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Knowledge Representation and Inference 

in Rule-Based Systems 

P.J.F. Lucas 
Centre for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

In this paper a review is presented of various approaches in representing and applying human knowledge 

in expert systems, in particular in rule-based systems. The paper also provides an introduction to some 

equivalent methods of representation. Some emphasis is put on low-level operations and also on inference 

procedures that are applied in extracting useful knowledge from a knowledge base. This investigation is 

partly based on work done in the design and the implementation of the DELFt-2 system at Delft University of 

Technology and recently at the Centre for Mathematics and Computer Science. It has particularly been 

influenced by concepts from logic programming. 
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1. INTRODUCTION 
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Expert system building tools, also called expert system shells, are a result of progress in the field of 
Artificial Intelligence in the design of practical software tools to be used for the efficient solution of 
problems, that are generally hard to solve by other means. In the last two decades, a shift is observed 
from research directed at the design of general purpose problem solving methods towards investiga­
tions aimed at the design of representation formalisms. Earlier systems often lacked sufficient power 
for dealing with complex real-life problems. The representation of human knowledge in the computer 
turned out to be a key issue in expert system research. Although much effort has been spent on this 
issue, it is also becoming clear that efficient means for inference remain to be considered. Thus, work 
in Artificial Intelligence developed in a similar way as may be observed in other parts of computer 
science: emphasis changed from imperative or procedural methods, which predominated the design of 
programming languages for a long time, to descriptive techniques instead. These changes led to the 
design of software tools that are able to apply a problem description more or less intelligently in solv­
ing a certain class of problems. A major objective in expert system research is to keep description 
and use of knowledge completely separated; the former being developed by the knowledge engineer, 
and the latter by the computer scientist. Still, there is a long way to go before reaching such a com­
plete separation, because it often turns out that general purpose languages are more flexible that the 
rather restricted expert system shells. Nevertheless, expert system shells have been successful in deal­
ing with certain problems [I]. 

What has been established are expert system shells that provide means for knowledge representa­
tion and a set of inference methods to supply the user with advice. Thus, most current expert systems 
are composed of the following two parts [2]: 
- a knowledge base, containing problem specific knowledge; 
- a consultation program, that is essentially problem independent. 

In earlier expert system shells, the knowledge base often had to be specified in the same programming 
language as applied in writing the consultation program; such was the case in the EMYCIN system, 
where the problem specific knowledge had to be represented as LISP s-expressions. In the more 
recently developed systems this is less often true. For example, in the DELFI-2 system knowledge is 
represented in a symbolic specification language, while the consultation system has been developed in 
the Pascal programming language [2]. 
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The consultation system typically comprises certain subsystems, of which the inference engine, 
essentially a knowledge interpreter, i~ of crucial importance. This subsystem incorporates one or 
more control strategies that apply the knowledge stored in the knowledge base, to derive new infor­
mation. In addition, there are often facilities available for explanation and debugging purposes. The 
explanation facility is primarily present for increasing the confidence of the user in a once built expert 
system. The building process itself is supported by means of debugging and tracing facilities. A stan­
dard user interface is provided to facilitate building specific applications. The various components of 
such an expert system are shown in figure 1. 

CONSULTATION PROGRAM 

USER INTERFACE 

1 l 1 r 
EXPLANATION TRACE 

FACILmES FACILmES USER 

1 r 1 r 
INFERENCE ENGINE 

l J 

KNOWLEDGE BASE 

Figure 1. Global architecture of an expert system shell 

At present, there are many expert system building tools available with a variety of approaches in both 
knowledge representation and inference. There is a unmistakable trend towards building tools that 
provide the user with an even larger variety of knowledge representation formalisms and inference 
techniques, often integrated into one tool. Most systems offer additional flexibility by allowing the 
implementer of the expert system to escape to a specific programming language environment (such as 
LISP), whenever the built-in facilities appear inadequate for a particular application. 

