that the new relation symbols should also be allowed to occur in t.p. 

There is also another option, which is more specific to the analysis of silence and branching: 
an analysis in terms of two-sorted first-order logic, with states and branches (see also [44]). To 
work this out, one needs appropriate predicates: 

Tx x is a T branch 
Fxy x is the first state on branch y 
Lxy x is the last state on branch y 
Oxy state x occurs on branch y. 

Use these predicates to translate as follows (note that the program translations have a free variable 
for a r branch and a free variable for an end state, which in the case of r*; 'lj;?; a is reached by 
doing an ~ step after walking through the r branch): 

Formula translations: 
pP = Px 
TP = x=x 
(-,1fi)U = ...,1/ltt 
( 1/1 A x)tt = 'lj;tt I\ xP . 
( (7r)1/I )P = 3b3y(?TU I\ 1f1U[y/x]) 

Program translations: 
(r*;'lj;?;a)U = Tb I\ 3z(Lzb I\ 'lj;U[z/x] I\ Razy) 
((('lf;?;r)*))U = Tb/\ Lyb /\. 'v'z((Ozb /\. z f:. y) -+ 1J!U[z/x]). 

To ensure that Tb gets interpreted as 'bis a r branch' we may take Tb as shorthand for the 
following formula: 

Tb Vx(Oxb tt (-,Lxb-+ 3y(Oyb I\ R.,xy)) I\ (-,Fxb-+ 3y(Oyb I\ R.,yx))) .. 

Now a notion of two-sorted branching bisimulation (for states and forr branches) can be defined. 
and a preservation result can be proved for this: 

DEFINITION 8.18 
A relation C between S ( M) and S (N) and also between the set of r branches of M and the set 
of r branches of N is a two-sorted branching bisimulation if the following two clauses hold: 



848 Modal Logic, Transition Systems and Processes 

• The restriction of C to states is a branching bisimulation, 

•if aCO (where a,(} are T branches) then 
1. a(l )CB(l ), 
2. if a(i)CB(j) and i =I last( a), then either 

- a(i + l)CO(j), or 
- j ¥= last(O) and either a(i + I)qO(j + 1) ora(i)CB(j + 1), 

3. clause (2) vice versa. 

THEoREM 8.19 
A first-order formula r.p with at most two free variables x, y is equivalent to a Ltranslation of a 
formula or program of the language Lb iff r.p is invariant for two-sorted branching bisimulations. 

8.4 Comparison of similarity notions involving silent steps 

We have proved preservation results for three notions of similarity involving silent steps, two 
from the literature and a third one of our own. One might reasonably ask if there is anything to 
choose between the three notions. 

A technical comparison would be useful, for instance: can we say something illuminating 
about modal translations of the T laws from process algebra? Or the other way around: does the 
notion of simple branching bisimulation give rise to process algebra T laws of its own, and if 
so, how do these compare to the T laws engendered by the competing similarity notions? Frits 
Vaandrager suggested the following r law for simple branching bisimulation: 

r(rx + y) = r(rx + y) + rx. 

To investigate the question of the comparison further one would also have to look a bit closer at 
the philosophical intuitions behind r abstraction, and see what we can derive from the intrinsic 
motivation for r abstraction. 

9 Concurrency and bisimulation 

9.1 Concurrent PDL 

Although we have postponed the modal analysis of II. the concurrency notion from process 
algebra, for future work, we do have something to say about concurrency. We will briefly look 
here at an extension of PDL with an operator for concurrency of programs. Concurrent PDL [35] 
has the following syntax. 

CPDLformulas r.p ::= p l-ir.p I (r.p/\ r.p) I (7r)r.p I [7r]r.p. 

CPDL programs 7r ::=a I 7r* I 7r; 7r 17!' U 7r I 7r n 1l' I r.p? 

The idea of the new operation 7r1 n 7r2 is: do 11'1 and 7r2 concurrently. 
Because CPDL allows programs 7r to compute in parallel, several states may be reached in 

parallel by computing processes within 7r that act independently at the same time. This means 
that the reachability relation R.,.. of a program 1l' connects a state s to the set of all states that are 
reached at the same time by the processes within 11'. We also allow for indeterminism, so 7r may 
give rise to several R.,.. successor sets in one given state. 

