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ABSTRACT
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0. INTRODUCTION

Geometries that are almost buildings (GABs) were introduced by TITS in
[11]. They are BUEKENHOUT-TITS geometries [1] in which all rank two residual
geometries are generalized polygons, except they need not satisfy the in-
tersection property. Tits has shown that they exist in great number, in-
cluding finite ones. In [7] KANTOR remarks that the situation for finite
GABs with large automorphism groups, other than those arising from buildings
appear to be rare. In [7] KANTOR briefly describes four finite GABs having
flag-transitive automorphism groups. The only other known finite flag-

transitive GAB was constructed by RONAN and SMITH [9] from the Suzuki spo-
radic group. The purpose of this note is to give an explicit construction

of a finite flag-transitive GAB with an extended G2-diagram having the group

G2(3) as automorphism group. In our example it will be apparent that the in-

tersection property is satisfied.

1. GEOMETRIES OF EXTENDED GZ-TYPE

We will be concerned here with incidence structures I = (P,L,II;I) with
three types of objects:

P, whose elements are called points;

L, whose elements are called lines; and

I, whose elements are called planes, together with a symmetric relation

ITonE=Pulul. We set 0 = {P,L,II}.

Suppose {X,Y,Z} = 0, x € X. Set

<
]

{y le Iy}, ZX ={z e Z | x Iz},

and

(YX,ZX;IX) is called the residue of I at x, Ix'
We say I is of extended G,~type or belongs to the diagram —-e=e if the

following are satisfied



(i) 1IfXe O, x+#yeX, then x and y are not incident;
(ii) If x € P, Ix is a generalized hexagon;
(iii) If L € L, IZ is a complete bipartite graph; and

(iv) If w e 1, Iﬂ is a projective plane.

In our construction all residues will have order two.
2. THE GEOMETRY OF NON-ISOTROPIC POINTS IN THREE DIMENSIONAL UNITARY SPACE

Let K = naz, <t> = Gal(K/k), k = Ba. Denote images under T by — . Let
V be a three-dimensional vector space over K and h: VxV —> K a non-degener-

ate hermitian form, that is, h should satisfy

(1) For v ¢ V, w — hv(w) = h(w,v) is linear
(ii) For v,w € V, h(w,v) = h(v,w)

(ii1) hV = 0 if and only if v = 0.

(V,h) is a unitary space over K.

Let N = {<v>|v ¢ V, h(v,v) # 0}. N is the set of non—isotropic points
of (V,h). Define a graph on N as follows: for p # ¢ € N, p ~ g if and only
if h(p,q) = 0. Let A be the collection of maximal cliques in (N,~). Clearly

- these are triples. We collect some facts about the partial linear space (N,N).

2,2
(2.1) IN|] = q"(q"-q+1)
.. 4 2 . . :
This is easy: |PG(V)] = ¢ + q° + 1. The number of isotropic or absolute
points (<x> is absolute if h(x,x) = 0), is q3 + 1.
For x € N, set I'(x) = {y € N: x ~ y}. We let d(,) = dP(’) be the usual

metric associated with (N,T) and Ft(x) be the points at distance t from x.

(2.2) IT(x)| = q*-q.

This is again easy: xT = <vev: h(x,v) = 0> is a non-degenerate two space,

so IPG(XL)| 2

q” + 1. The number of absolute points in x* is q + 1.

{Xx € A :x € A}. Then clearly from (2.2) we have

]

Set A
X



(2.3) 8,] = (@072

Next suppose x # y. There are clearly two possibilities:

(1) <x,y> is non-degenerate; and

(1i) Rad <x,y> = <x,y>'L n <x,y> is a (isotropic) point.

In case (1) we see that x= 0 y‘L is a single point in N, while in (ii)
<x,y>'L = Rad <x,y>. Thus in case (i), dr(x,y) = 2 and in case (il1)

dr(x,y) > 3, A simple count yields

2 2
(2.4) [T, | = (¢"-a)(¢"-q-2).
Now it is mot difficult to see that O(V,h) = {T € GL(V): h(Tv,Tw) = h(v,w)}
acts transitively on pairs {x,y} < N with d(x,y) = 2, and on pairs with
Rad <x,y> # 0. It therefore follows that

(2.5) (N,T) is distance transitive with diameter 3.

We now turn our attention to pairs {x,y} with Rad <x,y> # 0. Let

X = <v>, y = <w> where h(v,v) = h(w,w) = 1. Suppose A = {x==x],X2,x3} is a
"line on x. Let V=V, X S <vi> where h(vi,vi) =1, i = 2,3. Now set
R = Rad <x,y>. Then w = av + r where r € R. Since h(w,w)= h(v,v) = 1, with-

out loss of generality we may assume a = 1. Since h(v,r) = 0 and
1

1
v =x = <x2,x >, there are b,c ¢ Ksor =bv, + cv

9 . Since h(r,r) = 0 we

3
must have

(2.6) bb + cc = 0.