2. REPRESENTING HUMAN KNOWLEDGE 

Knowledge representation is one of the foremost topics in expert system research. This is partly 
caused by the emphasis that is placed on the descriptive aspects of expert systems. On the other 
hand, as we shall see, research dealing with control issues is not really less important to the 
researcher, but it is to the knowledge engineer, who only is concerned with the specific tools. 

There are two prerequisites for a knowledge representation scheme before any claim of its success can 
be made [3]: 
- the scheme should be flexible, capable of representing a large variety of knowledge; 
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- it must be simple enough to enable translation to1natural language, thus making it easier to under­
stand for the user. 

There are two frequently applied techniques for encoding knowledge. In practice, most systems use 
production rules, with each rule having a condition-part and an action-part, as the principal technique 
for knowledge representation. Another approach is based on the representation of knowledge into 
structured objects, also called frames or prototypes. Although the last method appears to be more 
flexible, because it allows constructing an expert system in a modular hierarchical fashion, on many 
occasions production rules have been shown to be superior for building specific applications. Produc­
tion rules often appeal to the co-operating domain-expert. 

2.1. Simple production rule formalisms 
A production rule can be defined as follows [3]: 

if <antecedent> then <consequent> fi 

<antecedent> ::=<clause> {and <clause>) 

<clause> ::=<condition> {or <condition>) 

<consequent> ::=<conclusion> {and <conclusion>) 

There are many techniques in use for specifying conditions and conclusions within the formalism of 
production rules. The most simple one being both conditions and conclusions written down as pro­
positions, for example: 

if 
(patient has a fever) and 
(patient has colicky pain) 

then 
(diagnosis may be bile duct stones) 

fi 

Both conditions and conclusions within parentheses are propositions. It must be stressed that produc­
tion rules, although very similar to implications in logic, are treated somewhat differently from logical 
implications. For example, in this case "diagnosis may be bile duct stones" is added to a so-called set 
of facts. The implicational notation for production rules has certain advantages, owing to the 
difference in treatment of conditions and conclusions by the inference engine. The activity of an 
inference engine may be regarded as finding matches between conditions and conclusions of produc­
tion rules, producing a rule connection graph. In order to make this possible, rule conditions and 
conclusions have to be distinguished. Thus, the well-known equivalence between the following two 
logical formulas: 

aandb_;;c 
not(a and b) or c 

is not of much use in expert systems. In expert systems, a, b on the one hand and c on the other 
hand are treated differently. 
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Generally, in rule-based expert systems the following three types of knowledge are distinguished: 
production rules constituting a rule bas~, facts added to a set of facts when established, and goals that 
activate the control strategy in some cases and in others constitute a termination criterion. 

Using propositions as a knowledge representation scheme is a rather simple and restrictive method, 
and it is probably difficult to develop serious expert systems with this scheme. More flexible 
knowledge representation schemes offer the knowledge engineer variables and predicates and actions 
that perform certain tests on variables and constants. Using this representation scheme, the foregoing 
rule might look as follows: 

if 
Same(fever,YES) and 
Same( pa i n,coLICKY) 

then 
Assert( di agnos i s,BILE-DUCT-STONES) 

fi 

In this rule, variables are indicated by lower-case and constants by upper-case characters. The predi­
cate "Same" performs a test on the variables "fever" and "pain" and on the constants "YES" and 
"COLICKY" for equality. The action "Assert" assigns the constant value "BILE-DUCT-STONES" to the 
variable "diagnosis". Thus, if before the action "Assert" is executed, the set of facts looks like 

{fever=vEs,pa i n=coucKY} 
then after execution we have: 

{fever=YES,pai n=COLICKY ,di agnos i s=BILE-DUCT-STONES} 

In general, the set of facts is defined as: 

with each member xi = Ci (i= l, .. ,n) being an established fact. 
The variable "diagnosis" might have been a goal variable, in which case it was initially a member 

of the goal set. 
More flexibility can be gained if we add an additional method for organizing knowledge in struc­

tured objects. Within rule-based systems, objects are mainly used for organizing the production rules, 
and collecting the variables in these rules under one heading. Variables within objects are also called 
attributes or parameters. Structured objects form the basis of frame-based expert systems if the rela­
tionship between objects is of major importance. 