For the modal clauses ofCPDL, we follow Nerode and Wijesekera [34] and Goldblatt [25]: 

• M, V, s f= (7r)r.p ifthere is some T ~ S(M) with sR.,..T and for all t ET, M, V, t f= r.p. 
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• M, V, sf= [7r]cp if for all T ~ S(M), sR11"T implies that for all t ET, M, V, t f= cp. 

Note that under these stipulations, (7r) and [7r] are no longer duals. 
The definitions of the reachability relations Rrr are slightly complicated by the type shift in the 

second arguments of the relations. The crucial definitions are the following two set operations: 

R0 S = >.x>.Y · 3Z: xRZ /\ 3j: Z-+ POW (S(M)) 

with Vz: zSf(z) /\ Y = LJ{f(z) I z E Z}. 

The first of these is used for 7rt n 7r2 , the second for 71"1; 7r2. The operation for iteration is in 
need of a slight modification. It is defined in terms of 0 and U as follows: 

Id {(s,{s}) Is E S(M)} 

R(O) Id 

R(n+i) = ldU (R 0 R(n)) 

RH = LJ{R(n) In E w}. 

The full interpretation of program relations in a model M now runs as follows: 

• The accessibility relations for the atoms are given. 

• R71"1;"2 = R1r1 0 R71"2· 

• R71"1 U7'2 = R71"1 u R71"2. 

• R71"1 n71"2 = Rrr1 0 R"2 • 

• R11". = R~*>. 
• Rrp? = {(s,{s}) I M,s f= cp}. 

Peleg [35) gives computational motivation, Goldblatt [25] has a completeness result. 

~ 
1 

V3 ~ ............................................ @ 

FIG. 17. CPDL bisimilarity 
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9.2 CPDL bisimulation 

Now, we introduce the appropriate generalization of our central notion of process equivalence. 

DEFINmON 9 .1 
A relation C ~ S(M) x S(N) is a CPDL bisimulation (see Figure 17) if the following three 
clauses hold: 

1. If sCr then V(s) = V(r), 

2. if sCr and sRZ then there is a U ~ S (N) with r RU and for all u E U there is a z E Z 
with zCu, 

3. clause (2) vice versa. 

This definition was in fact motivated by the following result: 

LEMMA9.2 

1. CPDL formulas are invariant for CPDL bisimulations. 

2. The operations t.p? (test), U, 0, 0 and(*) are safe for CPDL bisimulation. 

PROOF. 1. Induction on the complexity of r.p. The case of atomic propositions and Booleans is 
trivial. For <p of the form ('rr}t/; and [11']t/;, use part (2) of this lemma. 

2. We treat the relational operations one by one. 

Test: It follows from part ( 1) of this lemma that test is safe for CPDL bisimulation. 

Choice: Assume s(R U S)T and sCr. We have to show that there is a state set U ~ S(N) 
with r(R U S)U and for all u E U there is at E T with tCu. From s(R U S)T, either sRT 
or sST. By the fact that C is a CPDL bisimulation for Rand S, there is a state U with either 
rRU or rSU, and for all u E U there is at ET with tCu. It follows that r(R U S)U and for 
all u E U there is a t E T with tCu. 

Concurrency: Assume s(R 0 S)T. We have to show that there is a state set U ~ S(N) with 
r(R 0 S)U and for all u E U there is at E T with tCu. By the definition of 0, there exist 
T1, T2 with T =Ti U T2 and sRT1 and sST2. By the fact that C is a bisimulation for R, there 
is a U1 ~ S(N) with r RU1 and for all u1 E U1 there is a ti E T1 with t1 Cui. By the fact 
that C is a bisimulation for S, there is a U2 ~ S(N) with rSU2 and for all u2 E U2 there is a 
t2 E T2 with t2Cu2. So setting U = U1 U U2 yields the required property. 

Composition: Assume s(R 0 S)T. We have to show that there is a state set U ~ S(N) with 
r(R 0 S)U and for all u E U there is at E T with tCu. 

By the definition of0, there exists Z, f with sRZ, 't/z E Z,zSf(z) and T = LJ{f(z) I z E 
Z}. 

