
Formal Description of Programming Concepts- II
D. Bj\f>rner (ed.)
North-Holland Publishing Company
© IFIP, 1983

FAIRNESS ASSUMPTIONS FOR CSP IN A TEMPORAL LOGIC FRAMEWORK

R. Kuiper
Mathematical Centre

Kruislaan 413
Amsterdam

W-P. de Roever
Department of Computer Science

University of Utrecht
Princetonplein 5

Utrecht

Six fairness assumptions for the repetitive construct
* [... Db,t , c,e -+ S,t D ...] in a subset of CSP are given
and classified with respect to the programs they cause
to terminate. A total correctness proof system for the
subset of CSP is given, incorporating the different fair­
ness assumptions.

O. INTRODUCTION

])9

The research in this paper originated from work by FRANCEZ AND DE ROEVER [F de R].
The aim of the paper is twofold, both cases having to do with temporal logic_ On
the one hand, we consider six different fairness assumptions for a subset of CSP,
i.e_ Conununicating Sequential Processes, a language for distributed computing
without shared variables defined by HOARE in [HJ. These assumptions will be expres­
sed using temporal logic, which enables us to formulate them at a level convenient
for intuitive understanding of their meaning as well as for use in formal proofs.
They will be compared with respect to the sets of programs they cause to terminate.
On the other hand we need a framework to reason about the effects of such fairness
assumptions. To do so we give a (low level) temporal logic proof system for this
subset of CSP. We use the idea of temporal semantics as developed for shared vari­
able languages by PNUELI [P]. We have been helped by BEN ARI' s thesis [BAJ , espe­
cially by his way of reasoning with conditional invariants. It is shown here that
by this method also non-shared variables and synchronized conununication as in CSP
can be modelled in a natural way.

The set up is as follows. Section I gives the preliminary facts of CSP, section 2
the temporal logic semantics and section 3 the fairness assumptions; section 4 in­
dicates the temporal logic we use. In section 5 several examples are given. Final­
ly section 6 contains discussion.

When this paper was being typed, we received a paper by Sl!OLKA [S] dealing with re­
lated matters.

I. PRELil1INARIES

The syntax of the subset of CSP we use is as follows.

The 1•esearch reported in this paper o:t>iginated f:t>om wo:t>k by Francez and de Roeve1'.
Francez' stay at the University of Ut:t>echt was supported by the Netherlands Oi--­
ganization for the advancement of Pure Research (Z.W.0), as was €art of ~he 1'~­
search of de Roever in the form of numerous ~ravel gran~s for colla.b_orating with
Francez at the Technion and Pnueli at the Weizmann Institute, both in Israel.
De Roever's collaboration with Pnueli was partly supported by the Department of
Applied Mathematics of the Weizmann Institute of Science.

160

DEFINITION

Statements:

Programs

R. Kuiper and W.P. de Roever

s : : = ski~ Ix:= t ! * r b I , c I + s I ~ ... Db m, cm + s m J I s 1 i s 1.
where t is an integer expression
b a boolean expression and
c either Pi! x or P/ y i,j E {I, ... n}

[P 1 ::s 1 11 11 Pn::Sn]
where P.,1 E I= l I, ... ,nJ,is called a process.
Process~s have no shared variables.

Neither [... II •••] nor•[...] is allowed to be used in nested fashion.

2. TEMPORAL SEMANTICS

We introduce control locations l. ,£!, i E 1, as follows. l. (or l!) can be at S or
after S for Sin P. defined in t~e katural way (cf. [O],[Ot]). O~vious identifica­
tions like: "for P1 :: s1;s 2 we have after s1 =at s2 and a~ :'i =.at s 1;s 2 =at S1"

are made. The guarded connnand case needs some further elarification:
I) For S{ in•[... Db{ cl.,. Sl D ...], after St Co at*[...].
2) There are no control locations concerning the bl,cl construct, as, when control
is active at a guarded command •[], all guards are evaluated at the same time
i1~stant, after which control is still at the same point or resides either at one
of the guarded statements or after the whole command.

