
stichting

mathematisch

centrum·

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

D.S.H. ROSENTHAL

IW 203/82

A SURVEY OF ASYNCHRONOUS 1/0 TECHNIQUES FOR UNIX

Preprint

~
MC

AUGUSTUS

kruislaan 413 1098 SJ amsterdam

BIBLIOTHE.EK MATHl:MATISCH CENTfiUM
-AMSTERDAM-

PILlnte.d a:t :the. Ma:the.mati.c.ai. Ce.n.tlie., 413 K1U.U6laan, Am6:tvuf.am.

The. Ma.the.mati.c.ai. Ce.n.tlie. , fpunded :the. 11-:th oo Fe.bJc.aall_y 1946, b.i a. non
plC.ooU .lw.,:t.:U:uti.on a,im,i,ng a.t :the. pll.omo.t.lon 06 puJc.e ma.the.mati.CA and .lb.,
appUc.ati.on6. 1:t b., 1.>pon60Jc.e.d by :the. Ne.:theJllan.d6 Gove.Jc.nme.nt :thll.ough :the
Ne.:the.Jc.la.nd6 OJc.gan.lzati.on 6oJc. :the. Advanc.e.me.nt 06 PuJc.e. Re.1.>e.Mc.h (Z.W.O.).

CR Categories and Subject Descriptors: D.4.4 [Operating Systems]: Communications Management
- Network communications; Terminal management

General Terms: Design

A Survey of Asynchronous 1/0 Techniques for UNIX

by

David S. H. Rosenthal

ABSTRACT

The UNIX operating system's model of 1/0 is fundamentally synchronous, that is, conceptually
each process' computation and 1/0 are not overlapped. Although for the great bulk of applications
this model is entirely adequate, certain applications find it irksome. The various techniques
developed to overcome or avoid this restriction are described and contrasted, using example applica
tions to illustrate the advantages and problems of each.

This paper has been submitted for publication.

1. Introduction

"The parson came to school and told us not to do it. The doctor came to school and told
us how not to do it. Then the headmaster told us where not to do it."

A schoolboy on sex education.

I

In the original paper on UNIX,* Ritchie and Thomson set out the way in which a process does
1/0:

"To the user, both reading and writing of files appear to be synchronous and unbuffered.
That is, immediately after return frpm a read call the data are available; conversely,
after a write the user's workspace may be reused."[10]

This means that, at least conceptually, computation and 1/0 are not overlapped; a process is either
computing or it is doing 1/0. To enforce this, if input is not available from a file when a process
requests it, the process will sleep until input is available.

An attractive feature of UNIX is that it treats all 1/0 as file 1/0; this allows simple programs to
be very versatile, since devices, terminals and interprocess communication channels are all accessed
as files. However, if a file represents a terminal or a pipet a program asleep waiting for input on it
may sleep indefinitely. Further, a process must address its 1/0 request to a single file, and during
the sleep will ignore activity on other files.

For certain applications, generally those driving terminals or networks, indefinite sleeps and
single-file 1/0 are unacceptable. Over the years a number of efforts have been made by the UNIX

community to subvert the fundamentally synchronous 1/0 model underlying. their system. These
·efforts have been applied to different versions of the system; this survey attempts to place them in a
uniform context, but this does not represent the facilities of any particular version.

2. File 1/0 Model

The UNIX system calls implementing the file I/0 model are relatively simple. They depend upon
the concept of a file descriptor, which is a small integer used by a process as its local name for the
global file object. A process obtains a descriptor for a file as a result of a successful

fd = open(name,flag);

invocation. The flag parameter specifies whether the file is to be read, written, or both. The name
must have been the subject of a successful ·

fd = creat(name,mode);

or

success = mknod(name,mode,dev);

call, according as it is a normal file, or a directory or special file. t The mode parameter specifies the
protection bits, which determine the operations the owner, other members of the group, and the
general public can perform.

Once a file descriptor is available, it may be used to perform 1/0 on the file, using either

n = read(fd,buffer,count);

or

* UNIX is a Trademark of Bell Laboratories.
t An interprocess communication channel, which behaves as an anonymous FIFO file.
t A file name representing a physical I/0 device.

