
Binary D ecis ion Diagrams by Shared Rewdting

Jaco van de Pol1* and Hans Zantema1
•
2**

1 CWI, P.0 .-box 94.079, 1090 GB Amsterdam, The Netherlands
2 Department of Computer Science, Utrecht University

P.0.-box 80.089, 3508 TB Utrecht, The Netherlands

A b stract. In this paper we propose a uniform description of basic BDD
theory and algorithms by means of term rewrit ing. Since a BDD is a
DAG instead of a tree we need a notion of shared rewrit ing and develop
appropriate theory. A rewrit ing system is presented by which canonical
fol·ms can be obtained. Various reduction strategies give r ise to differ
ent algorithms. A .layer-wise strategy is proposed having the same time
complexity as the traditional apply-algorithm, and the lazy strategy is
studied, which resembles the e.'Cisting up-one-algori thm. We show that
these algorithms have incomparable performance.

1 Introduction

Equivalence checking and satisfiability testing of propositional formulas a.re basic
but hard problems in many applications, including hardware verification [4] and
symbolic model checking [5]. Binary decision diagrams (BD Ds) [2, 3, 8] are an
established technique fOl' this kind of boolean formula manipulation. The basic
ingrndient is reprnsenting a boolean formula by a unique canonical form, the so
called reduced ordered BDD (ROBDD). After canonical forms have been estab
lished equivalence checking and satisfiability testing are t rivial. Constructing the
canonical form however, can be exponential.

Various extensions to the basic data-type have been proposed, like DDDs [9],
BEDs [l] and EQ-BDDs (6]. Many variants of Bryant's original apply-algorithm
for computing boolean combinations of ROBDDs have been proposed in the
literature. Usually, such adaptations are motivated by particular benchmarks,
that show a speed-up for certain cases. In many cases, the relative complexity
between t he variants is not clear and difficult to establish due to the variety of
data-types.

Therefore, we propose to use term rewriting systems (TRS) as a uniform
model for the study of operations on BDDs. By enriching the signature, extended
data types can be modeled. Various different algorithms can be obtained from a
fbrnd TRS by choosing a reduct ion strategy. In our view, this opens the way in
which the BDD-world can benefit from the huge amount of research on rewriting
strategies (see [7] for an overview) .

'Email: Jaco . van.de.Pol©cwi.nl
• • Email: hansz©cs . uu. nl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301665421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A complication is that the relative efficiency of BDDs hinges on the maxi
mally shared representation. In Section 2 we present an elegant abstraction of
maxinlally shared graph rewriting, in order to avoid its intricacies. Instead of
introducing a rewrite relation on graphs, we introduce a shared rewrite step on
terms. Jn a shared re\vrite step, all identical redexes have to be rewritten at once.
We prove that if a TRS is terminating and confluent, then the shared version
is so too. This enables us to lift rewrite results from standard term rewriting to
the shared setting for free.

In Section 3, we present a TRS for applying logical operations to ROBDDs
and prove its correctness. Because a TRS-computation is non-deterministic, this
proves the correctness of a whole class of algorithms. Jn part icular, \Ve recon
struct the traditional apply-algorithm as an application of the so-called layerwise
strategy. We also investigate the well-known innermost and lazy strategies. The
lazy strategy happens to coincide with the the ttp-one algorithm in [1] (those
authors argue that their up-all algorithm is similar to tl1e traditional apply).

Finally we provide series of exan1ples to shmv that the innermost strategy
performs quite bad, and that t he apply-algorit hm and t he lazy strategy have
incomparable complexity. In [1] an example is given for one direction, but this
depends on additional structural rules. An extended version of this paper ap
peared as [11].

2 Shared Term Rewriting

We assume familiarity with standard notions from term rewriting. See [7] for
an introduction. The size of a term T is usually measured as the number of its
internal nodes, viewed as a free. This is inductively defined as #(T) = 0 if T is
a constant or a variable, and #(f(T1 , .. . , Tn)) = 1 + #(T1) + · · · + #(T,,) .

