
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

P.J.F. Lucas

Knowledge representation and inference
in rule-based systems

Computer Science/Department of Software Technology Report CS-R8613 April

13ibfr,t!?eel'.
Centrumvo:r·,, ,:, . : , .. ! inform::1~!<:<:1

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyr!Pht © Stichting Mathematisch Centrum, Amsterdam

Knowledge Representation and Inference

in Rule-Based Systems

P.J.F. Lucas
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this paper a review is presented of various approaches in representing and applying human knowledge

in expert systems, in particular in rule-based systems. The paper also provides an introduction to some

equivalent methods of representation. Some emphasis is put on low-level operations and also on inference

procedures that are applied in extracting useful knowledge from a knowledge base. This investigation is

partly based on work done in the design and the implementation of the DELFt-2 system at Delft University of

Technology and recently at the Centre for Mathematics and Computer Science. It has particularly been

influenced by concepts from logic programming.
Key Words & Phrases: expert systems, knowledge-based systems, inference.

! l..I ~ l.Ll.j

1. INTRODUCTION

1

Expert system building tools, also called expert system shells, are a result of progress in the field of
Artificial Intelligence in the design of practical software tools to be used for the efficient solution of
problems, that are generally hard to solve by other means. In the last two decades, a shift is observed
from research directed at the design of general purpose problem solving methods towards investiga­
tions aimed at the design of representation formalisms. Earlier systems often lacked sufficient power
for dealing with complex real-life problems. The representation of human knowledge in the computer
turned out to be a key issue in expert system research. Although much effort has been spent on this
issue, it is also becoming clear that efficient means for inference remain to be considered. Thus, work
in Artificial Intelligence developed in a similar way as may be observed in other parts of computer
science: emphasis changed from imperative or procedural methods, which predominated the design of
programming languages for a long time, to descriptive techniques instead. These changes led to the
design of software tools that are able to apply a problem description more or less intelligently in solv­
ing a certain class of problems. A major objective in expert system research is to keep description
and use of knowledge completely separated; the former being developed by the knowledge engineer,
and the latter by the computer scientist. Still, there is a long way to go before reaching such a com­
plete separation, because it often turns out that general purpose languages are more flexible that the
rather restricted expert system shells. Nevertheless, expert system shells have been successful in deal­
ing with certain problems [I].

What has been established are expert system shells that provide means for knowledge representa­
tion and a set of inference methods to supply the user with advice. Thus, most current expert systems
are composed of the following two parts [2]:
- a knowledge base, containing problem specific knowledge;
- a consultation program, that is essentially problem independent.

In earlier expert system shells, the knowledge base often had to be specified in the same programming
language as applied in writing the consultation program; such was the case in the EMYCIN system,
where the problem specific knowledge had to be represented as LISP s-expressions. In the more
recently developed systems this is less often true. For example, in the DELFI-2 system knowledge is
represented in a symbolic specification language, while the consultation system has been developed in
the Pascal programming language [2].

Report CS-Re613
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

The consultation system typically comprises certain subsystems, of which the inference engine,
essentially a knowledge interpreter, i~ of crucial importance. This subsystem incorporates one or
more control strategies that apply the knowledge stored in the knowledge base, to derive new infor­
mation. In addition, there are often facilities available for explanation and debugging purposes. The
explanation facility is primarily present for increasing the confidence of the user in a once built expert
system. The building process itself is supported by means of debugging and tracing facilities. A stan­
dard user interface is provided to facilitate building specific applications. The various components of
such an expert system are shown in figure 1.

CONSULTATION PROGRAM

USER INTERFACE

1 l 1 r
EXPLANATION TRACE

FACILmES FACILmES USER

1 r 1 r
INFERENCE ENGINE

l J

KNOWLEDGE BASE

Figure 1. Global architecture of an expert system shell

At present, there are many expert system building tools available with a variety of approaches in both
knowledge representation and inference. There is a unmistakable trend towards building tools that
provide the user with an even larger variety of knowledge representation formalisms and inference
techniques, often integrated into one tool. Most systems offer additional flexibility by allowing the
implementer of the expert system to escape to a specific programming language environment (such as
LISP), whenever the built-in facilities appear inadequate for a particular application.