States Sare tuples S = <,t,s> = <<l 1,a 1> , ••• , <l ,a>> such
is one of the above s!_efine.'!_ control locations in fi. nControl
used as predicates ,l.(or £'.) being true ins = (l,cr) iff £.
i'.'.=l!). 1 i 1

that for each i E I l.

i i

Auxiliary notation:

locations are also
= Zi (respectively

*[i] denotes a guarded command in P.; constructs like "for all •[il in P." assume
implicit indexing of the *[i]. gik'..~ bil'c.{'. is a guard in a guarded conJiand
*[... Db. 0 ,ci"-+ S.o D ...] belonging to tEe process P.. .

1

l<-.ff.c.. H .. d . 11 h. 1 . . d
c. l ~ Cjm i Ci.f an cjm are syntactica y mate ing commun1cat1on comman s
(~.g.: P.!x in P. and P.? yin P.). g.{'. in the guarded command •l.i] is true in the
state s tff ther~ is a process P1. sucfi that .fi = at •[j] and *l.j] contains at least
one gj~ such that c.{'.~ cjm Ab.{'.JAbjm. Notation g.{'.! gjm• This indicates semanti­
cal matching. a [ik'. ~ jm] is o1changed according t6 the effect of the communication
between cjm and c;~ (e.g.:g.{'. = P.!x and g. = P.? y will lead to
o[il>;.jm]=a[x/y]). 1 J Jm 1

Finally, to enable us to include the distributed termination convention we define:
t(g.{'.) holds in s iff the process named (as target) in c.l is terminated
(e.~. l. =after P. and g. 0 = b. 0 ,P.?x). 1

J J H. l<.. J

Now we define the temporal semantics as follows. The meaning of a program is the
set of computation sequences satisfying the following axioms. 0 is the next time
operator from temporal logic.

Exclusivity Axiom (E)
l(.f/' .f i_) for all i E I and .J'.i f. .f.i .
The exclusivity axiom describes that control in each process always is at just one
place at the same time.

Local Semantics Axiom (LS)
(~! at skip A 0 = o_:i Q (at skip) V Q (after skip A O = cr)
(11) at x:= t A 0 = 0 :i 0 (at x:=t) V 0 (after x:=t A cr= cr [t/x])
(iii) Let * [i] = * [b ' J c · l + S · I 0 Db. c · -+ S ·]

J. , l i • · · ini > ini ini

Fairness Assumptions for CSP

at * [i] /\CJ= er ::i 0 (at * [il)

/\

at S. A a= o [il~_jm])))
Jm

v t (gil)) A 0 (after * [i] A ,, =er))

161

The local semantics axiom describes what is usually known (in papers not dealing
with fairness) as operational semantics of these constructs. Note, that synchroni­
zation and the termination convention of CSP come to the fore in (iii).

Now to state our last axiom we have to refine our notation such that each state­
ment in the program has a unique name.
Enumerate the cont~ol locations in process Pi of form at Sk where Sk skip or
sk x:= t by '"ik, i EI, KE Ki. Let a' ik denote the corresponding after sk location.
Likewise enumerate the control locations of form
a~ *l ... Dbiql ,ciqf ·> Siql 0 ...] in process Pi by Yiq•i E I,q EQi with correspon­
ding sets of locations

riq = V_[' at Siql v after*[...], l ELiq

Then define

'"ik A O a' ik

Yiq" o riq
f\ (after P.

iE I i

for i E I, k E Ki

for i E I, q E Qi

v (at *[i] A A£lgil Al fl.eClbi.tv t(gil))))

Notice, that Aik and Ciq describe that a statement is activated, whereas T indi­
cates that a situation is finished or blocked.
Now let b=O (respectively I) denote that b is false (respectively true). Then
I:icrbi=l indicates that exactly one of the bi is true. Moreover, the execution of
a guarded command by selecting a guard containing only the boolean part should be
seen as a self-communication between two identical processes.
Then finally we state the

Multiprogramming Axiom (M)

I I A.+ q. r IqEQ- ciq + T
id kEk. ik iE i

i

The multiprogramming axiom describes that either the program is terminated or
blocked (i.e.T=I) or exactly one action changing the state takes place at each
time instant. Note, that communication between two processes is viewed as one ac­
tion (cf.the factor l in M).