Ho\vever, for efficiency reasons, most implementations apply the sharing tech
nique. Each subterm is stored at a certain locat ion in the memory of the machine,
various occurrences of the same subterm are replaced by a pointer to this sin
gle location. This shared representation can be seen as a directed acyclic graph
(DAG). Mathematically, we define the maximally shared representation of a term
as the set of its subterms. It is clear that there is a one-to-one correspondence
between a tree and its ma.ximally shared representation.

A natural size of the shared representation is t he number of nodes in the
DAG. So we define the shared size of a term:

s1t (t) = #{s I s is a subterm oft} .

The size of the shared representation can be much smaller than the tree size
as illustrated by the next example, which is exactly the reason that sharing is
applied.

Example 1. Define To = true and Uo =false. For binary symbols p1,f>2, p 3, ...
define inductively T,, = p,,(T,,_1, Un- 1) and Un = Pn(Un- 1' Tn- 1) . Considering
Tn as a term its size #(T11) is exponential in n . However, the only subterms of
Tn are true, fa lse, and Ti and U.; for i < n, hence # s1t(Tn) is linear inn. D

Ma.ximal sharing is essentially the same as 'vhat is called the f1tlly collapsed
tree in [10). In implementations some car e has to be taken in order to keep terms
maximally shared. In essence, when constructing or modifying a term, a hash
table is used to find out whether a node representing this term e..xists already.
If so, this node is reused; otherwise a new node is created. In order to avoid
these difficulties in comple..xity analysis, we introduce the shared rewrite relation
=? on terms. In a shared re\vrite step, all occurrences of a redex have to be
rewritten at once. We will take the ma.-ximum number of =?-steps from t as the
time complexity of computing t.

Definition 1. For terms t and t' there is a shared rewrite step t =? R t' with
respect to a 1·ewrite system R if t = CW, . .. , l"] and t1 = C(r", . .. , r"] fo1· one
rewrite 1'1.tle l ~ r in R, some substitittion <I and some multi-hole context C
having at least one hole, and s1tch that l" is not a s1tbtenn of C .

Both in unshared rewrite steps ~Rand shared rewrite steps=? R the subscript
R is often omitted if no confusion is caused. We now study some properties of
the rewTite relation =? R· The following lemmas are straightforward from the
definition.

Lemma 1. If t =? t' then t ~ + t'.

Lemma 2. If t -* t' then a term t" exists satisfying t' -** t" and t =? t".

The next theorem shows how the basic rewriting properties are preserved by
sharing. In particular, if -* is terminating and all critical pairs converge, then
termination and confluence of =? can be concluded too.

Theorem 1. {1) If~ is terminating then =? is terminating too.
(2) A term is a normal form with respect to =? if and only if it is a normal

form mith 1·espect to -* .
(3) If =? is weakly normalizing and ~ has 1tnique normal forms, then =? is

conffoent.
(4) If~ is confluent and terminating then =? is confi1ient and terminating

too.

Proof. Pa.rt (1) follows directly from Lemma 1.
If t is a. normal form with respect to ~ then it is a. normal form with respect

to =? by Lemma. 1. If t is a. normal form with respect to =? then it is a normal
form with respect to -* by Lemma. 2. Hence we have proved part (2).

For pa.rt (3) assume 8 =? • 81 and 8 =? • 8 2 . Since =? is weakly normalizing
there are normal forms n 1 and n 2 with respect to =? satisfying 8; =? • n; for
i = 1, 2. By part (2) n 1 and n2 are normal forms with respect to -*i by Lemma.
1 we have 8 -* • ni for i = 1, 2. Since ~ has unique normal forms we conclude
n 1 = n2 . Since Si=?* n; for i = 1, 2 we proved that=? is confluent.

Pa.rt (4) is immediate from part (1) and pa.rt (3). D

Note that Theorem 1 holds for any two abstract reduction systems ~ and
=? satisfying Lemmas 1 and 2 since the proof does not use anything else.

Example 2. (Due to Vincent van Oostrom) The converse of Theorem 1.1 doesn't
hold. The rewrite system consisting of the two rules f (Qi, 1) ~ /(1, 1) and 1 ~ 0
admits an infinite reduction f(O, 1) ~ J(l, 1) ~ f(O, 1) ~ ···,but the shared
rewrite relation => is terminating.

