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Managing Graphical Resources 

by 

David S. H. Rosenthal 

ABSTRACT 

The development of interactive graphics 
software has separated into two apparently 
incompatible streams. The mainstream, 
exemplified by GKS and the Core, and a 
"RasterOp" stream, exemplified by Smalltalk 
and the Carnegie-Mellon CANVAS package. In 
the mainstream, the important concepts are 
viewing, segments, output primitives, and vir­
tual input devices. In the RasterOp stream, 
the important concepts are windows, the 
refresh hierarchy, and pointing for input. 

Although it is easy in the mainstream to 
provide libraries of output-only routines for 
general use, it is difficult to do the same for 
input. Although it is possible to write device­
independent interactive applications using 
mainstream techniques, . the quality of the user 
interface may vary wildly as they are ported. 
These problems are caused by the 
mainstream's lack of the mechanisms needed 
to control the allocation of real graphical 
resources within the application: 

1. No hierarchy of pictures on the view 
surface. All parts of the application 
have control over all parts of the view 
surface. 

This was one of the invited topical papers at the 
ACM-SIGGRAPH Workshop on Graphics Input In­
teraction at Seattle, Wash. on June 2-4th 1982. It ap­
pears in the issue of Computer Graphics devoted to 
the Workshop. 

2. 

3. 

No connection between viewing and seg­
mentation. The viewing parameters used 
to create a segment are not attributes of 
the segment. 

All parts of the application have access 
to all the input devices. It is up to each 
part to decide if an input is relevant, or 
if not, what to do with it. 





1. Introduction . · 

"Whenever I'm caught between two 
evils, I take the one I haven't tried 
before." 

Mae West. 

The development of interactive graphics 
software has separated into two apparently 
incompatible streams. The mainstream, 
exemplified by GKS[S] and the Core[ll], and a 
"RasterOp" stream, exemplified by 
Smalltalk[6] and the Carnegie-Mellon CANVAS 
package[2]. In the mainstream, the important 
concepts are viewing, segments, output primi­
tives, and virtual input devices[?]. In the 
RasterOp stream, the important concepts are 
windows, the refresh hierarchy, and pointing 
for input. 

The differences between the streams may 
seem to reflect the differences in the hardware 
they address, but the example of a window­
manager graphics system driving storage tube 
terminals in Edinburgh refutes this[9]. The 
RasterOp stream is attempting to provide 
facilities whereby the graphical resources can 
be managed; whereby routines and sub­
programs can be provided with controlled 
access to part of the resources controlled by 
their caller. The Seillac II workshop[4] 
stressed the importance of building interactive 
applications from existing components. It is 
only in the context of graphical resource 
management that this can successfully be 
done, since the invoker of an existing com­
ponent can be confident that it will only access 
the resources it has been given. 

The mainstream, the RasterOp stream, 
and the storage-tube window manager will 
now be described in a common format, and 
then assessed against the goal of resource 
management. Finally, the design principles 
for a package based on resource management 
will be presented. 

If standards proposals are to succeed, 
they must be based on codifying the "best 
current practice" and not on radical innova­
tion, no matter how inviting. However, "best 
current practice" is constantly changing as 
hardware and software evolve: The critique of 

the models underlying current standards pro­
posals that follows is not to be interpreted as 
advocating their rejection, but rather as an 
attempt to discover the directions in which 
current practice will develop. 

2. The Mainstream 

The concepts forming the backbone of 
the mainstream graphics packages are power­
ful and seductive abstractions, but are 
strangely unrelated to one another. At the 
start of the standards effort, this orthogonality 
was highly prized for the simplicity and struc­
ture it gave to the documents, but in the 
development since then it has been overridden 
by other criteria. 

2.1. Transformations 

The concept of viewing was introduced 
at Seillac I as the fundamental criterion for 
dividing the functions of a graphics package 
from those of the rest of the world. Graphics 
was viewing, everything else was modelling. It 
was based on the synthetic camera analogy, 
with a scene defined in a single world coordi­
nate space being viewed as if by a camera 
located at a single point in the space (Fig. 1 ). 

World Coordinates 

View 

Transform 

Device Coordinates 

Fig. I - Synthetic Camera Analogy 

This simple analogy has since broken 
down in two directions. The two breakdowns 
have been seen as independent, but have now 
completely vitiated the power of the analogy. 