REMARK. Above we require that, in not terminated or blocked situations, exactly
one-action is performed at each time instant. Concurrency then is described by
considering all sequences of such actions allowed by the semantics; this is the
usual treatment in case of concurrent shared variable languages. However, as in
CSP the processes have no shared variables, it is more natural to allow atomic ac­
tions in different processes to be executed at the same time instant; the same
3lso holds for communications between disjunct pairs of processes. The system can
be adapted to this as follows. We now use that s is an n-tuple
<~l 1 cr 1 : , ... , <ln,on>> where each process Pi only affects (~i,oi). Contrary t? the
situation above, we cannot assume anymore that only the active process determines
the state at the next instant. Therefore we explicitly denote that if a process is
not activated, it does not change its part of the state.
We now have :

Local Semantics Axiom * (LS*)

162

(i) at skip /\ 0 = 0 ::;

(ii) at x:=t /\ () = () :0

0 (at

0 (at

R. Kuiper and W.P. de Roever

skip /\

x:=t /\

o· =
1

0.::::
1

;;i)

ail

v O (after skip A "i =
for skip in Pi

v O (after n:=t A .Ji·=
for n:=t in Pi

(iii) Let* [i] = * [bil' cil ·>Sil 0 ... Obin.'cin- Sin.]

at*LiJAa=O:JO(at*[i] Ao.=0:) 1
1 1

n ni nj
v(V .V V

j=I f=l m=l

O(at Si£ /\ at Sjm A oi

gif ~ gjm

a)il r:o_jm]

Ao, o.[ifcjm])))
n· J J -

v(_oA1 (1b.o vt(g.o)) AO(after * [i] /\ oi= a))
L=J H. H ..

o.)
1

0/t/xJ)

Note, that the exclusivity axiom prevents
choices in case of a guarded command.

executing more than one of the possible

Multiprogramming Axiom * (M*)

+) \ C. + T ~
~ L iq
id qcQi

The further material in this paper can without change (up to *'s) be taken as based
on either one of these alternatives.

3. FAIRNESS ASSUMPTIONS

Our aim is to define in the context of CSP a variety of intuitively reasonable
fairness assumptions depending on different implementations of the guarded command
construction (cf.[D]) as well as on synchronized communication, both being specific
CSP features. We compare the different assumptions with respect to the programs
they cause to terminate.

We start by considering what kind of fairness is induced by the temporal semantics
so far. Note, that the multi-programming axiom (M) ensures that no unnecessary
idlinR occurs; only a blocked or terminal state can (end always will) be repeated
unchanged. (M) also ensures that as long as somewhere action is possible, some ac­
tion will be taken, i.e. the temporal semantics so far imposes minimal liveness
(c f. [OL]) • So

Minimal Liveness Axiom: ~
Next, as in the presence of one process looping all the time this allows starvation
of all other processes, it seems reasonable to impose a stronger liveness require­
ment. The usual one chosen is fundamental liveness (cf. [OLJ) ensuring that if a pro­
cess is continuously enabled to proceed, it eventually will. To express this, we
first give the usual axiom for atomic statements, using the temporal operators 0
(eventually) and 0 (always).

Atomic Statement Liveness Axiom (ASL)

D at S => 0 after S for S = skip or S = x := t

We now are faced with treating the guarded command in the same way. If all boolean
guards are false the axiom is obvious.

Guarded Command Skip Axiom (GCS)

D (at *[J " A£ (ibe vt(ge)J)::i0 after *[J

Now to deal with enabled guarded commands there are various possibilities, depen­
ding on two parameters. Firstly, we consider two fairness assumptions: weak (res­
pectively strong) fairness, stating that those moves which are eventually contin­
uously (respectively eventually infinitely often) enabled are eventually taken
(cf., e.g., (GPSS]). Secondly, in CSP we can distinguish three varieties of these two

Fairness Assumptions for CSP I 63

assumptions, depending on what is taken to be a move in the case of executing
guarded commands. As will become clear from the assumptions to follow, we can dis­
tinguisl1 a move with respect to a process, a guard or a pair of semantically
matching guards, i.e. a channel. Hence the concept of fundamental liveness is cap­
tured by requiring the following.

