
AFDELING INFORMATICA

stichting

mathematisch

centrum

(DEPARTMENT OF COMPUTER SCIENCE)

D.S.H. ROSENTHAL

MANAGING GRAPHICAL RESOURCES

Preprint

~
MC

IW 205/82 AUGUSTUS

kruislaan 413 1098 SJ amsterdam

BJl:lLIOTHl:lK MA!HEMATISCH CENTRUM
-AMSTERDAM-

PJunte.d a:t the. Ma.the.mati..c.a£ C e.n.tJLe., 41 3 K-'l.l.L,{.6laan, A.rrv.dvr.dam.

The. Ma.the.ma.,t,i_c.a£ Ce.n:tJr.e. , 6ounde.d the. 11 -t:.h 06 Fe.blUJ..aJl.y 1946, -l6 a non­
pJr.o6li .ln.6,tlt.cLuon ai.m.lng a.t the. pJr.omotion 06 pl.lll.e. ma.th~ati..C6 and UY.:,
appUc.ati..on6. It -l6 .6pon6oJr.e.d by the. Ne.t:.he.Jr.lan.d6 Gove.Jr.nme.nt t:.hJr.ough t:.he.
Ne.t:.heJli..ancl~ 01igan.lzation 6oJr. the. A.dva.nc.e.me.nt 06 PuJr.e. Ru e.Mc.h (Z .W. 0.) •

CR Catego1ries and Subject Descriptors:
1.3.4 [Computer Graphics]: Graphics Utilities
- graphics packages; 1.3.6 [Computer Graph­
ics]: Methodology and Techniques - device
independence; interaction techniques

General Terms: Design, Standardization

Managing Graphical Resources

by

David S. H. Rosenthal

ABSTRACT

The development of interactive graphics
software has separated into two apparently
incompatible streams. The mainstream,
exemplified by GKS and the Core, and a
"RasterOp" stream, exemplified by Smalltalk
and the Carnegie-Mellon CANVAS package. In
the mainstream, the important concepts are
viewing, segments, output primitives, and vir­
tual input devices. In the RasterOp stream,
the important concepts are windows, the
refresh hierarchy, and pointing for input.

Although it is easy in the mainstream to
provide libraries of output-only routines for
general use, it is difficult to do the same for
input. Although it is possible to write device­
independent interactive applications using
mainstream techniques, . the quality of the user
interface may vary wildly as they are ported.
These problems are caused by the
mainstream's lack of the mechanisms needed
to control the allocation of real graphical
resources within the application:

1. No hierarchy of pictures on the view
surface. All parts of the application
have control over all parts of the view
surface.

This was one of the invited topical papers at the
ACM-SIGGRAPH Workshop on Graphics Input In­
teraction at Seattle, Wash. on June 2-4th 1982. It ap­
pears in the issue of Computer Graphics devoted to
the Workshop.

2.

3.

No connection between viewing and seg­
mentation. The viewing parameters used
to create a segment are not attributes of
the segment.

All parts of the application have access
to all the input devices. It is up to each
part to decide if an input is relevant, or
if not, what to do with it.

1. Introduction . ·

"Whenever I'm caught between two
evils, I take the one I haven't tried
before."

Mae West.

The development of interactive graphics
software has separated into two apparently
incompatible streams. The mainstream,
exemplified by GKS[S] and the Core[ll], and a
"RasterOp" stream, exemplified by
Smalltalk[6] and the Carnegie-Mellon CANVAS
package[2]. In the mainstream, the important
concepts are viewing, segments, output primi­
tives, and virtual input devices[?]. In the
RasterOp stream, the important concepts are
windows, the refresh hierarchy, and pointing
for input.

The differences between the streams may
seem to reflect the differences in the hardware
they address, but the example of a window­
manager graphics system driving storage tube
terminals in Edinburgh refutes this[9]. The
RasterOp stream is attempting to provide
facilities whereby the graphical resources can
be managed; whereby routines and sub­
programs can be provided with controlled
access to part of the resources controlled by
their caller. The Seillac II workshop[4]
stressed the importance of building interactive
applications from existing components. It is
only in the context of graphical resource
management that this can successfully be
done, since the invoker of an existing com­
ponent can be confident that it will only access
the resources it has been given.