For preservation of confluence the combination with termination is essential,
as is shown by the rewrite system consisting of the two rules 0 ~ J(O, 1) and
1 ~ f (0, 1). This system is confluent since it is orthogonal, but => is not even
locally confluent since f(O, 1) reduces to both J(O, f(O, 1)) and J(f(O, 1), 1), not
having a common =>-reduct. D

Notions on reduction strategies like innermost and outermost rewriting carry
over to shared rewriting as follows. As usual a redex is defined to be a subterm
of the shape lq where l ~ r is a rewrite rule and <7 is a substitution. A (non
deterministic) reduction strategy is a function that maps every term that is not in
normal form to a non-empty set of its redexes, being the redexes that are allowed
to be reduced. For instance, in the innermost strategy the set of rede.xes is chosen
for which no proper subterm is a redex itself. This natmally extends to shared
rewriting: choose a redex in the set of allowed redexes, and reduce all occurrences
of that redex. Note that it can happen that some of these occurrences are not in
the set of allowed rede.xes. For instance, for the two rules f(x) ~ x, a ~ b the
shared reduction step g(a, f(a)) => g(b, f(b)) is an outermost reduction, while
only one of the two occurrences of the redex a is outermost.

3 ROBDD Algorithms as Reduction Strategies

We consider a set A of binary atoms, whose typical elements are denoted by
p, q, r, A binary decision tree over A is a binary tree in which every internal
node is labeled by an atom and every leaf is labeled either true or false. In other
words, a decision tree over A is defined to be a ground term over the signature
having true and false as constants and elements of A as binary symbols.

Given an instances : A~ {true, false} , every decision tree can be evaluated
to either true or false, by interpreting p(T, U) as "if s(p) then T else U" . So a
decision tree represents a boolean function. Conversely, it is not difficult to see
that every boolean funct ion on A can be described by a decision tree. One way
to do so is building a decision tree such that in every path from the root to a
leaf every p E A occurs exactly once, and plugging the values true and false in
the 2#A leaves according to the 2#r1 lines of the truth table of the given boolean
function . 'l\vo decision t rees '1 ' and U ai-e called equivalent if they represent the
same boolean function.

A decision tree is said to be in canonical form with respect to some total
order < on A if on every path from the root to a leaf the atoms occur in strictly
increasing order, and no subterm of the shape p(T1 , T2) exists for which T1

and T2 are syntactically equal. A BDD (binary decision diagram) is defined to
be a decision tree in \Vhich sharing is allowed . An ROBDD (reduced ordered
binary decision diagram) can now simply be defined as the maximally shared
representation of a decision tree in canonical form.

Theorem 2 (Bryant [2]). Let < be a total 01·der on A . Then every boolean
function can 1miquely be represented by an ROBDD with respect to <.

We refer to [11] for our proof of this fact using standard re,vriting analysis
based on weak normaliz;alion aud confluence of au appropriale rewrile syslem ,
whose normal forms are canonical.

Theorem 2 suggests a way to decide whether two logical formulas are equiv
alent: bring bot h expressions to ROBDD form and look whether the results are
syntactically equal. We now describe how an arbit rary pTOposit ional formula can
be transformed to an ROBDD by rewriting. Due to sh aring the basic steps of
rewrit ing '"ill be => instead of -t.

As a first step every occurrence of an atom p in the formula is replaced by
p (true, false), being the decision tree in canonical form represent ing the propo
sitional formula p . T he signature of the TRS consists of the const ants true and
false, t he unary symbol ---,, binary symbols for all elements of A and the binary
symbols V, /\ and xor, written infix as usually.

