
AFDELING INFORMATICA

stichting

mathematisch

centrum·

(DEPARTMENT OF COMPUTER SCIENCE)

D.S.H. ROSENTHAL & P.J'.W. TEN HAGEN

GKS IN C

Preprint

~
MC

IW 204/82 AUGUSTUS

kruislaan 413 1098 SJ amsterdam

ldltlLIOIHl:t:K Mr"\1111::MAflSCH Cf:NTRU.M

P.unted <Lt .the M<Lthematic.at Centll.e, 413 Kll.!U.6laan, Am6.teJul.am.

The Mathematic.at Centll.e , 6ounded .the 11-.th 06 Febll.Uall.y 1946, ,l6 a non­
pll.o 6U ,i_w.,:tU:u,Uo n al.ming at .the pll.Omo:Uo n o 6 pUIC.e mathematic.-6 and w
appUc.atiow.,. I.t ,l6 ¢pon6oll.e.d by .the Ne.thell.land6 Govell.nment .thll.ough .the
Ne.theJrl_and6 Oll.ganization 6oll. .the Adva.nc.ement o0 PUll.e R~ea.JC.c.h (Z.W.O.).

CR Categories and Subject Descriptors:
I.3.4 [Computer Graphics]: Graphics Utilities
- graphics packages;

General Terms: Standardization

GKS in C

by

David S. H. Rosenthal
Paul J. W. ten Hagen

ABSTRACT

A binding of GKS, the draft ISO standard
for 2D graphics software, to the programming
language C is presented, together with the
principles underlying its design. The binding
is compared with the binding to FORTRAN.

An implementation of GKS according to
this binding is also described, particular atten­
tion being paid to the techniques for segment
storage, input,. and workstations. The imple­
mentation is assessed against implementations
in FORTRAN.

This paper will be presented at the EuroGraphics '82
conference, in Manchester, on September 9thd 1982.

1. Introduction

"Can blue men sing the Whites,
or are they hypocrites
for singing Blue?"

Bonzo Dog Do-Dah Band

GKS[3], the ISO draft international stan­
dard for 2D graphics software, is specified in a
language-independent form. It is anticipated
that bindings of this standard to popular pro­
gramming languages will be produced from
various sources, though to date the only bind­
ings available have been to FORTRAN, pri­
marily from DIN[2].

A language binding for GKS specifies two
things, how the abstract data types used in the
GKS document are mapped onto data types
supported by the host language, and how the
abstract function names and argument lists of
the document are mapped onto host language
function specifications.

A language binding to the programming
language C[6] has been developed, and is
being used as the basis for an implementation
of GKS for UNIX.* This binding appears to
differ, in many respects, from the DIN FOR­
TRAN binding. These differences stem from
the principles used to map GKS concepts onto
C language com:epts, and provide an interest­
ing sidelight on the GKS document.

2. The C Binding

The GKS document specifies rules for
language bindings. As recently revised, they
are:

1. All GKS functions, other than inquiry
functions, must appear atomic to the appli­
cation.

2. The language binding should specify, for
each GKS abstract function name, exactly
one identifier acceptable to the language.

3. The language binding should specify, for
each of the GKS data types, a correspond­
ing data type acceptable to the language.
Other data types may be specified as con-

* UNIX is a Trademark of Bell Laboratories.

venient, in terms of the GKS data types.

4. The language binding should specify, for
each GKS abstract function, how the
corresponding language function is to be
invoked, and the means whereby each of
the input parameters is supplied to, and
each of the output parameters received
from, the language function.

5. The language binding should specify a set
of identifiers, acceptable to the language,
which may be used by an implementation
for internal communication.

Using these rules, it would be simple to
produce a binding that would work, by inter-
preting the GKS abstract function
specifications directly as C function
specifications. It would, however, force the
application programmer to write a stilted,
artificial dialect of C, and would impose con­
siderable inefficiencies on the implementation.
Two additional principles were therefore
added.

a) Do not interpret the document so literally
as to prevent the implementor or the appli­
cation programmer making use of the full
range of C's facilities.

b) Do not interpret the document so literally
as to force inefficient techniques on the
implementor.

Of course, if applied injudiciously these
principles would vitiate the standard. A rea­
son for publishing the C binding at this stage
is to assist in the development of a body of
"case law" to determine acceptable bindings.

The complete C binding is set out in the
Appendix. The following sub-sections discuss
those areas in which the additional principles
found particular application.