The mainstream, the RasterOp stream,
and the storage-tube window manager will
now be described in a common format, and
then assessed against the goal of resource
management. Finally, the design principles
for a package based on resource management
will be presented.

If standards proposals are to succeed,
they must be based on codifying the "best
current practice" and not on radical innova­
tion, no matter how inviting. However, "best
current practice" is constantly changing as
hardware and software evolve: The critique of

the models underlying current standards pro­
posals that follows is not to be interpreted as
advocating their rejection, but rather as an
attempt to discover the directions in which
current practice will develop.

2. The Mainstream

The concepts forming the backbone of
the mainstream graphics packages are power­
ful and seductive abstractions, but are
strangely unrelated to one another. At the
start of the standards effort, this orthogonality
was highly prized for the simplicity and struc­
ture it gave to the documents, but in the
development since then it has been overridden
by other criteria.

2.1. Transformations

The concept of viewing was introduced
at Seillac I as the fundamental criterion for
dividing the functions of a graphics package
from those of the rest of the world. Graphics
was viewing, everything else was modelling. It
was based on the synthetic camera analogy,
with a scene defined in a single world coordi­
nate space being viewed as if by a camera
located at a single point in the space (Fig. 1).

World Coordinates

View

Transform

Device Coordinates

Fig. I - Synthetic Camera Analogy

This simple analogy has since broken
down in two directions. The two breakdowns
have been seen as independent, but have now
completely vitiated the power of the analogy.

The stated objective of the Core was to
provide program (and programmer) portability
between devices. The minimal interpretation
of this was that it must be possible for the
same program, at different times, to drive
different devices. However, the implicit intent
of the Core was to make it possible for the
same program to drive different devices simul­
taneously. To support this, it was necessary to

2

split the single . transformation from world to
device coordinates into a two-stage process.
Coordinates were first transformed by a single
global transfomtation to a normalised device
coordinate space, and then by one of possibly
many device-specific transformations to device
space (Fig. 2).

World Coordinates

Transfo~
I View I

Normalised Device Coordinates

Transfo~
Device I
Device

Coordinates

Device

Transform

Device

Coordinates

Fig. 2 - CORE Transformations

There are almost no graphical applica­
tions in which the only pictures generated con­
sist of a single view of a single object occupy­
ing the whole view surface. Thus, pictures will
really be generated using several "world" coor­
dinate systems. Consider a drawing system in
which part of the screen shows a small view of
the whole drawing, part an expanded view of
the area being manipulated, part some sym­
bols from a symbol library, part some menu
items, and so on. If the system embodies only
a single viewing transformation, the applica­
tion must laboriously re-create the correct
viewing transfonnation for the part of the
display it wishes to modify. Further, a single
transformation system places the burden of
re-transforming locator input coordinates from
NDC space to the space used by the applica­
tion entirely on the application. These
requirements led GKS to include multiple nor­
malisation transformations (Fig. 3)[10].

2.2. Segmentation

The concept of segmentation was intro­
duced to avoid the problem of supplying
names for individual primitives to identify
them for post-generation manipulation. It also
addressed the problem of refreshing the pic­
ture after changes, storing a description of the

World I

Coordinates

View

Transform

World 2

Coordinates

View

Transform

Normalised Device Coordinates

Device

Transform

Device

Coordinates

Device

Transform

Device

Coordinates

Fig. 3 ~ GKS Transformations

picture as output primitives in a segmented
display file. The range of permitted manipula­
tions was modelled on the capabilities of a
typical refresh vector display, highlighting,
visibility and detectability changes, and seg­
ment transformations.

Segments are created at will, initially in
an open state. At most one segment may be
open. Primitives output while a segment is
open become part of it, and are then subject
only to changes of the segment attributes until
the segment is eventually destroyed.