2.2. Rule base organization and objects 
The introduction of objects leads to a functional separation of a knowledge base into production rules 
for representing heuristic expert knowledge and structured objects which store descriptive information. 
The object descriptions might be rather extensive, not only containing attribute names, but also infor­
mation for the user interface, constraints on user input, information on which and how attributes 
should be derived. The set of goals is incorporated into this object description: a goal simply is an 
attribute with a special goal label. The integration of both schemes, rules and structured objects, into 
a single knowledge base, imposing some kind of hierarchical organization upon the rule set, is the 
result of recent investigations in the field of Artificial Intelligence. Knowledge base modularization 
appears to be a key issue, because both the construction and consultation of a knowledge base, are 
facilitated by the provision of multiple organizational levels in the knowledge base. This view leads to 
a rule base that is divided into separate subsets, each related to a different object. 

Each attribute of an object has certain information associated with it, in particular a name, a 
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translation of this name used when communicating with the user, a prompt, i.e. a potential question 
for user input and constraints on legal input. A formalism for object description can be based upon 
first-order predic;;tte calculus. · 

A description of an attribute based upon logic, may be the following specification [4]: 

attribute(A) and 
nameCA,N) and 
translationCA,T) and 
promptCA,P> and 
constraintsCA,V1, •• ,Vn> and 
Na luesC A,x1, ••• ,xm) 

This formula contains constants, indicated by upper-case and variables by lower-case characters. The 
relationships between the attribute constant "A" and other constants and variables are described by 
means of predicates. 

If we introduce a standard predicate "equals", a simple transformation of the previous specification 
leads to the next attribute description: 

attribute(A) and 
equalsCname(A),N) and 
equalsCtranslation(A),T) and 
equalsCprompt(A),P) and 
equals(constraints(A),V1, ••• ,Vn> and 
equals Cva lues( A) ,x1, ••• ,xm) 

We use functions, having the attribute constants as a domain, to describe the attribute components. 
The following notation is used more often: · 

attribute: A 
name: N; 
translation: T; 
prompt: P; 
constraints: CV1, ••• , Vn >; 
values: (x1, •• • ,xm> 

end 

The following example illustrates how this descriptive formalism can be used to specify an attribute, 
called "complaints", of a patient with liver disease: 

attribute: complaints 
name: complaints; 
translation: the complains of the patient; 
prompt: What complaints does the patient have; 
constraints: (anorexia, fever, jaundice, nausea); 
values: (fever) 

end 
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In this example one of the variable values x 1 , ••• ,Xm (m ;;;:.O) has been substituted by the constant value 
"fever". 

A frame is similar to our description of objects, but has additional information concerning links to 
other objects. If the links bear semantic information, the objects and their connecting links form a 
so-called semantic net. An often used link in a semantic net is the ISA-link that imposes a hierarchi­
cal organization to the objects, called a taxonomy. 

We next discuss how objects and attributes are used within production rules, such as for example in 
the DELFI-2 system but also in many precursors of this system, in particular the EMYCIN system on 
which DELFI-2 has been based. 

The conditions and conclusions in production rules are syntactically defined as follows: 

<condition> ::=<predicate> <object> <attribute> {<constant>} 

and 

<conclusion> ::=<action> <object> <attribute> {<constant>} 

For example, the following production rule applying this formalism concerns a certain liver disease. 

if 
Same patient sex female and 
LessThan patient age 30 and 
Same patient cholestasis intrahepatic and 
Same biochemistry hypergammaglobulinemia yes and 

then 

fi 

Assert patient diagnosis chronic-active-hepatitis with 
CF = 0.60 

In this rule there is an additional entity, "CF=0.60", delimited by the keyword "with", a measure of 
uncertainty that is used by the expert to express his lack of certainty of the conclusion based on the 
four specified conditions. This uncertainty measure will be discussed briefly in section 3. 

