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Linear Volterra convolution equations: semigroups, small solutions and con

vergence of projection operators 

by 

S .A. van Gils 

ABSTRACT 

In this paper we consider the initial function semigroup and the for

cing function semigroup generated by linear Volterra integral equations of 

convolution type. We prove that the two types are adjoints of each other in 

the sense that the adjoint of the one type is the other type semigroup cor

responding to the equation with transposed kernel. Moreover the semigroups 

are equivalent. We prove that the absence of small solutions is equivalent 

to the injectivity of a structural operator F which maps initial functions 

into forcing functions. We show the convergence of the spectral projection 

operators corresponding to the (purely) point spectrum of the infinitesimal 

generators on a dense subset of the state space for a special class of 

equations. 

KEY WORDS & PHRASES: Volterra integral equation., semigroup., adjoint semi

grou:p., stru.atural operator.,decorrrposition according to 

the spectrum of the infinitesimal generator., conver

gen.ae of projection operators., small solution. 





1 • INTRODUCTION 

We discuss two types of semigroups for the Volterra convolution equation 

t 

x(t) = J z:_;(t-T)x(T)dT, t E R+. 

-oo 

Here x takes values in Rn , R+ = [O , 00), and we assume that z:_; is a n x n 

matrix with elements in 1 1[0,b], 0 < b < 00 , which vanishes fort~ b. There

fore we can rewrite this equation as 

( I . 1) 

b 

x(t) = I z:.;(T)x(t-T)dT, 

0 

which we provide with initial condition 

(1.2) 

where 

x(t) = cp(t), 

<f> e: L [ -b, 0 J, 
p 

-b :;;; t < 0, 

The first semigroup associated by (1.1)-(1.2) acts on initial functions 

and is defined by translation ~long the solution. One solves (1.1)-(1.2) 

(see section 2) and defines (T(s)<f>) (t) = x(t+s), s E R+, -b :;;; t :;;; O. 

( 1.3) 

Related with equation 

t 

x(t) = f z:.;(T)x(t-T)dT + f(t), 

0 

where f ( t) e: L [ 0, b] = { g E L (R ) I g ( t) = 0 for t ~ b}, I :;;; p :;;; 00 , 

p p + 
is the semigroup which is defined by tracing the forcing of the translated 

equation. (S (s) f) ( t) = x(t+s) - J~ z:_; ( T)x(s+t-T)dT. See Diekmann [IO], Miller 

[22], Miller & Sell [23]. It was shown for the first time by Burns & 

Herdman [5] in the case of a Volterra integro-differential equation with 

infinite delay that these two semigroups are related by duality provided 

that one replaces in one of the equations z:_; by its conjugated transpose z:.;T. 

In [II] Diekmann pointed out that this is a quite general property of delay 
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equations. For neutral differential equations this has been worked out in 

detail by Salamon [26]. See also Staffans [27] for a general functional 

equation. 

The use of the two semigroups makes the bilinear form (see for instance 

[14,16]), redundant. The semigroups are intertwined by so called structural 

operators F and G. F maps the space of initial functions into the space of 

forcing functions, whereas G does the opposite. The intertwining relations 

are 

T(s)G = GS(s), FT(s) = S(s)F. 

Quite similar operators have been introduced by Bernier and Manitius 

[3,21], but there the distinction between forcing functions and initial 

functions is less explicit. 

One of the aims of this paper is to line up the results obtained by 

Delfour and Manitius (see [9,21]), making a systematic use of the two semi

group approaches. Here this is done for Volterra integral equations. See 

Verduyn Lunel [31] for corresponding results for functional differential 

equations of retarded type. 

We also study some properties of solutions of the Volterra equation, which are 

closely related to properties of the semigroups. First we show that the 

absence of "small solutions", these are solutions of ( 1. 1) which vanish 

after finite time, is equivalent to F being injective. This extends a re

sult of Manitius [21]. See also Verduyn Lunel [31]. 

In the second place we prove that the conjecture, see Salamon [26, 

pag.136], that the state space L [-b,O] can be decomposed as 
p 

R(T(nb)) e N(T(nb)) cannot be true in general (compare also Hale [14, 

pag.64]). We propose another conjecture 

( 1. 4) L [-b,OJ = R(T(nb)) e N(T(nb))? 
p 

Note that as a consequence of Henry's result [15, Corollary 2] R(T(s)) and 

N(T(s)) are constant for s ~ nb. 

In his famous article "On the integral equation of renewal theory" 

Feller [13] already remarked that the series expansion of the solution of 



3 

(I.I) in terms of the generalized eigenfunctions of the infinitesimal 

generator of {T(s)} does not have to converge. In [2] Bellman & Cooke have 

extensively studied such expansions for some scalar differential difference 

equations. l'heir results were extended to systems of equations by Banks & 

Manitius [1]. Here we prove corresponding results for a class of Volterra 

equations, which include the results of [1] and [2]. 

The paper is organised as follows. In section 2 we introduce the semi

groups {T(s)} and {S(s)} and the structural operators F and G. In section 3 

we study the small solutions and state space decompositions. The main re

sults of that section are contained in Theorem 3.10 and 3.12. The last sec

tion is devoted to convergence results. 

Notation 

~ 
LP [O ,b] 

w1 ,P[O,b] 

L(X;Y) 

f 
s 

supp 

real n-dimensional Euclidian space 

complex n-dimensional space 

{f E L (R ) I f(t) = 0 for t ~ b} (1Sp:S00 ) 
p + 

the Sobolev space of absolute continuous functions on lR.+ wnich 

vanish fort~ band with derivative in L (lR.) 
p + 

the set of bounded linear operators of the normed space X into 

the normed space Y. 

f*g(t) = f~ f(,)g(t-T)dT 

f ( t) = f ( t+s) 
s 

the support of an L function is meant in the sense of distri
p 

butions. 

2. THE TWO SEMI GROUPS 

We will define x to be a solution of (1.1)-(1.2) on the interval 
loc [-b,w), 0 < w s 00 , if x EL [-b,w) satisfies (1.2) on the interval [-b,O) 
p 

and (I.I) on [O,w). We will see in a moment that we can take w = 00 

We can rewrite equation (1.1)-(1.2) as the renewal equation (1.3) where 

the forcing function f equals f(t) = J: ~(T)~(t-,)d,. 
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The Resolvent R 

Equation ( 1. 3) can be solved explicitly in terms of the so-called re

solvent. More precisely 

(2. 1) x(t) = f(t) - R*f(t), t E :JR+ , 

where R satisfies the matrix equation 

(2. 2) R(t) = s*R(t) - s(t), 

THEOREM 2.1. Equation (2.2) has a unique matrix-valued solution R E L~ 0 c(1R+). 