2

n = write(fd,buffer,count);

In each case, an attempt will be made to transfer count bytes to/from the process' address buffer.
The returned value n is the number of bytes actually transferred. On a write, it will be count except
if an I/0 error or end-of-medium has occurred. On a read, it will be less than count if the file
pointer was too close to the end of the file, and it will be zero if the end of the file had been
reached.

A file pointer is maintained for each open file. It is affected by read and write calls, so that by
default 1/0 is sequential, but may also be ~ltered by a

where == lseek(fd,offset,base);

invocation. The offset parameter specifies a place, relative to the beginning of the file, the file
pointer, or the end of the file, depending on base. The value returned is the final position of the
pointer. This call has no effect on certain kinds of files, such as terminals and pipes.

The kernel also maintains certain other information about files. Some is maintained by the
"device-independent" part of the kernel and exists for all files, for example an "exclusive use" bit,
forbidding futher opens. Other information is maintained by individual device drivers, and applies
only to special files serviced by the driver, for example the echo switch, special character assign
ments, etc. for terminals. This information can be accessed by

success = ioctl(fd,funct,argp);

calls. The funct parameter specifies the particular function to be performed, and the argp parameter
points to a structure containing input or output data for the function. For example, the following
sequence sets echo on for the terminal whose descriptor is fd.

{ struct sgttyb tty;
ioctl(fd,TIOCGETP,&tty);
tty.sgJags I= ECHO;
ioctl(fd, TIOCSETP,&tty); }

An interprocess communication channel is obtained by a process invoking

success = pipe(fdp);

where the fdp parameter points to a two-element array of file descriptors, one of which becomes a
descriptor for the write end of the pipe, and the other becomes a descriptor for the read end. The
data flow is thus uni-directional, from the write end to the read end. However, because the same
process may have descriptors for both ends, this is not quite the absolute restriction it seems. A sin
gle pipe may be used to transfer in both directions between a pair of processes if both have descrip
tors for both ends.

Although this pair of file descriptors is obtained by a single process, it can be used for interpro
cess communication because processes inherit descriptors for their parent's open files. Note that,
although a pipe behaves as a file, there is no name for it in the file system's directory structure, so it
cannot be the subject of an open call. It can only be used by the process creating it, and its descen
dants.

3

3. Polling

The simplest approach to asynchronous 1/0 is for the program to loop, polling the files to see if
they have input available, or will accept output. On the simple file 1/0 model, this is impossible,
since if a file has ~o input it will cause the process to block indefinitely. Three different techniques
have been developed to overcome this problem.

3.1. Abort the Blocked Calls

Consider a single-player game, such as Michael Toy's worm, in which a worm crawls continually
around the VDU screen, eating randomly arranged titbits and growing correspondingly longer. The
player may change direction by hitting the arrow keys. The program must run itself at regular
intervals to update the worm's image, but must also read the terminal on each cycle to discover if
the player has changed direction. The conventional read call, which sleeps until input is available,
would constrain the worm to move only when the player hit a key.

Worm, and similar games, are examples of Seventh Edition UNIX's standard form of asynchro
nous 1/0. They invoke

alann(sec)

before issuing the read call. This causes the signal SIGALRM to be received after sec seconds. If
the read has not returned by that time, it will be aborted with zero bytes read, and an error indica
tion will be returned.

The concept of signals permits processes to respond to conditions arising asynchronously. A
process may invoke

oldfp = signal(sig,newfp);

to announce that, if signal sig is received, the function pointed to by newfp should be invoked. The
value returned is the previous function pointer for this signal. An asynchronous event, such as a
floating point exception, or another process sending a signal, causes the system to interrupt the
catching process, create an appropriate stack frame, and re-start the catching process at newfp. The
effect is that the function is called asynchronously when the corresponding signal occurs.