The actions in a conclusion of a production rule are one of the major departures from predicate 
calculus. In most rule-based systems, several are available. For example in the DELFI- 2 system, there 
is in addition to the "Assert" action (called "Conclude" instead) also an "Execute" action (used for 
invoking a procedure denoted by an attribute) and a "Write" action. The latter is a bit anomalous, 
because it has a textual message as its argument, instead of an object and attribute. This is not con­
form our simplified syntactical definition. In other systems, for example the OPS5 system there are 
additional actions, such as the "Modify" action, that replaces the former value of an attribute with 
the current value, specified in the production rule. This seems a suitable action for simulating process 
control. Deleting facts under certain circumstances by a "Delete" action may also be useful. 

2.3. Data structures and knowledge representation related 
We have discussed some methods for representing knowledge by means of symbolic representation 
schemes. Often, here a discussion on knowledge representation ends, leaving issues of implementation 
to the reader. However, we think that implementational issues are worth to be treated, hence this 
subsection about data structures in rule-based expert systems. We use a Pascal-like formalism for 
describing data structures. A LISP-like specification, could equally well be used, for the COMMON LISP 
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procedure "defstruct" is similar to the Pascal record type. 
First, a production rule can be speeified by means of record data types and pointer types, and it 

seems advantageous to use a description that is very similar to the knowledge representation formal­

ism. If we place all production rules into a linked list, the following data structure is adequate: 

rulePointer = pointer to ruleNode; 

ru leNod~ = record 
rulenumber 
used 
antecedent 
consequent 
next 

cardinal; 
boolean; 
conditionPointer; 
conclusionPointer; 
rulePointer 

end 

The field used is set to true if the rule has been applied once, successfully or not. This helps in 

preventing circular reasoning, in which a production rule is used more than once. The conditions of 

each rule are also represented as a linked list: 

conditionPointer = pointerto conditionNode; 

condi tionNode = record 
predicate 
object 
attribute 
values 
andlink, 
orlink 

end 

pointer to symbol Table; 
objectPointer; 
attributePointer; 
valuePointer; 

conditionPointer 

The fields andlink and orLink represent the logical operators and and or. The data structure for 

conclusions is similar. 
The data structure used for representing an attribute is also rather straight-forward, using a record 

data type with a number of fields that represent the various characteristics of an attribute: 
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attributePointer = pointer to attributeNode; 

traceClass = (goal, askfirst); 

attributeNode = record 
name, 
translation, 
prompt 
traced 
class 
constraints, 
values 
next 

end 

string; 
boolean; 
traceClass; 

valuePointer; 
attributePointer 

If an attribute has the trace class goal it is considered to be a goal in the inference process. As such it 
triggers rule selection and application, issues to be discussed in the next section. An ask.first typed 
attribute, is asked before attempting to derive its value from production rules. If all possible values of 
an attribute have been determined, the field "traced" is set to true. 

We conclude that there is an obvious analogy between our developed data structures 
and facilities for knowledge representation, even in a Pascal-like language. 

3. FUNDAMENTAL OPERATIONS IN ExPERT SYSTEMS 
Inference techniques and knowledge representation are strongly interrelated. Various search processes 
take part in the inference process, particularly in the selection and evaluation of knowledge items, for 
example production rules. Generally, two basic inference methods can be distinguished [5]: 
- In top-down inference, starting with goal attributes, production rules are selected on tlie basis of a 

partial or total match with some pattern in the conclusion of the rules, and subgoals are generates 
as a result of production rule evaluation; 

- In bottom-up inference, production rules are only applied if enough facts have been accumulated to 
evaluate the conditions. This process continues as long as new facts can be produced and thus 
additional rules can be applied. 