Next we give a rewrite system B by which the propositional symbols are
propagated through the term and eventually removed, reaching the ROBDD as
the normal form. In Figure 1, p ranges over A and o ranges over t he symbols V,

/\ and xor. The rules of t he shape p(x, x) --+ x are called idempotence n iles, all
ot her rules are called essenti al rnles.

p(x,x) -t x for all p
•p(x, y) -t p(• x, •y) for all p

p(x, y) <>p(z,w) -tp(x <> z, yQ w) for allo, p
p(x, y) <>q(z,w) -t p(x <>q(z,w), y<>q(z,w)) for all<>, p < q
q(x, y) <>p(z,w) -t p(q(x, y) <> z, q(x, y) <> w) fo1 all<>, p < q

•true -t false
-,false -t true

true V x -t true
x V true -t true
false V x -t x
x V false -+ x

true/\ x -t x
x /\true -t x
false/\ x -t false
x /\false -+ false

true xor x -t • X

x xor true -t •x
false xor x -t x
x xor false -t x

Fig. I. The rewrite system B.

We h ave defined B in such a way that terms are only rewritten to logically
equivalent terms. Hence if a term rewrites in some way by B to an ROBDD, we
may conclude that t he rnsult is t he unique ROBDD equivalent to t he original
term (independent of whether the system is confluent).

The rewrite system B is terminating since every left hand side is greater than
the corresponding right hand side with respect to any recursive path order for
a precedence ~ satisfying xor ~ ..., ~ b and o ~ p fOT o E { ...,, V, /\, xor} and
b E {false, true} and p E A. Hence reducing will lead to a normal form, and it
is easily seen that ground normal forms do not contain symbols...,, V, /\,xor. By
Theorem 1.(1) this also holds for shared rewriting.

The rewrite system B is not (ground) confluent, for instance if q > p the term
q(p(false., true),p(false, true)) /\ q(false , true) reduces to t he two distinct normal
forms p(false,q(false , true)) and q(false,p(false,true)). l\IIoreover, we see that B
admits ground normal forms that are not in canonical form. However, when
starting 'IVith a propositional formula this cannot happen due to the follo'IVing

Inva riant: For every subterm of the shape p(T, U) for p E A all symbols
q E A occurring in T or U satisfy p < q.

In a propositional for mula in which every atom p is n~placed by p(true, false)
this clearly holds since T = true and U = false for every subterm of the shape
p(T, U) . Further for all rules of B it is easily checked t hat if the invariant holds
for some term, after application of a B-rule it remains to hold. Hence for normal
forms of propositional formulas the invariant holds. Due to the idempotence
rules we now conclude that these normal forms are in canonical form. We have
proved the following theorem.

Theorem 3. Let</> be a propositional formula over A. Replace every atom p E A
occu1·ring in if> by p(true, false) and redi1ce the resulting term to normal form with
respect to =}s. Then the rnsulting norrnal fonn is the ROBDD of</>.

In this way we have described the process of constructing the unique ROBDD
purely by rewriting. Of course this system is inspired by [2, 8], but instead of
having a deterministic algorithm, we now still have a lot of freedom in choosing
the strategy for reducing to normal form. But one strategy may be much more
efficient than another. vVe first show that the leftmost innermost strategy, even
when adapted to shared rewriting, may be extremely inefficient.

Example 3. As in Example 1 define To = true and Uo = false, and define induc
t ively Tn = Pn(Tn- 1, Un- 1) and Un= p.,,(Un- 1, Tn- 1) .

Both Tn and U,, are in canonical form, hence can be considered as ROBDDs.
Both are the ROBDDs of simple propositional formulas, in particular for odd n
the term Tn is the ROBDD of xor~1 Pi and Un of -i(xori;,,,1 p;), and for even n
the other way around. In fact they describe the parity functions yielding true if
and only if the number of i-s for which p; holds is even or odd, respectively.

Surprisingly, for every n both for -i(T,,.) and -i(Un) =>8 -reduction to normal
form by the leftmost-innermost strategy requires 2n - 1 -i-steps, where a -i-step
is defined to be an application of a rule -ip(x,y)-? p(-ix,-,y). We prove this by
induction on n. For n = 0 it trivially holds. For n > 0 the first reduction step is

The leftmost-innermost reduction continues by reducing -.(Tn_ 1). During this
reduction no •-redex is shared in •(Un- 1) since •(Un- 1) contains only one -,.
symbol that is too high in the tree. Hence -.(Tn_1) is reduced to normal form
with 2n- 1 - 1 -.-steps due to the induction hypothesis, without affecting the
right pai:t -.(U,,_1) of the term. After that another 2n- 1 -1 -.-steps are required
to reduce -.(U,,_ 1) , making the total of 2n - 1 -.-steps. For -.(U,,) the argument
is similar, concluding the proof.