This solution, which is called the resolvent, has the following properties: 

(i) for any f E 1 10c(R) the equation (1.3) has a unique solution 
p + 

x = x(t;f) E 1 10c(1R) given explicitly by (2.1); 
p + 

(ii) R commut:es with s in the convolution algebra, i.e., R*s = s*R; 

(iii) there e~~sts a real nwriber A such that the mapping t ~ R(t)e-At be
o 

longs to 1 1 (:JR+) for Re A> A0 • 

Part (iii) of this theorem, which is the essential part, is based on 

the theorem of Wiener & Levy and we refer to Paley and Wiener [24, section 18], 

Miller [22, section IV.5 and appendix I.4] or Cordoneanu [8, section I.3]. 

As a consequence, (1.1)-(t.2) has a unique solution on [-b, 00 ) which we 

denote by x(t;.</l). 

The semigroup T(s) 

Define for s E JR , <PEL [-b,O] and -b:,; t:,; 0: 
+ p 

(2.3) (T(sH) (t) = x(s+t;qi). 

THEOREM 2.2. T(s) is a strongly continuous semigroup &n the space L [-b,O], 
p 

i.e. : 

(i) T(s)T(cr) = T(s+cr), S, CJ E R+, 

(ii) T(O) = Id 

(iii) li~,1,0 HT(h)qi-qiU 1 [-b OJ = o, 'v'qi E L [-b,O], 
p , p 
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Moreover., this semigroup satisfies: 

(iv) the ex-pliait representation of T(s) in terms of the kernel and the re

solvent reads: 

{

/ cj>(t+s) 

(T(s)</>) (t) = 

f~ Q(T,t+s)~(-T)dT 

-b $ t < max{-s,-b} 

max{-s,-b} $ t $ O, 

where by definition 

Q(t,s) = ~t(s) - R*~t(s), 

(v) far s > 0, T(s) is the sum of the nilpotent bounded linear operator U(s) 

-- {cp(t
0

+s) 
(U(s)</>) (t) 

and the compact linear operator V(s) 

0 

(V(s)</>) ( t) = 

(vi) T(s) is compact for s ~ b. 

-b $ t $ max{-s,-b} 

max{-s,-b} $ t $ 0, 

-b $ t < max{-s,-b} 

max{-s,-b} $ t $ 0, 

PROOF. (i) holds because equation (I.]) is autonomous and submitted to ini

tial condition (1.2) admits a unique solution on [-b,00). From the definition 

of T(s) (ii) is clear. (iii) follows from the fact that translation is con

tinuous in L CR), I$ p < 00 • Rewriting (I.I) - (1.2) as the renewal equation 

(1.3), the f~rcing ftmction is given by f(t) = f~ ~(T)~(t-T)dT = 

f~ ~t(T)~(-T)dT. Now (iv) follows by applying (2.1). The first statement in 

(v) is trivial. The second one follows from the observation that for a given 

element a E L1[0,b] the mapping f * a*f from Lp[O,b] into itself is compact. 

This follows easily from the compactness criterium in L spaces which is due 
p 
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to Riesz (see e.g. [19,Thm 2.13.1). As U(s) vanishes for s ~ b (vi) is a 

consequence of (v). 0 

REMARK. If p = 00 then T(s) is a semigroup which is however in general not 

strongly continuous. The representation given in Theorem 2.iv equally well 

holds. The restriction of T(s) to the closed subspace M of C[-b,O], where 

M = {~ E C[-b,O] I ~(O) = f~ s(T)~(-.)dT}, is a strongly continuous semigroup. 

In the next theorem we characterize the infinitesimal generator A of the 

semigroup T(s), 1 ~ p < oo 

THEOREM 2 • 3. 

(i) V(A) = {~ E w1'P[-b,OJ I HO) = f~ s<•)H-.)dT} 

(ii) A~ = ~ I 

(iii) The resolvent (A-AI)-l is given explicitly by 

(A-Al)-]~= f~ eA(t-.)~(T)dT - ~(A)-] f~ eA(t-s)cJ! s(T)~(s-T)dT)ds. 

Consequently A has compact resolvent and 

cr(A) = P (A)= {A I det ~(A)= O}, 
a 

where 

PROOF. Suppose that~ E V(A).A~ T(s) is a translation semigroup we know 

(see for instance [6, Proposition 1.3.12]) that~ E w1'P[-b,O] and A~=~'. 

Also the solution x(t;~) E w1'P[O,T] for all T positive. Therefore 

0 

0 = lim II T(hH-~ II = lim f I x(t+h)-x(t) Ip dt = 
h+O h L [-h,O] h+O _ h 

p -h 

0 

lim J I 
h+O -h 

f~+hx(T)dT+ f~ xh(T)dT+x(O)-x(O-) Ip 
dt. 

As the first two terms in this formula go to zero ash goes to zero we con

clude that 

b 

x(O) = I s(T)~(-.)dT = ~(O) = x(O-). 

0 



7 

Conversely assume that~ E w1'P[-b,O] and ~(O) = J~ ~(T)~(-T)dT. First 

we note that x E w1'P on [-b,O) and x E w1'P on [0,T] for all T > O. As 

x(O) = x(O-) we conclude that x E w1'P on [-b,T] for all T > O. By standard 

arguments it follows that 

11.·m II x(t+h;~)-x(t;~) • ( ) II 0 
h+O t - x t;~ Lp[-b,O] = • 

This proves (i) and (ii). To prove (iii) first consider the eigenvalue 

problem 

A~= A~, 

or equivalently 

b 

~'=A~ & J ~(T)~(-T)dT = ~(O). 

0 

If det 6(A) = 0 then there exists a nontrivial element ~(O) E ~n such that 

6(A)~(O) = O. The mapping t t+ eAt ~(O), -b ~ t ~ O, solves the eigenvalue 

problem. On the other hand suppose now that det 6(A) # 0. With the abstract 

problem (A-Al)~= l/1 corresponds the differential equation 

~' - A~= l/1 

which has ,the solution 

t 

~(t) = eAt ~(O) + f eA(t-T)l/l(T)dT. 

0 

We can achieve that ~ E V(A) by choosing 

b b 

~(O) = -6(A)-I j e-As f ~(T)l/l(s-T)dTds. 

0 s 
-I 

So~= (A-AI) l/1 is as stated is the theorem. From this explicit expression 

the correctness of the theorem follows (see for instance Kufner et al 

[19, Theorem 2.13.1] for the appropriate compactness theorem). D 
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We conclude this subsection with a descripton of the generalized null

space and· range of the operator A-;u. A proof of this theorem is straightfor

ward. Compare· for instance [14, section 7.3; 9,II, appendix; 10, appendix]. 

We need to introduce some notations: 

(2 .4) 

(2.5) for i € N u { 0}: P. 
l. 

(C</>)(t)=
A 

di 
= -.-,- --. 

1.. dA 1. 

t I eA(t-T)</>(T)dT, 

0 

We introduce matrices 1\ of dimension kn x kn and colunm-vectors ~k and ,k 

as follows: 

(2. 6) 1\ = 

,k = 

,J = k 

1 2 k 
col(,k,,k, ••• ,,k)' 

b 

• • • 0 

• 0 

0 

(-1) j J ~(t)(C~~)(-t)dt. 

0 

THEOREM 2.4. 

