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Six fairness assumptions for the repetitive construct 
* [ ... Db,t , c,e -+ S,t D ... ] in a subset of CSP are given 
and classified with respect to the programs they cause 
to terminate. A total correctness proof system for the 
subset of CSP is given, incorporating the different fair
ness assumptions. 

O. INTRODUCTION 

])9 

The research in this paper originated from work by FRANCEZ AND DE ROEVER [F de R]. 
The aim of the paper is twofold, both cases having to do with temporal logic_ On 
the one hand, we consider six different fairness assumptions for a subset of CSP, 
i.e_ Conununicating Sequential Processes, a language for distributed computing 
without shared variables defined by HOARE in [HJ. These assumptions will be expres
sed using temporal logic, which enables us to formulate them at a level convenient 
for intuitive understanding of their meaning as well as for use in formal proofs. 
They will be compared with respect to the sets of programs they cause to terminate. 
On the other hand we need a framework to reason about the effects of such fairness 
assumptions. To do so we give a (low level) temporal logic proof system for this 
subset of CSP. We use the idea of temporal semantics as developed for shared vari
able languages by PNUELI [P]. We have been helped by BEN ARI' s thesis [BAJ , espe
cially by his way of reasoning with conditional invariants. It is shown here that 
by this method also non-shared variables and synchronized conununication as in CSP 
can be modelled in a natural way. 

The set up is as follows. Section I gives the preliminary facts of CSP, section 2 
the temporal logic semantics and section 3 the fairness assumptions; section 4 in
dicates the temporal logic we use. In section 5 several examples are given. Final
ly section 6 contains discussion. 

When this paper was being typed, we received a paper by Sl!OLKA [S] dealing with re
lated matters. 

I. PRELil1INARIES 

The syntax of the subset of CSP we use is as follows. 

The 1•esearch reported in this paper o:t>iginated f:t>om wo:t>k by Francez and de Roeve1'. 
Francez' stay at the University of Ut:t>echt was supported by the Netherlands Oi--
ganization for the advancement of Pure Research (Z.W.0), as was €art of ~he 1'~
search of de Roever in the form of numerous ~ravel gran~s for colla.b_orating with 
Francez at the Technion and Pnueli at the Weizmann Institute, both in Israel. 
De Roever's collaboration with Pnueli was partly supported by the Department of 
Applied Mathematics of the Weizmann Institute of Science. 
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DEFINITION 

Statements: 

Programs 

R. Kuiper and W.P. de Roever 

s : : = ski~ Ix:= t ! * r b I , c I + s I ~ ... Db m, cm + s m J I s 1 i s 1. 
where t is an integer expression 
b a boolean expression and 
c either Pi! x or P/ y i,j E {I, ... n} 

[P 1 ::s 1 11 .... 11 Pn::Sn] 
where P.,1 E I= l I, ... ,nJ,is called a process. 
Process~s have no shared variables. 

Neither [ ... II ••• ] nor•[ ... ] is allowed to be used in nested fashion. 

2. TEMPORAL SEMANTICS 

We introduce control locations l. ,£!, i E 1, as follows. l. (or l!) can be at S or 
after S for Sin P. defined in t~e katural way (cf. [O],[Ot]). O~vious identifica
tions like: "for P1 :: s1;s 2 we have after s1 =at s2 and a~ :'i =.at s 1;s 2 =at S1" 

are made. The guarded connnand case needs some further elarification: 
I) For S{ in•[ ... Db{ cl.,. Sl D ... ], after St Co at*[ ... ]. 
2) There are no control locations concerning the bl,cl construct, as, when control 
is active at a guarded command •[ ], all guards are evaluated at the same time 
i1~stant, after which control is still at the same point or resides either at one 
of the guarded statements or after the whole command. 