Thus worm loops, calling first alann(l) and then read(tty,&c,1). If the read returns some bytes,
then a command from the player must be processed. Even if no bytes are returned (because the sig
nal occurred), the worm must move on. This approach is adequate for single-file applications not
requiring fast response. If fast response is essential, the one-second resolution of the alann call is
inadequate. If more than one file must be polled, spending one second on each becomes excessive.

3.2. Avoid Issuing Calls Which Block

An example of an application needing to poll multiple files would be a multi-player version of
the worm game. In this version, a player joining would be given a worm of his own to control, and
would see all the worms chasing each other about the screen to get the food. The process imple
menting the game would need on each cycle to read each of the terminals in case any player had
issued a command. The alann technique would be far too slow.

The solution developed to support this type of program is an ioctl that informs the calling pro
cess whether a read to the file descriptor would block or not. Thus, the multi-worm game could poll
each file with ioctl, and only issue the reads which would not block. In this way, it could cycle as
fast as it liked, though a considerate game would sleep once per cycle to accommodate other uses of
the computer.

4

3.3. Ensure Th.at The Calls Don't Block

An alternatilve to the "will-I-block" enquiry has also been developed. This provides a file mode,
settable by ioctl, instructing the system that 1/0 to this file is never to block. A read to an empty
file in non-blocking mode returns immediately with zero bytes read.* A write to a congested pipe
would return with fewer bytes written than requested.

An example: of the use of this mode is a network protocol handler, enabling a UNIX system to
appear as a host on a network. The connection to the network appears as a single file, carrying
several conversations multiplexed together. Figure 1 shows a protocol process reading this file,
demultiplexing the conversations, and writiµg each line to a pipe leading to an appropriate shell.t
The output from each shell is received along another pipe, multiplexed together with the outputs of
the other shells, and written to the network file.

User

Kernel

Dev lees

Protocol

Handler

Network

Shell

Pt

Pt

Figure I - Network Protocol Handler

Shell

All the pipes, and the network file, would have non-blocking mode set. The process would cycle,
invoking write on each output file, and read on each input file. For each output file, the process
would maintain a queue of bytes to be sent, shortening it by the number of bytes actually written.
If a read returned some bytes, they would be (de)multiplexed and added to the appropriate queue.

Non-blocking mode has been most useful when combined with another development. Named
pipes, or fifos, are files which behave as pipes, but which do have names in the directory hierarchy,
and thus may communicate between un-related processes. If, in addition to creating anonymous
pipes to communicate with the shells, the protocol handler created some named pipes, then other
processes could use them to talk out to the network. (see Figure 2).

There are two problems with this approach. First, terminals normally wish to be able to
transmit "end-of-file" to their shell and its descendants. Because of the double meaning of zero
bytes read, this is no longer possible. Secondly, the shell and its descendants can no longer use ioctl
to enquire or set the parameters of the terminal; there is no way to transmit the information
through a pipe.

* Unfortunately, this sets up a double meaning for the zero bytes read, both "end-of-file" and "no input yet".
t Command interpreter.

u

K

D

4. Multiplex Files

Protocol

Handler

Shell

L-...=:::::::::::::::!..--1 Na med Pt
.__ ____ Na med Pt

Network

Cat Cat

Termtnal

Figure 2 - Bi-directional Network Access

5

Like a pipe, a multiplexer is an interprocess communication facility. Like a named pipe, it may
appear in the directory hierarchy, and be used to communicate between unrelated processes. All
pipes, named or un-named, have only two ends, the read end and the write end. By contrast, a mul
tiplexer has many ends, one of which is special. The special end is called the "multiplex file", and
the other ends are called "channel files". Unlike a pipe, all these ends support bi-directional data
flow.

A channel file appears to any process having it open to be a terminal, in that ioctl can be
applied to it. Data is transferred into and out of a channel file by the normal read and write calls;
it appears in every respect to be a normal file.

A multiplex file is not a normal file, in that the read and write calls are interpreted differently.
Unlike a normal call, in which all count bytes pointed to by buffer are transferred, multiplex files
interpret the bytes at buffer as a header structure and, optionally, some data to be transmitted. The
header specifies the channel from/to which the data is being transferred. Thus, if the header
specifies channel X, a read call is interpreted as "someone wrote these bytes into channel X", and a
write call as "send these bytes to channel X".