The stated objective of the Core was to 
provide program (and programmer) portability 
between devices. The minimal interpretation 
of this was that it must be possible for the 
same program, at different times, to drive 
different devices. However, the implicit intent 
of the Core was to make it possible for the 
same program to drive different devices simul­
taneously. To support this, it was necessary to 
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split the single . transformation from world to 
device coordinates into a two-stage process. 
Coordinates were first transformed by a single 
global transfomtation to a normalised device 
coordinate space, and then by one of possibly 
many device-specific transformations to device 
space (Fig. 2). 

World Coordinates 
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I View I 
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Device I 
Device 

Coordinates 

Device 
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Fig. 2 - CORE Transformations 

There are almost no graphical applica­
tions in which the only pictures generated con­
sist of a single view of a single object occupy­
ing the whole view surface. Thus, pictures will 
really be generated using several "world" coor­
dinate systems. Consider a drawing system in 
which part of the screen shows a small view of 
the whole drawing, part an expanded view of 
the area being manipulated, part some sym­
bols from a symbol library, part some menu 
items, and so on. If the system embodies only 
a single viewing transformation, the applica­
tion must laboriously re-create the correct 
viewing transfonnation for the part of the 
display it wishes to modify. Further, a single 
transformation system places the burden of 
re-transforming locator input coordinates from 
NDC space to the space used by the applica­
tion entirely on the application. These 
requirements led GKS to include multiple nor­
malisation transformations (Fig. 3)[10]. 

2.2. Segmentation 

The concept of segmentation was intro­
duced to avoid the problem of supplying 
names for individual primitives to identify 
them for post-generation manipulation. It also 
addressed the problem of refreshing the pic­
ture after changes, storing a description of the 
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Fig. 3 ~ GKS Transformations 

picture as output primitives in a segmented 
display file. The range of permitted manipula­
tions was modelled on the capabilities of a 
typical refresh vector display, highlighting, 
visibility and detectability changes, and seg­
ment transformations. 

Segments are created at will, initially in 
an open state. At most one segment may be 
open. Primitives output while a segment is 
open become part of it, and are then subject 
only to changes of the segment attributes until 
the segment is eventually destroyed. 

2.3. Attributes 

Mainstream packages support one or 
more of the following types of attribute for 
primitives and segments: 

1. Global attributes, applicable to appropri­
ate primitives as they are output and not 
subject to retro-active modification. For 
example: 

SET LINE STYLE(DOTTED) 

2. Segment attributes, applicable to each 
segment and subject to retro-active 
modification. For example: 

SET HIGHLIGHTING(SEG,ON) 



3. Workstation attributes, generally selected 
from a table by a global index attribute, 
applicable to appropriate primitives, and 
subject to retro-active modification. For 
example: 

SET COLOUR MAP(WS,INDEX,COLOUR) 

2.4. Logical Input Devices 

Main.stream input facilities are built 
round the logical input device concept. Ini­
tially, this specified that each workstation had 
several logical input devices, divided into 
classes, according to the type of value they 
return (Fig. 4). Typical classes are LOCATOR, 
returning a position (and, for GKS, a normali­
sation transformation ID - Fig. 5), VALUA­
TOR, returning a real number, and PICK, 
returning a segment name and a pick 
identifier. 

Oasses 

LOCATOR ...... Position (WC) 

+ Transformation ID. 

STROKE ...... Positions (WC) 

+ Transformation ID. 

VALUATOR ..... Real Number 
CHOICE ..... Integer 
PICK ..... Segment Name 

+ Pick ID. 
STRING ..... Characters 

Modes 

REQUEST ...... REQUEST LOCATOR() 

SAMPLE ..... SAMPLE LOCATOR() 

EVENT ...... AWAIT EVENT() 

GET LOCATOR() 

THEREFORE 

Eighteen different functions to obtain input. 

Fig. 4 - GKS Input 

The concept has been refined in several 
ways[lO], the most obvious of which are: 
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This is normalisation 

transformation 2. 

This is normalisa-

tion transforma-

tion I. 

1. 

2. 

This is normalisa-

tion transforma-

tion 3. 