States Sare tuples S = <,t,s> = <<l 1,a 1> , ••• , <l ,a>> such 
is one of the above s!_efine.'!_ control locations in fi. nControl 
used as predicates ,l.(or £'.) being true ins = (l,cr) iff £. 
i'.'.=l!). 1 i 1 

that for each i E I l. 

i i 

Auxiliary notation: 

locations are also 
= Zi (respectively 

*[i] denotes a guarded command in P.; constructs like "for all •[il in P." assume 
implicit indexing of the *[i]. gik'..~ bil'c.{'. is a guard in a guarded conJiand 
*[ ... Db. 0 ,ci"-+ S.o D ... ] belonging to tEe process P.. . 

1 

l<-.ff.c.. H .. d . 11 h. 1 . . d 
c. l ~ Cjm i Ci.f an cjm are syntactica y mate ing commun1cat1on comman s 
(~.g.: P.!x in P. and P.? yin P. ). g.{'. in the guarded command •l.i] is true in the 
state s tff ther~ is a process P1. sucfi that .fi = at •[j] and *l.j] contains at least 
one gj~ such that c.{'.~ cjm Ab.{'.JAbjm. Notation g.{'.! gjm• This indicates semanti
cal matching. a [ik'. ~ jm] is o1changed according t6 the effect of the communication 
between cjm and c;~ (e.g.:g.{'. = P.!x and g. = P.? y will lead to 
o[il>;.jm]=a[x/y]). 1 J Jm 1 

Finally, to enable us to include the distributed termination convention we define: 
t(g.{'.) holds in s iff the process named (as target) in c.l is terminated 
(e.~. l. =after P. and g. 0 = b. 0 ,P.?x). 1 

J J H. l<.. J 

Now we define the temporal semantics as follows. The meaning of a program is the 
set of computation sequences satisfying the following axioms. 0 is the next time 
operator from temporal logic. 

Exclusivity Axiom (E) 
l(.f/' .f i_) for all i E I and .J'.i f. .f.i . 
The exclusivity axiom describes that control in each process always is at just one 
place at the same time. 

Local Semantics Axiom (LS) 
(~! at skip A 0 = o_:i Q (at skip) V Q (after skip A O = cr ) 
(11) at x:= t A 0 = 0 :i 0 (at x:=t) V 0 (after x:=t A cr= cr [t/x]) 
(iii) Let * [ i] = * [ b ' J c · l + S · I 0 Db. c · -+ S · ] 

J. , l i • · · ini > ini ini 
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at * [i] /\CJ= er ::i 0 (at * [il) 

/\ 

at S. A a= o [il~_jm] ))) 
Jm 

v t (gil)) A 0 (after * [i] A ,, =er)) 
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The local semantics axiom describes what is usually known (in papers not dealing 
with fairness) as operational semantics of these constructs. Note, that synchroni
zation and the termination convention of CSP come to the fore in (iii). 

Now to state our last axiom we have to refine our notation such that each state
ment in the program has a unique name. 
Enumerate the cont~ol locations in process Pi of form at Sk where Sk skip or 
sk x:= t by '"ik, i EI, KE Ki. Let a' ik denote the corresponding after sk location. 
Likewise enumerate the control locations of form 
a~ *l ... Dbiql ,ciqf ·> Siql 0 ... ] in process Pi by Yiq•i E I,q EQi with correspon
ding sets of locations 

riq = V_[' at Siql v after*[ ... ], l ELiq 

Then define 

'"ik A O a' ik 

Yiq" o riq 
f\ (after P. 

iE I i 

for i E I, k E Ki 

for i E I, q E Qi 

v (at *[i] A A£lgil Al fl.eClbi.tv t(gil)))) 

Notice, that Aik and Ciq describe that a statement is activated, whereas T indi
cates that a situation is finished or blocked. 
Now let b=O (respectively I) denote that b is false (respectively true). Then 
I:icrbi=l indicates that exactly one of the bi is true. Moreover, the execution of 
a guarded command by selecting a guard containing only the boolean part should be 
seen as a self-communication between two identical processes. 
Then finally we state the 

Multiprogramming Axiom (M) 

I I A.+ q. r IqEQ- ciq + T 
id kEk. ik iE i 

i 

The multiprogramming axiom describes that either the program is terminated or 
blocked (i.e.T=I) or exactly one action changing the state takes place at each 
time instant. Note, that communication between two processes is viewed as one ac
tion (cf.the factor l in M). 