(i) N(A-Al)k consists of functions <I> of the form 

At {k-1 m } 
qi(t) = e }: !: ek-m 

m=O 

where E = col(e 1, ••• ,ek) satisfies ~E = O, 

(ii) ~ € R(A-AI)k iff ck,k = o for all row-vectors ck such that ck~= O. 

The semigroup S(s) 

~ 
Define for s € R+, f € LiO,b] and t € R+: 
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(2. 7) (S(s) f) (t) = XS (t;f) - s*Xs ( • ;f) (t). 

Recall that x(t;f) is the solution of (1.3). The motivation to choose this 

particular state space emanates from the fact that if the forcing is the 
~ effect of an initial function in L [-b,0], it will belong to L [O,b]. The 

p p 
next three theorems are the counterparts of the foregoing theorems. The 

proofs are quite similar and for the details, which are given in the case 

p = 1, we refer to Diekmann [ 10]. 

THEOREM 2. 5. Let I ::::: p < 00 • S (s) is a strongly continuous semigroup in 

the space L [O,b]. Furthermore the following properties hold: 
p 

(i) for s > O, S(s) is the sum of the nilpotent bounded linear operator 

U(s) and the corrrpact ope1,ator V(s), 1.Jhere (U(s) f) (t) = f(t+s) 

(V(s)f)(t) = (z;;t-z:t*R)*f(s). 

(ii) S(s) is compact for s ~ b. 

THEOREM 2.6. The infinitesimal generator Bis characterized by 

( i) V (B) = { f E WI ' I [ 0 , b J I f 1 + z;; ( •) f ( 0) E L [ 0, b J} 
p 

(ii) Bf(t) = f' (t)+z;;(t)f(O). 

(iii) B has corrrpact resolvent., and a (B) 

b 

= P (B) = P (A), 
a a 
b b 

Notation: 

(2.8) 

(2.9) 

-1 
(B-U) g = - f 

t 

J,: L [0,b] • L [O,b], /\. p . p 

L [O,b] n 
LAf LA: • a: ' p 

I 2 k 
Gk = col(Gk,Gk, ... ,Gk) 

I 
j-1 

~ 
d 

LAg. = (j-1) ~ d1cj-l 

J e1c(t-T)l;:(T)dT·~(1c)-J•f 

t 0 

b 

(JAf) (t) = f eA(t-T)f(T)d,. 

t 
b 

-1cs 
e f (s) ds. f = 

0 

-AT e f(T)dT. 
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THEOREM 2. 7. 

(i) N(B-AI)k consists of functions f of the form 

where 

Ek ,= col (e 1, .•• , ek) satisfies ~Ek = 0, 

(ii) g E R(B-AI)k iff ck~= O for aZZ row-vectors ck such that ck~= 0. 

The structural operators 

To describe the relation between the semigroups T(s) and S(s) we need 

the notion of two so called structural operators acting between initial func

tions and forcing functions. 

Define for I~ p ~ oo 

by 

(2.10) 

and 

by 

(2. I I) 

F: L [-b,O] + L [O,b] 
p p 

b 

(F~)(t) = J s(T)~(t~T)dT, 

t 

G: L [O,b] + L [-b,O] 
p p 

(Gf) (t) = x(t+b ;f). 

THEOREM 2.8. G is a bounded invertible operator, the inverse is e:x:pZicitZy 

given by 

0 ~ t ~ b. 



PROOF~ The first statement is a direct consequence of the explicit formula 
for G-l. 0 

THEOREM 2 • 9 • 

(i) T(s)G = GS(s), S E R+ 
(ii) FT(s) = S(s)F, S E R+ 

(iii) Y<j> E V(A): F<t> E V(B) & FA</> = BF</> 

(iv) Yf E V(B) : Gf E V(A) & AGf = GBf 

(v) GF = T(b) 

(vi) FG = S (b) 

11 

(vii) PPoviding V(A) and V(B) with theiP gPaph-no:!'ms, G is a bounded invep

tible opePatoP of V(A) onto V(B). 

(viii) G(N(B-AI)k) = N(A-n/, KE N 

(ix) F(N(A-AI)k) = N(B->.I/, K E :N. 

PROOF. (i) and (ii) follow directly from the definitions. To prove (iii) let 
~I I Jb </> E V(A). Then F<t> E W' [O,b] and (F<t>)'(t) = t ~(T)</>'(t-T)dT-~(t)<j>(O). Hence 

(F</>)' + ~(•)</>(O) EL (R+). This shows that F<t> E V(B). Now (iii) follows from 
d p b 

B(F</>)(t) = dt (F</>)(t) + i(t)(F</>)(O) = Jt ~(T)</>'(t-T)dT = F(A</>)(t). To prove 

(iv) let f E V(B) then dt (Gf)(t) = (f'-R*f')(t+b)-R(t+b)f(O) = 

= f'(t+b)+~(t+b)f(O) - R*{f'+~(•)f(O)}(t+b) which implies that 

(Gf)' EL [-b,O]. The compatibility condition is satisfied because 

x(b) = J~p~(T)x(b-T)dT. The identity AGf = GBf follows as above. (v): for 

t E JR+ x(t) = (F</>) (t)-R*F</>(t) ~ T(b+t)</> = F<f>(t+b) - R*F</>(t+b) = G(F</>) (t). 

(vi): using the identity a*b(s+t) = a *b(t)+a*b (s) we derive 
s t 

= ~ *f(b)-~ *R*f(b) = S(b)f. 
t t 

From the proof of (iv) we see that IIGfllA :5: ell fll 1 [O,b] II f'+~(•)f(O)ll 1 [O,b] :5: 

ell fllB, provided that f E V(A). Furthermore, G- 1 ~aps V(A) into V(B). ¥his 

proves (vii). The proof of the last two statements goes by induction, em

ploying the linear algebra which is needed to prove Theorem 2.4, 2.7. We 

omit the de tails • 0 
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Duality relations 

We introduce notation for the semigroups and the structural operators 

corresponding to the transpose of the kernels• For any initial row-vector 

~EL [-b,O] and any forcing row-vector f Et [O,b] we define 
p p 

(T+(s)~)(t) = y(s+t;~) s E JR+ , - b $ t $ 0 

+-
(S (s) f) (t) = Y (t•f)-y <••f)*s(t) s , s , , s,t ER+, 

where y(•;~) satisfies 

(2.12) 

, fb J y(t) = 0 y(t-,)s(,)d,, 

l y(t) = Ht), -b $ t < 0, 

and y(•;f) satisfies 

(2. 13) y ( t) = Y* s ( t) + f ( t) , 

(2.14) 

(2.15) (G+f) (t) = y(t+b;f), -b :s; t $ 0. 

As a realization of the dual space of L [-b,O] (L [O,b]) I :s; p < 00 , we 
I I p p 

choose L [Ob] (L [-b OJ) - + - = I, respectively together with the pairing q,, q, 'p q 
b 

<~,f> = f ~(-,)f(,)d,. 

0 
,...._,; . 