2. REPRESENTING HUMAN KNOWLEDGE

Knowledge representation is one of the foremost topics in expert system research. This is partly
caused by the emphasis that is placed on the descriptive aspects of expert systems. On the other
hand, as we shall see, research dealing with control issues is not really less important to the
researcher, but it is to the knowledge engineer, who only is concerned with the specific tools.

There are two prerequisites for a knowledge representation scheme before any claim of its success can
be made [3]:
- the scheme should be flexible, capable of representing a large variety of knowledge;

3

- it must be simple enough to enable translation to1natural language, thus making it easier to under­
stand for the user.

There are two frequently applied techniques for encoding knowledge. In practice, most systems use
production rules, with each rule having a condition-part and an action-part, as the principal technique
for knowledge representation. Another approach is based on the representation of knowledge into
structured objects, also called frames or prototypes. Although the last method appears to be more
flexible, because it allows constructing an expert system in a modular hierarchical fashion, on many
occasions production rules have been shown to be superior for building specific applications. Produc­
tion rules often appeal to the co-operating domain-expert.

2.1. Simple production rule formalisms
A production rule can be defined as follows [3]:

if <antecedent> then <consequent> fi

<antecedent> ::=<clause> {and <clause>)

<clause> ::=<condition> {or <condition>)

<consequent> ::=<conclusion> {and <conclusion>)

There are many techniques in use for specifying conditions and conclusions within the formalism of
production rules. The most simple one being both conditions and conclusions written down as pro­
positions, for example:

if
(patient has a fever) and
(patient has colicky pain)

then
(diagnosis may be bile duct stones)

fi

Both conditions and conclusions within parentheses are propositions. It must be stressed that produc­
tion rules, although very similar to implications in logic, are treated somewhat differently from logical
implications. For example, in this case "diagnosis may be bile duct stones" is added to a so-called set
of facts. The implicational notation for production rules has certain advantages, owing to the
difference in treatment of conditions and conclusions by the inference engine. The activity of an
inference engine may be regarded as finding matches between conditions and conclusions of produc­
tion rules, producing a rule connection graph. In order to make this possible, rule conditions and
conclusions have to be distinguished. Thus, the well-known equivalence between the following two
logical formulas:

aandb_;;c
not(a and b) or c

is not of much use in expert systems. In expert systems, a, b on the one hand and c on the other
hand are treated differently.

4

Generally, in rule-based expert systems the following three types of knowledge are distinguished:
production rules constituting a rule bas~, facts added to a set of facts when established, and goals that
activate the control strategy in some cases and in others constitute a termination criterion.

Using propositions as a knowledge representation scheme is a rather simple and restrictive method,
and it is probably difficult to develop serious expert systems with this scheme. More flexible
knowledge representation schemes offer the knowledge engineer variables and predicates and actions
that perform certain tests on variables and constants. Using this representation scheme, the foregoing
rule might look as follows:

if
Same(fever,YES) and
Same(pa i n,coLICKY)

then
Assert(di agnos i s,BILE-DUCT-STONES)

fi

In this rule, variables are indicated by lower-case and constants by upper-case characters. The predi­
cate "Same" performs a test on the variables "fever" and "pain" and on the constants "YES" and
"COLICKY" for equality. The action "Assert" assigns the constant value "BILE-DUCT-STONES" to the
variable "diagnosis". Thus, if before the action "Assert" is executed, the set of facts looks like

{fever=vEs,pa i n=coucKY}
then after execution we have:

{fever=YES,pai n=COLICKY ,di agnos i s=BILE-DUCT-STONES}

In general, the set of facts is defined as:

with each member xi = Ci (i= l, .. ,n) being an established fact.
The variable "diagnosis" might have been a goal variable, in which case it was initially a member

of the goal set.
More flexibility can be gained if we add an additional method for organizing knowledge in struc­

tured objects. Within rule-based systems, objects are mainly used for organizing the production rules,
and collecting the variables in these rules under one heading. Variables within objects are also called
attributes or parameters. Structured objects form the basis of frame-based expert systems if the rela­
tionship between objects is of major importance.