2.3. Attributes

Mainstream packages support one or
more of the following types of attribute for
primitives and segments:

1. Global attributes, applicable to appropri­
ate primitives as they are output and not
subject to retro-active modification. For
example:

SET LINE STYLE(DOTTED)

2. Segment attributes, applicable to each
segment and subject to retro-active
modification. For example:

SET HIGHLIGHTING(SEG,ON)

3. Workstation attributes, generally selected
from a table by a global index attribute,
applicable to appropriate primitives, and
subject to retro-active modification. For
example:

SET COLOUR MAP(WS,INDEX,COLOUR)

2.4. Logical Input Devices

Main.stream input facilities are built
round the logical input device concept. Ini­
tially, this specified that each workstation had
several logical input devices, divided into
classes, according to the type of value they
return (Fig. 4). Typical classes are LOCATOR,
returning a position (and, for GKS, a normali­
sation transformation ID - Fig. 5), VALUA­
TOR, returning a real number, and PICK,
returning a segment name and a pick
identifier.

Oasses

LOCATOR Position (WC)

+ Transformation ID.

STROKE Positions (WC)

+ Transformation ID.

VALUATOR Real Number
CHOICE Integer
PICK Segment Name

+ Pick ID.
STRING Characters

Modes

REQUEST REQUEST LOCATOR()

SAMPLE SAMPLE LOCATOR()

EVENT AWAIT EVENT()

GET LOCATOR()

THEREFORE

Eighteen different functions to obtain input.

Fig. 4 - GKS Input

The concept has been refined in several
ways[lO], the most obvious of which are:

3

This is normalisation

transformation 2.

This is normalisa-

tion transforma-

tion I.

1.

2.

This is normalisa-

tion transforma-

tion 3.

Fig. 5-'- GKS Locator Input

Each device can operate in different
modes, specifying how the value is
obtained from the device. Typical
modes are REQUEST, in which the appli­
cation is suspended until input is avail­
able, SAMPLE, in which the device is
polled for its current value, and EVENT,
in which the device creates event records
describing its value and adds them to an
input queue.

Each device has attributes , including
parameters for its echo implementation,
initial values, restrictions on its value,
and so on. These attributes in part pro­
vide the link with output, at least at the
device level.

3. The RasterOp Stream

The consensus established by the stan­
dards effort makes it possible to pontificate
about the mainstream with confidence. No
such consensus exists in the RasterOp stream;
Gene Ball's CANVAS package[2] is used as an
example. It was developed at Carnegie­
Mellon, as part of the SPICE project, in Pas­
cal. Other systems have been developed in
more exotic languages, such as
Smalltalk[6, 13], and LISP[l2], and are thus
less easy to contrast with mainstream pack­
ages.

4

3.1. Transformations

The application using CANVAS creates
output in an abstract (integer) coordinate
space called a canvas . New canvases may be
created at will; there is no implementation­
defined limit on their number as there is with
GKS' normalisation transformations. All out­
put operations must quote a descriptor for a
canvas; canvases are always available for out­
put irrespective of whether the output would
be visible. Contrast this with GKS' concept of
a current normalisation transformation,
applied to output until another is selected.

A canvas, and the graphics sent to it,
become visible as the result of a two-stage
process. First, the canvas must be mapped to
a viewport. Viewports describe rectangular
patches of the view surface. Canvas (=world)
coordinates are mapped to viewport (=device)
coordinates either by scaling or by clipping a
specified range of canvas coordinates to the
available range of device coordinates. This
mapping corresponds to the mainstream's
window/viewport transformation.* A viewport
may display at most one canvas, but a canvas
may be mapped simultaneously to many
different viewports. Multiple canvases are
analogous to multiple normalisation transfor­
mations; multiple viewports for a single can­
vas are analogous to multiple workstations.