REMARK. Above we require that, in not terminated or blocked situations, exactly 
one-action is performed at each time instant. Concurrency then is described by 
considering all sequences of such actions allowed by the semantics; this is the 
usual treatment in case of concurrent shared variable languages. However, as in 
CSP the processes have no shared variables, it is more natural to allow atomic ac
tions in different processes to be executed at the same time instant; the same 
3lso holds for communications between disjunct pairs of processes. The system can 
be adapted to this as follows. We now use that s is an n-tuple 
<~l 1 cr 1 : , ... , <ln,on>> where each process Pi only affects (~i,oi). Contrary t? the 
situation above, we cannot assume anymore that only the active process determines 
the state at the next instant. Therefore we explicitly denote that if a process is 
not activated, it does not change its part of the state. 
We now have : 

Local Semantics Axiom * (LS*) 
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(i) at skip /\ 0 = 0 ::; 

(ii) at x:=t /\ () = () :0 

0 (at 

0 (at 

R. Kuiper and W.P. de Roever 

skip /\ 

x:=t /\ 

o· = 
1 

0.:::: 
1 

;;i ) 

ail 

v O (after skip A "i = 
for skip in Pi 

v O (after n:=t A .Ji·= 
for n:=t in Pi 

(iii) Let* [i] = * [bil' cil ·>Sil 0 ... Obin.'cin- Sin.] 

at*LiJAa=O:JO(at*[i] Ao.=0:) 1 
1 1 

n ni nj 
v( V .V V 

j=I f=l m=l 

O(at Si£ /\ at Sjm A oi 

gif ~ gjm 

a)il r:o_jm] 

Ao, o.[ifcjm]))) 
n· J J -

v(_oA1 (1b.o vt(g.o)) AO(after * [i] /\ oi= a)) 
L=J H. H .. 

o.) 
1 

0/t/xJ) 

Note, that the exclusivity axiom prevents 
choices in case of a guarded command. 

executing more than one of the possible 

Multiprogramming Axiom * (M*) 

+ ) \ C. + T ~ 
~ L iq 
id qcQi 

The further material in this paper can without change (up to *'s) be taken as based 
on either one of these alternatives. 

3. FAIRNESS ASSUMPTIONS 

Our aim is to define in the context of CSP a variety of intuitively reasonable 
fairness assumptions depending on different implementations of the guarded command 
construction (cf.[D]) as well as on synchronized communication, both being specific 
CSP features. We compare the different assumptions with respect to the programs 
they cause to terminate. 

We start by considering what kind of fairness is induced by the temporal semantics 
so far. Note, that the multi-programming axiom (M) ensures that no unnecessary 
idlinR occurs; only a blocked or terminal state can (end always will) be repeated 
unchanged. (M) also ensures that as long as somewhere action is possible, some ac
tion will be taken, i.e. the temporal semantics so far imposes minimal liveness 
( c f. [ OL]) • So 

Minimal Liveness Axiom: ~ 
Next, as in the presence of one process looping all the time this allows starvation 
of all other processes, it seems reasonable to impose a stronger liveness require
ment. The usual one chosen is fundamental liveness (cf. [OLJ) ensuring that if a pro
cess is continuously enabled to proceed, it eventually will. To express this, we 
first give the usual axiom for atomic statements, using the temporal operators 0 
(eventually) and 0 (always). 

Atomic Statement Liveness Axiom (ASL) 

D at S => 0 after S for S = skip or S = x := t 

We now are faced with treating the guarded command in the same way. If all boolean 
guards are false the axiom is obvious. 