3.1. Top-down inference 
We start with a discussion of top-down inference on a rule base. In its simplest form, top-down 
evaluation start with a set of goals {G 1,G2 , ••• ,Gn} (n ;;a.O) and tries to proof each of these, applying 
the production rules in the rule base. The overall purpose of the process is to generate a set of facts 
that does or does not confirm goals and subgoals generated by the inference engine. Production rules 
are selected on basis of a partial or a total correspondence between a goal and one of the conclusions. 
In that way more than one production rules may be selected in order to confirm a goal. This selected 
set of production rules {Ri.R2, ••. ,Rm} (m ;;a.O) is called the conflict set, because it is quite often not 
clear at all which of the rules should be processed first. Furthermore, it is also possible that none of 
the rules is applicable to the derivation of a goal or subgoal. In most systems this leads to question­
ing the user to enter one of the possible values. This so-called tracing process, is done in the follow­
ing way: 



procedure Trace(goal> 

end 

Infer(goal>; 
if [not traced] then 

Ask( goal> 
end 
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A goal might be a structured object, in which case it is an object with an associated attribute: 
Trace( object, attribute). 

In the latter case, production rules are selected on the basis of a partial match operation in the pro­
cedure Infer described below, because in most expert system shells, and also in the DELFI-2 system, all 

rules that might contribute values to an object's attribute are collected. 

procedure Infer(object, attribute) 

end 

SelectRules(rulebase, object, attribute, selectedRule>; 
while selectedRule =I=- nil do 

end 

ApplyCselectedRule); 
if [attribute traced] then 

return 
end; 
selectedRule := NextCselectedRule> 

The procedure Apply evaluates both conditions and conclusions of a production rule, in many cases 
creating subgoals, that are traced in a way similar to goals. 

procedure Apply(selectedRule) 

end 

EvaluateConditionsCselectedRule>; 
if [not failed] then 

EvaluateConclusions(selectedRule) 
end 

A production rule fails if at least one of the conditions nested within and-operators, or all the condi­
tions nested within or-operators, are evaluated to be false. Otherwise, a rule is said to succeed. The 
conclusions of a rule are only processed if the rule succeeded. The SelectRules algorithm processes 
the rule base as follows: 
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procedure SelectRulesCrulebase, object, attribute, selectedRule) 

end 

selectedRule := nil; 
rule := rulebase; 
while rule =I= nil do 

end 

if MatchCobject, attribute, rule.conclusion) then 
NewCruleSelected); 
ruleSelected.rule := rule; 
NextCruleSelected) := selectedRule; 
selectedRule := ruleSelected 

end; 
rule := NextCrule) 

In the simple knowledge representation scheme for production rules, in which only propositions are 
available, the Match operator returns the value true only when the goal proposition and conclusion 
are identical. In the more sophisticated knowledge representation scheme, using objects and attri­
butes, a goal and a conclusion match if object and attribute in both conclusion and goal or subgoal 
match. The specified values in the rule are ignored. In object-attribute-value representation, predi­
cates operate on the collected facts and their arguments, by an attached function. Thus, arguments 
are actually evaluated. 

A facility that is often added to the inference engine after the initial design has been completed, is 
a so-called look-ahead facility. This facility is similar to the rule application algorithm, but rule con­
ditions are only checked on truth value, and are not evaluated. Thus, attributes are not traced but 
only scanned. For example, it could be the case that the third condition of a production rule, having 
four conditions nested in and-operators, is known to be false beforehand. In this case; there is no 
point in evaluating the first two conditions, because it is already known that this rule cannot succeed. 
However, the rule evaluation algorithm is not capable in detecting this, but the look-ahead facility is. 
Look-ahead leads to a remarkable pruning of the search space, and prevents many irrelevant ques­
tions to the user. 