Fundamental Liveness Axiom
(i) Atomic Statement Liveness Axiom
(ii) Guarded Command Skip Axiom
(iii)D at*[J" 0 D (at*[] c, Vlgt) => 0 Vfat S{

As will be seen below, we shall concentrate on different possibilities for (iii),
having the above one as the weakest possibility.

REMARK. In the axioms we use constructs like D 0 at *l ... J ::> 0 at Sl and D at *[...]

~ 0 at Sf , which seem self-contradictory. As to the first one, this can eventual­
ly happen: D 0 at *[true~> S,/'. J => 0 at S,/'. , even D 0 at sl is possible. As to the
second one, the axiom is there to exclude all computation sequences for which D at
*[... l holds, so logically there is no contradiction: the axiom might be replaced
by I D at *I- ... J. We have chosen the above representation as it covers all cases
in a uniform way and indicates the next control location to be reached, thus pro­
viding intuition for the design of proofs.

We now formulate the fairness assumptions for the *[... Dg-1'. -+ Sf D ... I construct.
When requerying one of the fairness assumptions the atomic statement liveness axiom
and the guarded command skip axiom are presupposed. The abbreviations should be
obvious.

Weak Process Fairness

D at *[

Weak Guard Fairness

D 0 at *[l " 0 D (at *t l ::> gf) :i (/ at

Weak Channel Fairness

(WFF)

(WGF)

s.I'.
(WCF)

D 0 (at*[JA at *r J') /I oD((at *[J /I at*[J?::.gl_II_l gl,) ::>

Strong Process Fairness

D at *l J 11 D 0 V,e g,e => <> vl at sl

Strong Guard Fairness

D 0 (at *[" g,/'.) => 0 at sf

Strong Channel Fairness

::. /:;(at s_f" at S'.I'.,)

(SPF)

(SGF)

(SCF)

D <> (at *l J " at *[J' 11 gf _11_1 g'l') => o (at sl 11 at s' ,e•)

We now compare the various fairness assumptions with respect to the sets of pro­
grams they cause to terminate.

DEFINITION. T(f), where f is one of the above fairness assumptions, is the set of
CSP programs for which, when executed under the fairness assumption f in any ini­
tial state s, all execution sequences contain a state s for which li = after Pi for
all i E { I, ... ,n} (i.e., the program terminates).

THEOREM. T(WPF) c T(SPF)
if..11 f If-. n

T(WGF) c T(SGF)

ihn f
i-- n

T(WCF) c T(SCF)
f

164 R. Kuiper and W.P. de Roever

PROOF. The inclusions and inequalities between the corresponding weak and strong
cases are evident. An example for the inequality for the most interesting case,
T(WCF) 'f T(SCF) is the following.

[P 1:: x: = O; y:= I; *[x=O,P2 ! x-> y :=-yD y=i,P2!y .. skip] II
P2 :: u: = O; v£= I; *[u=O,P 1? u-> v :=-v Ov = l,P 1? v->skip J]

The inclusions and inequalities for the weak cases are easy; for the more interest­
ing strong cases as follows.

T(SPF) c T(SGF)

By the local semantics axiom, 0 at*[] A 0 0 VlgP is the equivalent to
D 0 (at*[] A Vlgl), as this is the only way in Which control can proceed. As
gl ::i Vlgl and at Sl "Vl at Sl, this gives T(SPF) c T(SGF).

T(SPF) 'f T(SGF) by

b:= true; * [b-> skip Db-> b:= falsi:>]
T(SGF) c T(SCF)

This follows from the fact that there are only finitely many guards, whence
D ~ gf implies that there is a g£1 such that D 0 gl ~ g£•·
T(SGFJ + T(SCF) follows from the first example in this proof. D
As there are only finitely many guards, D 0 VP at Sl implies that there is a gl
such that 0 0 gl. As at Sl implies Vl at Sl, -this gives T(SPF) c T(SGF).

4. TEMPORAL LOGIC

We assume as given a te~poral logic axiom system and rules for linear time like
DUX as presented in, e.g, [P~; to handle assignment we assume extension of this
system to predicate logic as outlined in, e.g., [HC] •
In proofs we make use of derived rules as presented in [BA] . r..g.: if
1- Op A q ::i 0 q then f-Dp A q ::i Oq, the conditional invariant rule.