Guarded Command Skip Axiom (GCS) 

D (at *[ J " A£ ( ibe vt(ge)J)::i0 after *[ J 

Now to deal with enabled guarded commands there are various possibilities, depen
ding on two parameters. Firstly, we consider two fairness assumptions: weak (res
pectively strong) fairness, stating that those moves which are eventually contin
uously (respectively eventually infinitely often) enabled are eventually taken 
(cf., e.g., (GPSS]). Secondly, in CSP we can distinguish three varieties of these two 
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assumptions, depending on what is taken to be a move in the case of executing 
guarded commands. As will become clear from the assumptions to follow, we can dis
tinguisl1 a move with respect to a process, a guard or a pair of semantically 
matching guards, i.e. a channel. Hence the concept of fundamental liveness is cap
tured by requiring the following. 

Fundamental Liveness Axiom 
(i) Atomic Statement Liveness Axiom 
(ii) Guarded Command Skip Axiom 
(iii)D at*[ J" 0 D (at*[ ] c, Vlgt) => 0 Vfat S{ 

As will be seen below, we shall concentrate on different possibilities for (iii), 
having the above one as the weakest possibility. 

REMARK. In the axioms we use constructs like D 0 at *l ... J ::> 0 at Sl and D at *[ ... ] 

~ 0 at Sf , which seem self-contradictory. As to the first one, this can eventual
ly happen: D 0 at *[true~> S,/'. J => 0 at S,/'. , even D 0 at sl is possible. As to the 
second one, the axiom is there to exclude all computation sequences for which D at 
*[ ... l holds, so logically there is no contradiction: the axiom might be replaced 
by I D at *I- ... J. We have chosen the above representation as it covers all cases 
in a uniform way and indicates the next control location to be reached, thus pro
viding intuition for the design of proofs. 

We now formulate the fairness assumptions for the *[ ... Dg-1'. -+ Sf D ... I construct. 
When requerying one of the fairness assumptions the atomic statement liveness axiom 
and the guarded command skip axiom are presupposed. The abbreviations should be 
obvious. 

Weak Process Fairness 

D at *[ 

Weak Guard Fairness 

D 0 at *[ l " 0 D (at *t l ::> gf) :i (/ at 

Weak Channel Fairness 

(WFF) 

(WGF) 

s.I'. 
(WCF) 

D 0 (at*[ JA at *r J') /I oD((at *[ J /I at*[ J?::.gl_II_l gl,) ::> 

Strong Process Fairness 

D at *l J 11 D 0 V,e g,e => <> vl at sl 

Strong Guard Fairness 

D 0 (at *[ " g,/'.) => 0 at sf 

Strong Channel Fairness 

::. /:;(at s_f" at S'.I'.,) 

(SPF) 

(SGF) 

(SCF) 

D <> (at *l J " at *[ J' 11 gf _11_1 g'l' ) => o (at sl 11 at s' ,e•) 

We now compare the various fairness assumptions with respect to the sets of pro
grams they cause to terminate. 

DEFINITION. T(f), where f is one of the above fairness assumptions, is the set of 
CSP programs for which, when executed under the fairness assumption f in any ini
tial state s, all execution sequences contain a state s for which li = after Pi for 
all i E { I, ... ,n} (i.e., the program terminates). 

THEOREM. T(WPF) c T(SPF) 
if..11 f If-. n 

T(WGF) c T(SGF) 

ihn f 
i-- n 

T(WCF) c T(SCF) 
f 
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PROOF. The inclusions and inequalities between the corresponding weak and strong 
cases are evident. An example for the inequality for the most interesting case, 
T(WCF) 'f T(SCF) is the following. 

[P 1:: x: = O; y:= I; *[x=O,P2 ! x-> y :=-yD y=i,P2!y .. skip] II 
P2 :: u: = O; v£= I; *[u=O,P 1? u-> v :=-v Ov = l,P 1? v->skip J] 

The inclusions and inequalities for the weak cases are easy; for the more interest
ing strong cases as follows. 

T(SPF) c T(SGF) 

By the local semantics axiom, 0 at*[ ] A 0 0 VlgP is the equivalent to 
D 0 (at*[ ] A Vlgl), as this is the only way in Which control can proceed. As 
gl ::i Vlgl and at Sl "Vl at Sl, this gives T(SPF) c T(SGF). 