2.1. Data Types

The C binding specifies each different GKS
data item as an individual type, using the set
of GKS abstract types. These are themselves
defined using C's basic types. This has three
advantages. The practical one is that this
improves the capacity of lint [4], the C type­
checking program, to find bugs in both the
implementation and application programs.

2

The aesthetic one is that it encourages applica­
tion programmers to specify meaningful types
for values they supply to GKS. The imple­
mentation advantage is that the representa­
tions of types can be adjusted in the light of
experience, without affecting the text of appli-

. * cation programs.

2.2. Control

GKS specifies that names for picture seg­
ments and workstations are supplied by the
application. The specification for the
CREATE SEGMENT operation is

CREATE SEGMENT
Parameter: I segment name N

with the name of the newly created segment
an input parameter. Arbitrary names of this
kind are essential for some languages, but they
impose an extra burden on the graphics ker­
nel. It must maintain an index of these appli­
cation names, and search it on each segment
operation to locate the appropriate segment
information. The concept of the open seg­
ment, to which all output primitives are
addressed may be partly traced to this point.
Opening an individual segment avoids having
to search the segment name index on every
primitive.

C, unlike many languages, directly sup­
ports the concept of names for objects. An
object, for example a segment, will be
described by an instance of a (probably struc­
tured) data type. This instance will have an
address, which is a value accessible to C, and
forms the natural name for the object.

The natural definition for the
CREA TE SEGMENT operation in C would be as
a function, returning the address of the
instance of the structured data type (Seg)
which described the newly created segment.

Seg *newsegO

Thus the name of the newly created segment

* lint does not enforce its rules, so application pro­
grammers are free to ignore its warnings. However,
complaints from those who do so are not well re­
ceived.

would be invented by the system.

However, this definition is inadequate.
Segments may be written to a metafile, and
then read back by a different program.
Pointers as names are private to a particular
program, and are not meaningful for a
metafile used to communicate between pro­
grams. The correct definition for
CREATE SEGMENT is

Seg *newseg(n)
Segname n;

where n is the external name for the segment.
Note the analogy with the way in which the
UNIX open system call[?] provides a process
with a local name for the global file object. In
both cases, the external name is used only in
the open operation, all other access is via the
local name.

It might be thought that bundle indices
were also candidates for implementation as
pointers. However, the role of bundle indices
is as names global to the set of workstations,
both of this program and, via the metafile, to
all GKS systems. These names are interpreted
differently by each workstation; the contents
of the bundle tables are workstation-specific.

2.3. Inquiries

A GKS application may find out system
parameters and the current settings of state
variables using inquiry functions. However,
the C binding almost completely eliminates
inquiry functions, as such. The application is
provided with the data type definitions of the
structures implementing the various GKS state
lists. Whenever a state list is created, for
example by OPEN SEGMENT, the corresponding
function returns the address of the newly
created state list structure.

The application could thus refer to the
fields of the structure directly, but in doing so
would insist that all state list structures were
always in the program's address space. As, on
smaller configurations, address space is scarce,
this is not acceptable. It would seem attrac­
tive to replace the multitude of inquiry func­
tions with a function for each state list whose
arguments were the state list pointer and the

field name within it, but:

field names alone are not valid expressions
(and thus function arguments) in C

specifying the type of the value returned by
such a function is problematic.

Instead, the application invokes inquiry
macros, looking like functions with these argu­
ments. They are converted into in-line C by
the pre-processor and thereby escape the res­
trictions on the use of field names. The
definitions of the macros are part of the imple­
mentation, and provide hooks for paging the
state lists between the program's address space
and a file.

So that they may safely be called from
error handling routines, GKS inquiry func­
tions do not themselves generate errors.
Instead, they set an output parameter indicat­
ing whether the value inquired for is available.
In C, this precaution is not required. If the
application has a valid state list address, then
the value is available. Otherwise, the value is
both unavailable and inaccessible.

The few remaining true inquiry functions
are those computing a value from input
parameters rather than returning a value from
the state list. They are INQUIRE TEXT EXTENT,

because it requires a string as input, and the
three pixel inquiries

INQUIRE PIXEL ARRAY DIMENSIONS

INQUIRE PIXEL ARRAY

INQUIRE PIXEL

both because they require rectangles or points
as input, and because they should, if possible,
be implemented using bit-map read-back from
the device.