Although the terms encountered in this reduction are very small in the shared
representat ion, we see t hat by this strategy every =>-step consists of one single
-+step, of which exponentially many ai:e required. D

We will now show that the standard algorithm based on Bryant's apply can
essentially be mimicked by a layerwise reduction strategy, having the same com
plexity. ·we say that a subterm V of a term T is an essent'ial redex if V = l /T for
some subst itution r:; and some essential rule l ~ r in B.

Proposition 1. Let T , U be ROBDDs.

If -.T ::::} 8 V then every essential r:edex in V is of the shape -.T' for some
s1ibterm T' of T.
If T <> U ::::} B V for <> = V or <> = /I. then every essential redex ·in V is of the
shape T' <> U' for some sub term T ' of T and some subte1·m U' of U .
If T xor U =>i, V then every essential 1·edex in V is of the shape T' xor U'
01· -.T' 01· -.U' for some siibterm T' of T and some s11bterm U' of U .

Proof. This proposit ion immediately follows from its unshared version: let T, U
be decision Lrees in canonical form and replace => B in all Lhree asserLions by
~B· This unshared version is proved by induction on the reduction length of
~8 and considering the shape of the rules of B. D

The problem in the exponential leftmost innermost reduction above is that
during the reduction very often the same redex is reduced. The key idea now is
that in a layerwise reduction every essential redex is reduced at most once.

Definition 2. An essential redex l<T is called a p -1·edex for p E A if p is the
smallest symbol occurring in l" with respect to <. An essential redex l" is called
an oo-redex if no symbol p E A occurs in l/T; define p < oo for all p E A.

A 1·edex is called layerwise if eithe1·

it is a redex with respect to an idempotence rnle, or
- it is a p-1·edex for p E A U { oo}, an.d no q-redex for q < p exists, and ·if the

root of the 1·edex is -. then no p-redex exists of which the root is xor.

A ::::} B -red1iction is called layerwise if every step consists of the rediiction of
all occurrences of a layerwise redex.

Clearly every term not in normal form contains a layerwise redex, hence
layerwise reduction always leads to the unique normal form. Just like innermost
and outermost reduction, layerwise reduction is a non-deterministic reduction
strategy. We will show that layerwise reduction leads to normal forms efficiently
for suitable terms, due to the following proposition.

Proposition 2. Let T , U be ROBDDs. In every layerwise ::::}8 -red1tction of-.T,
TV U, T /\ U or T xor U every essential redex is 1·educed at most once.

Proof. Assume that an essential redex l" is reduced twice:

C[l"] ::::}t C'[l"] ::::}B • • •

Note that l" is a p-rede..x for some p E AU { oo}, because it is essential. Since
the reduction is layerwise, every reduction step is either an idempotence step or
a reduction of a p-redex for this particular p. Due to Proposition 1 and the shape
of the rules the only kind of new p-redexes that can be created in this reduction
is a p-redex having-. as its root, obtained by reducing a p-redex having xor as its
root. So this p-redex "'it h root xor already occurs in C[l"]. Since the reduction
is layerwise the root of zu is not -.. We conclude that t he p-redex zu in C' [l"]
is not created during this reduction, hence it already occurred in the first term
C[l"]. Since we apply shared rewTiting this occurrence of l" was already reduced
in the first step, contradiction. D

T heorem 4 . Let T be an ROBDD. Then every layerwise ::::}B -redttction of -.T
contains at most #sh(T) steps.

Let T , U be ROBDDs. Then every layerwise ::::}8 -redttction of T v U, T /\ U
or T xor U contains O(#sh(T) * #sh(U)) steps.