T(SPF) 'f T(SGF) by 

b:= true; * [b-> skip Db-> b:= falsi:>] 
T(SGF) c T(SCF) 

This follows from the fact that there are only finitely many guards, whence 
D ~ gf implies that there is a g£1 such that D 0 gl ~ g£•· 
T(SGFJ + T(SCF) follows from the first example in this proof. D 
As there are only finitely many guards, D 0 VP at Sl implies that there is a gl 
such that 0 0 gl. As at Sl implies Vl at Sl, -this gives T(SPF) c T(SGF). 

4. TEMPORAL LOGIC 

We assume as given a te~poral logic axiom system and rules for linear time like 
DUX as presented in, e.g, [P~; to handle assignment we assume extension of this 
system to predicate logic as outlined in, e.g., [HC] • 
In proofs we make use of derived rules as presented in [BA] . r..g.: if 
1- Op A q ::i 0 q then f-Dp A q ::i Oq, the conditional invariant rule. 

5. EXAMPLES. We start by g1v1ng a very easy example, (i), in all detail. In (ii) 
we show how synchronization is treated.In practice most of the elementary steps 
in a proof can be left out, as (iii) shows. As the examples will show, the local 
semantics axiom and the conditional invariant rule are crucial to enable applica
tion of the fairness assumptions; namely to obtain the left hand side of the stated 
implication, 

(i) Under the assumption of WGF a simple CSP program can model mutual exclusion 
and infinitely often access for two critical sections CS~ and cs2 consisting 
of sequentially composed atomic statements. Note, that WPF is not sufficient 
to guarantee access. 

P::*[true-> CS 1 0 true-> cs2J 

PROOF. Mutual exclusion holds by the exclusivity axiom. Proving mutual access 
amounts, by synunetry, to proving f- at * [ ... ] ::i O at CS • 
As follows: (in S =at S v V , at S', S' substatement ot S) 

s 
i) I- at*[ ... ] ::i 0 (at*[ ] v in cs 1 v in cs2) • (LS) 

I:= 
2) I- at*[ ... ]::> I A at*[ ..• ] (l,T.L.,i.e.by temporal logic) 

3) 1-
4) l
s) 1-

at *[ ... J ::i I A 0 at*[ ... ] 

I A 0 at *[. .. ] " O(~ at *[ •.. J) 

I A 0 at *[ ..• J ::i D 0 at *[ •.. J) 

(T .L.) 

(LS,ASL) 

(4,T.L.:cond.invariant rule) 
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Now the fairness 

6) I- 0 0 at *[ ... J 

7) 1- at *[ ... J :J 0 

assumption 

:J 0 at cs 1 

at CS 1 

is used; 

(WGF) 

(3,5,6,T.L.) 

(ii) Termination of a program with synchronization under the assumption of WCF 

shall be proved. Again we give the proof in much detail. 

Let b and c be initially ~ and not depend on x and y. Then the following pro

gram terminates under WCF, 

lP 1:: *[b,P 2 ! x -> skip 1 Db,Pz ?x b:= false 

P2 :: *[c,P 1? y skip 2 D c, P 1 !y .,. c:= false 

Note,tltat WGF is not sufficient to guarantee termination, but SGF is. 

PROOF. Proving termination amounts, by symmetry, to proving 

1- at*[IJAat*L2JAb/\c :oO after•[JJ 

As follows: 

I ) I- at * [ I I A at * [ 2] A b I\ c => 0 (at b : = fa 1 s e A at c : = fa 1 s e) 

v O((at *[IJ vat skip 1) A (at *[2] vat skip 2) Ab Ac), (LS) 

I:= 

Case I 

2) 1- at b:= false A at c := false "' O(at •[ ] A lb) 

3) 1-at*[IJA"lb=>Oafter•[l] 

Case 2 

(LS ,ASL) 

(GCS) 

4) 1-

5) 1-

6) 1-

I /\ at *[I l /\ at •[2]=>1A0 (at •[I]/\ at •[2J) 

I A 0 (at *[I] A at •[2J)::o O(O(at *[IJ" at •[2])) 

I\ 0 (at •[ l] A at *[2]):o D 0 (at •[l] I\ at * [ 2 J) 

(T .L.) 