Fig. 5-'- GKS Locator Input 

Each device can operate in different 
modes, specifying how the value is 
obtained from the device. Typical 
modes are REQUEST, in which the appli­
cation is suspended until input is avail­
able, SAMPLE, in which the device is 
polled for its current value, and EVENT, 
in which the device creates event records 
describing its value and adds them to an 
input queue. 

Each device has attributes , including 
parameters for its echo implementation, 
initial values, restrictions on its value, 
and so on. These attributes in part pro­
vide the link with output, at least at the 
device level. 

3. The RasterOp Stream 

The consensus established by the stan­
dards effort makes it possible to pontificate 
about the mainstream with confidence. No 
such consensus exists in the RasterOp stream; 
Gene Ball's CANVAS package[2] is used as an 
example. It was developed at Carnegie­
Mellon, as part of the SPICE project, in Pas­
cal. Other systems have been developed in 
more exotic languages, such as 
Smalltalk[6, 13], and LISP[l2], and are thus 
less easy to contrast with mainstream pack­
ages. 
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3.1. Transformations 

The application using CANVAS creates 
output in an abstract (integer) coordinate 
space called a canvas . New canvases may be 
created at will; there is no implementation­
defined limit on their number as there is with 
GKS' normalisation transformations. All out­
put operations must quote a descriptor for a 
canvas; canvases are always available for out­
put irrespective of whether the output would 
be visible. Contrast this with GKS' concept of 
a current normalisation transformation, 
applied to output until another is selected. 

A canvas, and the graphics sent to it, 
become visible as the result of a two-stage 
process. First, the canvas must be mapped to 
a viewport. Viewports describe rectangular 
patches of the view surface. Canvas (=world) 
coordinates are mapped to viewport (=device) 
coordinates either by scaling or by clipping a 
specified range of canvas coordinates to the 
available range of device coordinates. This 
mapping corresponds to the mainstream's 
window/viewport transformation.* A viewport 
may display at most one canvas, but a canvas 
may be mapped simultaneously to many 
different viewports. Multiple canvases are 
analogous to multiple normalisation transfor­
mations; multiple viewports for a single can­
vas are analogous to multiple workstations. 

Each viewport provides access to a 
specific rectangle of display space. These rec­
tangles may overlap, and thus several different 
canvases may each try to control the state of a 
particular pixel. CANVAS resolves these 
conflicts by organising the active viewports 
into a hierarchy ,called the Refresh Tree. At 
the root of this tree is a special, system­
provided viewport giving access to the whole 
screen. A viewport in the tree may have any 
number of children, each of which may lay 
claim to any part of the display, but they will 
only have visible effect within the part of the 
display controlled by their parent. Thus, a 
primitive output to a canvas C that is mapped 
to a viewport V will be visible in that 

* Except that the scale/ clip choice is made indepen­
dently for each axis. 

viewport if the canvas coordinate Pc is 
mapped to a viewport coordinate P. which 
lies within each of the sequence of viewports: 

V, parent ( V), parent (parent ( V) ), · · · Root Viewport. 

If a viewport has more than one child, 
they may also lay claim to the same pixels. 
This conflict is resolved by introducing a pre­
cedence order among the children of one 
parent (siblings). Viewports may be either 
transparent or opaque . Opaque viewports 
obscure any siblings of lower precedence they 
overlap, whereas transparent viewports share 
access to their pixels with their lower pre­
cedence siblings (Fig. 6). 

Root Viewport 

Viewport A 

I'm an 

opaque 

child of the rt B 

Root 

I'm also a child of the 

Root, but my precedence Viewport 

is lower than A's. 

All that is lef 

rather bigger Vi 

that is also a ch 

Fig. 6 - The Refresh Tree 

Positioning a viewport m this tree 
requires access to its parent. Thus, control 
over part of the view surface may safely be 
delegated, by passing a viewport descriptor. 
The possessor of this descriptor will be able to 
create a sub-tree depending from this "root", 
but cannot affect the root's position in the 
tree, nor affect any part of the view surface 
outside the root's parent. 

In this way, CANVAS provides a mechan­
ism for controllirig the allocation of the scarce 
view surface resource among the uses that 
need to share it. Programs may safely call 
other programs or modules and pass a 
viewport descriptor, confident that neither a 



passive nor an, interactive callee can affect 
other parts of the view surf ace. 