2.4. Attribute Settings

As the application has direct access to the
state list structures, it is plausible to assume
that the attribute setting functions might also
be abolished, the application merely assigning
values to the appropriate fields of the struc­
tures. Unfortunately, in some implementa­
tions some or all attribute settings may have
side effects. For example, setting a segment's
visibility attribute will cause visible changes to

3

the display.

Further, GKS specifies that attribute
values are checked for validity when they are
set, not when they are used. Thus, simple
assignments are inadequate; various opera­
tions may need to be invoked when the attri­
bute is set.•

2.5. Errors

The normal C environment provides a file
especially for error reporting (stderr). When a
program is invoked, this file will normally be
attached to the terminal, but may be directed
elsewhere. The. "error file" argument to
OPEN OKS is thus superfluous, and indeed
harmful, since if it is not set to stderr it will
prevent the error file being re-directed.

The second, and more fundamental point is
that it was decided to structure the binding so
that as many errors as possible could be
detected by lint's type-checking mechanism
while the application was being constructed.
Testing for these errors at run-time need not
then be provided.

2.6. Input

The REQUEST <device class> functions of
GKS suspend execution either until the opera­
tor supplies a value, or until the BREAK facility
is invoked. The corresponding C functions
return TRUE if a value was supplied, and
FALSE if BREAK was invoked.

AWAIT EVENT is specified as a function
returning a pointer to the current event. This
is a structure containing the identification of
the device generating the event, and a union of
the types returned by each device class.
GET <device class> functions are thus redun­
dant, the application can refer to the appropri­
ate fields of the current event structure
directly.

• This does not prevent individual attribute setting
functions being implemented as macros, if required.

4

2.7. Binding

Table 1 contains some statistics comparing
the GKS document, the DIN FORTRAN
binding, and the C binding. The C binding
defines far fewer functions; on the other hand
it defines many more data types.

Table I - Binding Statistics
GKS DIN C

No. of "functions" 157 157 92
Max. no. arguments 13 28 6
Avg. no. arguments 3.85 4.98 2.32
No. of data types 8 8 62

As compared with the FORTRAN binding,
the application programmer in C _ must be
more concerned with the representation of
information, both within the graphics system
and the application. The correct structures
must be used to hold information sent to and
received from the system. On the other hand,
the routine specifications are pleasantly terse.

· Lint's automatic check that an application
program adheres to the binding is an impor­
tant feature missing from FORTRAN. The
lint library, which is the basis for this test, was
the form in which the binding was initially
written. The inverse of this library, a dummy
application program using all the routines
defined by the binding, has proven valuable as
an automatic check of the implementation.

3. Implementation

The C binding is being used as the basis
for an implementation of GKS for UNIX. The
implementation is proceeding in two stages, a
"quick and dirty" system with no concern for
efficiency but support for all GKS levels is
being constructed, then those parts discovered
to cause significant inefficiencies will be re­
implemented. This approach is feasible
because the implementation is initially based
on Berkeley's virtual memory UNIX;[l] it is
anticipated that the second phase will result in
an implementation usable on all UNIXes.

3.1. _ Segment Storage

G KS requires two independent means for
storing segments and the primitives they con­
tain. Each workstation must be capable of
storing segments sent to it, regenerating them
and transforming them. If the hardware can­
not support this, the segments must be stored
and regenerated by software in the worksta­
tion driver. In addition, device independent
segment storage (DISS) is required. This
stores segments at an early stage in the
transformation pipeline, so that they may sub- .
sequently be sent to workstations.

Although the two segment stores are logi­
cally distinct, it is possible to implement them
using the same mechanism. The implementa­
tion does so; in the interest of simplicity both
DISS and the software segment stores for
workstations requiring them are implemented
entirely in the heap.

3.2. Workstations

Given the complexity of real devices, the
implementation of a large enough set of GKS
workstations to be useful is also a problem.
This exposes a dilemma. If the interface
between the device independent and device.
dependent parts of GKS (the DI/DD inter­
face) is pitched at a high level, then the imple­
mentation will be capable of exploiting the
facilities of high-performance displays. On the
other hand, the emulation of advanced facili­
ties in each workstation makes writing works­
tation drivers difficult.

On the other hand, if the DI/DD interface
is set at a low level, to make creating a wide
range of drivers easy, then even intelligent
devices will be treated as if they were stupid.
There are two main reasons why the second
course was nevertheless taken.

- Most UNIX installations are small and can­
not afford high-performance devices. On
the other hand, many already have low-

• performance devices.