2.2. Rule base organization and objects
The introduction of objects leads to a functional separation of a knowledge base into production rules
for representing heuristic expert knowledge and structured objects which store descriptive information.
The object descriptions might be rather extensive, not only containing attribute names, but also infor­
mation for the user interface, constraints on user input, information on which and how attributes
should be derived. The set of goals is incorporated into this object description: a goal simply is an
attribute with a special goal label. The integration of both schemes, rules and structured objects, into
a single knowledge base, imposing some kind of hierarchical organization upon the rule set, is the
result of recent investigations in the field of Artificial Intelligence. Knowledge base modularization
appears to be a key issue, because both the construction and consultation of a knowledge base, are
facilitated by the provision of multiple organizational levels in the knowledge base. This view leads to
a rule base that is divided into separate subsets, each related to a different object.

Each attribute of an object has certain information associated with it, in particular a name, a

5

translation of this name used when communicating with the user, a prompt, i.e. a potential question
for user input and constraints on legal input. A formalism for object description can be based upon
first-order predic;;tte calculus. ·

A description of an attribute based upon logic, may be the following specification [4]:

attribute(A) and
nameCA,N) and
translationCA,T) and
promptCA,P> and
constraintsCA,V1, •• ,Vn> and
Na luesC A,x1, ••• ,xm)

This formula contains constants, indicated by upper-case and variables by lower-case characters. The
relationships between the attribute constant "A" and other constants and variables are described by
means of predicates.

If we introduce a standard predicate "equals", a simple transformation of the previous specification
leads to the next attribute description:

attribute(A) and
equalsCname(A),N) and
equalsCtranslation(A),T) and
equalsCprompt(A),P) and
equals(constraints(A),V1, ••• ,Vn> and
equals Cva lues(A) ,x1, ••• ,xm)

We use functions, having the attribute constants as a domain, to describe the attribute components.
The following notation is used more often: ·

attribute: A
name: N;
translation: T;
prompt: P;
constraints: CV1, ••• , Vn >;
values: (x1, •• • ,xm>

end

The following example illustrates how this descriptive formalism can be used to specify an attribute,
called "complaints", of a patient with liver disease:

attribute: complaints
name: complaints;
translation: the complains of the patient;
prompt: What complaints does the patient have;
constraints: (anorexia, fever, jaundice, nausea);
values: (fever)

end

6

In this example one of the variable values x 1 , ••• ,Xm (m ;;;:.O) has been substituted by the constant value
"fever".

A frame is similar to our description of objects, but has additional information concerning links to
other objects. If the links bear semantic information, the objects and their connecting links form a
so-called semantic net. An often used link in a semantic net is the ISA-link that imposes a hierarchi­
cal organization to the objects, called a taxonomy.

We next discuss how objects and attributes are used within production rules, such as for example in
the DELFI-2 system but also in many precursors of this system, in particular the EMYCIN system on
which DELFI-2 has been based.

The conditions and conclusions in production rules are syntactically defined as follows:

<condition> ::=<predicate> <object> <attribute> {<constant>}

and

<conclusion> ::=<action> <object> <attribute> {<constant>}

For example, the following production rule applying this formalism concerns a certain liver disease.

if
Same patient sex female and
LessThan patient age 30 and
Same patient cholestasis intrahepatic and
Same biochemistry hypergammaglobulinemia yes and

then

fi

Assert patient diagnosis chronic-active-hepatitis with
CF = 0.60

In this rule there is an additional entity, "CF=0.60", delimited by the keyword "with", a measure of
uncertainty that is used by the expert to express his lack of certainty of the conclusion based on the
four specified conditions. This uncertainty measure will be discussed briefly in section 3.