Various messages may also be read from a multiplex file, describing the activities on the chan
nels. They say things like "someone invoked ioctl on channel X" or "no-one has channel X open
any longer". The details of these messages, the control functions used to reply to them, and the
structures inte:rpreted by the I/O calls, depend upon the particular implementation.

Figure 3 s:hows a typical role for a multiplexer, supporting a network protocol handler of the
type described above. Note that in this case, the protocol handler need only poll two files; all its
communication with other processes occurs via a single file descriptor.

6

Protocol -Shell Shell

u Handler

'" '" '"
,,

._ f' "'f'

K 4 M-u l tl p lexer
-

' f'

D
Network

Figure 3 - Multiplexer for Network Access

4.1. Bell Labs' Multiplexer

A multiplexer is a standard part of Seventh Edition UNIX, albeit accompanied by a warning that
it is "an experimental part of the operating S.ystem more subject to change and prone to bugs than
other parts." It provides a full range of facilities, including dynamic creation of new channels.

The read call returns data formed into a structure defined by*

typedef struct {
short index; /* Channel No. */
short count; !* Data size, 0 = control * /
short ccount; /* Control size */
char data(); /* Data, if any * /
} inpuLrec;

and the write call interprets an array of structures defined by

typedef struct {
short index;
short count;
short ccount;
char *data; /* Pointer to data * /
} outpuL.rec;

Note that in both cases, a single 1/0 call may result in the transfer of several messages. The control
messages are shown in Table I.

Among the special control functions, one with particular importance for networking is

* C does not permit variable size fields; these definitions are not to be taken too literally.

Table I - Bell Labs' Mpx Messages
Name Meaning

M_WATCH
M_EOT
M_CLOSE
M__BLK
M_UBLK
M_JOCTL

connect(fd,cd,end)

A process wants to open channel X
End of File on channel X
Channel X no longer open
Channel X congested
Channel X no longer congested
A process invoked ioctl on channel X

7

which arranges for the terminal file described by fd and the channel described by cd to be spliced
· together in such a way that data flows between them without the intervention of any user-level pro
cess.

This facility permits a further simplification of the network protocol handler example. If the
network connection file descriptor is connected to a channel of the multiplexer, all the protocol
handler's 1/0 takes place via a single file descriptor (for the multiplex file). This finally eliminates
all polling, the handler can sleep on reads on the multiplex file's descriptor. Terminal files can be
connected to multiplexer channels to permit them to talk out to the network. (see Figure 4).

Protocol Shell Shell

u Handler

'' .. ~ ,ri.

' ,.,

K LJ Mu l tl p lex er
.. ii,. "" - ' ,. ,i,,

D
Network Termtnal

Figure 4 - Using connect for Network Access

4.2. Simpler Multiplexers

Bell Labs' multiplexer provides the facilities required to support network access, but it is too
large to fit comfortably ort the smaller PDPl ls making up a large proportion of the UNIX commun
ity. As a result, several simpler multiplexers have been implemented.

8

4.2.:1. Sydney's Multiplexer

One such simplified multiplexer was developed as part of the rapidly expanding UNIX network in
Australia, which is implemented using asynchronous links and terminal-like I/O[8, 6]. As compared
with the Bell Labs multiplexer, the following restrictions are imposed:

- The number of channels is static, determined at system generation time.

- The multiplex file is not visible to user processes, it is permanently connected to a character spe-
cial file linking the system to another UNIX.

- Although each of the channels appears to be a terminal, ioctl calls are not transmitted, but are
handled locally by the channel.

A connect facility is provided by a separate system call, applicable to all terminals, not just
channel files. Except for this facility, this multiplexer is conceptually similar to that implemented at
the University of Illinois to support the ARPANET NIP[2, l]. Although the implementations are
very different, the restrictions are the same. The way in which this multiplexer is used is shown in
Figure 5.