By the fact that C is a bisimulation for R, there is a V ~ S(N) with r RV and there is 
a g : V -+ Z with g(v)Cv. Now, from the fact that C is also a CPDL bisimulation for S, 
combined with g(v)Cv, we have that g(v)Sf (g(v)) implies that there is an Xv with vSXv and 
Vx E Xv3Y E J(g(v)) : yCx. In other words, there is a function h: V -+ POW (S(N)) 
with for all v E V: vSh(v) and Vx E h(v)3y E f(g(v)) : yCx. It follows that U = LJ{h(v) I 
v E V} has the required properties. 
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Iteration: From the result for 0 we get that CPDL bisimilarity for R implies CPDL bisimilarity 
for R(n) (any n E w). Because CPDL bisimilarity is preserved under taking unions, CPDL 
bisimilarity for R( *) follows. I 

OPEN PROBLEM 9.3 
Which first-order definable operations on relations are safe for CPDL bisimulation? 

9.3 Embeddings in standard logic 

There are two sources ofnon-first-ordemess in CPDL: 

• the infinary construction*, which calls for an analysis in Lw1w, 

• the quantification over sets in xRY, which calls for a second-order analysis. 

This leads to the following 'obvious' translation in infinitary second-order logic: 

Formula translations: 
po 
( -icp)o 
(cp /\ 1/;)o 
((11")<p)o 
([1r]cp )0 

Program translations: 
ao 

(11"1 u 11"2)0 
(cp?)o 
(11"0)o 
(11"n+l )o 
(11"*)0 

OPEN PROBLEM 9.4 

= Px 
= -icpo 
= <po/\ 1/Jo 

= 3Y(7r0 /\ 'Vy(Yy-+ cp0 [y/x])) 
= 'VY(7r0 -+ 'Vy(Yy-+ cp0 (y/x])) 

= RaxY 
= 3Z3F(7r]'[Z/Y] A VxVUVV((FxU A FxV)-+ U = V) 

A'Vy(Yy ++ 3z3U(Zz A FzU A Uy/\ (7r2[z/x, U /Y])))) 
= 3Z13Z2(7rl[Zi/Y] /\ 7r2[Z2/Y]A 

Vy(Yy +-+ (Z1y V Z2y))) 
= 7r]' v 11"2 
= cp0 /\ Vy(Yy f-+ y = x) 
= Vy(Yy +-+ y = x) 
= 'Vy(Yy +-+ y = x) v (11"; 1rn)0 

= V n=0,1,2, ... (7rn)o · 

Give a preservation result characterizing precisely the CPDL formulas in second-order infinitary 
logic. 

There are several ways to analyse the situation in first-order terms again. For *•we can either 
introduce predicates for reflexive transitive closures of relations, or introduce a separate sort of 
branches, plus vocabulary to talk about those and their relations to states (see Section 8.3). For 
talking about sets of states, we can introduce a sort for those, too, and a predicate M xy, for 'state 
x is a member of state set y'. We also need Fx to express that x is a function, and Af xy to 
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express that function f applied to argument x yields value y. 

Formula translations: 
p• Px 
( ...,<P). ...,<P• 
( <P /\'i/; )• = <P. (\ 1f;• 
((7r)<P)• 3y(7r0 f\ Vz(M zy-+ <J? 0 [z/x])) 
([7r]<P)" Vy(7r"-+ Vz(Mzy-+ <P"[z/x])) 

Program translations: 
a• = RaXY 
(7r1; 7f2) 0 3z3f(7ri[z/y] f\ Ff f\ VuVv(Afuv ++ Muz)f\ 

Vw(Mwy ++ 
3u3v(Muz f\ Mwv /\ Afuv /\ 1f2[u/x, v/y]))) 

(7r1 n 7r2) 0 = 3z1z2(7r;(zify] /\. 7f2[z2/y]/\ 
Vw(Mwy ++ (Mwz1 V Mwz2))) 

(7r1 u 7r2) 0 = 7ri v 7f2 
(<P?t = <J? 0 f\ Vz(Mzy ++ z = x) 
( 7r*). = several options (see Section 8.3 ). 