(LS,ASL,M) 

(T.L. :cond.inv.rule) 

7) 1- I /\ 0 (at * [ I J A at •[2])::o D 0 (at •[ I] A at •[ 2] /\ I) (T. L.) 

Now the fairness assumption is used 

8) 1- I AD 0 (at •[I J " at •[2]) :> 0 (at b := false I\ at c := false) (I,WCF) 

9) 1- at b :=false :> 0 after •[I] (2,3) 

10) 1- at *[ll /\at *[2] Ab Ac =>O after •[l] (1,3,9,T.L.) 

D 

(iii) Termination of a program consisting of three processes under WGF shall be 

proved. We now leave out some straightforward detail to show how in practice 

proofs are not difficult to handle. 

Let a,b and c be initially true and not depend on x,y and z. Then the following 

program terminates under WGF. 

[P 1:: •[P,P 2 ! x + skip 1 D b + b := false111 

P2 :: •[c,P 1? y + skip 2 D c,P 3 ! y + c := false] 

P3 :: *[d,P 2? z + d := false] 

PROOF. To prove 

As follows: 

1- A at *[i] Ab /\ c /\ d :o 0 !) after *[il 
i i 
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I- I) at *[i] 11b 11c Ad :i {) ~ after [i] 
1 

v D ((at •[I] vat skip 1) 

II at *[3] Ab llC lld) 

11 (at •[2] v at skip 2) 

}=:I 
Analogous to (ii) this leads to 

2) I- I 11 A at •[ i] :i I 11 D 0 A at *[ iJ 
i i 

Now the fairness assumption is used 

3) I- I II D <>I) at •[i] :i O(at c := false 11 at d := false) 
1 

v after •[I]) II 0 (in •[I] 

(WGF) 

(LS) 

4) 

5) 

6) 

I- at c := false :J 0 after •[2] :i {) D after •[2] 

I- at d := false :i 0 after •[3] :i {) D after *[3] 

(ASL ,GCS ,M) 

(ASL,GCS,M) 

J- 0 (after •[2] 11 after •[3] 11 (in *[1] v after •[I])) :iO after •[1] 
(ASL,WGF,GCS) 

7) I- I) at *[i] 11b lie 11d :i 0 6 after •[i] (1,2,3,4,5,6,T.L.) 
1 1 

(iv) Changing in example (iii) P2 to 

P2 :: •[c 1,P 1?y-+ c2 := lc2 Dc2 ,P3 ! y-+ c 1 := c2 :=false J 

D 

gives an example of a program for which SGF is, but WGF is not sufficient to en
sure termination. The termination proof is analogous to the one for example (iii), 
employing an invariant I' changed accordingly to the change in P2• 

6. DISCUSSION 

The above system enables us to study termination and other liveness properties of 
CSP programs under various fairness assumptions. 
As to future goals the following: 

I) Extending the system to full CSP is expected to be more or less straight for
ward, but careful and simple notation should be used in order not to obscure 
the intuition behind the axioms. 

2) Termination due to properties of the well-foundedness might be described by add
ing a well-foundnesslike rule to DUX, like 

if I- 31.U EW P(lol) 

and I- 'v'u E N(0<1.1.~...i)(P(u) :i 0 P(u-1)) 

then I- 0 P(O). 

3) Abstracting to a higher level axiom system might be facilitated by studying 
examples using the low level system; it is expected that invariants used in the 
proofs may indicate more general proof principles. 

4) Developing a notion of completeness for the system might be helped by comparing 
it to other total correctness systems for CSP, like given in [A] • 

5) P. van Emde Boas suggested that using branching time it might be possible to 
formulate fairness assumptions not defined as a restriction on one computation 
sequence, but involving several. It then might be possible to enforce, say, ter
mination of programs not terminating under any of the fairness assumptions in 
this paper 
We consider as an example, starting with b = c = d = e = ~. 