5. EXAMPLES. We start by g1v1ng a very easy example, (i), in all detail. In (ii)
we show how synchronization is treated.In practice most of the elementary steps
in a proof can be left out, as (iii) shows. As the examples will show, the local
semantics axiom and the conditional invariant rule are crucial to enable applica­
tion of the fairness assumptions; namely to obtain the left hand side of the stated
implication,

(i) Under the assumption of WGF a simple CSP program can model mutual exclusion
and infinitely often access for two critical sections CS~ and cs2 consisting
of sequentially composed atomic statements. Note, that WPF is not sufficient
to guarantee access.

P::*[true-> CS 1 0 true-> cs2J

PROOF. Mutual exclusion holds by the exclusivity axiom. Proving mutual access
amounts, by synunetry, to proving f- at * [...] ::i O at CS •
As follows: (in S =at S v V , at S', S' substatement ot S)

s
i) I- at*[...] ::i 0 (at*[] v in cs 1 v in cs2) • (LS)

I:=
2) I- at*[...]::> I A at*[..•] (l,T.L.,i.e.by temporal logic)

3) 1-
4) l­
s) 1-

at *[... J ::i I A 0 at*[...]

I A 0 at *[. ..] " O(~ at *[•.. J)

I A 0 at *[..• J ::i D 0 at *[•.. J)

(T .L.)

(LS,ASL)

(4,T.L.:cond.invariant rule)

Fairness Assumptions for CSP 165

Now the fairness

6) I- 0 0 at *[... J

7) 1- at *[... J :J 0

assumption

:J 0 at cs 1

at CS 1

is used;

(WGF)

(3,5,6,T.L.)

(ii) Termination of a program with synchronization under the assumption of WCF

shall be proved. Again we give the proof in much detail.

Let b and c be initially ~ and not depend on x and y. Then the following pro­

gram terminates under WCF,

lP 1:: *[b,P 2 ! x -> skip 1 Db,Pz ?x b:= false

P2 :: *[c,P 1? y skip 2 D c, P 1 !y .,. c:= false

Note,tltat WGF is not sufficient to guarantee termination, but SGF is.

PROOF. Proving termination amounts, by symmetry, to proving

1- at*[IJAat*L2JAb/\c :oO after•[JJ

As follows:

I) I- at * [I I A at * [2] A b I\ c => 0 (at b : = fa 1 s e A at c : = fa 1 s e)

v O((at *[IJ vat skip 1) A (at *[2] vat skip 2) Ab Ac), (LS)

I:=

Case I

2) 1- at b:= false A at c := false "' O(at •[] A lb)

3) 1-at*[IJA"lb=>Oafter•[l]

Case 2

(LS ,ASL)

(GCS)

4) 1-

5) 1-

6) 1-

I /\ at *[I l /\ at •[2]=>1A0 (at •[I]/\ at •[2J)

I A 0 (at *[I] A at •[2J)::o O(O(at *[IJ" at •[2]))

I\ 0 (at •[l] A at *[2]):o D 0 (at •[l] I\ at * [2 J)

(T .L.)

(LS,ASL,M)

(T.L. :cond.inv.rule)

7) 1- I /\ 0 (at * [I J A at •[2])::o D 0 (at •[I] A at •[2] /\ I) (T. L.)

Now the fairness assumption is used

8) 1- I AD 0 (at •[I J " at •[2]) :> 0 (at b := false I\ at c := false) (I,WCF)

9) 1- at b :=false :> 0 after •[I] (2,3)

10) 1- at *[ll /\at *[2] Ab Ac =>O after •[l] (1,3,9,T.L.)

D

(iii) Termination of a program consisting of three processes under WGF shall be

proved. We now leave out some straightforward detail to show how in practice

proofs are not difficult to handle.

Let a,b and c be initially true and not depend on x,y and z. Then the following

program terminates under WGF.