The actions in a conclusion of a production rule are one of the major departures from predicate
calculus. In most rule-based systems, several are available. For example in the DELFI- 2 system, there
is in addition to the "Assert" action (called "Conclude" instead) also an "Execute" action (used for
invoking a procedure denoted by an attribute) and a "Write" action. The latter is a bit anomalous,
because it has a textual message as its argument, instead of an object and attribute. This is not con­
form our simplified syntactical definition. In other systems, for example the OPS5 system there are
additional actions, such as the "Modify" action, that replaces the former value of an attribute with
the current value, specified in the production rule. This seems a suitable action for simulating process
control. Deleting facts under certain circumstances by a "Delete" action may also be useful.

2.3. Data structures and knowledge representation related
We have discussed some methods for representing knowledge by means of symbolic representation
schemes. Often, here a discussion on knowledge representation ends, leaving issues of implementation
to the reader. However, we think that implementational issues are worth to be treated, hence this
subsection about data structures in rule-based expert systems. We use a Pascal-like formalism for
describing data structures. A LISP-like specification, could equally well be used, for the COMMON LISP

7

procedure "defstruct" is similar to the Pascal record type.
First, a production rule can be speeified by means of record data types and pointer types, and it

seems advantageous to use a description that is very similar to the knowledge representation formal­

ism. If we place all production rules into a linked list, the following data structure is adequate:

rulePointer = pointer to ruleNode;

ru leNod~ = record
rulenumber
used
antecedent
consequent
next

cardinal;
boolean;
conditionPointer;
conclusionPointer;
rulePointer

end

The field used is set to true if the rule has been applied once, successfully or not. This helps in

preventing circular reasoning, in which a production rule is used more than once. The conditions of

each rule are also represented as a linked list:

conditionPointer = pointerto conditionNode;

condi tionNode = record
predicate
object
attribute
values
andlink,
orlink

end

pointer to symbol Table;
objectPointer;
attributePointer;
valuePointer;

conditionPointer

The fields andlink and orLink represent the logical operators and and or. The data structure for

conclusions is similar.
The data structure used for representing an attribute is also rather straight-forward, using a record

data type with a number of fields that represent the various characteristics of an attribute:

8

attributePointer = pointer to attributeNode;

traceClass = (goal, askfirst);

attributeNode = record
name,
translation,
prompt
traced
class
constraints,
values
next

end

string;
boolean;
traceClass;

valuePointer;
attributePointer

If an attribute has the trace class goal it is considered to be a goal in the inference process. As such it
triggers rule selection and application, issues to be discussed in the next section. An ask.first typed
attribute, is asked before attempting to derive its value from production rules. If all possible values of
an attribute have been determined, the field "traced" is set to true.

We conclude that there is an obvious analogy between our developed data structures
and facilities for knowledge representation, even in a Pascal-like language.

3. FUNDAMENTAL OPERATIONS IN ExPERT SYSTEMS
Inference techniques and knowledge representation are strongly interrelated. Various search processes
take part in the inference process, particularly in the selection and evaluation of knowledge items, for
example production rules. Generally, two basic inference methods can be distinguished [5]:
- In top-down inference, starting with goal attributes, production rules are selected on tlie basis of a

partial or total match with some pattern in the conclusion of the rules, and subgoals are generates
as a result of production rule evaluation;

- In bottom-up inference, production rules are only applied if enough facts have been accumulated to
evaluate the conditions. This process continues as long as new facts can be produced and thus
additional rules can be applied.

3.1. Top-down inference
We start with a discussion of top-down inference on a rule base. In its simplest form, top-down
evaluation start with a set of goals {G 1,G2 , ••• ,Gn} (n ;;a.O) and tries to proof each of these, applying
the production rules in the rule base. The overall purpose of the process is to generate a set of facts
that does or does not confirm goals and subgoals generated by the inference engine. Production rules
are selected on basis of a partial or a total correspondence between a goal and one of the conclusions.
In that way more than one production rules may be selected in order to confirm a goal. This selected
set of production rules {Ri.R2, ••. ,Rm} (m ;;a.O) is called the conflict set, because it is quite often not
clear at all which of the rules should be processed first. Furthermore, it is also possible that none of
the rules is applicable to the derivation of a goal or subgoal. In most systems this leads to question­
ing the user to enter one of the possible values. This so-called tracing process, is done in the follow­
ing way:

procedure Trace(goal>

end

Infer(goal>;
if [not traced] then

Ask(goal>
end

9

A goal might be a structured object, in which case it is an object with an associated attribute:
Trace(object, attribute).