3.2. Segmentation 

In the mainstream, segments serve two 
purposes; to name parts of the display (groups 
of primitives) for manipulation, and to store a 
picture description for future regenerations. 
CANVAS does not support a segment concept, 
but in some ways the combination of the can­
vas and viewport concepts play the same role. 

Just as segments have visibility and 
detectability attributes, so viewports may be 
placed into and· removed from the refresh tree. 
Just as segments may be highlighted, 
RasterOps may be performed within canvases, 
for example to invert a region. On the other 
hand, unlike segments, canvases are always 
open, and are associated with particular 
patches of the view surface. 

CANVAS does not support a description 
of the picture as primitives at all. A viewport 
may (but need not) store the bitmap represen­
tation of the parts of other viewports it 
obscures, and restore them when they are 
obscured no longer. A viewport may (but 
need not) store its own complete bitmap 
representation, and automatically refresh parts 
no longer obscured. No storage other than 
bitmaps is provided. At higher levels, the pic­
ture is defined procedurally ; the system 
arranges, via the input mechanism, for 
appropriate application code to be invoked 
when regeneration is required. 

3.3. Attributes 
CANVAS supports only a single type of 

attribute, applied to all appropriate primitives 
sent to a particular canvas. For example: 

SetCo/or(c: Canvas; ink: Color) 

Thus each canvas provides its own attribute 
context; a callee can be invoked with a canvas 
descriptor in the knowledge that it cannot 
affect other canvas' attributes. 

Note, however, that the management of 
the view surface (by viewports) is separate 
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from the management of the attributes (by 
canvas). These "call-by-value" facilities can 
be provided independently for either. 

3.4. Input 

CANVAS provides a single input class, 
the KeyEvent, into which all physical device 
inputs are mapped. 

KeyEvent = packed record 
Cmd: 0 .. 255; 
Ch: char; 
X, Y: integer 

end; 

Each canvas has an input queue, containing 
zero or more of these events. When a 
KeyEvent is generated, it is added to the tail 
of the queue of the canvas mapped to the 
deepest viewport containing the position (Fig. 
7). 

Canvas A Canvas B 

Events here queued 

for Canvas B. 

Events here 

queued for Canvas 

A. 
Canvas C 

Events here 

queued for Canvas 

C. 

Fig. 7 - Canvas Input 

Each canvas also has a translation table, 
loaded from a file at run-time and used to 
map from the operator's keystrokes and but­
ton pushes to application-specific commands. 
For example, the editor interprets 

Cmd = cDELPREVWD 

as "delete the previous word". It is unaware 
that the translation table for its canvas 
specifies that this command is generated by 
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pressing the <CY:RL><SHIFT>W keys. 

Thus, the only "device" an application 
sees is its canvas. The details of how the phy­
sical devices generate KeyEve1its in its queue 
are of no interest; indeed it has no way of 
addressing "devices" at all. Relevant inputs 
for the application are directed to it by point­
ing at any of the viewports displaying its can­
vas; irrelevant inputs point to some other can­
vas' viewport and are never seen. 

CANVAS provides two input modes; 
EVENT and SAMPLE. It also uses the event 
queue more generally than its name implies, 
permitting the application to push events back, 
and generate events itself, to assist in parsing, 
and also permitting the system to synthesise 
events, for example to request picture regen­
eration. SAMPLE mode might be handled more 
elegantly in this way too, by allowing the 
application to trigger the system into queuing 
an event without operator action. 

A canvas may be placed in forwarding 
mode, when all events directed at it will be 
passed up the refresh tree to its parent. The 
program pulling an event from a canvas' 
queue may use this if it decides the request 
cannot be handled at this level, setting for­
warding mode and pushing the event back will 
send it to the parent. 

4. Doing Without RasterOp 

It might be thought that the structure of 
CANVAS was peculiar to those systems with 
RasterOp, but this is not so. Some time ago I 
wrote an experimental package in C for 
UNIX,* called GiGo[9]. It was based on my 
reactions to GKS, and on ideas from 
DLISP[12] and CURSES[l]. The intention 
was to produce a graphics system with as few 
underlying concepts as possible. 

* UNIX is a Trademark of Bell Laboratories. 