As a realization of the dual space of C[-b,O] we choose NBV[O,b], which con-

sists of all botmded variation functions on [0,00 ) such that (i) f(O) = O; 

(ii) f is continuous from the right on(0, 00 ); (iii) f is constant for t ~ b, the 

pairing being given by 

b 

<~,f> = J ~(-,)df(t). 

0 



The dual space of 

C[O,bJ = {f E C(R+; Rn) J f(t) 0 for t ::::: b} 

will be NBV[ -·b, OJ which cons is ts of bounded variation functions on [ -b, OJ 

which are continuous from the right, and vanishing at zero. The pairing is 

given by 

<¢,. f> 

b 

J dcjJ(-t) f(t). 

0 
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DEFINITION. If the pair (T(s),X) consists of the (not necessarily strongly 

continuous) semigroup, T(s) of bounded linear operators on the Banach space 

X, satisfying supOss:5! IIT(s)II < 00 , we will denote by 

{T(s) ,X} 

the pair (T (s) ,X ) where X 1.s the largest subspace of X (which is closed!) 
0 . 0 0 

on which T(s) is strongly continuous and T (s) is the restriction of T(s) 
0 

to X • 
0 

DEFINITION. If T(s), T (s), X,X are as above then 
0 0 

* {T(s) ,X} * * = { T (s) ,X } . 
0 0 

THEOREM 2. 10. 

(i) F* = F+ s p < 00 

p q' , 

G* + 
(ii) Gq, s p < 00 

p ' 
* + ~ (iii) {T(s),L [-b,OJ} { S (s), L [O,bJ}, s p s 00 , 

p q 
~ * + (iv) {S (s), L [O,bJ} = {T (s),L [-b,OJ}, s p s 00 

p q 

Here, the suhindices in the first two statements indicate on which L -space 
p 

the operators act. In the last two statements the assertion for p E { I , 00 } 

holds after i'.dentification of AC in the NBV-norm with L 1• 
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PROOF. 

(i) <~,f¢> - I~ ~(-t)(f¢)(t)dt = - I~ ~(-t)sb*¢(t-b)dt = 

I -b 
= O ~(t)sb*¢(-b-t)dt = ~*sb*¢(-b) = 

b b + I0 <It ~(T)sCt-T)dT)¢(-t)dt = <f ~,¢> 

(ii) <h,Gf> - I~ h(t)(Gf)(-t)dt = I~ h(t)x(-t+b)dt = 

b I-t+b I 0 h(t)(f(-t+b) - 0 R(-t+b-o)f(o)do)dt 

· b Ib Ib-o Io h(b-t)f(t)dt - 0 ( 0 h(t)R(-t+b-o)dt)f(o)do 

Ib Ib-t + O (h(b-t) - O h(T)R(b-t-T)dT)f(t)dt = <G h,f>. 

(iii) Case I: I < p < 00 • For any ¢ E V(A) and f E: V(B +): 

<f,A¢> = I~ f(t)¢' (-t)dt = I~ f' (t)¢(-t)dt +f(0)¢(0) = 

b + I 0 (f'(t) + f(O)s(t))¢(-t)dt =<Bf,¢>. 

This shows that V(A*) ::i V(B+) and that A* IV(B+) 

* 

+ 
B • As L 

p 
is reflexive 

for these values of p A generates strongly continuous semigroup and by 
* + standard argmnents [6] one shows that V(A) = V(B) and hence 

* * + ~ {T (s) ,L [-b,O]} = {S (s) ,L [O,b]}. Note that we do not have to take re-
p q 

strictions in this case! 

Case 2: p = 00 • We have to restric T(s) to the space 

b 

X ,: {¢ E C([-b,O]; ]Rn) J s(T)¢(-T)dT = ¢(0)} 

0 

as a representation of x* we choose the Banach space which consists of the -restriction of functionals on C[-b,O], i.e. NBV[O,b], to the space X. The __,. 
duality pairing is as above. For f E NBV[O,bJ and¢ E: X we have 

b 

<f,T(s)¢> = f df(t)T(s)¢(-t) = 

b O s b 

Jdf(t)¢(-t+s) + J df(t)( J Q(T,-t+s)¢(-T)dT) 

s O 0 
b-s b s 

J df(t+s)¢(-t) + J f df(T)Q(t,-T+s)¢(-t)dt = 

0 0 0 
b-s b s t 

f df(t+s)¢(-t) + J dt j df(T) j Q(!;,-T+s)d!; ¢(-t). 

0 0 0 0 



Therefore 

(2. 16) 

s 

T*~s)f(t) = f(t+s)-f(s) + J df(T) 

0 

t 

J Q(E;,s-y)df;. 

0 
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At this point we use Lennna 5.1 of the appendix to rewrite this expression as: 

( 2. I 7) 

As Var 
[O,b] 

* T (s)f(t) = f(t+s)-f(s) + f*(st-R*st) (s) + 

t 

f*R(s) - f*R(s) f s(s)ds + f(s) 

0 
t 

t 

f s<s)dC 

0 

df(T) f Q(E;,s-T)df;) ~ 
0 

Var (f)~ llsllLI[O,bJ (I+IIRII [O ])' 
[O,s] LI ,s 

we conclude from the general theory on translation semigroups [6, Theorem 

I .4.9] that T*(s) is strongly continuous on AC(R+) n NBV[O,b]. From formula 

(2.17) we conclude that if f is in this closed subspace of NBV[O,b] then 

Case 3: p 

<f,T(s)cp> 

So 

~ = I. If f E 100[0,b] and~ E L1[-b,O] then from the identity 

* = <T' (s)f,~> we derive that 

* T (s)f(t) = f(t+s) + f*(s -R*~ )(s). 
t t 

* + ~ + ~ {T (s),L [0,b]} = (S (s),C[O,b]) = {S (s),L [0,b]}. 
00 00 

(iv) Case l: I< p < 00 • This follows combining (ii) and (iii). The case 

p = I is as easy as above, so we concentrate on p = 00 • We restrict S(s) to 

C[O,b]. If~ E NBV[-b,O] and f -E C[O,b] then from <~,S(s)f> = <S*(s)cp,f> 

we derive that 

r f~ dH-T) 

(2. l 8) * S (s)cp (t) -1 b 
Ht+s) + f 

0 

f-t + 
O Q ( T, s-s) ds max{-s,-b} 

s 

d~(-T) J Q+(T,s-f;)ds - b 

0 

~ t ~ 0 

~ t ~ max{-s,-b}. 
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Where by definition 

(2. 19) 

Using Lemma 5.2 of the appendix we rewrite this expression as 

t+s 

J~ ~(-T) {Q+(T,s+t)-Q+(T,s)+s(T) J R(a)da} 

s 

(2.20) * s (s)Ht) = 
~(t+s) 

b 

+ J + + 
~(-T){Q (T,0) -Q (T,s)+s(T) 

max{ -s, -b} :::; 6 

f 
:::; 0 

R(a)da} 

0 s 
-b:::; t:::; max{-s,-b}. 