[P 1 ::*[b,P2!x + 

P2 : :*[c,P 1 ?y + 

P3 ::*[d,P4 !z 

P4 ::*[eP3?u+ 
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skip D b,P3!x -+ b:= false l 11 

skip D c,P4!Y c:= ~}II 
skip D d,P 1?z -+ d:= ~]II 
skip D e,P2?u e:= false] 

which is not 3uaranteed to terminate under any of the above fairness assumptions, 
but should termi~ate.under the,.intuitively formulated, assumption that if there 
always is a terminating branch in the future, then such branch will eventually be 
chosen. 
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Iauer: Your analysis of fairness assunptions seems very oriented to a specific lan
guage. Would these distinctions between fairness assumptions still be valid if you 
made the study less language specific. I have a feeling that it all hinges on the 
fact that a mutual exclusive choice must be rrade, and you are simply distinguishing 
a number of different contexts in which choices occur in CSP. 

Kuiper: It is certainly true, that it will not be the sarre for every language. But 
I think that rrost of these things will simplify a lot if you have other languages . 
We especially have chosen CSP, because it was such a difficult language. We wanted 
to shOlll that using tenp:>ral logic and using this approach we were able to even deal 
with quite carplicated fairness assumptions. But it is language specific. 

de Roever: If you look at the definitions, in fact the crux is whether a certain 
rrove is enabled or not. So in fact en a high level there is uniformity. 'Ihis 
winter I tried to investigate with Pnueli whether vie could forrralize that. Every 
week I <pt another fairness principle. So we ended up in specifying, instead of 
these six (fairness) principles for CSP, the principles for Ada, which is again 
slightly different. That is, the cne fairness principle for the concurrency sec
tion of l\da. It is again slightly different frcxn the fairness principle for strong 
semaphores. Also it is different frcxn the other principles for semaphores which I 
kno.17. So at this rroment technically speaking I see no uniformity insight except 
for this cne clause: if a rrove is infinitely often enabled it will be infinitly 
often taken, in case of strong fairness. 

~ In the first place I want to rrake a srrall cornnent on this exanple of the last 
transparency. You do not need any assigrunent in the style of Back - hOlll do you call 
it, random assigrunent? - because the problem is not there. You passed after this 
assignment and the problem only began there. So I think we want to indicate that 
this problem of the necessity of using the rule has nothing to do with the randcxn 
assignment, because this might be the conclusicn Which one has. But I nOlll have 
t\\IO questions: One is that you use the next-time q:>erator, and it was used neither 
in the formulation of the fairness assunptions nor, as far as I could see, in the 
formulation of the proof rules which you used. I just wondered to what extent it 
is necessary to use it. Because this gives a certain granularity to the description 
which seems to be too detailed. You do not need to knOlll what is exactly true after 
one step. It seems to suffice to knOlll that eventually scmething is true, doesn't 
it? That's one question. The other question is that in the syntax, which you have, 
the syntax is extrerrely poor. I nOlll checked that yoo cannot even have in these 
bodies of these looping constructs 2 consecutive assigrunents, and it can be either 
an assignment or skip, that's it. So you say that you have sane car{lleteness proof. 
The principles Which v.iere expressed, do they not depend on the particular syntax 
on the language and to what extent was the choice of the syntax was rrotivated? 

Kiliper: Well, I should start, I think, with the first rerra.rks you rrade. I agree 
with that. It is indeed not needed to use this construct. But, I thought it was 
rrore = less illustrative of hew to use the rule. I have not been wanting to put 
any ercphasis on that further on. As to your first question, if you look at the 
proof system, you will see that I use, in axians, the next-time q:>erator. And we 
have tried, that was our first attenpt, to rrake a proof system without having to 
say things like this. But it became clear, after sane time, why we failed to do it, 
namely because in that case, you do not knOlll where you are in the meantime. If you 
only kno.17 that you are eventually at sane place, then there is no guarantee that in 
between you were not at sane weird place, which might bring you in great trouble 
with respect to other processes. 