Shell Shell

u .-~ Jfl,.

' ,,, '"
K ~ Multiplexer

--~ J'I,.

',,, ,i,, ,,,,
D

Network Terminal Terminal

Figure 5 - The Sydney Multiplexer in Use

4.2.2. Edinburgh's Multiplexer

An alternative set of restrictions is imposed upon the multiplexer developed at Edinburgh to sup
port RCONET access:

- The number of channels is static, determined at system generation time.

- The ability to connect files is completely eliminated.

- At the multiplex file end, only one message is transferred per I/O call.

- Instead 9f distinguishing between control and data messages using the header, all control mes-
sages are transferred on channel 0.

Synchronisation of messages and data is achieved by draining the channel before sending the
message, and blocking the channel until the message has been received. These restrictions permitted
the following very simple format:

typedef struct {
char chan;
char data[];
} io Jee;

/* Channel No. * /
/* Data, if any * /

9

The length of the data need not be specified in the header; it is known from the number of bytes
transferred. The set of messages is shown in Table 2.

Table 2 - Edinburgh Mpx Messages

Name Meaning

MX......DPEN
MX_cLOSE
MX__.MORE
MX--10CTL
MX_READ

A process wants to open channel X
Channel X no longer open
Channel X no longer congested
A process invoked ioctl on channel X
A process is sleeping on channel X

As compared with the Bell Labs messages, the effect of M_EOT is obtained by zero-length
transfers, the effect of M_BLK is obtained by setting non-blocking mode, when the system will
truncate writes to congested channels, and MX---READ is needed by our line-oriented virtual termi
nal protocols to ensure prompts are flushed.

Unlike other multiplexers, particularly those supporting some form of connect, this multiplexer is
a normal UNIX device driver, requiring no hooks in code elsewhere in the kernel. It provides the
functions necessary to support network access, but the lack of a connect facility makes such access
inefficient, since all data transferred to or from the network must be processed by at least one user
level process. The use of this multiplexer was shown in Figure 3.

5. Message Passing

The UNIX kernel may be viewed as providing a set of services to processes, requested via the sys
tem calls. In a conventional implementation, system calls are handled by the process itself; they
cause it to change to a privileged state in which it runs kernel code and accesses global data, eventu
ally reverting to the normal state as the call returns.

An alternative view, more adapted to asynchronous 1/0, is that the services are provided by
separate server processes, running privileged code on behalf of all processes. A system call causes
an interprocess message to be sent to the appropriate server. The invoking process may then
suspend itself awaiting a reply message.

5.1. The Carnegie-Mellon System

At Carnegie-Mellon University, Rashid's goal was to implement asynchronous 1/0 for UNIX, and
other systems[9]. The result was a highly sophisticated message-based interprocess communication
facility, applicable to many systems, but fully integrated with the conventional UNIX environment.

5.1.1. General IPC Facility

The intention was to specify a general IPC facility independent of a particular language, a par
ticular operating system, or a particular machine, so that it could be used to provide uniform access
to a network supporting different machines running different operating systems.

The basic concept of the IPC system is that of a port, a FIFO queue of liinited length containing
messages. A port is a global object, like a file, for which processes are given local names by the ker
nel. A process may create a port and obtain a "port descriptor" for it by

IO

pd = AllocatePort(Qlength);

Processes may have three different types of access rights to a port, ownership of a port, receive
access, and send access.

Initially, the creator has ownership and receive access to the new port, but it may pass (via mes
sages) these rights to other processes. Only one process may own a port, and only one process may
have receive acce:ss to a port, but they need not be the same process. The owner may attach a file
name to the port, by invoking

success = AssertName(name,port,inode);

Any number of processes may have send access to a port, obtained by inheriting a descriptor, or by
invoking

pd = Locate(name);

with an asserted name. These restrictions mean that a port implements uni-directional data flow.

The facility provides flow control for messages flowing through ports. The owner of a port may
set its maximum queue length. If a process attempts to write to a congested port, it may elect to:

- Wait until the port is no longer congested.