In the latter case, production rules are selected on the basis of a partial match operation in the pro­
cedure Infer described below, because in most expert system shells, and also in the DELFI-2 system, all

rules that might contribute values to an object's attribute are collected.

procedure Infer(object, attribute)

end

SelectRules(rulebase, object, attribute, selectedRule>;
while selectedRule =I=- nil do

end

ApplyCselectedRule);
if [attribute traced] then

return
end;
selectedRule := NextCselectedRule>

The procedure Apply evaluates both conditions and conclusions of a production rule, in many cases
creating subgoals, that are traced in a way similar to goals.

procedure Apply(selectedRule)

end

EvaluateConditionsCselectedRule>;
if [not failed] then

EvaluateConclusions(selectedRule)
end

A production rule fails if at least one of the conditions nested within and-operators, or all the condi­
tions nested within or-operators, are evaluated to be false. Otherwise, a rule is said to succeed. The
conclusions of a rule are only processed if the rule succeeded. The SelectRules algorithm processes
the rule base as follows:

10

procedure SelectRulesCrulebase, object, attribute, selectedRule)

end

selectedRule := nil;
rule := rulebase;
while rule =I= nil do

end

if MatchCobject, attribute, rule.conclusion) then
NewCruleSelected);
ruleSelected.rule := rule;
NextCruleSelected) := selectedRule;
selectedRule := ruleSelected

end;
rule := NextCrule)

In the simple knowledge representation scheme for production rules, in which only propositions are
available, the Match operator returns the value true only when the goal proposition and conclusion
are identical. In the more sophisticated knowledge representation scheme, using objects and attri­
butes, a goal and a conclusion match if object and attribute in both conclusion and goal or subgoal
match. The specified values in the rule are ignored. In object-attribute-value representation, predi­
cates operate on the collected facts and their arguments, by an attached function. Thus, arguments
are actually evaluated.

A facility that is often added to the inference engine after the initial design has been completed, is
a so-called look-ahead facility. This facility is similar to the rule application algorithm, but rule con­
ditions are only checked on truth value, and are not evaluated. Thus, attributes are not traced but
only scanned. For example, it could be the case that the third condition of a production rule, having
four conditions nested in and-operators, is known to be false beforehand. In this case; there is no
point in evaluating the first two conditions, because it is already known that this rule cannot succeed.
However, the rule evaluation algorithm is not capable in detecting this, but the look-ahead facility is.
Look-ahead leads to a remarkable pruning of the search space, and prevents many irrelevant ques­
tions to the user.

As mentioned before, on many occasions more than one rule is selected. Most rule-based systems
with top-down inference, use backward chaining as a solution to the problem of the non-deterministic
application of production rules and evaluation of the conditions of each selected rule. Usually,
scheduling is done on a first-in-first-out basis. Once selected, production rules are applied sequen­
tially, which is a rather trivial solution to the problem of conflict resolution. More sophisticated
scheduling of rule subset evaluation involves a conflict resolution strategy that operates by means of
priority scheduling. Algorithms have been developed to assign priorities to production rules, based on
criteria such as the number of conditions in a rule or the measure of uncertainty of the conclusion.
The priority criteria are often chosen dependent on available domain-specific control knowledge, i.e.
information that is part of the solution process in a certain domain. More general schemes use poten­
tial path lengths, the degree of nodes in the corresponding AND/OR graph or some other measure of
cost. However, these general schemes are only useful when no heuristic control knowledge is avail­
able, otherwise the conflict resolution strategy tends to degradate. Heuristic control knowledge is
often only implicitly present in the knowledge base in the way it has been structured. Hence, the
overall structure of the knowledge base is task dependent.

To illustrate the foregoing let us consider a simple rule base, in which only attributes have been
specified.