As mentioned before, on many occasions more than one rule is selected. Most rule-based systems 
with top-down inference, use backward chaining as a solution to the problem of the non-deterministic 
application of production rules and evaluation of the conditions of each selected rule. Usually, 
scheduling is done on a first-in-first-out basis. Once selected, production rules are applied sequen­
tially, which is a rather trivial solution to the problem of conflict resolution. More sophisticated 
scheduling of rule subset evaluation involves a conflict resolution strategy that operates by means of 
priority scheduling. Algorithms have been developed to assign priorities to production rules, based on 
criteria such as the number of conditions in a rule or the measure of uncertainty of the conclusion. 
The priority criteria are often chosen dependent on available domain-specific control knowledge, i.e. 
information that is part of the solution process in a certain domain. More general schemes use poten­
tial path lengths, the degree of nodes in the corresponding AND/OR graph or some other measure of 
cost. However, these general schemes are only useful when no heuristic control knowledge is avail­
able, otherwise the conflict resolution strategy tends to degradate. Heuristic control knowledge is 
often only implicitly present in the knowledge base in the way it has been structured. Hence, the 
overall structure of the knowledge base is task dependent. 

To illustrate the foregoing let us consider a simple rule base, in which only attributes have been 
specified. 



Figure 2. Search space tree for backward chaining 

rule 1: 
rule 2: 
rule 3: 
rule 4: 

if W, X then V fi 
if W, V then Y fi 
if V, X, Y then Z fi 
if U, X then Z fi 

11 

Starting with "Z" as a goal attribute, the system first selects rules 3 and 4 in the conflict set. When 

rule 3 is evaluated, the unknown attribute "V" will be met. Since rule 1 concludes about this attribute, 

this is the next selected rule. The tracing process is performed recursively. In this simple rule base, 
the attributes "W" and "X" or "W", "X" and "U" are finally asked of the user because there are no 

matching conclusions in any rule. In figure 2 the search space of the problem is specified. Top-down 

inference is often implemented as a form of depth-first search, i.e. pre-order traversal of a search tree, 

so the tree is traversed from top to bottom and from left to right. The search space tree can be 

compressed by deleting redundant nodes. This is a consequence of the set of facts, discussed earlier, 

which results in tracing a attribute not more than once. 
A search space graph is depicted in figure 3. If an attribute already has been traced by the infer­

ence engine, it is considered superfluous to revisit such a node in the tree. A more complicated situa­

tion arises when a rule-based representation scheme is extended by an object-centered representation 

scheme. This extension provides the system with additional flexibility, because production rules are 

organized in objects, and rule invocation can only take place when the corresponding object in the 

conclusion of the rule is instantiated. Thus, an object-centered approach produces a flexible modular 

system. This has additional advantages from an implementational point of view. When selecting 

applicable production rules it is not necessary to scan the whole rule base. Thus, the inference pro­
cess starts in another way then described until now; it starts with the instantiation of an object and 

traces the attributes that are the actual goals. 
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Figure 3. Search space graph 

procedure Instantiate(object, template) 

end 

New(object); 
CopyAttributes(template, object>; 
attribute := First(object.attribute); 
while attribute ¥= nil do 

end 

if [goal attributeJ then 
Trace(object, attribute) 

end; 
attribute := Next(attribute) 

Facts are collected within the objects that have been dynamically instantiated, which simplifies easy 
retrieval. 

lbis object-centered approach in a rule-based system is the first step towards a combined frame­
based and rule-based system. Frames are objects with additional information, in particular informa­
tion that concerns the mutual relationship between objects. Already mentioned is the ISA-link that 
structures a set of objects into a hierarchical net with property inheritance as a built-in inference 
method. Because of the specialization and generalization organization imposed on the objects, certain 
objects might inherit information of more general objects. lbis circumvents rule application and also 
prevents questions to the user of those values that can just as well be inferred from other objects. 
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3.2. Bottom-up inference as control 
As stated before, bottom-up inference-starts with data and applies production rules until a termina­
tion criterion is f11lfilled. Bottom-up inference is often applied in domains where a lot of data must 
be processed, thus in essentially data-driven applications. In situations where an expert system is 
dedicated to consultation purposes, it seems more appropriate to use top-down inference, because this 
provides the user with a more consistent behaviour of the system. However, in an expert system 
building tool provided with top-down inference, there are many circumstances in which bottom-up 
inference could supplement the control strategy. This will be the next subject in our discussion. 