4.1. Transformations 

Scanning the list of concepts in GKS, 
several were obviously superfluous. The first 
was normalised device coordinates. This left 
only a single level of transformation, mapping 
between world coordinates, defined by the 
application: 

typedef struct { 
float n_x, n-1; 
} Ncoord; 

and device coordinates, defined by the 
hardware: 

typedef struct { 
int d_x, d-1; 
} Dcoord; 

The starting point for the Window concept 
thus became a transformation between appli­
cation and device coordinates: 

typedef struct { 
Dcoord w -1o, w ....hi; 
N coord w -11, w _ur; 
} Window; 

Our Tektronix terminals have slave 
screens, so the idea that there were multiple 
view surfaces was natural. A Screen data type 
was needed, and a way of keeping track of 
which view surface the viewport was on: 

typedef struct { 
Dcoord w-1o, w ....hi; 
N coord w -11, w _ur; 
Screen *w .....scrn; 
} Window; 

I* Active on * I 

This represented a window /viewport 
transformation, and therefore a patch of view 
surface, so there were going to be many of 
them. A list of active ones was needed: 



typedef struct WIN DO { 
struct WINDO *w_next; 
Dcoord w _Jo, w _hi; 
Ncoordw_J[, w...ur; 
Screen *w _scrn; 
} Window; 

4.2. Segments 

/* Link *I 

If a Window corresponded to a patch of 
view surface, could it not also correspond to 
the graphics in that patch? The concepts of 
segments and segment storage vanished, and 
the Window structure grew a bit: 

typedef struct WIN DO { 
struct WINDO *w_next; 
Dcoord w _Jo, w -hi; 
N coord w _J[, w ...ur; 
Screen *w _scrn; 
Prim *w -Prim; I* Display File * I 
} Window; 

Holding display files in the memory of a 
PDP-11 is simple but impractical for complex 
pictures. The alternative is to permit the 
application 1lo define the picture procedurally : 

typedef struct WINDO { 
struct WINDO *w_next; 
Dcoord w _Jo, w _hi; 
Ncoordw_J/, w...ur; 
Screen *w _scrn; 
Prim *w -Prim; 
int (*w__{)utp)(); I* Redraw*/ 
} Window; 

If w _Joutp is not NULL, it points to a 
routine capable of re-creating the picture in 
the Window. If it is NULL, then a list of prim­
itives is stored with the Window, ready to be 
interpreted by the system to re-create the pic­
ture. 

This far, Windows provide for the roles 
of segments as manipulatable parts of the pic­
ture, and as picture stores for regeneration. 
They can also play the role of segment as sym-
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bol, a picture component ready to be incor­
porated in future pictures. All that is needed 
is to allow Windows not to be active on any 
Screen, with w ___scrn being NULL. These Win­
dows represent potential, instead of actual, 
patches of view surface. An additional primi­
tive is then provided, a reference to a window, 
giving multi-level segmentation (cf. GKS' 
INSERT SEGMENT). 

4.3. Attributes 

All GiGo's attributes are Window attri­
butes; both "segment" attributes such as back­
ground colour, and "primitive" attributes such 
as current linestyle. They are all stored in the 
Window structure, and no manipulation of a 
Window's attributes can affect the attributes of 
another Window. 

4.4. Input 

The model of input underlying GiGo is a 
complete break with the. device model. The 
various aspects of this model were rejected as 
follows: 

1. Device classes had to go. They were a 
way of segregating input into different 
kinds, and experience with operating sys­
tems illustrated the advantages of unify­
ing all sources of input under a single 
concept, such as the file[8]. Thus, all 
physical devices were mapped into a sin­
gle class, returning a device coordinate 
and an integer code. A button box 
would return a valid code and a pre­
stored coordinate. A digitiser might 
return a valid coordinate and a pre­
stored code. 

2. Input modes had to go, because they also 
forced the application to choose between 
the different ways input might arrive. 

3. Input devices also had to go. They were 
either intimately associated with a view 
surface, as with the Tektronix cursor, or 
could be described as an input-only 
screen, as with the digitiser (or the key­
board). 

Instead, inputs are treated like inter­
rupts, with an input-handling routine attached 
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to each Window:~ 

typedef struct WIN DO { 
struct WINDO *w_next; 
Dcoord w _Jo, w .Jii; 
Ncoordw_J[, w_ur; 
Screen *w _scrn; 
Prim *w-Prim; 
int (*w_outp)(); 
int (*w_jnp)(); I* Input*/ 
} Window; 

When the system receives an input, it 
scans the active Windows on the correspond­
ing view surf ace in inverse priority order until 
the position lies within one, transforms the 
position to the corresponding application 
space, and invokes the input routine with the 
position, the code, and the Window as argu­
ments (Fig. 8). 