Each viewport provides access to a
specific rectangle of display space. These rec­
tangles may overlap, and thus several different
canvases may each try to control the state of a
particular pixel. CANVAS resolves these
conflicts by organising the active viewports
into a hierarchy ,called the Refresh Tree. At
the root of this tree is a special, system­
provided viewport giving access to the whole
screen. A viewport in the tree may have any
number of children, each of which may lay
claim to any part of the display, but they will
only have visible effect within the part of the
display controlled by their parent. Thus, a
primitive output to a canvas C that is mapped
to a viewport V will be visible in that

* Except that the scale/ clip choice is made indepen­
dently for each axis.

viewport if the canvas coordinate Pc is
mapped to a viewport coordinate P. which
lies within each of the sequence of viewports:

V, parent (V), parent (parent (V)), · · · Root Viewport.

If a viewport has more than one child,
they may also lay claim to the same pixels.
This conflict is resolved by introducing a pre­
cedence order among the children of one
parent (siblings). Viewports may be either
transparent or opaque . Opaque viewports
obscure any siblings of lower precedence they
overlap, whereas transparent viewports share
access to their pixels with their lower pre­
cedence siblings (Fig. 6).

Root Viewport

Viewport A

I'm an

opaque

child of the rt B

Root

I'm also a child of the

Root, but my precedence Viewport

is lower than A's.

All that is lef

rather bigger Vi

that is also a ch

Fig. 6 - The Refresh Tree

Positioning a viewport m this tree
requires access to its parent. Thus, control
over part of the view surface may safely be
delegated, by passing a viewport descriptor.
The possessor of this descriptor will be able to
create a sub-tree depending from this "root",
but cannot affect the root's position in the
tree, nor affect any part of the view surface
outside the root's parent.

In this way, CANVAS provides a mechan­
ism for controllirig the allocation of the scarce
view surface resource among the uses that
need to share it. Programs may safely call
other programs or modules and pass a
viewport descriptor, confident that neither a

passive nor an, interactive callee can affect
other parts of the view surf ace.

3.2. Segmentation

In the mainstream, segments serve two
purposes; to name parts of the display (groups
of primitives) for manipulation, and to store a
picture description for future regenerations.
CANVAS does not support a segment concept,
but in some ways the combination of the can­
vas and viewport concepts play the same role.

Just as segments have visibility and
detectability attributes, so viewports may be
placed into and· removed from the refresh tree.
Just as segments may be highlighted,
RasterOps may be performed within canvases,
for example to invert a region. On the other
hand, unlike segments, canvases are always
open, and are associated with particular
patches of the view surface.

CANVAS does not support a description
of the picture as primitives at all. A viewport
may (but need not) store the bitmap represen­
tation of the parts of other viewports it
obscures, and restore them when they are
obscured no longer. A viewport may (but
need not) store its own complete bitmap
representation, and automatically refresh parts
no longer obscured. No storage other than
bitmaps is provided. At higher levels, the pic­
ture is defined procedurally ; the system
arranges, via the input mechanism, for
appropriate application code to be invoked
when regeneration is required.

3.3. Attributes
CANVAS supports only a single type of

attribute, applied to all appropriate primitives
sent to a particular canvas. For example:

SetCo/or(c: Canvas; ink: Color)

Thus each canvas provides its own attribute
context; a callee can be invoked with a canvas
descriptor in the knowledge that it cannot
affect other canvas' attributes.

Note, however, that the management of
the view surface (by viewports) is separate

5

from the management of the attributes (by
canvas). These "call-by-value" facilities can
be provided independently for either.

3.4. Input

CANVAS provides a single input class,
the KeyEvent, into which all physical device
inputs are mapped.

KeyEvent = packed record
Cmd: 0 .. 255;
Ch: char;
X, Y: integer

end;

Each canvas has an input queue, containing
zero or more of these events. When a
KeyEvent is generated, it is added to the tail
of the queue of the canvas mapped to the
deepest viewport containing the position (Fig.
7).

Canvas A Canvas B

Events here queued

for Canvas B.

Events here

queued for Canvas

A.
Canvas C

Events here

queued for Canvas

C.

Fig. 7 - Canvas Input

Each canvas also has a translation table,
loaded from a file at run-time and used to
map from the operator's keystrokes and but­
ton pushes to application-specific commands.
For example, the editor interprets

Cmd = cDELPREVWD

as "delete the previous word". It is unaware
that the translation table for its canvas
specifies that this command is generated by

6

pressing the <CY:RL><SHIFT>W keys.