- Existing graphics packages written in C[8]
contain useful drivers for many low-cost
devices. If the Dl/DD interface is set
sufficiently low, these can be re-used

almost intact.

During the second phase of the implemen­
tation we expect that the DI/DD interface will
be moved up, enabling more facilities of high­
performance devices to be exploited.

3.3. Input

GKS specifies two levels of input capabil­
ity. At level 'b', only REQUEST mode input is
provided, whereas at level 'c', both SAMPLE
and EVENT modes must be provided. The
underlying model of GKS input[9] describes
the behaviour of input devices in terms of two
autonomous processes for each device, a meas­
ure process determining its logical data value,
and a trigger process determining the times at
which events are recorded.

It is possible to implement REQUEST mode
without using multiple processes or tasks.
Since the GKS process is (conceptually)
suspended during the time a device is satisfy­
ing a REQUEST, the process itself can simulate
the device. Because the simulation of a logical
device in SAMPLE or EVENT mode must
proceed in parallel with the application, level
'c' input needs multiple processes or tasks.

Berkeley are at present improving and gen­
eralising the inter-process communication
facilities of UNIX incorporating experience of
connecting the system to various networks[5].
When these facilities become available, the
GKS input model will be used directly as the
basis for the level 'c' input facilities, with a
separate UNIX process for each measure and
trigger process. In the meantime, only
REQUEST input is being provided.

3.4. Assessment

At the time of writing, the implementation
has reached about level 'la', with some level
'2a' routines also present. It is estimated that,
including AED512 and Tektronix 4014 drivers,
the level '2a' system will total less than 2000
lines of code.

5

4. Acknowledgements

During the development of the binding,
David Rosenthal was supported by UK Sci­
ence and Engineering Research Council grants
GR/ A80341 and N2B IR 0371. The imple­
mentation is being funded by T. N. 0., the
Netherlands organisation for applied scientific
research. It is largely the work of Behr de
Ruiter.

REFERENCES

[I] 0. Babaoglu, W. N. Joy, and J. Porcar,
"Design and Implementation of the Berke­
ley Virtual Memory Extensions to the
UNIX Operating System," Computer Sys­
tems Research Group, Dept. EECS,
University of California, Berkeley, Califor­
nia (December 1979).

[2] DIN, "FORTRAN Interface of GKS 7.0,"
Doc. 13-82, DIN NI-5.9,
Darmstadt!Erlangen (March 1982).

[3] ISO, "Graphical Kernel System (GKS) -
Functional Description," ISO DP 7942
(January 1982).

[4] S. C. Johnson, "Lint, a C Program
Checker," Comp. Sci. Tech. Rep. No. 65,
Bell Laboratories, Murray Hill, New Jer­
sey (1978).

[5] W. N. Joy, E. Cooper, R. Fabry, S. Leffler,
and K. McKusik, "4.2BSD System
Manual," Computer Systems Research
Group, Dept. EECS, University of Cali­
fornia, Berkeley, California (February
1982).

[6] B. W. Kernighan and D. M. Ritchie, The
C Programming Language, Prentice-Hall,
Englewood Cliffs, New Jersey (1978) ..

[7] D. M. Ritchie and K. Thompson, "The
UNIX Time-Sharing System," Comm.
Assoc. Comput. Mach. 17(7), pp.365-375
(July 1974).

[8] D. S. H. Rosenthal, "'Methodology in
Computer Graphics' Re-examined," Com­
puter Graphics 15(2), pp.152-162 (July
1981).

6

[9] D. S. H. Kosenthal, J. C. Michener, G.
Pfaff, R Kessener, and M. Sabin, "The
Detailed Semantics of Graphics Input Dev­
ices," To be presented at, SIGGRAPH
'82, Boston, Mass (July 1982).

Appendix - The Complete C Binding

Warning

This binding is of GKS version 7.0. Since it
was published, certain changes have been made to
the proposal. They consist in the main of extra
functions. Copy deadlines for this paper did not
permit their incorporation. Anyone interested in
using or commenting on this binding should con­
tact the authors for an updated version.