Proof. If a layerwise reduct ion of -.T contajns an idempotence step V ::::}13 V',
then this idempotence step was also possible on the original term T, contradicting
the assumption that T is an ROBDD. Hence a layerwise reduction of-.T consists
only of reduct ions of essential redexes, and by Proposition 1 the number of
candidates is at most #sh(T). By Proposition 2 each of these possible essential
redexes is reduced at most once, hence the total number of steps is at most
#sh(T).

Let V be either TV U, T /\ U or T xor U. Then a layerwise reduction of V
consists of a combination of reductions of essential redexes and a number of idem
potence steps. By Proposition 1 the number of candidates for essential redexes
is O(#s1i(T) * #sh(U)), each of which is reduced at most once by Proposition 2.
Hence the total number of reductions of essential redexes is 0(#8 /t(T) *#s1t(U)).
Since in every reduction of an essential redex the shaTed size #sh increases by
at most one, and by every idempotence step # sh decreases by at least one, the
total number of idempotence steps is at most #sh(V) + 0 (# 8,.(T) * #sh(U)) =
O(#s1i(T) * #s1i(U)) . So the tot al number of steps is O(#s1i(T) * #s1i(U)) . D

The procedure sketched above mimics Bryant's original apply-funct ion. On
formulas with more than one connective, it is repeatedly applied to one of the
innermost connectives, thus removing all connectives step by step . It can also be
seen as lift ing all proposit ional atoms, for which reason it is called ttp-all in [l] .

ote that this is not the same as applying the layerwise strategy on the formula
itself.

However, other strategies are also conceivable. For instance, we could device
a strategy which brings the smallest atom to the root very quickly. To t his end,

we define head normal forms to be terms of the form false , true and p(T, U) .
The lazy strategy is defined to forbid reductions inside T in subterms of the form
To U, U o T and -,T in case T is in head normal form. vVe will show that the
lazy strategy is not comparable to the apply-algorithm.

Lemma 3 . Each (unshared) lazy reduction seqiience from T leads to a head
normal form in at most 2#(T) reduction steps.

Proof. Induction on T. The cases false, true and p(T, U) are trivial.
L€t T = Po Q, "With o E {xor,A, v}: Let #(P) = m and #(Q) = n . By

induction hypothesis, P reduces to head normal form in at most 2m steps. So
the lazy strategy allows at most 2m reductions in the left hand side of P o Q.
Similarly, in the right hand side at most 2n steps are admitted.

Hence after at most 2(m + n) steps, Po Q is reduced to one of: p(P1 , P2) o
q(Q1 , Q2) or boQ1 or P 1 ob, where b E {false, true} and Pi and Qi are in head
normal form for i = 1, 2. In most of the cases this reduces to head normal form
in the next step, for true xor Q 1 and Pi xor true it takes two steps to reach a
head normal form. So we use at most 2(m + n) + 2 = 2#(T) steps.

Case T = ...,p is similar but easier. D

Example 4. Let P be a formula of size m, whose ROBIDD-representation is ex
ponentia lly large in m (for instance V;"=1 (p; /\ q;) with p; < Qj for all i and j (3]) .
Assume that atom p is smaller than all atoms occurring in formula <P. Consider
the formula p /\ (<P /\ -ip) , which is clearly unsatisfiable . Note that the traditional
algorithm using apply will as an intermediate step always completely build the
ROBDD for <f>, which is exponential by assumption.

We now show that the lazy strategy has linear time complexity. Replace each
atom q by q(true, false) , transforming <P to <P' . Using the lazy reduction strategy
sketched above, we always get a reduction of the follo"Wing shape:

p(true, false)/\ (<P' /\ -ip(true, false))
-+n+i p(true, false) /\ (q(<f>1, <f>2) /\ p(-itrue, -,false))
--+ p(true, false) Ap(q(<P1 , <P2) /\ -itrue,q(4i1 , <P2) /\ -,false)
--+ p(true /\ (q(<P1, <P2) /\ -itrue), false/\ (q(<P1, <P2) /\ -,false))
-+k p(false, false)
--+ false

where n is the number of steps applied on <P' until a head normal form q(<1>1, <P2) is
reached. This shape is completely forced by the lazy strategy; within then+ 1 and
k steps some non-determinism is present, but always k ::; 6. Note that reductions
inside </>1 and <!>2 are never permitted. By L€mma 3 we haven :S 2m, so the length
of the reduction is linear in m. Note that we only considered unshared re ,vriting.
In shared re,vriting however essentially the same lazy reduction is forced.