Thus, the only "device" an application
sees is its canvas. The details of how the phy­
sical devices generate KeyEve1its in its queue
are of no interest; indeed it has no way of
addressing "devices" at all. Relevant inputs
for the application are directed to it by point­
ing at any of the viewports displaying its can­
vas; irrelevant inputs point to some other can­
vas' viewport and are never seen.

CANVAS provides two input modes;
EVENT and SAMPLE. It also uses the event
queue more generally than its name implies,
permitting the application to push events back,
and generate events itself, to assist in parsing,
and also permitting the system to synthesise
events, for example to request picture regen­
eration. SAMPLE mode might be handled more
elegantly in this way too, by allowing the
application to trigger the system into queuing
an event without operator action.

A canvas may be placed in forwarding
mode, when all events directed at it will be
passed up the refresh tree to its parent. The
program pulling an event from a canvas'
queue may use this if it decides the request
cannot be handled at this level, setting for­
warding mode and pushing the event back will
send it to the parent.

4. Doing Without RasterOp

It might be thought that the structure of
CANVAS was peculiar to those systems with
RasterOp, but this is not so. Some time ago I
wrote an experimental package in C for
UNIX,* called GiGo[9]. It was based on my
reactions to GKS, and on ideas from
DLISP[12] and CURSES[l]. The intention
was to produce a graphics system with as few
underlying concepts as possible.

* UNIX is a Trademark of Bell Laboratories.

4.1. Transformations

Scanning the list of concepts in GKS,
several were obviously superfluous. The first
was normalised device coordinates. This left
only a single level of transformation, mapping
between world coordinates, defined by the
application:

typedef struct {
float n_x, n-1;
} Ncoord;

and device coordinates, defined by the
hardware:

typedef struct {
int d_x, d-1;
} Dcoord;

The starting point for the Window concept
thus became a transformation between appli­
cation and device coordinates:

typedef struct {
Dcoord w -1o, whi;
N coord w -11, w _ur;
} Window;

Our Tektronix terminals have slave
screens, so the idea that there were multiple
view surfaces was natural. A Screen data type
was needed, and a way of keeping track of
which view surface the viewport was on:

typedef struct {
Dcoord w-1o, whi;
N coord w -11, w _ur;
Screen *wscrn;
} Window;

I* Active on * I

This represented a window /viewport
transformation, and therefore a patch of view
surface, so there were going to be many of
them. A list of active ones was needed:

typedef struct WIN DO {
struct WINDO *w_next;
Dcoord w _Jo, w _hi;
Ncoordw_J[, w...ur;
Screen *w _scrn;
} Window;

4.2. Segments

/* Link *I

If a Window corresponded to a patch of
view surface, could it not also correspond to
the graphics in that patch? The concepts of
segments and segment storage vanished, and
the Window structure grew a bit:

typedef struct WIN DO {
struct WINDO *w_next;
Dcoord w _Jo, w -hi;
N coord w _J[, w ...ur;
Screen *w _scrn;
Prim *w -Prim; I* Display File * I
} Window;

Holding display files in the memory of a
PDP-11 is simple but impractical for complex
pictures. The alternative is to permit the
application 1lo define the picture procedurally :

typedef struct WINDO {
struct WINDO *w_next;
Dcoord w _Jo, w _hi;
Ncoordw_J/, w...ur;
Screen *w _scrn;
Prim *w -Prim;
int (*w__{)utp)(); I* Redraw*/
} Window;

If w _Joutp is not NULL, it points to a
routine capable of re-creating the picture in
the Window. If it is NULL, then a list of prim­
itives is stored with the Window, ready to be
interpreted by the system to re-create the pic­
ture.