Data Types

What follows is a sorted and abbreviated ver­
sion of the "include" file supplied to application
programs. It includes all the defined types, but
excludes many of the fields of the state list struc­
tures. It was the st>,eond document created by the
project.

typedef struct {
Bindex fa_ix;
Istyle fa_is;
Sindex fa_si;
Cindex fa___ci;
} AreaRep;

typedef struct {
Int as......xsz;
Int as_ysz;
} ArrSiz;

typedef Int Bindex;
typedef enum { FALSE, TRUE} Bool;

typedef Real Charef;
typedef Real Charht;
typedef Real Charsp;
typedef Int Choice;
typedef Int Cindex;
typedef struct {

Real c___red, c___green, c__blue;
} Colour;

typedef struct {
Int d_x, d_y;
} De;

typedef enum { ASAP,
BNIL,
BNIG,
DAL V } Defmode;

typedef Int Devno;
typedef union {

struct {

struct {

struct {

struct {

struct {

/* Imp}. dependent*/
} loc___rec;

RealvaL..max, vaL.min;
/* lmpl. dependent * /
} vaL.rec;

/* Impl. dependent*/
} cho___rec;

/* Impl. dependent*/
} pik___rec;.

Size str _size, str _posn;
/* lmpl. dependent * /
} str _rec;

} Drecord;
typedef struct {

De d_..Il, d_JJr;
} Drect;

typedef struct {
/* lmpl. dependent*/
} Erarea;

typedef Int Ercode;
typedef struct {

/* Impl. dependent * /
} Es-<lata;

typedef enum {
/* lmpl. dependent*/
} EsJunc;

typedef struct {
Wss
Devno

*ev_ws;
ev-<levn;

!class ev -£lass;
Idata ev _data;
} Event;

I* type File defined by "stdio" * /

typedef enum {
I* lnipl. dependent * /
} Gdpi;

typedef struct {
GksLevl gLJevl;
Ntran *gk_ntran[NO_NTRAN];
Bindex gk-1ine;
Bindex gk_mark;
Bindex gk_text;
Bindex gk__area;
We gk_patref;
We gk_patsiz;
Charht gk......chht;
Charef gk......chef;
We gk......chup;
Path gk_path;
Charsp gk......chsp;
Wss *gk_opws[NO_WSS];
Wss *gk__actv[NO_WSS];
Seg *gk_opsg;
Seginst *gL..segs;
Pickid gk_pikid;
Bool gk......clip;
Bool gk_more;
} Gks;

typedef enum { GCKL,
GKOP,
WSOP,
WSAC,
SGOP } GksState;

typedef struct {
char op__lev, ip__lev;
} GksLevl;

typedef char *Grecord;

typedef enum { LOCATOR,
VALUATOR,
CHOICE,
PICK,
STRING} lclass;

typedef union {
Loe
Val
Choice
Pick
String
} Idata;

typedef struct {
Iclass
Imode
Bool
Drect
Pet

ev__loc;
ev_val;
ev......cho;
ev_pik;
ev_str;

id......clas;
id_mode;
id_echo;
id__area;
id_pet;

ldata id_ival;
Drecord id__drec;
} !device;

typedef enum { REQUEST, .
EVENT,
SAMPLE } Imode;

typedef unsigned Int;
typedef enum { HOLLOW,

SOLID,
PATTERN,
HATCH } Istyle;

typedef struct {
Bindex
Ltype
Lwidth

lr_ix;

Ir __lt;

Ir __lw;

Cindex Irci;
} LineRep

typedef struct {
Ntran *loc_nt;
We loc_.pt;
} Locate;

typedef Int Ltype;
typedef Real Lwidth;

7

8

typedef struct {
Bindex mr _ix;

Mtype mr __mt;
Msize mr __ms;
Cindex mrci;
} MarkRep;

typedef Real Msize;
typedef Int Mtype;

typedef struct {
Real n__x, n_y;
} Ne;

typedef struct {
Ne n_ll, n---11r;
} Nrect;

typedef struct {
Wrect nt_wind;
Nrect nt_view;
} Ntran;

typedef enum { RIGHT,
LEFT,
UP,
DOWN} Path;

typedef struct {
Bindex pa_ix;
Int pa-11, pa---111;
Cindex pa......ci;
} PattRep;

typedef Int Pet;
typedef struct {

Seg *pik_seg;
Pickid piL.pid;
} Pick;

typedef Int Pickid;

typedef float Real;

typedef struct {
Segname se-11ame;
Bool se_visb;
Bool
Bool
Segpri
Wss

se_detc;
se_hilt;
se_prio;
*se_onws[NO _WSS]~

Tmat se_tran;
} Seg;