[P 1:: •[P,P 2 ! x + skip 1 D b + b := false111

P2 :: •[c,P 1? y + skip 2 D c,P 3 ! y + c := false]

P3 :: *[d,P 2? z + d := false]

PROOF. To prove

As follows:

1- A at *[i] Ab /\ c /\ d :o 0 !) after *[il
i i

166

I)

R. Kuiper and W.P. de Roever

I- I) at *[i] 11b 11c Ad :i {) ~ after [i]
1

v D ((at •[I] vat skip 1)

II at *[3] Ab llC lld)

11 (at •[2] v at skip 2)

}=:I
Analogous to (ii) this leads to

2) I- I 11 A at •[i] :i I 11 D 0 A at *[iJ
i i

Now the fairness assumption is used

3) I- I II D <>I) at •[i] :i O(at c := false 11 at d := false)
1

v after •[I]) II 0 (in •[I]

(WGF)

(LS)

4)

5)

6)

I- at c := false :J 0 after •[2] :i {) D after •[2]

I- at d := false :i 0 after •[3] :i {) D after *[3]

(ASL ,GCS ,M)

(ASL,GCS,M)

J- 0 (after •[2] 11 after •[3] 11 (in *[1] v after •[I])) :iO after •[1]
(ASL,WGF,GCS)

7) I- I) at *[i] 11b lie 11d :i 0 6 after •[i] (1,2,3,4,5,6,T.L.)
1 1

(iv) Changing in example (iii) P2 to

P2 :: •[c 1,P 1?y-+ c2 := lc2 Dc2 ,P3 ! y-+ c 1 := c2 :=false J

D

gives an example of a program for which SGF is, but WGF is not sufficient to en­
sure termination. The termination proof is analogous to the one for example (iii),
employing an invariant I' changed accordingly to the change in P2•

6. DISCUSSION

The above system enables us to study termination and other liveness properties of
CSP programs under various fairness assumptions.
As to future goals the following:

I) Extending the system to full CSP is expected to be more or less straight for­
ward, but careful and simple notation should be used in order not to obscure
the intuition behind the axioms.

2) Termination due to properties of the well-foundedness might be described by add­
ing a well-foundnesslike rule to DUX, like

if I- 31.U EW P(lol)

and I- 'v'u E N(0<1.1.~...i)(P(u) :i 0 P(u-1))

then I- 0 P(O).

3) Abstracting to a higher level axiom system might be facilitated by studying
examples using the low level system; it is expected that invariants used in the
proofs may indicate more general proof principles.

4) Developing a notion of completeness for the system might be helped by comparing
it to other total correctness systems for CSP, like given in [A] •

5) P. van Emde Boas suggested that using branching time it might be possible to
formulate fairness assumptions not defined as a restriction on one computation
sequence, but involving several. It then might be possible to enforce, say, ter­
mination of programs not terminating under any of the fairness assumptions in
this paper
We consider as an example, starting with b = c = d = e = ~.

[P 1 ::*[b,P2!x +

P2 : :*[c,P 1 ?y +

P3 ::*[d,P4 !z

P4 ::*[eP3?u+

Fairness Assumptions for CSP 167

skip D b,P3!x -+ b:= false l 11

skip D c,P4!Y c:= ~}II
skip D d,P 1?z -+ d:= ~]II
skip D e,P2?u e:= false]

which is not 3uaranteed to terminate under any of the above fairness assumptions,
but should termi~ate.under the,.intuitively formulated, assumption that if there
always is a terminating branch in the future, then such branch will eventually be
chosen.

ACKNOWLEDGEMENT. We are very grateful to Amir Pnueli, who gave an outline of CSP
semantics as worked out for a subset in this paper.
We wish to thank Nissim Francez for both directly and indirectly contributing to
this paper. Leslie Lamport we thank for illuminating discussions.

REFERENCES

[A] Apt, K.R., Justification of a proof system for communicating sequential
processes, Erasmus University, Rotterdam (1981).

[AFdeR] Apt, K.R., Francez N. and De Roever, W.P., A proof system for communica­
ting processes, RUU-80-4, University of Utrecht (1980).

[BA] Ben Ari, M., Complexity of proofs and models in programming logics, Thesis,
Tel Aviv (1981).

[D] Dijkstra, E.W., Guarded commands, nondeterminacy and formal derivation
of programs, CACM~. 453-457 (1975).

[FdeR] Francez, N. and De Roever W.P., Fairness in communicating processes,
Unpublished Extended Abstract (1980).