- Receive an immediate error indication.

- Have the message accepted into a "pending" state, from which the kernel will eventually move it
onto the queUte. When this happens the sending process will receive a message. At most one
message per sender per port may be pending.

The last option is important for server processes, who do not wish to sleep until their clients process
messages, nor to have to poll their output ports to see if they are still congested.

The messages passed by the IPC facility are collections of typed data objects. This is essential
both because the system is intended to be machine and language independent, and thus independent
of internal representations of types, and because it must be possible to transmit messages containing
port access rights. Because processes only ever have local names for ports, the kernel must be able
to identify port names in messages and translate them from the local name space of the sender to
that of the receiver. Ports are global only to a single machine; processes communicate with others
elsewhere on a network by using ports owned by intermediate network servers on each machine.
The servers deal with network addressing, the clients cannot know where the other parties to a
conversation are located.

To cope with malfunctions, the IPC facility provides for emergency messages to be sent to a port
by the kernel. These messages bypass the queue and are received before any normal messages. In
this way, no special error handling functions are required, the receiving process merely distinguishes
emergency messages by their type.

5.1.2. UNIX IPC Facility

This general IPC facility is mapped onto UNIX by specifying the relationship between its objects
(ports, messages, etc.) and the normal UNIX objects. The most important of these relationships is
that between ports and file descriptors, because this enables the IPC facility to provide file-like com
munication.

A file descriptor may stand for a pair of ports, or rather port descriptors. One of these is a
remote port, for which some other process has receive rights, and this process has send access. The
other is a local port, for which this process has receive access, and (presumably) the other process
has send access. An 1/0 system call to such a file descriptor is converted into a send of a suitable

11

message to the remote port, followed by a receive of a reply from the local port. Although the pair
of ports in· a descriptor provide a bi-directional data path, this does not imply both read and write
file access via the descriptor; the data flowing in one direction may merely be arguments.

Another important relationship is between· ports as global objects and file names. The owner of
a port may attach it to a name in the directory hierarchy in two ways. The normal way is to assert
the name, whereupon opens will return a file descriptor corresponding to a <local,remote> port
descriptor pair. The alternative is to assert the name as a directory, whereupon opens which
encounter this directory in their file name search will send a message containing the unparsed part
of the filename to the asserting process and wait for a reply, before returning a similar file descrip
tor. This may be used, for example, to provide access to a remote filestore as if it were part of the
local directory hierarchy. The server process would interpret the unparsed part of the file name as a
name in the remote filestore.

The previous identifications permit the IPC to support file-like I/O, with certain new properties.
The main one is that it is no longer possible for a client process to distinguish between services pro
vided by the kernel, and services provided by a server process. The inode of access to either is via
file descriptors.

Asynchronous I/O is supported by the ability to send a message without awaiting a reply,

success = Send(&msghead,timeout);

the ability to await messages from a set of ports,

success = Receive(portset,&msgheacl,timeout);

rather than from a single file descriptor. In both cases, timeout is the maximum time before return,
and msghead is a structure containing descriptors for the port through which it was transmitted and
for a reply port, and a description of the types and locations of the data, an extension of the
output_rec used by Bell's multiplexer.

Using these facilities, and the "pending" message capability, server processes need never poll
input or output ports; they may sleep on receives to their set of active ports without worrying about
errors or output channels un-blocking, since both will cause messages. Alternatively, they may ask
the kernel to generate a particular signal when a particular type of message arrives, or when a port
un-blocks, and compute while not handling messages. The use of the IPC facility to support the
protocol handler example is shown in Figure 6.

5.2. The Berkeley System

The team at Berkeley that maintains and develops UNIX for ARP A also requires networking
facilities[5]. They are developing an IPC facility based on the layered model of networking used for
the ISO Open System Interconnection architecture[11]. Their fundamental concept is of a global
space of network addresses, each referring to an actual or potential socket. Processes invoke certain
operations on sockets to achieve data flow between themselves. The set of operations applicable to
an individual socket is determined by its type ; several types of socket may be involved in supporting
a single protocol. Initially, the system will support datagram and virtua./ circuit protocols.