Figure 2. Search space tree for backward chaining

rule 1:
rule 2:
rule 3:
rule 4:

if W, X then V fi
if W, V then Y fi
if V, X, Y then Z fi
if U, X then Z fi

11

Starting with "Z" as a goal attribute, the system first selects rules 3 and 4 in the conflict set. When

rule 3 is evaluated, the unknown attribute "V" will be met. Since rule 1 concludes about this attribute,

this is the next selected rule. The tracing process is performed recursively. In this simple rule base,
the attributes "W" and "X" or "W", "X" and "U" are finally asked of the user because there are no

matching conclusions in any rule. In figure 2 the search space of the problem is specified. Top-down

inference is often implemented as a form of depth-first search, i.e. pre-order traversal of a search tree,

so the tree is traversed from top to bottom and from left to right. The search space tree can be

compressed by deleting redundant nodes. This is a consequence of the set of facts, discussed earlier,

which results in tracing a attribute not more than once.
A search space graph is depicted in figure 3. If an attribute already has been traced by the infer­

ence engine, it is considered superfluous to revisit such a node in the tree. A more complicated situa­

tion arises when a rule-based representation scheme is extended by an object-centered representation

scheme. This extension provides the system with additional flexibility, because production rules are

organized in objects, and rule invocation can only take place when the corresponding object in the

conclusion of the rule is instantiated. Thus, an object-centered approach produces a flexible modular

system. This has additional advantages from an implementational point of view. When selecting

applicable production rules it is not necessary to scan the whole rule base. Thus, the inference pro­
cess starts in another way then described until now; it starts with the instantiation of an object and

traces the attributes that are the actual goals.

12

Figure 3. Search space graph

procedure Instantiate(object, template)

end

New(object);
CopyAttributes(template, object>;
attribute := First(object.attribute);
while attribute ¥= nil do

end

if [goal attributeJ then
Trace(object, attribute)

end;
attribute := Next(attribute)

Facts are collected within the objects that have been dynamically instantiated, which simplifies easy
retrieval.

lbis object-centered approach in a rule-based system is the first step towards a combined frame­
based and rule-based system. Frames are objects with additional information, in particular informa­
tion that concerns the mutual relationship between objects. Already mentioned is the ISA-link that
structures a set of objects into a hierarchical net with property inheritance as a built-in inference
method. Because of the specialization and generalization organization imposed on the objects, certain
objects might inherit information of more general objects. lbis circumvents rule application and also
prevents questions to the user of those values that can just as well be inferred from other objects.

13

3.2. Bottom-up inference as control
As stated before, bottom-up inference-starts with data and applies production rules until a termina­
tion criterion is f11lfilled. Bottom-up inference is often applied in domains where a lot of data must
be processed, thus in essentially data-driven applications. In situations where an expert system is
dedicated to consultation purposes, it seems more appropriate to use top-down inference, because this
provides the user with a more consistent behaviour of the system. However, in an expert system
building tool provided with top-down inference, there are many circumstances in which bottom-up
inference could supplement the control strategy. This will be the next subject in our discussion.

In the first place, production rules are sometimes used within an expert system, not as part of the
overall derivation of attribute values, but instead to perform certain actions if all of the conditions are
fulfilled. This is, for example, the case in the following rule:

if
GreaterThan engine temperature 150

then
Execute engine overheat-switch(temperature)

fi

This rule succeeds if the temperature within an engine is higher than 150 centigrade. It switches on
the overheat indicator, and shows the relevant temperature on the operator panel. This rule can never
be part of the top-down inference process, because it is not intended to find any values of an attribute
(nevertheless, this attribute might get assigned a value within the invoked procedure).

Another example of a rule that is never used by top-down inference, might be one that contains an
object but neither an attribute nor a value. The purpose of such a rule might be to instantiate the
specified object conditionally and trace grouped attributes only after this instantiation has taken
place. An example of such a rule might look like this:

if
Same aircraft pressurization-failure yes

then
Instantiate pressurization-test

fi

This rule states that the object "pressurization-test" should be instantiated (including its attributes)
when a pressurization failure occurred in an aircraft.