typedef struct SEGINST {
struct SEGINST *si_next;
struct SEGINST *si_prev;
Seg *si_this;
} Seginst;

typedef Int Segname;
typedef Real Segpri;
typedef Int Sindex;
typedef Int Size
typedef char *String;

typedef struct {
Bindex tx_ix;
Tfont tx_tf;
Tprec tx_tp;
Cindex tx__ci;
} TextRep;

typedef Int Tfont;
typedef Real Tmat[2,3];
typedef enum { STRING,

CHAR,
STROKE} Tprec;

typedef Real Value;

typedef struct {
Real w__x, w_y;
} We;

typedef struct {
WC W _ll, W ____ur;
} Wrect;

typedef struct {
I* Too complex for inclusion*/
} Wsd;

typedef struct {

Routines

Wsd *ws_wsd;
Bool ws_actv;
Defmodews_defr;
Bool ws_jmprg;
Bool ws_waitr;
Nrect ws......reqw;
Nrect ws_..curw;
Drect ws......reqv;
Drect ws_..curv;
Int ws__nline;
LineRep *ws-1ine;
Int ws_nmark;
MarkR.ep *ws_mark;
Int ws_ntext;
TextRep *ws......text;
Int ws_narea;
AreaRep *ws_area;
Int ws_ncolr;
Colour *ws.....colr;
Seginst *ws.....segs;
!device *ws_devs;
} Wss;

What follows is a slightly abbreviated version of
the lint library fille, which is used to test application
programs for conformance to the language binding.
All function definitions are included, but additional
information used only by lint is excluded. It was
the first document created by the project.

extern GksState opstate;
/* OPEN GKS */

Gks *
open _gks(erh,era,s)
Ercode (*erh)();
Erarea
Size

*era;
s;

/* CLOSE GKS */
close_gks()

/* OPEN W.S. *I

Wss *
open_ws(dev,wsd)
File *dev;
Wsd *wsd;

/* CLOSE W.S. */

close_ws(ws)
Wss *ws;

/* ACTIVATE W.S. */
activate(ws)
Wss *ws;

/* DEACTIVATE W.S. * I
deactivate(ws)
Wss *ws;

/* CLEAR W.S. */
clear(ws)
Wss *ws;

#if (OP _LEVEL > 0)
/* REDRAW ALL SEGMENTS ON W.S. */
redraw(ws)
Wss *ws;
#endif (OP _LEVEL > 0)

/*UPDATE*/
update(ws)
Wss *ws;

/*MESSAGE*/
message(ws,s)
Wss *ws;
String *s;

/*ESCAPE*/
escape(ef,ep)
Es_iunc ef;
Es_data *ep;

/* SET WINDOW*/
s_window(nt,wr)
Ntran *nt;
Wrect *wr;

/* SET VIEWPORT * I
s_viewport(nt,nr)
Ntran *nt;
Nrect *nr;

9

10

#if (IP _LEVEL> 0)
!* SET VIP*/
s_vip(nt,mt,hi)
Ntran *nt, *mt;
Bool hi;
endif (IP _LEVEJL > 0)

/* SELECT NORMALIZATION TRAN*/
s-i:ntran(nt)
Ntran *nt;

I* SET CLIPPING INDICATOR*/
S-i:lip(fig)
Bool fig;

/* SET W.S. WINDOW * /
s_w _wind(ws,nr)
Wss *ws;
Nreet *nr;

!* SET W.S. VIEWPORT */
s_w _vprt(ws,dr)
Wss *ws;
Dreet *dr;

/* SET CHARACTER HEIGHT*/
S-i:h-1lt(ht)
Charht ht;

#if (OP _LEVEL > 0)
/* SET CHAR. EXP. FACTOR*/
S-i:h_ef(f)
Charef f;

/* SET CHAR. UP VECTOR*/
S-i:h_j_lp(v)
We *v;

/* SET CHARACTER PATH*/
S-i:L.pt(pt)
Path pt;
#endif (OP_LEVEL > 0)

/* SET CHARACTER SPACING*/
s-i:h__sp(sp) .
Charsp sp;

!* SET POLYLINE INDEX*/
S-PLj(i)
Bindex i;

I* SET POLYMARKER INDEX*/
S-Pm_i(i)
Bindex i;

/* SET TEXT INDEX*/
s__tx_i(i)
Bindex i;

!* SET FILL AREA INDEX*/
sJa_i(i)
Bindex i;