This far, Windows provide for the roles
of segments as manipulatable parts of the pic­
ture, and as picture stores for regeneration.
They can also play the role of segment as sym-

7

bol, a picture component ready to be incor­
porated in future pictures. All that is needed
is to allow Windows not to be active on any
Screen, with w ___scrn being NULL. These Win­
dows represent potential, instead of actual,
patches of view surface. An additional primi­
tive is then provided, a reference to a window,
giving multi-level segmentation (cf. GKS'
INSERT SEGMENT).

4.3. Attributes

All GiGo's attributes are Window attri­
butes; both "segment" attributes such as back­
ground colour, and "primitive" attributes such
as current linestyle. They are all stored in the
Window structure, and no manipulation of a
Window's attributes can affect the attributes of
another Window.

4.4. Input

The model of input underlying GiGo is a
complete break with the. device model. The
various aspects of this model were rejected as
follows:

1. Device classes had to go. They were a
way of segregating input into different
kinds, and experience with operating sys­
tems illustrated the advantages of unify­
ing all sources of input under a single
concept, such as the file[8]. Thus, all
physical devices were mapped into a sin­
gle class, returning a device coordinate
and an integer code. A button box
would return a valid code and a pre­
stored coordinate. A digitiser might
return a valid coordinate and a pre­
stored code.

2. Input modes had to go, because they also
forced the application to choose between
the different ways input might arrive.

3. Input devices also had to go. They were
either intimately associated with a view
surface, as with the Tektronix cursor, or
could be described as an input-only
screen, as with the digitiser (or the key­
board).

Instead, inputs are treated like inter­
rupts, with an input-handling routine attached

8

to each Window:~

typedef struct WIN DO {
struct WINDO *w_next;
Dcoord w _Jo, w .Jii;
Ncoordw_J[, w_ur;
Screen *w _scrn;
Prim *w-Prim;
int (*w_outp)();
int (*w_jnp)(); I* Input*/
} Window;

When the system receives an input, it
scans the active Windows on the correspond­
ing view surf ace in inverse priority order until
the position lies within one, transforms the
position to the corresponding application
space, and invokes the input routine with the
position, the code, and the Window as argu­
ments (Fig. 8).

Window A Window B

Hit here for Window

B's input routine.

Hit here for Win-

dow A's input

routine.
Window C

Hit here for Win-

dow C's input rou-

tine.

Fig. 8 - GiGo Input

There is (conceptually) no queue; if an appli­
cation expects that responding to a particular
input will take a long time, it is expected to
create another process to do so.

Inputs may be synthesised by one input
routine calling another directly; they are just
routines with known parameter lists. In this
way, the push-back facility of CANVAS can be
imitated.

4.5. Experience

The first version of GiGo took about
four weeks to write. It has been available for
use in the Architecture department in Edin­
burgh for more than a year, and three sub­
stantial applications have used it. They are:

- A graphics front-end for the logic pro­
gramming language Prolog[3], providing
the user with a window for text interaction,
and others for graphics.

- A re-write of a system for maintaining a
database describing the accommodation,
curriculum, and staff and student numbers
of schools in Scotland.

- A ground-modelling system.

The experience of application programmers
has been generally favourable. Their com­
ments have led to changes in various areas,
particularly in the strategy for deferring
updates, and the handling of text 1/0.

Using GiGo has encouraged them to
provide user interface facilities that were pre­
viously too much trouble, for example scrol­
ling text windows, and menu items with sub­
menus of common choices. It has proved to
be easy for programmers to borrow code.
implementing particular types of interaction
from each other.

Two major differences between GiGo
and more conventional systems have caused
problems of adjustment. They both have posi­
tive and negative aspects. The first is that, in
GiGo, interactions are conceptually all on the
top level. That is beneficial, in that applica­
tions code written to deal with one interaction
sequence need take no special account of the
possibility that the operator may break off,
perform all or part of another sequence, and
then return. On the other hand, the applica­
tion programmer has to make each input han­
dling routine implementing an interaction
sequence into a state machine, since the same
code is invoked for every hit in a window.•

• Actually, this need not be so. There is nothing to
stop an input routine overwriting its own, or another
Window's, w_jnp with a pointer to another routine.
This is in effect maintains the state of the state
machine in the Window itself.