In the first place, production rules are sometimes used within an expert system, not as part of the 
overall derivation of attribute values, but instead to perform certain actions if all of the conditions are 
fulfilled. This is, for example, the case in the following rule: 

if 
GreaterThan engine temperature 150 

then 
Execute engine overheat-switch(temperature) 

fi 

This rule succeeds if the temperature within an engine is higher than 150 centigrade. It switches on 
the overheat indicator, and shows the relevant temperature on the operator panel. This rule can never 
be part of the top-down inference process, because it is not intended to find any values of an attribute 
(nevertheless, this attribute might get assigned a value within the invoked procedure). 

Another example of a rule that is never used by top-down inference, might be one that contains an 
object but neither an attribute nor a value. The purpose of such a rule might be to instantiate the 
specified object conditionally and trace grouped attributes only after this instantiation has taken 
place. An example of such a rule might look like this: 

if 
Same aircraft pressurization-failure yes 

then 
Instantiate pressurization-test 

fi 

This rule states that the object "pressurization-test" should be instantiated (including its attributes) 
when a pressurization failure occurred in an aircraft. 

Still another application of bottom-up inference is to influence the top-down inference process 
itself. In many domains it is not definitely known beforehand which of the attributes of which objects 
are taken as a goal for the consultation. The selection of goals might depend of certain input data. 
Thus, a system that starts with bottom-up inference on initial data, generates goals by applying pro­
duction rules, which are passed to the top-down inference engine. From there on, the system 
proceeds as usual in top-down inference. 

The following example rule illustrates such a situation: 
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if 
Same patient disease malignant 

then 
SetTrace patient prognosis goal 

fi 

The "SetTrace" action changes the trace class of an attribute "prognosis" to the goal state. Rules 
that influence the control strategy of the inference engine are often called meta-rules. 

3.3. Approximate reasoning 
In the foregoing, methods for knowledge representation and inference processes have been dis­
cussed. These techniques are based on methods derived from symbolic logic. Although, in 
essence, inference is based on symbolic computation, some methods for inexact or plausible reasoning 
take frequently part in the inference process. Logic has not enough expressive power to model 
real-world problems in an expert system, because of the occurrence of incomplete and inexact 
data in almost every domain. The approach of many researchers in the field has been to sup­
plement logic with methods related to probability theory. For example, in 1975 Shortliffe and 
Buchanan proposed a method for the expression of judgemental belief [l]. This CF (certainty fac­
tor) model has been incorporated in MYCIN, and later in slightly modified form, in EMYCIN. It 
has also been used within the DELFI-2 system. Other well-known techniques include the 
Dempster-Shafer theory of evidence and the possibility theory of Zadeh [6,7]. 

In expert systems, two levels where certainty factors are employed, can be distinguished: 
- the level of the expert, who wishes to express his uncertainty about his judgements on any conclu­

sion in a rule; 
- the level of the user, who may be doubtful about the accuracy of entered data. 

There are various moments in the evaluation of a production rule where a measure of uncertainty 
should be taken into account. The evaluation of a condition needs an extension of the predicate 
function, in which case a predicate not only returns the value true or false, but in addition some 
measure of uncertainty, such as a certain factor. The situation is even more complicated, 
because in the EMYCIN system for example, the value true is only returned if the certainty factor 
exceeds some threshold value. In most formalisms, conjunctions and disjunctions of condi­
tions effect the resulting certainty factor. If conditions form a conjunctive expression, then: 

CF= min{ CFconditionJ, .. .,CFconditionn} 

In the case of a disjunction of conditions we get instead: 

CF= max{ CFcondition 1'···,CFconditionn} 

One well-known problem in modelling uncertainty in expert systems is how to combine various cer­
tainties related to an attribute value into one certainty factor. The formula used in the EMYCIN 
system has been successfully applied in various applications, in spite of theoretical objections. 
Sensitivity experiments with MYCIN revealed the used CF model to be quite stable to varia­
tions. However, this phenomenon may be due to the short inference chains in MYCIN. 