* Already from formula (2.18) it is clear that the subspace on which S (s) is 

strongly continuous consists of the absolutely continuous functions on [-b,O] 

vanishing at zero. If~· is in this set then we derive from (2.20) that 

;t (s*(s)~)(t) = 

b + f 0 ~'(-T)Q (T,t+s) max{-s,-b}:::; t:::; O 

~•(t+s) -b:::; t:::; max{-s,-b}. 

d * + Therefore dt (S (s)~)(t) = T (s)~' (t). D 

We can interpret (2.16), (2.20) in the following way: 

(2.21) * T (s)f(t) = z (t) - z (O) - (z (•)-z (O))*s(t), s s s s 

-where f E NBV [0,b] and z satisfies 

(2. 22) z(t) = Z*s(t) + f(t), t ~ 0. 

(2.23) * S (s)~(t) = y (t) - y (O), s s 

where~ E NBV[-b,O] and y satisfies 
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(2.24) 

r d b j dt{y(tl - J0 y(t-T)S(T)dTl = o t > 0 

l . y ( t) = ¢( t) -b ::;; t ::;; 0. 

Decomposition according to the spectrum 

We formulate the results only for the semi.group T(s). By the equivalence 

relation T(s) = GS(s)G-I the corresponding results are valid for S(s). 

From Theorem i.3 we know that R(A,A) is compact. We apply the general 

theory for such operators (see for instance [28, Theorem 10.1], [17, sec-

ti on 5 • 14]) • 

THEOREM 2.12. Let>,. be a pole of R(;>,.,A) of order r3 then the state space 

L C-b,O] can be decomposed as the direct sum of the closed subspaces: 
P r r 

L [-b,O] = N(A-;>,.I) ~ R(A-;>,.I) • 
p 

We will denote the corresponding spectral projection operator with 

range N(A-H)r by P~. Recall that P1 = 2!i fr R(w,A)dw, where r is a circle 

around;>,., A being the only possible singularity of R(•,A) within the closed 

disk. 

Notation M'I\. = N(A-n)r, MA = u ~ (by U we mean the span of 
A AE(J 

NA R(A-H)r, NA ~-
the union) 

= = n 
A AE(J 

From abstract theory we know that P (T(t)) c etPa(A) u {O}, see [17,Thm. 
(j 

16.7.2, p.467]. T(s) 1.s compact for s ::=:band hence T(s) has only point 

spectrum for those values of s. This leads to the next theorem (compare 

Hale [ 14, Thm. 4. I]) • 

THEOREM 2.13. For any real number S let A= A(S) = {;>,. I ;>,. E cr(A) and 

Re ;>,. ::=: S] . Then 

L [-b,O] = 
'.P 

which we will write as 
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~ is finite dimensional, and there exist positive numbers Kandy such that: 

\lcp E ~' t E R II T(t)<jlll :;:; Ke (S-y) tll cpll, 

Vcp E ~' t ER+ IIT(t)qill:;:; Ke(S-y)tllcpll. 

3. SMALL SOLUTIONS AND COMPLETENESS OF EIGENFUNCTIONS 

DEFINITION. TI~e solution of (I.I) - (1.2) is called a small solution if the 

mapping A 1+ x(A) = f~ e-At x(t-b)dt defines an entire function oft into Cn. 

It turns out that small solutions must vanish after finite time. Before we 

state this precisely as a theorem we need one more definition. 

DEFINITION. ~rr exponential function f(A) is of exponential type T if 
-1 I lim supr-l>OO r log M(r) = T, where M(r) = maxj\J=r lf(A) . 

THEOREM 3.1.(Henry[IS]).Let x be any smaU solution of (1.1)-(1.2). Then 

x(t) = 0 fort 2 (n-l)b-T, T being the exponential type of A I+ det ~(\). 

PROOF. Here we briefly indicate the proof. For the details in the case of 

a retarded functional differential equation see [IS]. Define 

foo -\ t 
x(\) = O e x(t-b)dt. Then x(\) satisfies 

(3. I) ~(\)x(\) = g(\), 

where 

b b t 

(3 .2) g(\) = I e-\tcp(t-b)dt - J e-At { J s(T)cp(t-b-T)dT}dt. 

0 0 0 

As x(A) is entire we infer from this identity that x(\) has finite exponen-
. - (, ) ( ) h · · · f · h (, ) 5{(A) -x ( 0) tial type and x A = o I on t e imaginary axis. De ine A = A , 

than h has the same exponential type and is O(lf\) on the imaginary axis. 

Therefore due to a theorem of Paley and Wiener [4,§ 6.8.1] 

h (\) 

0 



Combining this with the identity h(A) = J 00

0 e-A,(-J00 x(µ-b)dµ)d, yields 
. T 

that x(t) = 0 fort~ o-b. 

Multiplying equation (3.1) on both sides by Adjb(A), the matrix consisting 

of the cofactors of b(A), we obtain 

detb(A)x(A) = Adjb(A) .g(A). 
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Since the exponential type of the right hand side is bounded above by nb we 

conclude that o ~ nb-,. D 

This result motivates the following 

DEFINITION. Let a denote the ascent of T(t) i.e.: 

(3 .3) a.= inf{t ER+ I Ve> 0: N(T(t+e)) = N(T(t))}. 

* Similarly o denotes the ascent of T (t): 

(3.4) 8 = inf{t E :JR+ I Ve> 0: N(T*(t+e)) = N(T(t))}. 

COROLLARY 3.2. a.~ nb-, and 8 ~ nb-,, 

From the equivalence of the semigroups S(s) and T(s) it follows that 

* a. equals the ascent of S(t) and o equals the ascent of S (t). The inequali-

ties obtained above are not sharp. This we demonstrate by the following 

example 

. I rl(t) = fo x2(t-,)d, 

2 
(3.5) x2 (t) = f O XI (t-,)d, 

l x/t) = J~ x2(t-,)d,. 

Here 
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f}.(A) = 

0 

-). 
e -1 

A 

->.. 
e -I 

>.. 

and type det/}.(A) = 3, so nb-T = 3.2-3 = 3. 

First restrict to the subsystem 

(3 .6) 

0 

0 

The set of small solutions of (3.6) in L [-b, 00), 
p 

~ p ~ 00 , is given by 

Therefore the set of small solutions of (3.5) equals 

We conclude that the ascent corresponding to (3.5) equals nb-T-1. 

(3. 7) 

is 

The set of small solutions of the adjoint system 

yl(t) = J~ Y2(t-T)dT 

Y2(t) = J~ yl(t-T)dT + J~ Y3(t-T)dT 

y/t) = 0 

y 3 ( t) = -y I ( t) , - I ~ t ~ 0 ; y 3 ( t) = 0, t ~ 0} • 

Therefore o = nb-T-1. 

In this example a= o. It is an important open question whether this 

equality holds in general. We will come back to this question later on. 
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In the next theorem we give several characterizations of N(T(a)). By the 

equivalence, the corresponding statements for N(S(a)) are also valid. We omit 

them. 