Processes acquire. the addresses of sockets with which they wish to converse by means outside
the control of the IPC facility. Essentially, this means that some network addresses, those of certain
server processes, must be well-known, that is, established by convention and wired into the programs
using those services. Of course, the IPC facility may be used to build servers from which processes
may enquire the addresses of servers providing different services, so that only a few names need be
well-known. ·

12

u

K

D

Protocol

Handler

Network

Shell

Termtnal

Figure 6 - CMU's IPC Facility for Network Access

A process creates a socket and obtains a "file descriptor" for it via

s = socket(type,&addr,&pref);

where type specifies the protocol to be used, addr will be set to the address chosen by the system for
the socket. This will be pref if the process wants to create a well-known socket.

Using a descdptor for a datagram socket, a process may send a block of data to the socket
whose address is dest, by

send(s,&dest,msg,len);

and receive blocks of data from other sockets, by

len = receive(s,&from,msg,MAXMSG);

when ien (,,;;;; MAXMSG) bytes will be stored at msg from the next datagram, and from will be set
to the address of the sending socket.

The virtual circuit protocol involves two types of socket. A call director socket provides two
operations. A process wishing to be called by others, typically a server of some kind, obtains a
descriptor sl for a call director socket, and then invokes

t1 = answer(sl,&caUer);

which waits for another process to invoke

t2 = call(s2,&callee);

on a call director socket for which it has descriptor s2, and with callee = netaddr(s1). In the first
process, caller will be set to netaddr(s2), and a descriptor for a virtual circuit socket will be returned.
In the second process, a similar descriptor will be returned. The two processes can use normal read
and write calls to transfer data using these descriptors. A descriptor pair of this type can simulate a
pipe.

Three facilities are provided to support communication with several parties at once. Non
blocking mode can be set on all descriptors. A facility called watermarks provides for signals to be

13

generated whenever 1/0 becomes possible on a socket. The receiver will be signalled if more than
lowat bytes accumulate, or if a timeout elapses and any data is available. A sender will be signalled
if less than hiwat bytes are pending. The select facility enquires from a set of descriptors those
available for immediate reading or writing.

File-like services may be provided by servers running on the same machine as their clients via
portals, which provide file system names for special IPC sockets, without network addresses. A por
tal is created by

s = portal(kind,name,mode,server);

This creates the directory entry name, with the specified mode, and returns a descriptor for a call
director socket. When a process opens the name, the kernel will place a call to this socket. H no
process has a descriptor for the portal's socket when an open is attempted, the kernel will create a
server process executing server; thus server processes need only exist while they are needed.

The kind of a portal specifies the file system calls the kernel will accept for it. Kinds are defined
to emulate normal files, special files, and directories. When file system calls are applied to portals,
the kernel packs their arguments into a standard record and sends it to the server. The server's
replies, in a similar record, complete the file system call. Because portals are accessible only via file
system names, the normal protection mechanisms apply. A facility is also provided to associate
servers with network addresses, but this poses some protection problems, because there is no
network-wide concept of "user".

5.3. Comparison of CMU and Berkeley Systems

The major difference between the two systems relates to addressing. The CMU system's ports
have no addresses; the correspondence between a port on one machine and a port on another is
maintained by communication server processes on each machine. The protocol to be used for a par
ticular link is the concern of the communication server, thus the CMU system can span several
incompatible networks. Because their clients are unaware of their location, servers may migrate
about the network(s) in search of machines with the resources they need[4]. The Berkeley system's
sockets have addresses, the correspondence is maintained by the kernel. This corresponds closely to
real network protocols.

The difference between the CMU model of communication as messages, and the Berkeley models
of datagrams and virtual circuits seem more apparent than significant. Servers written using either
model look very similar.

Berkeley's 1/0 functions are always directed to a single socket, whereas some of CMU's func
tions are directed to a set of ports. Berkeley provide a separate select facility to discover the sock
ets to which an 1/0 operation may safely be addressed, and a watermark facility to enable sockets
to signal their availability for 1/0 asynchronously. The race conditions separate facilities make pos
sible do not appear serious, in other respects the separation seems advantageous.