[GPSSl

[HC]

[H]

[0 J

[OL]

[P]

[S]

Gabbay, D.,Pnueli, A.,Shelah,S. and Stavi, J., On the Temporal Analysis
of Fairness, Proc. 7th ACM Conf. on Principles of Programming Languages,
Las Vegas (1980).

Hughes, G.E. and Cresswell, M.J., An introduction to model logic,
Meth en & Co Ltd (1971).

Hoare, C.A.R., Communicating Sequential Processes, CAC!I, ±..!_, 666-677
(1978).

Owicki, S., Axiomatic Proof Techniques for Parallel Programs. Diss.
Cornell University (Comp.Sc.) TR 251 (1975).

Owicki, S. and Lamport, L., Proving Liveness properties of concurrent
programs (1980).

Pnueli, A., The temporal semantics of concurrent programs, Theoretical
Computer Science _!2, 45-60 (1981).

Smolka, S.A., A Deductive-Operational Seman~ics for Distributed Programs,
Technical Report No. CS-64 (1980). Brown Un1v., R.I.

168 R. Kuiper and W.P. de Roever

Iauer: Your analysis of fairness assunptions seems very oriented to a specific lan­
guage. Would these distinctions between fairness assumptions still be valid if you
made the study less language specific. I have a feeling that it all hinges on the
fact that a mutual exclusive choice must be rrade, and you are simply distinguishing
a number of different contexts in which choices occur in CSP.

Kuiper: It is certainly true, that it will not be the sarre for every language. But
I think that rrost of these things will simplify a lot if you have other languages .
We especially have chosen CSP, because it was such a difficult language. We wanted
to shOlll that using tenp:>ral logic and using this approach we were able to even deal
with quite carplicated fairness assumptions. But it is language specific.

de Roever: If you look at the definitions, in fact the crux is whether a certain
rrove is enabled or not. So in fact en a high level there is uniformity. 'Ihis
winter I tried to investigate with Pnueli whether vie could forrralize that. Every
week I <pt another fairness principle. So we ended up in specifying, instead of
these six (fairness) principles for CSP, the principles for Ada, which is again
slightly different. That is, the cne fairness principle for the concurrency sec­
tion of l\da. It is again slightly different frcxn the fairness principle for strong
semaphores. Also it is different frcxn the other principles for semaphores which I
kno.17. So at this rroment technically speaking I see no uniformity insight except
for this cne clause: if a rrove is infinitely often enabled it will be infinitly
often taken, in case of strong fairness.

~ In the first place I want to rrake a srrall cornnent on this exanple of the last
transparency. You do not need any assigrunent in the style of Back - hOlll do you call
it, random assigrunent? - because the problem is not there. You passed after this
assignment and the problem only began there. So I think we want to indicate that
this problem of the necessity of using the rule has nothing to do with the randcxn
assignment, because this might be the conclusicn Which one has. But I nOlll have
t\\IO questions: One is that you use the next-time q:>erator, and it was used neither
in the formulation of the fairness assunptions nor, as far as I could see, in the
formulation of the proof rules which you used. I just wondered to what extent it
is necessary to use it. Because this gives a certain granularity to the description
which seems to be too detailed. You do not need to knOlll what is exactly true after
one step. It seems to suffice to knOlll that eventually scmething is true, doesn't
it? That's one question. The other question is that in the syntax, which you have,
the syntax is extrerrely poor. I nOlll checked that yoo cannot even have in these
bodies of these looping constructs 2 consecutive assigrunents, and it can be either
an assignment or skip, that's it. So you say that you have sane car{lleteness proof.
The principles Which v.iere expressed, do they not depend on the particular syntax
on the language and to what extent was the choice of the syntax was rrotivated?

Kiliper: Well, I should start, I think, with the first rerra.rks you rrade. I agree
with that. It is indeed not needed to use this construct. But, I thought it was
rrore = less illustrative of hew to use the rule. I have not been wanting to put
any ercphasis on that further on. As to your first question, if you look at the
proof system, you will see that I use, in axians, the next-time q:>erator. And we
have tried, that was our first attenpt, to rrake a proof system without having to
say things like this. But it became clear, after sane time, why we failed to do it,
namely because in that case, you do not knOlll where you are in the meantime. If you
only kno.17 that you are eventually at sane place, then there is no guarantee that in
between you were not at sane weird place, which might bring you in great trouble
with respect to other processes.