#if (OP _LEVEL > 0)
/* SET PATTERN REF. POINT*!

s_patpt(rp)
We *rp;

/* SET PATTERN SIZE*/
S-Patsiz(ps)
We *ps;

#if (IP _LEVEL> 0)
!* SET PICK ID*/
S-Pikid(id)
Piekid id;
#endif (IP _LEVEL> 0)

/* SET VISIBILITY * /
s __segvis(seg, vis)
Seg *seg;
Boo! fig;

#if (IP _LEVEL > 0)
/* SET DETECTABILITY*/
s_.deteet(seg,det)
Seg *seg;
Bool det;
endif (IP _LEVEL > 0)

!* SET HIGHLIGHTING*/
s-1lilite(seg,hlt)
Seg *seg;
Bool hit;

/* SET SEGMENT PRIORITY * /
s_segpri(seg,pri)
Seg *seg;
Segpri pri;

/* SET POLYLINE REPR. * I
pl.....rep(ws,pl)
Wss *ws;
LineRep *pl;

/* SET POLYMARKER REPR. */
pm_rep(ws,mk)
Wss *ws;
MarkRep *mk;

/* SET TEXT REPR. */
tx_rep(ws,tx)
Wss *ws;
TextRep *tx;

I* SET FILL AREA REPR. * I
~a_rep(ws,fa)
Wss *ws;
AreaRep *fa;

/* SET PATTERN REPR. */
pat_rep(ws,pa)
Wss *ws;
PattRep *pa;
#endif (OP _LEVEL > 0)

/* SET COLOUR REPR. */
col _rep(ws,ci,col)
Wss *ws;
Bindex ci;
Colour *col;

#if (OP _LEVEL > 0)
I* SET DEFERRAL STATE*/
s_defer(ws,def,reg)
Wss *ws;
Defmodedef;
Bool reg;
#endif (OP _LEVEL> 0)

I* POLYLINE*/
polyline(n,p)
Size n;
We *p;

I* POLYMARKER */
polymark(n,p)
Size n;
We *p;

I* TEXT *I

text(p,s)
We *p;
String s·

'

/* FILL AREA*/
fillarea(n,p)
Size n;
We *p;

/* PIXEL ARRAY*/
pixels(wr,n,m,ei)
Wrect *wr;
Size n, m;
Cindex *ci;

/* GENERALIZED DRAWING PRIM.*/
g_draw(n,p,id,m,dr)
Size n;
We *p;
Gdpi id;
Size m;
Grecord *dr;

#if (OP _LEVEL > 0)
I* CREATE SEGMENT*/
Seg *
newseg(n)
Segnamen;

/* CLOSE SEGMENT * I
closegO

/* DELETE SEGMENT * I
zapseg(seg)
Seg *seg;

11

12

/* DELETE SEG .. FROM W.S. */
delseg(ws,seg) ·
Wss *ws;
Seg *seg;

I* TRANSFORM SEGMENT*/
transeg(seg,mat)
Seg *seg;
Tmat *mat;

#if (OP _LEVEL > I)
/* ASSOCIATE SEG. WITH W.S. */
sendseg(ws,seg)
Wss *ws;
Seg *seg;

I* COPY SEG. TO W.S. */
copyseg(ws,seg)
Wss *ws;
Seg *seg;

/* INSERT SEGMENT * I
i.nsseg(seg,mat)
Seg *seg;
Tmat *mat;
#endif (OP _LEVEL > I)

#endif (OP _LEVEL > 0)

#if (IP _LEVEL > 0)
/* INITIALIZE LOCATOR*/
iniLloc(ws,dn,val,pet,ea,dr)
Wss *ws;
Devno dn;
Locate *val;
Pet pet;
Drect *ea;
Drecord *dr;

/* INITIALIZE VALUATOR*/
init_val(ws,dn,val,pet,ea,dr)
Wss *ws;
Devno dn;
Value val;
Pet pet;
Drect *ea;
Drecord *dr;

/* INITIALIZE CHOICE * /
iniL.cho(ws,dn,val,pet,ea,dr)
Wss *ws;
Devno dn;
Choice *val;
Pet pet;
Drect *ea;
Drecord *dr;

if (OP _LEVEL > I)
/* INITIALIZE PICK*/
init-Pik(ws,dn,val,pet,ea,dr)
Wss *ws;
Devno dn;
Pick *val;
Pet pet;
Drect *ea;
Drecord *dr;
#endif(OP_LEVEL > I)