THEOREM 3.3~ 

(i) N(T(a)) = {~ E Lp[-b,O] I the ma.pping A 1-+ ~(A)- 1LA(F~) of 

(ii) 

t into ¢n is entire} 

N(T(a)) ~-{~EL [-b,O] I the mapping A~ R(A,A)~ of¢ 
p 

into L [-b,0] is entire} 
p 

(iii) N(T(a)) = n N(P~). 
AECJ 

- ,oo -At -PROOF. Define x(A) =Joe x(t)dt, then x(A) satisfies 

Recall x(A) defined in Theorem 3.1. The mapping A~ i(A) is entire iff the 

mapping A~ x(A) is enitre. This proves (i). (ii) follows from the explicit 

formula for R(A,A) given in Theorem 2.3. The Laurant series of R(A,A) around 

a pole "o of order mis given by 

m 
R(A,A) = l 

n=l 

H being holomorphic in a neighbourhood of "o (see [28, section V.1O]). This 

proves (iii). 0 

As a consequence of Henry's theorem we state 

THEOREM 3.4. Vt~ o: MA= R(T(t)). 

PROOF. Lett~ o. ~ = U R(P~) = U 
AECJ AECJ 

u 
AECJ 

N(P~ r1 = 
A 
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+ B+ 
Here we have used the identity N(S (o)) = nAEO N(PA ), which is the coun-

terpart of Theorem 3.3-(iii) in the "S-language". D 

Completeness of Eigenfunctions 

-A 
We will call the eigenfunctions of A complete iff M = L [-b,O]. It 

p 
follows from the previous theorem that this is the case iff o = O. By the 

. . • • N( +( )) O. As T+(b) -- G+F+ semigroup property this will be the case iff T b = 

this is equivalent with the identity N(F+) = {O}. It has been an open ques

tion for quite a long time whether the equivalence N(F) = 0-. N(F+) = {O} 

holds, see for instance Delfour & Manitius [9]. Or in other words a= 0-. 

o = O? A positive answer to this question is given in the next theorem. The 

corresponding result for functional differential equations has been obtained 

by Verduyn Lunel [31]. 

Before we state and prove the theorem we first introduce some notation 

and recall some facts from linear algebra (see [18,§15]). 

By det*I'; we indicate the element of L1 (lR+) that is obtained from the 

expression for det r; by replacing the product in lR by the convolution pro

duct. For any square matrix C = (c .. ) we denote by Adj C the square 
iJ 

matrix which consist of all cofactors cofc.. of C. By definition cofc .. = 
. . iJ iJ 
i+J * * 

(-I) c .. det c .. , where c .. is obtained from C by leaving out the 
iJ iJ iJ 

i-th row and the j-th column. We also use Adj*C. The well known identity 

(AdjC)T. C = det C. I transfers in the convolution algebra to 

(Adj*l';)T*l';(t) = det*l';(t). I 

Let C be a nxn matrix such that det C = 0 and suppose that the equation 

Cx = b has a solution. Suppose that the rank of C is rand that det CI 0, 
A 

C being the rxr submatrix consisting of the elements c .. I~ i ~r, 
iJ 

~ j ~ r. All solutions of the equation Cx = b may be obtained by solving 

the reduced equation 

cr 1x 1+ •.• + crrxr = b - c x -r rr+l r+I - C X • rn n 

If we choose for x 1, ... ,x the arbitrary constants d 1, ••. ,d, r+ n r+ n 



then the solution set of Cx = b is obtained by Cramers Rule: 

r n 
x 1. = --;--:---;,;d - I (b J. - I c J. k ~) 

- aec L j=l k=r+l 
cof~ ..• 

lJ 
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Finally we state a lemma which we need in the proof of the next theorem 

LEMMA 3.5. Let n E 1-1 and ai E 1 1[0,b], i E {l, ••• ,n}, be given. For all 
n-1 

t E [-b,0]: a 1* ... *an(nb+t) = (-1) (a 1)b *···*(an)b(t). 

PROOF. The statement trivially holds if n = I, so assume that it also holds 

if n = m-1 > I. Then the identities: 

mb+t 

a 1:*· ..... *am(mb+t) = J 
b 

0 

(a 1* ... *a 1) (mb+t-T)a (T)dT = 
m- ID 

J a 1* .... *a 1 (mb+t-T)a (T)dT = 
m- ID 

b+t 
t 

- f a 1* ..... *am_ 1((m-l)b+t-T)(am)b(T)dT = 

0 
t 

(-11) m-1 f 
0 

show that the statement is true for n = m. D 

THEOREM 3.6. The following assertions are equivalent: 

(i) N(F) = {O}, 

(ii) sup supp (de t*i'._;) = nb 

(iii) type dett-(11.) = nb. 

PROOF. 

(ii)~ (i). Suppose O =I¢ E N(F). Then fort E [-b,O]: i'._;b*¢(t) = O. Multi

plying by Adj*i;;b we obtain that det*i'._;b *¢ vanishes identically on the inter

val [-b,O]. From the previous lemma we derive that det*~ (t) = (-l)n-I 

det*i'._; (nb+t) for all t E [ -b, OJ. Our assumption implies that there exists E 

positive such that det*i'._; (t) =IO [a.e] on the interval [-E,0]. But then¢ 
b 
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must vanish identically on the interval [-b,O] as a consequence of the 

Theorem of Titchmarsh [29, page 327]. This proves the first part of the 

theorem. 

(i) ~ (ii). Let us suppose that nb > c = sup supp det*C::. There exist a 

natural number r, 1 < r < n, a rxr submatrix ~ of c::; and a positive number 

s such that 

(i) det*ib / 0 [a.e.] on the interval [-s,O], 

(ii) for any square submatrix with size larger then r the det* vanishes on 

[ -s ,OlJ 
-Without losing generality we assume that c::; = (c::; .. ) Is i, j s r. We con-

l.J 

struct a nontrivial element in the nullspace of F by using the linear alge-

bra above. We take into account that in general there is no inverse of 
-det*C::b in the convolution algebra by letting det*~b be a factor in the ele-

ments which we can choose arbitrary. Let~ by any element in L [-b,O] such 
p 

that supp(~) c [-b,-b+E:]. 

Define 

(3.8) 
n 

¢i = - j~l (c::;b)j r+I *~* cof(~b)ji' l. E {1, ••• ,r}. 

Then¢ satisfies C::b*¢ = 0 on [,-b,O] and¢ does not vanish identically. This 

proves (i) ~(ii). The equivalence of (ii) and (iii) is trivial. Even a 

stronger assertion is true: if sup supp det*C:: E ((n-l)b,nb] then it is equal 

to type det(~(A)). D 

As an immediate .consequence we mention that a= 0 iff o = 0 and 

THEOREM 3. 7. The fo Uowing assertions are equivalent 

(i) MA= Lp[-b,0] 

(ii) a = 0. 

By having a closer look at the proof of Theorem 3.5 we can prove the 

equality a= nb-, in the following case 
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THEOREM 3.8. Suppose that p = sup supp det*~ E ((n-I)b,nb), and there exist 

a natural number r, I< r < n, a rxr suhmatrix ~of~ and a positive number 

e: such that 

(i) det*~b IO [a.e] on the interval [-e:,O], 

(ii) far any suhmatrix of ~b with size larger than r the det* vanishes on 

the interval [p-nb,O] [a.e], then a= o = nb-p. 