Conversely, it can be proved that for (· · · ((p1 xor p2) xor Pa) ···) xor Pn the
apply-algorithm determines the ROBDD in tin1e quadratic in n, while the lazy
strategy admits reductions of length exponential in n. The proof is similar to
that of Example 3 D

The lazy reduction appears to be similar to the up-one algorithm in [1]. There
it is shown that for certain benchmarks up-one is relatively efficient, but there
additional re\vrite rules are used, e.g. x xor x -t false. 'i\!e have proved that it can
also be an improvement without adding more rules. On the other hand, we gave
an example on which the traditional apply-algorithm t urned out to be better.

4 Conclusion

The TRS approach is promising, as it concisely and flexibly describes the BDD
data structure and operations. Extensions to the data structure, like comple
mented edges, DDDs, BEDs and EQ-BDDs can be obtained basically by ex
tending the signature. Various known algorithms are obtained as different re
duction strategies. In t his way the relative complexity of various proposals can
be analyzed.

Acknowledgment. vVe want to thank Vincent van Oostrnm for his contribution
to the theory of sharing and for many fruitful discussions.

References

l. ANDERSEN, H. R. , AND HuLGAARD, H. Boolean expression diagrams. In Twelfth
Annual IEEE Symposium on Logic in Computer Science (Warsaw, Poland, 1997),
IEEE Computer Society, pp. 88- 98.

2. BRYANT, R. E. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 8 (1986) , 677- 691.

3. BRYANT, R. E. Symbolic boolean manipulation with ordered binary-decision dia
grams. ACM Computing S1wueys 24, 3 (1992), 293- 318.

4. B UR.CH, J ., CLAR.KE, E ., LONG, D ., McMILLAN, K. , AND DILL, D . Symbolic
model checking for sequential circuit Yerification. IEEE Trans. Computer Aided
Design 13, 4 (1994), 401-424.

5. CLARKE, E., EMERSON, E., AND S1STLA, A. Automatic verification of finite
state concurrent systems using tempor al logic specifications. A CM Transactions
on Programming Languages and Systems 8, 2 (1986), 244- 263.

6. GROOTE, J ., AND VAN DE POL, J. Equation al binary decis ion dia-
grams. Tech. rep. SEN-R0006, CWI, Amsterdam, 2000. Available via
http://www.cwi .nl/,...,vdpol /papers/eqbdds.ps .Z.

7. KLOP, J. W. Term rewriting systems. In Handbook of Logic in Computer Science,
D. G. S. Abramski and T . Maibaum, Eds., vol. 2. Oxfoi·d University Press, 1992.

8. MEINEL, C., AND THEOBALD, T. Algorithms and Data Structures in VLSI Design:
OBDD - Foundations and Applications. Springer, 1998.

9. M0LLER, J., LICHTENBERG, J., ANDERSEN, H. R., AND HuLC:AARD, H. Difference
decis ion diagrams. In Computer Science Logic (Denmark, Sept. 1999).

10. PLUMP, D. Term graph rewriting. In H'mdbook of Graph Grammars and Comput
ing by Graph Tmnsfonnation, volume 2 : Applications, Languages (1999), H.-J. K.
H. Ehrig, G. Engels and G . Rozenberg, Eds., World Scientific, pp. 3- 61.

11. VAN DE PoL, J. C., AND ZANTEMA, H. Bina1·y decision diagrams by
shared rewrit ing. Tech. Rep. UU-CS-2000-06, Utrecht University, 2000.
Also published as CWI report SEN-ROOOl, Amst erdam. Available via
http://www.cs.uu.nl/docs/research/publication/TechRep.html.