/* INITIALIZE STRING*/
init.....str(ws,dn, val, pet,ea,dr)
Wss *ws;
Devno dn;
String val;
Pet pet;
Drect *ea;
Drecord *dr;

/* SET LOCATOR MODE*/
loc......mode(ws,dn,mo,echo)
Wss *ws;
Devno dn;
Imode mo;
Boo! echo;

/* SET VALUATOR MODE*/
val......mode(ws,dn,mo,echo)
Wss *ws;
Devno
lmode
Bool

dn;
mo;
echo;

!* SET CHOICE MODE*/
cho _mode(ws,dn,mo,echo)
Wss *ws;
Devno dn;
Imode mo;
Bool echo;

#if (OP _LEVEL > 1)
!* SET PICK MODE*/
pik_mode(ws,dn,mo,echo)
Wss *ws;
Devno dn;
Imode mo;
Bool echo;
#endif (OP _LEVEL > 1)

/* SET STRING MODE * I
str _mode(ws,dn,mo,echo)
Wss *ws;
Devno dn;
Imode mo;
Boo! echo;

/* REQUEST LOCATOR*/
Boo!
req -1oc(ws,dn, val)
Wss *ws;
Devno dn;
Locate *val;

/* REQUEST VALUATOR*/
Bool
req _val(ws,dn, val)
Wss *ws;
Devno dn;
Value *val;

/* REQUEST CHOICE*/
Boo!
req _cho(ws,dn,val)
Wss *ws;
Devno dn;
Choice *val;

#if (OP _LEVEL> 1)
/* REQUEST PICK*/
Bool
req-Pik(ws,dn,val)
Wss *ws;
Devno dn;
Pick *val;
#endif (OP _LEVEL > 1)

/* REQUEST STRING *I

Bool
req __str(ws,dn,val)
Wss *ws;
Devno dn;
String val;

#if (IP _LEVEL> I)
!* AWAIT EVENT*/
Event*
await(sec)
Real sec;

/* FLUSH DEVICE EVENTS*/
flsh.......ev(ws,class,dn)
Wss *ws;
Iclass class;
Devno dn;

/* N.B. no GET <class> Functions! */

/* SAMPLE LOCATOR *I

smp-1oc(ws,dn, val)
Wss *ws;
Devno dn;
Locate *val;

/* SAMPLE VALUATOR*/
smp_val(ws,dn,val)
Wss *ws;
Devno dn;
Value *val;

/* SAMPLE CHOICE*/
smp_cho(ws,dn,val)
Wss *ws;
Devno
Choice

dn·
'

*val;

13

14

I* SAMPLE PICK*/
smp-Pik(ws,dn, val)
Wss *ws;
Devno dn;
Pick *val;

/* SAMPLE STRING*/
smp__str(ws,dn,val)
Wss *ws;
Devno dn;
String val;

endif (IP _LEVEL > I)
endif (IP _LEVEL > 0)
I* N.B. metafile functions omitted*/

WRITE-1TEM
GET ITEM TYPE
READ ITEM
INTERPRET

I*

* These aren't functions but macros.
* They return a value of the
* type of the argument 'fn',
* which is a field name of the
* structure involved.
*

/* INQUIRE GKS STATE*/
inq _gks(gk,fn)
Gks *gk;
/* INQUIRE W.S. DESCRIPTION * I
inq _wsd(ws,fn)
Wsd *ws;
/* INQUIRE W.S. STATE*/
inq _wss(ws,fn)
Wsd *ws;
/* INQUIRE SEGMENT STATE*/
inq__seg(sg,fn)
Seg *sg;

*
*/

Bool
pxl__siz(ws,r,sz)
Wss *ws;
Wrect *r;
ArrSiz *sz;

Boo!
pxl......arr(ws,r,sz,inv,arr)
Wss *ws;
Wrect *r;
ArrSiz *sz;
Boo! *inv;
Cindex *arr;

Boo!
pixel(ws,p,ci)
Wss *ws;
We *p;
Cindex c1;

/* INQUIRE TEXT EXTENT*/
Boo!
textext(ws, pt,st,cat, tr)
Wss *ws;
We *pt;
String st;
We *cat;
Wrect *tr;

/* N.B. utility functions omitted*/
EMERGENCY CLOSE GKS
ACCUMULATE TRANSFORMATION MA TRIX
SET TRANSFORMATION MA TRIX

MC NR

35226