We will determine conditions for d(y,xi) = 2 for i = 2,3. Now d(y,xi) = 2
if and only if leWXi e N. xi = <x],xj> where {i,j} = {2,3}. Note if

av + 8 jj € y'L , then a B # 0, so we may take B = 1. If

h(av]+v. ,v1+bv2+cv3) = 0 then

—

a=I-—:6 j=2. Set aj={—3 j=2
1-< :

ol
([
I
w

i=3



Now h(ajvl+vj’ajvl+vj) = ajaj + 1. Now if we assume char (k) # 2, then by
(2.6) we cannot have a, 62 +1=0= aq 63 + 1. We have therefore shown
2.7) If d(x,y) = 2, X € AX, then A 'n Fz(y) # 0.

Now if q > 3 we can easily see that there are pairs x,y with d(x,y) = 3

and lines A on x such that A-—{x}zg.rz(y). However, from (2.6) we see that
(2.8) If g =3, yeT;(x), A e, then A n Tz(y)| =1,

We have thus demonstrated all we need for

(2.9) THEOREM. The geometry (N,A) is a generalized hexagon if, and only <if,

q = 3.

(2.10) REMARK. When q = 3 the generalized hexagon (N,A) is the dual of the

usual (2,2)-generalized hexagon associated with G2(2). [The usual G2(2n)
hexagon is the one embeddable in PG(S,Zn)]. ‘
This follows from the fact that if Q = OZ(Gx)’X € N, then Q', the com-

mutator subgroup of Q, has order two.

3. THE OCTAVES AND THE GZ—GENERALIZED HEXAGON

Let k be a commutative field, 0(k) = O the split octaves over k . 0 is
a composition algebra, that is 0 is an algebra with identity and admits a
non-degenerate quadratic form Q such that Q(x.y) = Q(x) Q(y). We can find

an othonormal base 1 = epsyr- ey for ®, with e, the identity element such

0
that multiplication in 0 is determined by

(3.1) ef=-1, 1sis7
and
(3.2) eiej = - ejei = e whenever (ijk) is one of the three cycles

(14r,2+r,4+4r) where i,j,k,r run through the integers modulo seven and take

their values in {1,2,...,7}.
— -L=

Let W = e0 <e],. 7

form (with maximal Witt index). Let G = Aut(®). Clearly G leaves eO and W

..,e.>, so that Q|W is a non-degenerate quadratic

invariant.



It is well-known (cf.[5])that G is the Chevalley group Gz(k). Moreover, it
is well known that there is, up to isomorphism, only one such atgebra

0( c£.(3.1) in [5]). Consequently we have

(3.3) 1f fl""’f7

of. =e. ,151 < 7.
i i

satisfy (3.1),(3.2) then there exist ¢ € Aut(0) with

Of interest to us will be the set ¢ = {{ei,—ei},l <i <7}, and its full
stabilizer, GQ ,in G. This group is also well-known (see [3] and [4]):
(3.4) GQ is a non-split extension of an elementary abelian group E of or-
der 8 by PSL3(2).

For the sequel we assume that -1 is not a square in k. Then K =.

<e0,el> = k(e]) =k [t]/(t2+l) is a quadratic extension of k.

Set V = <e ces€> =W el. Note that V becomes a three dimensional

2°° 7 1
vector space over K by restriction of the multiplication of © to KxV.
For u = ae + beI € K, set u = aey - be]. Then — generates the Galois

group of K over k. Next define h: VxV — K to be p 01L|VXV,there u is the
multiplication of O and p is the projection of 0 onto K. Then
(3.5) h is a non-degenerate hermitian form on V with associated automorphism

—. Moreover, o € G<e S if and only if OIV is a unitary transformation, i.e.

preserves h. :

4. THE CONSTRUCTION OF THE EXTENDED G2-GE0METRY OF ORDER 2
We retain the notation of the previous sections. Further we set

P = <e]>G = {<w> :weW Qw =1}
L = KG, where £ = {<e1>,<e > <e4>} ; and

2 b

nG where 7 = {<ei>:1 <i<7}.

=
n

Let I be symmeterized inclusion of subsets of P restricted to E =P u L u I.

We will prove

(4.1) THEOREM: I = (P,L,N;I) s a geometry of extended G,~type 1f and only

if k= TF,.



We proceed to prove this in a series of steps. Note that G = Aut(0)
is flag-transitive by (3.3).Because of this it suffices to check the re-

sidues I<e1> , IZ;’ Iﬂ.