PROOF. All small solutions vanish fort~ (n-I)b-p. Let~ in (3.8) be such 

that ~(t) = 1, -b ~ t ~ (n-l)b-p and ~(t) = 0, (n-l)b-p ~ t ~ 0. Then~ 

defined in (3.8) satisfies F~ = 0 and sup supp~= (n~t)b-p. Conditions 

(i) and (ii) as well as the construction of~ remain valid if we change from 

T Th' h h 0 ~to~ • is proves t et eorem. 

COROLLARY 3.9. Let n = 2. Then a< b =>a= o. 

PROOF. Let p = sup supp det*~. If p = 2b then a= o = O. If p E (b,2b) then 

we can apply the previous theorem. If p ~ b then type det~(A) ~band hence 

a ~ b. D 

F-completeness 

DEFINITION. A solution of (1.1) - (1.2) is called a "trivial small solution" 

if it vanishes fort~ O. 

The notion of trivial small solutions is closely related to the con

cept of F-completeness, which was introduced by Manitius [21]. The idea 

behind the concept is to study the eigenspaces ~ in the closure of the 

range of F. 

DEFINITION. The system (I.I) is F complete iff FMA = R(F). 

THEOREM 3.10. The following assertions are equivalent: 

(i) system (I.I) is F-aomplete 

(ii) MB = R(F) 

A+ + 
(iii) nAE<J PA = N(F ) , 

(iv) the transposed equation has only trivial small solutions, 

(v) N(F+G+) n R(F+) = {0}, 

(vi) F+G+F+ = o => F+ = O. 
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00 A FMA -- MB ( i· ) d ( .. ) . 1 PR F. s A A an 1.1. are equ1.va ent. 

-- - -.1 .l 
FM~ - R(F) ~ MB = R(F) ~ n N(P~+) = N(F+), 

AECT 

which proves the equivalence of (ii) and (iii). From Theorem 3.3 the equiv

alence of (iii) and (iv) follows. The transposed equation has only trivial 

small solutions if£ N(S+(h)) n R(F+) = {O}. As S+(h) = F+G+ (v) is a re

statement of (iv). Another restatement reads T+(2h)¢ = 0 => T+(h)¢ = O. Mul

tiplying on bo~h sides with (G+)-l yields (vi). D 

EXAMPLE. Consider the system 

rl (t) 
= fl x 1 ( t-T) dT 

0 
(3.9) 

2 
x2 (t) = f 0 x2 (t-T)dT. 

The set of all small solutions in L [-2, 00 ) is given by 
p 

{x E Lp[-2, 00 ) I x 1 (t) = 0, t 2: -1; x2 (t) = O, t 2: -2}. Due to Theorem 3.8 

(iv) the systi=m is F-complete, it is however not complete. In the next ex

ample neither completeness nor f completeness holds. 

x 1 (t) = s2 x2 (t-T)dT 
0 

f~ 
2 

(3. 10) x2 (t) = x 1 (t-T) dT + f 0 x3 (t-T)dT 

x3 (t) = 0. 

The set of small solutions of the transposed sys tern 1.s 

{ X E L [ -2 oo) I: x I ( t) = o, t 2: -2; x2 (t) = 0 t 2: - 1 ; p ' 
2 

x3 (t) = I x2 (t-T)dT, 0 ::,; t ::,; l , x3 (t) = 0 t 2: 1}. 

0 
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Decomposition of the state space 

In a first naive guess one would like to prove that the state space can 

be decomposed into the closure of the span of the generalized eigenfunctions 

and the initial states of the small solutions. 

L [-b,0] = ~f e N(T(nb)) ? 
p 

L [0,b] = MB e N(S(nb)) ? 
p 

However, the next example shows that this cannot be true in general. All

though the example is artificial, it definitely shows what happens in 

systems of equations where several delays are involved. 

(3.11) { 

x(t) = J~ x(t-T)dT, 

x(t) = ~(t); ~ E L2[-2,0], 

Let Ebe the characteristic function of the interval [0,1]. Then equivalent

ly we consider 

(3. 12) x(t) = E*x(t) + f(t); 

where f EX= {g E 1 2 (:IR+) supp(g) c [0,2]}. From Theorem 3.4 we derive 

that MB= R(S(l)). As N(T(l)) = {~ E LzC-2,0] I supp(~) c [-2,-1]} it fol

lows that 

R(s(l)) = {f E 1 2(R+) I supp(f) c [0,1]}. 

Furthermore 

N(S(J)) = {f = x - E*x I x E 1 2[0,1]}. 

Therefore X ~ N(S(J)) e R(S(l)), because each element of N(S(J))eR(S(J)) 

is absolutely continuous on the interval [1,2]. Note that in this example 
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(3. 13) X = N(S(l))eR(S(l)). 

We did not find any counterexample to this last identity. 

We conclude this subsection with some equivalent formulations of this 

identity in the special case that a,o $ b. 

THEOREM 3.11. Assume a$ b, o $ b. Then the following statements are equiv

alent: 

(i) L [-b,O] 
p = R(T(b)) e N(T(b)), 

(ii) LP (R+) = R (S (b)) e N (S (b)), 

(iii) {O} N(F+G+) .L 
= n N (F) , 

(iv) {0} = .LN(FG) n N(F+), 

(v) T*(b) j is one-to-one, 
.1N (F) 

(vi) s*(b) j is one-to-one. 
.1N(FG) 

PROOF. The equivalence of T(s) and S(s) implies that (i) ~·(ii). Applying 
.L .L .L .L .L .L the identities: (L 1eL2) = L1 n L2 and ( L1n L2) = L1~L2 , which hold if 

L1 and L2 are linear subspaces of the normed linear space X, to (i) and (ii) 

yields (iii) and (iv). Recall that FG = S(b) and GF = S(b). The last two 

statements are straightforward, reformulations. D 

4. ON THE CONVERGENCE OF THE PROJECTION OPERATORS 

A One cannot expect that the sum of the projection operators PA con-

verges to the identity on the whole state space. For instance if¢ is a small 

solution then P~ ¢ = O, VA E cr. There are some convergence results in cases 

where small solutions are absent, see [1,2,20]. Here we give the correspond

ing results for equation (I.I). Our assumptions on the kernels are in such 

a way as to include the results of [1,2]. In fact we combine arguments em

ployed by Verblunsky [30] with those used by Bellman & Cooke [2] and Banks 

& Manitius [l]. Therefore our proof is sketchy in order not to repeat al

most literally the argumentation in [1,2,30]. 



~ 
THEOREM 4.1. Let l; E LP (:R+) be of bounded va:r>iation such that 

(i) limt-+b l; ( t) = l; (b) 

(ii) det r,;(b) :/: 0. 

If~ EL ,[~b,O], p' > p, then fo:r> t ~ b 
p 

lim IIT(tH - }: 
r-+<x> AEcr 

I A l:5:r 

= 0. 