Still another application of bottom-up inference is to influence the top-down inference process
itself. In many domains it is not definitely known beforehand which of the attributes of which objects
are taken as a goal for the consultation. The selection of goals might depend of certain input data.
Thus, a system that starts with bottom-up inference on initial data, generates goals by applying pro­
duction rules, which are passed to the top-down inference engine. From there on, the system
proceeds as usual in top-down inference.

The following example rule illustrates such a situation:

14

if
Same patient disease malignant

then
SetTrace patient prognosis goal

fi

The "SetTrace" action changes the trace class of an attribute "prognosis" to the goal state. Rules
that influence the control strategy of the inference engine are often called meta-rules.

3.3. Approximate reasoning
In the foregoing, methods for knowledge representation and inference processes have been dis­
cussed. These techniques are based on methods derived from symbolic logic. Although, in
essence, inference is based on symbolic computation, some methods for inexact or plausible reasoning
take frequently part in the inference process. Logic has not enough expressive power to model
real-world problems in an expert system, because of the occurrence of incomplete and inexact
data in almost every domain. The approach of many researchers in the field has been to sup­
plement logic with methods related to probability theory. For example, in 1975 Shortliffe and
Buchanan proposed a method for the expression of judgemental belief [l]. This CF (certainty fac­
tor) model has been incorporated in MYCIN, and later in slightly modified form, in EMYCIN. It
has also been used within the DELFI-2 system. Other well-known techniques include the
Dempster-Shafer theory of evidence and the possibility theory of Zadeh [6,7].

In expert systems, two levels where certainty factors are employed, can be distinguished:
- the level of the expert, who wishes to express his uncertainty about his judgements on any conclu­

sion in a rule;
- the level of the user, who may be doubtful about the accuracy of entered data.

There are various moments in the evaluation of a production rule where a measure of uncertainty
should be taken into account. The evaluation of a condition needs an extension of the predicate
function, in which case a predicate not only returns the value true or false, but in addition some
measure of uncertainty, such as a certain factor. The situation is even more complicated,
because in the EMYCIN system for example, the value true is only returned if the certainty factor
exceeds some threshold value. In most formalisms, conjunctions and disjunctions of condi­
tions effect the resulting certainty factor. If conditions form a conjunctive expression, then:

CF= min{ CFconditionJ, .. .,CFconditionn}

In the case of a disjunction of conditions we get instead:

CF= max{ CFcondition 1'···,CFconditionn}

One well-known problem in modelling uncertainty in expert systems is how to combine various cer­
tainties related to an attribute value into one certainty factor. The formula used in the EMYCIN
system has been successfully applied in various applications, in spite of theoretical objections.
Sensitivity experiments with MYCIN revealed the used CF model to be quite stable to varia­
tions. However, this phenomenon may be due to the short inference chains in MYCIN.

In an example the application of the CF model will be illustrated. There are only two
rules in the knowledge base present:

rule 1:
rule 2:

if B, C then AcF.=o.4 fi
if D then ACF =0.3 fi

15

It is assumed that the attributes "B", "C" and "D" are traced with certainty factors 0.5, 1 and 1
respectively. The following two computations are performed:
1. The minimum of the CF's in the conditions is determined and multiplied by the certainty factor

in the conclusion:
CF= CFconclusion·min{ CFcondition I• CFcondition2, ... }

In this case the following sequence of computations is performed: rule 1 results in: 0.4·min{0.5, 1}
= 0.2, and rule 2 in: 0.3. So fact "A" has two certainty factors generated by different sources.

2. In the next stage these certainty factors are combined by applying the combination rule of
Shortliffe and Buchanan that in this case results in: 0.2·(1 - 0.2) = 0.44.

So the combination of certainty factors increases the evidence about the values of the attributes,
but not by simply adding the two factors.

4. A MEDICAL APPLICATION: HEPAR

One of the expert systems being developed using the DELFI-2 system, is a medical system for the
diagnosis of liver disease. Medicine has traditionally been a rich field for Artificial Intelligence
and has resulted into a large variety of experimental systems [8]. Medicine is a suitable test
area for expert systems, because it offers many interesting problems with completely different prob­
lem and solution characteristics. In addition, medical applications appeal many researchers for
their potential beneficial effects on the health service.