Window A Window B 

Hit here for Window 

B's input routine. 

Hit here for Win-

dow A's input 

routine. 
Window C 

Hit here for Win-

dow C's input rou-

tine. 

Fig. 8 - GiGo Input 

There is (conceptually) no queue; if an appli­
cation expects that responding to a particular 
input will take a long time, it is expected to 
create another process to do so. 

Inputs may be synthesised by one input 
routine calling another directly; they are just 
routines with known parameter lists. In this 
way, the push-back facility of CANVAS can be 
imitated. 

4.5. Experience 

The first version of GiGo took about 
four weeks to write. It has been available for 
use in the Architecture department in Edin­
burgh for more than a year, and three sub­
stantial applications have used it. They are: 

- A graphics front-end for the logic pro­
gramming language Prolog[3], providing 
the user with a window for text interaction, 
and others for graphics. 

- A re-write of a system for maintaining a 
database describing the accommodation, 
curriculum, and staff and student numbers 
of schools in Scotland. 

- A ground-modelling system. 

The experience of application programmers 
has been generally favourable. Their com­
ments have led to changes in various areas, 
particularly in the strategy for deferring 
updates, and the handling of text 1/0. 

Using GiGo has encouraged them to 
provide user interface facilities that were pre­
viously too much trouble, for example scrol­
ling text windows, and menu items with sub­
menus of common choices. It has proved to 
be easy for programmers to borrow code. 
implementing particular types of interaction 
from each other. 

Two major differences between GiGo 
and more conventional systems have caused 
problems of adjustment. They both have posi­
tive and negative aspects. The first is that, in 
GiGo, interactions are conceptually all on the 
top level. That is beneficial, in that applica­
tions code written to deal with one interaction 
sequence need take no special account of the 
possibility that the operator may break off, 
perform all or part of another sequence, and 
then return. On the other hand, the applica­
tion programmer has to make each input han­
dling routine implementing an interaction 
sequence into a state machine, since the same 
code is invoked for every hit in a window.• 

• Actually, this need not be so. There is nothing to 
stop an input routine overwriting its own, or another 
Window's, w_jnp with a pointer to another routine. 
This is in effect maintains the state of the state 
machine in the Window itself. 



The other,, related, problem is that the 
state of any interaction sequence must be 
maintained in static or global variables, rather 
than in the local variables of a function invo­
cation (because each hit causes a new function 
invocation). A "spare" field in the Window 
structure is often used to point to a structure 
containing the state of an interaction. 

There are some capabilities of GiGo 
which have not yet been heavily used. 
Although the "reference" primitive allows for 
multi-level (even recursive) segmentation, in 
practice only a single level is used. Windows 
normally clip, and this gives an opportunity 
no-one has yet used to have symbols that are 
views of parts of a larger picture. 

5. Managing Resources 

The hierarchical division of programs in 
conventional languages into callers and ca/lees 
enforces a hierarchical structure on the 
management of resources. A package must: 

a) provide descriptors for graphical 
resources, and forbid access to such 
resources without a suitable descriptor 
being quoted as authorising the access. 

b) permit subroutines or subprograms hold­
ing descriptors for resources to obtain 
descriptors for all or part of those 
resources to pass on to the subroutines 
or subprograms they themselves invoke. 

It should be possible at each level to invoke 
the same code to allocate the resources avail­
able at that level. This code must process 
requests from the same level for specific 
resources, e.g: 

Activate Window(parent, child : Window ; bl, tr : Coord) 

asking for the child to be mapped to the space 
between bl and tr in the parent's coordinate 
space, requests from below for amounts of 
resource, e.g: 

ReSizeWindow(child: Window; size: Coord) 

asking for the child to be made size.x by 
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size.y big, and warnings from above that its 
resource allocation has changed. It may itself 
request more resources from above, but must 
be prepared to be refused. 

5.1. Transformations 

The mainstream has no means of 
preventing a routine accessing any part of the 
view surface, by altering the current (global) 
normalisation or workstation transformations. 