~ 'nlere are oo.ly a ffM places where you are before and after an assignment.
Th.ere is no third possibility and this is what I am bothered about.

Fairness Assumptions for CSP 169

de Roever: I can answer the question oonclusively. So let rre do it. (loud laughter)
We first started out with trying to use Lanport' s approach. You knOIAT there are two
seminal papers on fairness assumptions, one written by Lamport and ONicki, and one
by Pnueli. Lamport' s seems the ll'Ore structured one. So we started with Lanport and
we went to something like 17 different versions of trying to get at a ccmplete
proof system. In the end it boiled do.in that the sound basis is that of Pnueli.
And you see here the proof system of Pnueli 's. After we had understood that, we
realized why we could in fact use Lamport' s approach again and rerrove the next
tirre operator. Because what is standing here is in fact nothing else than a safety
semantics. You say: either you do a rrove, or you don't do a rrove. If you do the
rrove, sarething happens at that rrorrent. If you don't do it, you still rerrain
there. But the strength of proof system using safety serrantics, in which you need
to replace this next-time operator, is that of the conpleteness proofs for safety
semantics which record in auxiliary variables the sets of sequences of atomic ac­
tions which have been taken. That is oot elegant I As this insight came after v.e
had understood this system, we preferred not to present here the other system,
oriented upon the larnport-cwicki approach. Because this is the fundarrental one.
And this is nothing else than safety senantics in it's strongest form; the one you
are familiar with, on top of which the various terrporal principles expressing just­
ness and weak or strong fairness have been built.

Apt: Sorry, but I have another question.

Kuiper: As I understood you said that (in the staterrents) after the guards there
can only be one assignrnent staterrent.

Apt: Yes, not even t'WO oonsecutive ones.

Kuiper: Maybe then I was not making myself clear about that.

~ It's in the paper.

Kuiper: It was not intended to be so.

~ Well, that's hOIAT it is written.

Kuiper: I then have clearly been giving an impression that I didn't wan~ed to.
Maybe we should discuss it later. (Kuipers post-conference note: Apt was n.ght, I
inadvertently had left out a clause in a definition in the conference version of
the proceedings.)

Apt: Yes, but the problem is rather not Whether you can have 2 or 3 assignments
one after the other, but to What extent is this choice important here?

Kuiper: It's not important at all. You can have everything after it. As long as
you knOW' it terminates, it's enough.

~ Ahal So that's the choice.

Kuiper: 'Th.ere can even be guards. As long as you can prove. it terminates, it is
OK. There is no need to maintain only assignrrents or ::inly ~imple ~tat~mmts. i;iut
it is done to make things rrore clear. What you have in this version is sanething
like the most stripped dc:Mn thing I oould think of, to enphasize only what I wanted
to shCJW'.

Krllger: First I have a very short rerrark to this last rule. I arn not quite sure,
but I would like to claim that you oould replace this rule by a ITOre general rule
really belonging to terrporal logic itself.

Kuiper: Without referring to wellfoundedness?

170 R. Kuiper and W.P. de Roever

~ Without wellfoundedness or things like that. Well, I am not absolutely
sure at this very rroment, but I think it's true. Secondly, a question: Have you
any idea how to express in this fraroowork rrore quantified fairness propositions
like for example, the proposition: if two actions are enabled, say equally
often, will they be scheduled equally often?

Kuiper: In an analogous framework, you can express these things. You can even
express a definite arrount of times after which you want something to be enabled.
So there is no reason to say that quantification should not be there; equally often
can also be expressed. It doesn't change anything fundarrental. There are even
papers which will sha.r you ha.r you can extend your terrporal logic to dealing with
constructs like this.

Apt: So you have to extend the logic?

Kuiper: Yes, because nCM I have nothing which says that after so and so mny rroves
something happens, or after having had an equal arrount of rroves. But you can do
this. Well, I should say that terrporal logic tells you something about the para­
meter of time and the operators which I have chosen were only those saying that
after a finite nurrber of rroves, SOl!Ething happens. If you want to specify that
finite number to a certain fixed number, you can do that.