If~ E V(A) and~' EL ,[-b,OJ, p' > p, then the same conve:r>gence hold fo~ 
p 

t ~ o. 
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Sketch of the Proof. Consider the scalar case n = I. If n > I, modifications 

like the ones in [1] have to be made. We rewrite the characteristic function 

as 

( 4. 1) 

where 

b 

(4.2) g(A) = AeAb + l;(b) - t(O)eAb - J eA(b-T)dl;(T)~ 

0 

Let for c > 0 

Ve= {A EC I IRe(A+ f; logA)I :5: c}. 

Then for c and r large enough all zeros of g with modulus larger than rare 

contained in V (compare [2, Theorem 12.9]). 
C -

This suggests the transformation 

(4. 3) 
1 

z =A+ blog A. 

Let g' (z) = g(A) etc. All zero's of g' with large modulus are contained in 

V = {z E C I !Re zl :5: c}. 
C 
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The proofs of Lemmas 1-2 in [30,I] carry over to the entire function g'(z). 

We draw two conclusions. In the first place, the zeros of g' are uniformly 

bounded away ·from each other. Let us say that I z' -z" I ~ K > 0 if z', z" are 

different zeros of g'. In the second place, let each zero of g' be the 

center of a disk of radius p, then there exists a positive n depending on p 

such that lg'(z) I ~ n if z is not an element of one of the disks. 

Let x(A) be the Laplace transform of x defined for Re A sufficiently 

large. Then i(f) satisfies 

(4 .4) 

where 

(4.5) 

Therefore 

µ-ioo 

where for any A E cr(A): Re A<µ. 

By the above arguments there exists a unbounded increasing sequence 

of positive numbers r and a small positive number p (the radius of the 
p 

disks) such that the circle C : lzl = r has no points in common with the 
p p 

disks. Let us, for p large enough, denote by r the positively oriented 
p 

curve that consists of the part of C 
p 

which lies to the left of 

L = {z Et I Re z =µ}.The points of intersection of C 
p 

µ ± ia. 
p 

(4.6) 

µ-ia 
p 

- f 

I 
A EcrnBr 

V p 

and L we will call 
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We concentrate on the integral part of the right hand side. Following the 

arguments in [2, chapter 6] we find after some lengthy but straightforward 

calculations that 

(4. 7) lim II 
p-+oo 

2p-1 
a>-

p 

We proof the existence of positive constants C and£ such that llp(;\.,qi)D :,; 
:,; C;\. (1- 2p)/p-~. 

-h ) e <l>(t) d-r d-r 

b 0 

= "f { f e-;\.-rd(~(-r) J 
0 --r 
b O b 

=; { J e-;\.-r( j e-;\.tqi(t)dtJ~(-r)+ j 
0 --r 0 

0 

- e -;\.b~(b) j e -;\.t<l>(t)dt}. 

-b 

Using Holders inequality 

0 

J 
-b 

-At 
e qi(-t)dtl -p-=--, --1 - ), 

~ + 1 

Re ;\. :,; O, 

we conclude that if p' > p we can factor out the desired power of A in the 

first and the third term. To estimate the integral involving the second term 

in p(;\.,qi) we use the inequality, which is obtained in the same way as the 

one above 

(4.8) lim II j _1 t,(;\.)-1 A (b+.) II = o, a > 
p-1 

p-+oo ;x_a e L [-b,O] p 
r p 

p 

Thus we obtain that 

lim II J 
;\.(b+.) -1 II o, e t,(;\.) p(;\.,qi)d;\. L [-b OJ = 

p-+oo r 
p , 

p 
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and the first statement of the theorem follows. The last statement of the 

theorem makes use of the straightforward identity which holds for all• in 

the domain of the generator 

(4.9) v• E V(A): p(A,.) = ¼ {p(A,.')+A(A).(0)}. 

The factor A-l so obtained does the job. D 

REMARK. The condition• EL,, p' > p, can be weakened to a condition on p 
the interval [-£,0]: •EL [-b,0] n L ,[-£,0], £ small but positive, and 

p p 
resembles a condition involving backward continuation. Compare for instance 

[l, Corollary 4.2]. 

While finishing this paper Verduyn Lunel has obtained the answer to 

one of the questions posed in section 3, and he will publish in [31] the 

result: a= o. 
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5. APPENDIX 

LEMMA 5.1. Recall tha.t Q(t,s) = st(s) - R*st(s). Jg Q(s,s-T)ds is absolutely 

continuous as a function of T with derivative Q(O,s-T)-Q(t,s-T)+R(s-T)f~s(s)ds. 

PROOF. 

t t 

J Q,(s' s-T) ds = f (ss (s-T)-R(s-T) *ss (T) ds = 
0 0 
t t s-T 

f s(s+s-T)ds - f f R(o)s(s+s-T-o)dods = 

0 0 0 
t+s-T s-T t+s-T 

f s(s)ds - J R(o)do( f 
Q s-T 

t . 
Therefore f0 Q(s,s-T)ds is absolutely continuous as a function of T with 

derivative 

t 

1_ f Q ( s , s-T) ds 
3T 

0 

t+s-T 

= -s(t+s-T)+s(s-T)+R(s-,) f 
s-T 

s-, 
- f R(o)(s(s-T-o)-s(t+s-,-o))do = 

0 
t+s 

- st(s-T)+s(s-,)+R*st(s-,)-R*s(s-,)+ R(s-T)• f s(s-s)ds = 
s 

t 

Q(O,s-,)-Q(t,s-T)+R(s-,) J s(s)ds. • 
0 

LEMMA 5.2. Recall tha.t Q+(t,s) = st(s)-st*R(s). f~ Q+(,,s+s)ds is absolute

ly continuous as a function of, with derivative Q+(,,s+t)-Q+(,,s) + 

+ s(T) ft+s R(o)do. 
s 
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PROOF. 

,+s+t 

J 
,+s 

T+s+t 

j 
T+S 

s(T)dT -

t 

f i: ( ,+s+O di; -

0 

s t 

t s+i; 

f f i:(,+s+i;-a)R(a)dadi; = 

0 0 

J f i:(,+s+i;-a)di;R(a)da + 

0 0 

s+t t; 

-I I s(T+s+i;-a)di;R(a)da = 
s a-s 

S t+T 

i: (a) da - f J i: (s+i;-a)di;R(a)da + 

0 T 

s+t t+T 

f J i:(s+i;-a)di;R(a)da. 

s a+T-s 

f t + Therefore O Q (,,s+i;)di; is absolutely continuous as a function of T with 

derivative 

t 

a·\- I + Q (T,s+i;)di; = s(T+s+t) - s(T+s) 

0 

s s 

- f s(T+s+t-a)R(a)da + f s(T+s-a)R(a)da + 

0 0 

s+t s+t 

J s(T+s+t-a)R(a)da + f s(T)R(a)da = 

s s 

s+t 

i: (s+t)-i: *R(s+t)-i: (s)+i: *R(s)+s(T) J R(i:)di: = T T T T 
s 

t+s 

+ + J Q (T,s+t)-Q (,,s)-1:(T) R(a) da. • 
s 
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