The other,, related, problem is that the
state of any interaction sequence must be
maintained in static or global variables, rather
than in the local variables of a function invo­
cation (because each hit causes a new function
invocation). A "spare" field in the Window
structure is often used to point to a structure
containing the state of an interaction.

There are some capabilities of GiGo
which have not yet been heavily used.
Although the "reference" primitive allows for
multi-level (even recursive) segmentation, in
practice only a single level is used. Windows
normally clip, and this gives an opportunity
no-one has yet used to have symbols that are
views of parts of a larger picture.

5. Managing Resources

The hierarchical division of programs in
conventional languages into callers and ca/lees
enforces a hierarchical structure on the
management of resources. A package must:

a) provide descriptors for graphical
resources, and forbid access to such
resources without a suitable descriptor
being quoted as authorising the access.

b) permit subroutines or subprograms hold­
ing descriptors for resources to obtain
descriptors for all or part of those
resources to pass on to the subroutines
or subprograms they themselves invoke.

It should be possible at each level to invoke
the same code to allocate the resources avail­
able at that level. This code must process
requests from the same level for specific
resources, e.g:

Activate Window(parent, child : Window ; bl, tr : Coord)

asking for the child to be mapped to the space
between bl and tr in the parent's coordinate
space, requests from below for amounts of
resource, e.g:

ReSizeWindow(child: Window; size: Coord)

asking for the child to be made size.x by

9

size.y big, and warnings from above that its
resource allocation has changed. It may itself
request more resources from above, but must
be prepared to be refused.

5.1. Transformations

The mainstream has no means of
preventing a routine accessing any part of the
view surface, by altering the current (global)
normalisation or workstation transformations.

The mainstream deals with three types
of coordinate system, WC, NDC, and DC.
Both CANVAS and GiGo deal with two, WC
and DC. Although CANVAS permits applica­
tions to express · viewport positions in DC, it
supports hierarchical dissection of the screen
by clipping away parts of viewports outside
their parent.

The logic of resource management sug­
gests that there should be only a single type of
coordinate. Each level of the hierarchy is
given a descriptor for some part of their
parent's coordinate space. This acts as their
DC. They may impose their own coordinate
system on this, to act as their WC, but by
default will use their parent's space. They
may pass access to part of their space on to.
their children. At the root of this hierarchy is
a system-provided descriptor for the whole
view surface.

5.2. Segmentation

The mainstream has no means of
preventing a callee affecting the segmentation
environment of its caller, for example by clos­
ing the open segment.

The mainstream treats transformations
and segments as orthogonal. CANVAS treats
"segments" as the units to be transformed.
GiGo treats transformations as attributes of
"segments". The difference between the latter
is that CANVAS permits more than one map­
ping per "segment".

The resource management approach sug­
gests that the natural grouping for manipula­
tion is among primitives sent to the same
descriptor. This is reinforced when segments
are considered as picture stores. Many devices

10

can erase part of the view surface, and need
only to regenerate those "segments" erased.

The mainstream defines its picture store
as data, CANVAS defines it as procedures, and
GiGo gives the! application the choice. The
choice has proved useful.

5.3. Attributes

The mainstream has no way of prevent­
ing a callee from disturbing the attribute con­
text of its caller, for example by changing the
global or workstation attributes. Both CAN­

v AS and GiGo provide mechanisms whereby a
caller can create an attribute context for a cal­
lee to operate in.

Note that the resource management
approach suggests that all graphical resources
must be managed. The colour map is such a
resource, a window needs to be allocated not
merely a patch of device coordinates, but also
a part of the colour map.

5.4. Input

The mainstream has no way of prevent­
ing a callee intercepting input destined for the
caller. All parts of the application can
REQUEST or SAMPLE all devices, or remove
events from the single queue. By contrast,
both CANVAS and GiGo ensure that the only
input accessible to a routine is that sent to it
by the operator pointing at its window.

The resource management approach sug­
gests that devices are not useful concepts; they
are unitary and cannot be subdivided to be
passed on to children. Input must be directed
by the system to appropriate parts of the
hierarchy, where the appropriate part is the
part the operator is pointing at.