(4.2). Iﬂ is a projective plane of order 2.
pf: {<ei>, <ej>, <ek>} € L, for all triples (ijk) as in (3.2). If these are
all the lines in Lﬂ, then the result is clear. Now C = GQ < Gw and is two

.. ) y . . <o > ..
transitive on Mbreover,.for any i # j C<ei>,<e-> fixes e where (ijk)
is as in (3.2) and is transitive on ﬂ-{<ei>,<ej>,<ek>}. It therefore suf-
fices to prove {<e1>,<e2>,<e3>} ¢ L. But this is obvious since G tra L and

elements of G preserve multiplication.

(4.3) I<e S is a generalized hexagon if and only if k = TF

pf: Let e L . Define 9(£) = £ n er.
Y- <e.> 1
algebra generated by € and £ is key+ k £, and this occurs if and only if

5
Now £ ¢ Lo s if and only if the sub-

O(£) is a one dimensional non-isotropic subspace of the unitary K-space

_ 1
V=Wn el- Thus G(L<e S

flag transitivity we see that K],Kz €L, . lie in a common plane if and

) = N(V,h), the non-isotropic points. Because of the

only if the points G(Kl), @(22) of V are orthogonal. Thus I<e , is isomorphic
to the geometry (N,A) of section two. By (2.10) I<e S is a generalized hexa-
gon if and only if k = ]F3, and in this case I<e , is the dual of the usual

-(2,2)-hexagon. !

(4.4) If k = IF3
pf: Clearly IZ is a complete bipartite graph and as |£] = 3 it suffices to

then IE is the complete bipartite graph K3 3
b

prove that there are three planes containing £. However, if m' EHK , then

' € LIGEEN and ' is a line of T_ containing £. Since I<e , has order

e >
(2,2) it follows that there are precisely three planes containing £.

This completes the proof of the theorem.

5. CONCLUDING REMARKS

Following KANTOR [4] we define an apartment to be a subset A of P such

that there are automorphisms r,s,t of I leaving A invariant such that

= ,sA ,tA satisfy the relations -

. A I
*=-.while <r,s,t> acts flag-transitively.

We have



(5.1) PROPOSITION. Apartments do not exist.

PROOF. Suppose that A,r,s,t exist. Then there is a point P, ¢ A fixed

0

by s and t and points Pl""’P6 in A all collinear with P, such that Pi is

0
collinear with P, . (modulo 6). Moreover triangles in A are not lines of I.

+
However, <s ,t >1c;ntains an elementary group of order 4 which cannot act
regularly on {Pl""’P6}’ therefo?e there is an involution T in <s,t> fixing
at least two of {P],...,P6}. But then since T fixes PO,|FixA(T)|2 3. However,
for any involution in G, FixA (t) is a line. This contradicts the fact that

A contains no full lines.

(5.2) REMARK. In [6] Goldschmidt studied groups G generated by a pair of sub-
groups P],P2 where P],P2 contain a common 2-Sylow S of G and

|Pi:S[ =3, i =1,2, and determined all such groups. In analogy with the
groups of Lie type we might call such subgroups Pi parabolics. This theory
has been extended to the case IP]:S] =q+ 1, Pi/OZ(Pi) = Lz(q). CHERMAK

[2], TIMMESFELD [10] and others have considered the problem of determining

groups G = <P ,...,Pn> with n =2 3 such that all Pi contain a common 2-Sylow

S, ]Pi:Sl = q]+ 1 and Pi/OZ(Pi) = PSLz(q), q a power of two, especially the
case where for any i # j,<Pi,Pj>/02(<Pi,Pj>) = Lz(q) xLz(q) or L3(q) or
'SL3(q). In general the resulting group is a Chevalley group of type An,Dn,En
over a field of characteristic two. Our construction provides an example

2,P3 containing a common

two Sylow S with |Pi:S[ = 3 and such that for any i # j’<Pi’Pj>/02(<Pi’Pj>)
is one of PSL3(2), PSLZ(Z)XPSLZ(Z), G2(2). This suggests that a general clac-

of a group G generated by three 'parabolics' PI’P

sification will prove extremely difficult.

(5.3) FINAL REMARK. In some sense the existence of such a geometry for G2(3)

should not be surprising: A result of MASON'S [8] classifies the groups

G of characteristic 2,3-type under very mild hypotheses. The groups are
PSP4(3), U4(3) and G2(3). Of course PSP4(3) is not particularly exceptional
because of the isomorphism PSP4(3) = 96(2). In [7] KANTOR constructs a GAB
for U4(3), and our construction is for G2(3). Thus these groups act flag-

transitively on IF,-buildings and as flag-transitive groups on IFz—fnear'

3
buildings.
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