The area of liver disease is a field that is far from being formalized: the medical knowledge
is characterized by its incomplete, inexact and symbolic nature.

In co-operation with Dr. A.R. Janssens of the Department of Gastro-enterology of the
University of Leyden work is being done on the construction of an expert system that deals
with liver disease. As an intermediate goal, the effort is directed at the design of a system that is
able to produce a medical diagnosis on the basis of entered patient findings and certain laboratory
data. In the future we probably will try to include treatment and prognostic considerations
into the system. This expert system, called HEPAR, incorporates both clinical experience and data
from medical literature. The organization of the knowledge base reflects the usual diagnostic
approach in the area of liver disease.

Figure 4. Structuring diagnosis in liver disease

16

The objectives of the research are:
- to improve diagnostic capabilities· of physicians;
- to make useful. medical knowledge easily available to non-experts.

The expert system HEPAR needs the following simple data for proper functioning:
- general patient data, such as age and sex;
- the medical history of the patient;
- data obtained from the physical examination;
- laboratory data .and serological findings;
- ultrasound and X-ray findings.

The system proceeds from the outset to the following intermediate conclusions:
- the type of cholestasis (bile congestion): intra- or extrahepatic;
- the presence of liver failure;
- malignant or benign liver disorder.
Together with other characteristic patient data a diagnostic conclusion is reached.

The following rule which is part of the diagnostic expert system HEPAR, concludes about a possible
disease state.

rule 115
If

1.0 the duration of complaints, clinical signs or lab
abnormalities is chronic

2.0 the sex of the patient is female
3.0 the complaint of the patient is Raynaud's phenomenon, or
3.1 the complaint of the patient contains burning eyes and

dry mouth -
4.0 the-cholestasis of the patient is extrahepatic

then
1.0 there is suggestive evidence C0.60) that the possible

diagnosis of the patient is primary_biliary_cirrhosis

Another part of the knowledge base contains a structured overview of the problem domain which is
stored as objects in a tree-like structure, that is depicted in figure 4.

The system actually uses very few laboratory data in spite of its specialized nature. In addition,
invasive techniques, such as ERCP and liver biopsy take no part in the diagnostic process of the sys­
tem. Thus, maximum use is made of easily gathered clinical data.

At present, the expert system HEPAR is being tested, using patient data both from the
University Hospital of Leyden and Rotterdam.

ACKNOWLEDGEMENT
I want to express my gratitude to Linda van der Gaag for commenting on an early version of
this paper and to Henk de Swaan Arons for the pleasant co-operation in the DELFI-project. I also
like to thank Roel Janssens for spending so much time in building the expert system HEPAR.

17

5. REFERENCES
[l) BUCHANAN B.G., SHORTLIFFE E.H. (1984). Rule-based expert systems: the MYCIN experiments of

the StanfordHeuristic Programming Project. Addison-Wesley, Reading, Massachusetts.
[2] DE SWAAN ARONS H, LUCAS P.J;F. (1984). Expert systems in an application oriented

environment. Informatie, Volume 26, 8: 631-637 (in Dutch).
[3] HAYES-ROTH F., WATERMAN D.A., LENAT D.B. (1983). Building expert systems. Addison-

Wesley, Reading, Massachusetts.
[4] NILSSON N. (1980). Principles of artificial intelligence. Springer-Verlag.
[5] KOWALSKI R: (1979). Logic for problem solving. North-Holland, New-York.
[6] PRADE H. (1985). A computational approach to approximate and plausible reasoning with

applications to expert systems. PAM/, Volume 7,3: 260-283.
[7) GUPTA M.M., KANDEL A., BANDLER W., KISZKA J.B., EDITORS. (1985). Approximate reasoning

in expert systems. North-Holland, Amsterdam.
[8] LUCAS P.J.F., JANSSENS A.R. (1985). Medical expert systems: an aid in diagnostic and thera­

peutic decision-making. Nederlands Tijdschrift voor Geneeskunde, Volume 129, 4: 160-165 (in
Dutch).