The mainstream deals with three types 
of coordinate system, WC, NDC, and DC. 
Both CANVAS and GiGo deal with two, WC 
and DC. Although CANVAS permits applica­
tions to express · viewport positions in DC, it 
supports hierarchical dissection of the screen 
by clipping away parts of viewports outside 
their parent. 

The logic of resource management sug­
gests that there should be only a single type of 
coordinate. Each level of the hierarchy is 
given a descriptor for some part of their 
parent's coordinate space. This acts as their 
DC. They may impose their own coordinate 
system on this, to act as their WC, but by 
default will use their parent's space. They 
may pass access to part of their space on to. 
their children. At the root of this hierarchy is 
a system-provided descriptor for the whole 
view surface. 

5.2. Segmentation 

The mainstream has no means of 
preventing a callee affecting the segmentation 
environment of its caller, for example by clos­
ing the open segment. 

The mainstream treats transformations 
and segments as orthogonal. CANVAS treats 
"segments" as the units to be transformed. 
GiGo treats transformations as attributes of 
"segments". The difference between the latter 
is that CANVAS permits more than one map­
ping per "segment". 

The resource management approach sug­
gests that the natural grouping for manipula­
tion is among primitives sent to the same 
descriptor. This is reinforced when segments 
are considered as picture stores. Many devices 
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can erase part of the view surface, and need 
only to regenerate those "segments" erased. 

The mainstream defines its picture store 
as data, CANVAS defines it as procedures, and 
GiGo gives the! application the choice. The 
choice has proved useful. 

5.3. Attributes 

The mainstream has no way of prevent­
ing a callee from disturbing the attribute con­
text of its caller, for example by changing the 
global or workstation attributes. Both CAN­

v AS and GiGo provide mechanisms whereby a 
caller can create an attribute context for a cal­
lee to operate in. 

Note that the resource management 
approach suggests that all graphical resources 
must be managed. The colour map is such a 
resource, a window needs to be allocated not 
merely a patch of device coordinates, but also 
a part of the colour map. 

5.4. Input 

The mainstream has no way of prevent­
ing a callee intercepting input destined for the 
caller. All parts of the application can 
REQUEST or SAMPLE all devices, or remove 
events from the single queue. By contrast, 
both CANVAS and GiGo ensure that the only 
input accessible to a routine is that sent to it 
by the operator pointing at its window. 

The resource management approach sug­
gests that devices are not useful concepts; they 
are unitary and cannot be subdivided to be 
passed on to children. Input must be directed 
by the system to appropriate parts of the 
hierarchy, where the appropriate part is the 
part the operator is pointing at. 

The restriction that input is always pro­
cessed by the window it was pointing to is too 
rigid. For example, pointing at a window and 
saying "grow bigger" is not a command the 
window can process itself. It requires access 
to resources (more view surface) belonging to 
routines further up the tree, and must be pro­
cessed by them. The window pointed at must 
be able to "pass-the-buck", handing the input 
up the tree to more powerful routines. The 

more powerful routines may also want to 
preempt their children's handling of input. An 
"I'll-handle-it" facility is required whereby 
parents can temporarily remove their children 
from consideration by the input process. 

6. Design Principles 

These graphical resource management 
facilities may be provided by a package in the 
conventional way, but are more suitable for 
implementation as a server process, managing 
the physical view surface for several client 
processes. The requirements for such a server 
may be summarised as follows: 

I. Hierarchical dissection of graphical 
resources; each descriptor confers the 
right to manage that resource in the 
same way as it is being managed for 
you. 

2. Only a single type of coordinate system; 
children are positioned in their parent's 
coordinate space. 

3. Only window attributes - each descrip­
tor for some graphical resource carries 
its own attribute context. Note that this 
implies that the resource includes a 
range of entries in the colour map as 
well as a patch of device space. 

4. Window-based input with only a single 
class, and no modes. Two facilities 
needed are: 

5. 

6. 

a) "Pass-the-buck" to let the parent 
handle something the child cannot. 

b) "I'll-handle-this" to let the parent 
preempt the child's handling of 
something. 

Input events queued by the server for 
each window, and sent to the clients 
when they ask. GiGo-style input rou­
tines are really only suited to single­
process systems. 

Pictures in windows defined either by 
display file or by procedure, at the 
application's choice. 
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