In an example the application of the CF model will be illustrated. There are only two 
rules in the knowledge base present: 



rule 1: 
rule 2: 

if B, C then AcF.=o.4 fi 
if D then ACF =0.3 fi 
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It is assumed that the attributes "B", "C" and "D" are traced with certainty factors 0.5, 1 and 1 
respectively. The following two computations are performed: 
1. The minimum of the CF's in the conditions is determined and multiplied by the certainty factor 

in the conclusion: 
CF= CFconclusion·min{ CFcondition I• CFcondition2, ... } 

In this case the following sequence of computations is performed: rule 1 results in: 0.4·min{0.5, 1} 
= 0.2, and rule 2 in: 0.3. So fact "A" has two certainty factors generated by different sources. 

2. In the next stage these certainty factors are combined by applying the combination rule of 
Shortliffe and Buchanan that in this case results in: 0.2·(1 - 0.2) = 0.44. 

So the combination of certainty factors increases the evidence about the values of the attributes, 
but not by simply adding the two factors. 

4. A MEDICAL APPLICATION: HEPAR 

One of the expert systems being developed using the DELFI-2 system, is a medical system for the 
diagnosis of liver disease. Medicine has traditionally been a rich field for Artificial Intelligence 
and has resulted into a large variety of experimental systems [8]. Medicine is a suitable test 
area for expert systems, because it offers many interesting problems with completely different prob­
lem and solution characteristics. In addition, medical applications appeal many researchers for 
their potential beneficial effects on the health service. 

The area of liver disease is a field that is far from being formalized: the medical knowledge 
is characterized by its incomplete, inexact and symbolic nature. 

In co-operation with Dr. A.R. Janssens of the Department of Gastro-enterology of the 
University of Leyden work is being done on the construction of an expert system that deals 
with liver disease. As an intermediate goal, the effort is directed at the design of a system that is 
able to produce a medical diagnosis on the basis of entered patient findings and certain laboratory 
data. In the future we probably will try to include treatment and prognostic considerations 
into the system. This expert system, called HEPAR, incorporates both clinical experience and data 
from medical literature. The organization of the knowledge base reflects the usual diagnostic 
approach in the area of liver disease. 

Figure 4. Structuring diagnosis in liver disease 
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The objectives of the research are: 
- to improve diagnostic capabilities· of physicians; 
- to make useful. medical knowledge easily available to non-experts. 

The expert system HEPAR needs the following simple data for proper functioning: 
- general patient data, such as age and sex; 
- the medical history of the patient; 
- data obtained from the physical examination; 
- laboratory data .and serological findings; 
- ultrasound and X-ray findings. 

The system proceeds from the outset to the following intermediate conclusions: 
- the type of cholestasis (bile congestion): intra- or extrahepatic; 
- the presence of liver failure; 
- malignant or benign liver disorder. 
Together with other characteristic patient data a diagnostic conclusion is reached. 

The following rule which is part of the diagnostic expert system HEPAR, concludes about a possible 
disease state. 

rule 115 
If 

1.0 the duration of complaints, clinical signs or lab 
abnormalities is chronic 

2.0 the sex of the patient is female 
3.0 the complaint of the patient is Raynaud's phenomenon, or 
3.1 the complaint of the patient contains burning eyes and 

dry mouth -
4.0 the-cholestasis of the patient is extrahepatic 

then 
1.0 there is suggestive evidence C0.60) that the possible 

diagnosis of the patient is primary_biliary_cirrhosis 

Another part of the knowledge base contains a structured overview of the problem domain which is 
stored as objects in a tree-like structure, that is depicted in figure 4. 

The system actually uses very few laboratory data in spite of its specialized nature. In addition, 
invasive techniques, such as ERCP and liver biopsy take no part in the diagnostic process of the sys­
tem. Thus, maximum use is made of easily gathered clinical data. 

At present, the expert system HEPAR is being tested, using patient data both from the 
University Hospital of Leyden and Rotterdam. 
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