The restriction that input is always pro­
cessed by the window it was pointing to is too
rigid. For example, pointing at a window and
saying "grow bigger" is not a command the
window can process itself. It requires access
to resources (more view surface) belonging to
routines further up the tree, and must be pro­
cessed by them. The window pointed at must
be able to "pass-the-buck", handing the input
up the tree to more powerful routines. The

more powerful routines may also want to
preempt their children's handling of input. An
"I'll-handle-it" facility is required whereby
parents can temporarily remove their children
from consideration by the input process.

6. Design Principles

These graphical resource management
facilities may be provided by a package in the
conventional way, but are more suitable for
implementation as a server process, managing
the physical view surface for several client
processes. The requirements for such a server
may be summarised as follows:

I. Hierarchical dissection of graphical
resources; each descriptor confers the
right to manage that resource in the
same way as it is being managed for
you.

2. Only a single type of coordinate system;
children are positioned in their parent's
coordinate space.

3. Only window attributes - each descrip­
tor for some graphical resource carries
its own attribute context. Note that this
implies that the resource includes a
range of entries in the colour map as
well as a patch of device space.

4. Window-based input with only a single
class, and no modes. Two facilities
needed are:

5.

6.

a) "Pass-the-buck" to let the parent
handle something the child cannot.

b) "I'll-handle-this" to let the parent
preempt the child's handling of
something.

Input events queued by the server for
each window, and sent to the clients
when they ask. GiGo-style input rou­
tines are really only suited to single­
process systems.

Pictures in windows defined either by
display file or by procedure, at the
application's choice.

REFERENCES ,

[l]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[IO]

[11]

K. C. R. C. Arnold, "Screen Updating
and Cursor Movement Optimization: A
Library Package," Computer Systems
Research Group, Dept. EECS, Univer­
sity of California, Berkeley, California.

J. E. Ball, "Canvas: the Spice Graphics
Package," S108, Computer Science
Dept., Carnegie-Mellon University,
Pittsburgh, Pennsylvania (October 1981).

W. Clocksin and C. Mellish, Program­
ming in Prolog, Springer Verlag, Berlin
(1981).

R. A. Guedj and others (eds.), IFIP
Workshop on Methodology of Interaction,
(publishers North-Holland), Seillac,
France (May 1979).

ISO, "Graphical Kernel System (GKS)
- Functional Description," ISO DP
7942 (January 1982).

D. H. H. Ingalls, "The Smalltalk Graph­
ics Kernel," BYTE, pp.168-194 (August
1981).

J. C. Michener and J. D. Foley, "Some
Major Issues in the Design of the Core
Graphics System," Computing Surveys
10(4), pp.445-463 (December 1978).

D. M. Ritchie and K. Thompson, "The
UNIX Time-Sharing System," Comm.
Assoc. Comput. Mach. 17(7), pp.365-375
(July 1974).

D. S. H. Rosenthal, "'Methodology in
Computer Graphics' Re-examined,"
Computer Graphics 15(2), pp.152-162
(July 1981).

D. S. H. Rosenthal, J. C. Michener, G.
Pfaff, R. Kessener, and M. Sabin, "The
Detailed Semantics of Graphics Input
Devices," To be presented at, SIG­
GRAPH '82, Boston, Mass (July 1982).

SIGGRAPH-ACM (GSPC), "Status
Report of the Graphics Standards Plan­
ning Committee," Computer Graphics
13(3) (August 1979).

[12] .

[13]

11

R. F. Sproull, "Raster Graphics for
Interactive Programming Environments,"
CSL-79-6, XEROX PARC, Palo Alto,
California (June 1979). (Abridged as
Computer Graphics 13(2) August 1979,
pp. 83-93)

S. K. Warren and D. Able, "Rosetta
Smalltalk: A Conversational Extensible
Microcomputer Language," SIGSMALL
Newsletter 5(2), pp.36-45 (April 1979).

MC NR

35227

n c;rp
W v.;..~e,