We assume that the one-place predicate letters P are interpreted as properties of individual states 
and the two-place predicate letters Ra as relations between individual states and state sets. 

OPEN PROBLEM 9.5 
Give a preservation result characterizing precisely the CPDL formulas in first-order logic. 

10 Conclusion and further topics of investigation 

10.1 What we hope to have establi$hed 

To summarize our claims, we hope to have established parallels between modal logic, in a suitably 
broad sense (including temporal logic and propositional dynamic logic) and process theories over 
TSs. The basics of these connections are well known from the literature [29, 33], but we have 
given mor~ detailed analogies in techniques, leading to a next range of questions, some of them 
answered in the text, other listed in passing as open problems. 

We will now wind up our story by giving a list of further topics of investigation, most of them 
hinted at in the paper and put aside with a J mark for 'merits further attention'. These topics of 
further study are in three main areas: general logic, process algebra and modal logic. 

10.2 General logical issues 

Higher-order and infinitary logic versus first-order logic In the above we have confined attention 
to first-order formalisms over transition systems. For a glimpse of what happens when one 
considers higher-order formalisms over transition systems see [19, 20]. Nothing seems to be 
known at present concerning preservation properties of modal fragments of higher-order infinitary 
logics. 
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10.3 Process algebra 

The modal analysis of sophisticated process operations At the end of Section 7 we have made 
a first attempt at a modal analysis of the simple process operations such as sum and product. As a 
second step, one would like to extend this analysis to the operations of free merge, I abstraction 
and I pruning. Finally, a modal account is needed of recursive definitions ofTSs from a class of 
given TSs. 

Special classes of TSs One might also wish to consider axiomatisations of special classes of TSs 
(acyclic, finite, finitely branching) in modal logic. But modal logic is blind for these distinctions: 
the minimal modal logic is complete for all of these. This observation leads directly to the next 
topic. 

lnfinitary processes We have seen in Section 5 that the expressive power of PDL is not sufficient 
to fully describe the infinitary trace behaviour of processes. We mentioned extending PDL with 
an operator for loop detection as a possible remedy. This strenghtening of the language brings a 
stronger similarity notion in its wake which merits further attention. There are also other means 
of strengthening the expressive power of PDL: see [28] for some comparisons. How do the 
similarity notions they engender compare? Which preservation properties hold? 

10.4 Modal logic 

Correspondence and completeness theory Although we have said something about preservation 
results for modal fragments, modal logic has quite a bit more by way of technique. Correspondence 
theory in the sense of [3] was not really used. Also, nothing was used from modal proof theory 
and completeness theory. Finally, the issue of a complexity analysis of processes in terms of 
complexity of the modal languages that describe them is still wide open. 

Extended modal and dynamic logic In Section 4.3 we have used an extended modal formalism 
with two-dimensional temporal procedures. A much more powerful system in the same spirit is 
presented and analysed in (40]. It seems worth one's while to investigate the use of such systems 
in the analysis of processes. 

Maarten de Rijke (personal communication) suggests the use of an extended modal formalism 
that matches the process algebra term formation operators a bit more closely. Assume a three
place relation Cxyz for 'x has a choice between y and z', and introduce a two-place modal 
operator 6 with the following semantic clause. 

• M, sf= 1.p6'lj; iff3tu(Cstu & M, t f= 1.p & M, u f= 'If;). 

Suitable restrictions have to be imposed on the interpretation of C. 

Newer conceptual developments One of the newer developments in modal logic and proposi
tional dynamic logic is the advance of arrow logic, where transition arrows themselves become 
first-class citizens, and states may be (but need not be) demoted to a more marginal status [6]. 

Arrow logic is a kind of dynamic logic based on a weaker set of underlying assumptions than 
is usual. In propositional dynamic logic or relational algebra, every program relation brings a 
converse relation in its wake, and every pair of relations a composition. The idea is to get rid 
of these facts by dropping the analysis of transitions as composed of pairs of states. Taking 
the transitions themselves as primitive and calling them arrows has the advantage that we can 
stipulate what relations hold between them: composition and reversal themselves become two
place relations on the set of arrows. Because of the primacy of transitions, arrow logic looks very 
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promising as a tool for the study of TSs. 
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