The typed objects transmitted by the CMU system contrast with the byte streams transmitted by
Berkeley's. The higher-level protocols needed to ensure that diverse machines interpreted informa
tion appropriately became onerous in the RlG system, on which CMU's is based. A system without
global addresses mu~t be able to detect port names in messages. On the other hand, the simplicity
of byte streams has been a major advantage of UNIX.

14

6. Conclusion
Reviewing this varied collection of facilities, the requirements for UNIX to support asynchronous

I/O, and the applications requiring it, may be summarised as:

- The capability to generate signals when data is available, or when it may be sent, to eliminate
polling.

- The integration of inter-process and terminal I/O, so that ioctl may be processed either by a
server or by the kernel, and that a client cannot know which is providing services. Ideally, facili
ties such as the terminal handler should be detached from particular files, and be capable of
being added to any character special -file or pipe. Bell Labs are working on this concept[?],
which has affinities with the TOPS-20 terminal handler[3].

- The ability to create names in the directory structure referring to interprocess communication
channels, so that the communicating processes need not be related.

- The ability to distinguish the originator of a message in an interprocess communication channel,
so that a server may receive requests from many clients via a single channel.

The only widely available implementation is the multiplex file. In the short term multiplexers
are capable of supporting networking, but in the longer term UNIXes will be operating in environ
ments where networks will be linking many incompatible machines, and being used more ambi
tiously, and the extra capabilities of the CMU and Berkeley systems will become essential.

7. Acknowledgements

This work was supported by Science and Engineering Research Council grant GR/ A80341. My
grateful thanks are tendered to my colleagues Jim McK.ie, whose encyclopaedic knowledge of the
UNIX kernel illuminated many dark comers of the code and documentation, and Fernando Pereira,
who was a pleasantly demanding user of some of our experiments.

REFERENCES

[1] R. Ballocca, "Networking and the Process Structure of UNIX: A Case Study," Proc. of COMP
CON (Fall '78) Computer Communications Networks, pp.306-311 (September 1978).

[2] G. L. Chesson, "The Network UNIX System," Operating Systems Review 9(5), pp.60-66 (1975).

[3] DEC, "TOP:S-20 Monitor Calls User's Guide," DEC-20-OMUGA-A-D, Digital Equipment
Corp., Maynard, Massachusetts (May 1976).

[4] R. B. Dannenberg, "The Spice Butler," SI 10, Computer Science Dept., Carnegie-Mellon
University, Pittsburgh, Pennsylvania (October 1981).

[5] W. N. Joy allld R. Fabry, "Proposals for Enhancement of UNIX on the VAX," Computer Sys
tems Research Group, Dept. EECS, University of California, Berkeley, California (August
1981).

[6] R J. Kummi~rfeld and P. R. Lauder, "The Sydney UNIX Network," The Australian Computer
Journal 13(2), pp.52-57 (May 1981).

[7] D. M. Ritchie, Bell Labs, EUUG Meeting, Amsterdam (April 1981).

[8] P. Lauder, "MX: An· Indirect Driver for Multiplexing Virtual 'tty' Lines on to 'real' Lines,"
Basser Dept. of Computer Science, Sydney University, Sydney, Australia (October 1980).

[9] R. F. Rashid, "An Interprocess Communication Facility for UNIX," CMU-CS-80-124, Com
puter Science Dept., Carnegie-Mellon University, Pittsburgh, Pennsylvania (February 1980).

15

[10] D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System," Comm. Assoc. Comput.
Mach. 17(7), pp.365-375 (July 1974).

[11] A. S. T~enbaum, "Network Protocols," Computing Surveys 13(4), pp.453-489 (December
1981).

Most of the information for this survey was obtained from the on-line documentation provided
with the versions of UNIX distributed by Western Electric, the University of California at Berkeley,
and the Australian and European UNIX User Groups.

MC NR

35225