~ 'nlere are oo.ly a ffM places where you are before and after an assignment. 
Th.ere is no third possibility and this is what I am bothered about. 
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de Roever: I can answer the question oonclusively. So let rre do it. (loud laughter) 
We first started out with trying to use Lanport' s approach. You knOIAT there are two 
seminal papers on fairness assumptions, one written by Lamport and ONicki, and one 
by Pnueli. Lamport' s seems the ll'Ore structured one. So we started with Lanport and 
we went to something like 17 different versions of trying to get at a ccmplete 
proof system. In the end it boiled do.in that the sound basis is that of Pnueli. 
And you see here the proof system of Pnueli 's. After we had understood that, we 
realized why we could in fact use Lamport' s approach again and rerrove the next 
tirre operator. Because what is standing here is in fact nothing else than a safety 
semantics. You say: either you do a rrove, or you don't do a rrove. If you do the 
rrove, sarething happens at that rrorrent. If you don't do it, you still rerrain 
there. But the strength of proof system using safety serrantics, in which you need 
to replace this next-time operator, is that of the conpleteness proofs for safety 
semantics which record in auxiliary variables the sets of sequences of atomic ac
tions which have been taken. That is oot elegant I As this insight came after v.e 
had understood this system, we preferred not to present here the other system, 
oriented upon the larnport-cwicki approach. Because this is the fundarrental one. 
And this is nothing else than safety senantics in it's strongest form; the one you 
are familiar with, on top of which the various terrporal principles expressing just
ness and weak or strong fairness have been built. 

Apt: Sorry, but I have another question. 

Kuiper: As I understood you said that (in the staterrents) after the guards there 
can only be one assignrnent staterrent. 

Apt: Yes, not even t'WO oonsecutive ones. 

Kuiper: Maybe then I was not making myself clear about that. 

~ It's in the paper. 

Kuiper: It was not intended to be so. 

~ Well, that's hOIAT it is written. 

Kuiper: I then have clearly been giving an impression that I didn't wan~ed to. 
Maybe we should discuss it later. (Kuipers post-conference note: Apt was n.ght, I 
inadvertently had left out a clause in a definition in the conference version of 
the proceedings.) 

Apt: Yes, but the problem is rather not Whether you can have 2 or 3 assignments 
one after the other, but to What extent is this choice important here? 

Kuiper: It's not important at all. You can have everything after it. As long as 
you knOW' it terminates, it's enough. 

~ Ahal So that's the choice. 

Kuiper: 'Th.ere can even be guards. As long as you can prove. it terminates, it is 
OK. There is no need to maintain only assignrrents or ::inly ~imple ~tat~mmts. i;iut 
it is done to make things rrore clear. What you have in this version is sanething 
like the most stripped dc:Mn thing I oould think of, to enphasize only what I wanted 
to shCJW'. 

Krllger: First I have a very short rerrark to this last rule. I arn not quite sure, 
but I would like to claim that you oould replace this rule by a ITOre general rule 
really belonging to terrporal logic itself. 

Kuiper: Without referring to wellfoundedness? 
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~ Without wellfoundedness or things like that. Well, I am not absolutely 
sure at this very rroment, but I think it's true. Secondly, a question: Have you 
any idea how to express in this fraroowork rrore quantified fairness propositions 
like for example, the proposition: if two actions are enabled, say equally 
often, will they be scheduled equally often? 

Kuiper: In an analogous framework, you can express these things. You can even 
express a definite arrount of times after which you want something to be enabled. 
So there is no reason to say that quantification should not be there; equally often 
can also be expressed. It doesn't change anything fundarrental. There are even 
papers which will sha.r you ha.r you can extend your terrporal logic to dealing with 
constructs like this. 

Apt: So you have to extend the logic? 

Kuiper: Yes, because nCM I have nothing which says that after so and so mny rroves 
something happens, or after having had an equal arrount of rroves. But you can do 
this. Well, I should say that terrporal logic tells you something about the para
meter of time and the operators which I have chosen were only those saying that 
after a finite nurrber of rroves, SOl!Ething happens. If you want to specify that 
finite number to a certain fixed number, you can do that. 


