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1. INTRODUCTION. 

Suppose one is given a sequence X.,X2, ••• of i.i.d. observations from some distribution function F. 
Suppose for some constants an>O and bn and some yeR 

limP{ max(Xi.X2, ... ,Xn)-bn ~x} = Gy(x) (1.1) 
n~oo an 

for all x where Gy(x) is one of the extreme-value distributions 

Gy(x) = exp-(1 +yx)- 11Y. (1.2) 

Here y is a real parameter (interpret (1 +yx)- 11Y as e-x for y=O) and x such that 1 +yx>O. The 
question is how to estimate y from a finite sample X.,X2, . .. ,Xn. 

A traditional method uses "yearly maxima" i.e. breaks the sample into blocks of equal size and uses 
maximum likelihood estimation under the assumption that the maximum in each block follows exactly 
distribution Gy. Consistency has been proved here under certain conditions (J.P. COHEN, 1986). By 
using this method some information from the sample seems to be lost. 

A less traditional method consists of restricting attention to those observations from 
X.,X2, · · • ,Xn that exceed a certain level M(n) and using the method of maximum likelihood under 
the assumption that these observations follow exactly one of the asymptotic residual life-time distribu­
tions. Asymptotic results for this procedure have been obtained by R.L. SMITH (1985). 

An attractive alternative estimate has been proposed by J. PlcKANDs III (1975): Let m(n) be a 
sequence of integers tending to infinity and let m(n)ln""'O (n""'oo). The estimate is 

A I X(m) - x(2m) rn:= (log2)- ·log (1.3) 
x<2m> - x<4m> 

where X(l);;;;i.x<2>;;;;, • • • ;;;;,x<n» the descending order statistics of Xi.X2, . .. ,Xn (note that we 
suppressed the extra index n in the notation). Pickands proved that this estimate is weakly consistent. 
We shall give a short proof of this result and show that if the sequence m(n) increases suitably rapidly 
then there is strong consistency. Also we give quite natural and general conditions under which the 
estimate is asymptotically normal. The analytical work involved in the translation of the condition for 
the inverse of F into conditions for F is given in a separate section that should be useful in other 
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contexts as well. In this section we assume that the reader is familiar with the theory of II -variation 
and f -variation (see e.g. J.L. GELUK AND L. DE HAAN 1986) 

Knowing the asymptotic distribution of y is particularly important: since there is a discontinuity in 
the shape of the distribution G1 at y = 0, one often wants to test hypotheses of the type y = O,y;;a.O 
ory~O. 

2. CoNSISTENCY AND ASYMPTOTIC NORMALITY 

We shall need the following simple result: 

LEMMA 2.1: If F(x) = I-e-x (standard exponential distribution), m(n)-HX:> and 
m=~~O(n~oo1 then 

n 

V2,;;"(x(m) - x(2m) - log2) 

has asymptotically a standard normal distribution. 

PROOF: We use the representation for exponential order statistics usually referred to as Renyi's 
representation: for each n there exist i.i.d. random variables Z 1,Z2, ..• with standard exponential dis-

d d2m-l 
tribution such that {Xcm>-Xcm+1>}:;;=11 = {Zm/m}::i~\. This gives Xcm>- X(2m) = ~ Z;li. The rest 

i=m 
of the proof is easy (use e.g. B.V. GNEDENKO and A.N. KOLMOGOROV 1954, chapter 5). 0 

COROLLARY 2.1: X(m)-X(2m)~log2 in probability e.g. (n~oo). 

Further we list a well-known result (see L. DE HAAN 1984). 

LEMMA 2.2: Suppose (1.1) holds and define U: =( 
1 
~ FY- (the inverse function). Then for x,y>O,y=;61 

lim U(tx)-U(t) = xY-1 locally uniformly(:=~ for y = 0). 
t-+rxi U(ty)- U(t) yY -1 logy 

THEOREM 2.1: (weak consistency) Jf (l.l) holds, m(n)~oo and m(n)/n ~o (n~oo1 then .Yn~'Y in pro­
bability (n~oo ). 

PRooF: Let A .,A 2 , ••• be i.i.d. exponential random variables and let {A cm>} be the descending order 
d 

statistics of A.,A 2 , ••• ,An. Then {Xcm>}::i=1 ={U(eA<">)}:!z=t· Note that m(n)ln~O implies 
eA<->~oo a.s. (n~oo). Now 

U(eA< .. >)-U(eA<2M>) = U(eA<2Mi.eAc .. i-A<2M>)- U(eA<2M>) ~ 21 -1 = 
21 

U(eAc>m>)-U(eA<'"'>) U(eA<2M>)- U(eA<2Mi.eA<..,>-A<2M>) 1-2-y 

in probability by corollary 2.1 and lemma' 2.2. The result follows. 0 

THEOREM 2.2: (strong consistency). Jf (l.l) holds, m(n)ln~O and m(n)!loglogn~oo(n~oo), then 
A 

'Yn~'Y a.s. (n~oo ). 

PROOF: The conditions on the sequence m (n) imply A (m) +log~ ~ 0 a.s. 
n 
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(J. WELLNER 1978, corrollary 4). Hence A(m)-A(2m)~log2 (n~oo) a.s. The rest of the proof is as 
before. We thank R. Helmers for making us aware of the Wellner reference. D 

THEOREM 2.3: (Asymptotic normality) Suppose Uhas a positive derivative and suppose there exists a func­
tion a such that for x>O and yeR (with either choice of sign) 

. (tx)1-YU'(tx)-t 1-'YU'(t) _ + 
lim ( ) - _logx 
t-+oo a t 

(II- variation, notation +t1-YU'(t)eIT(a)), then 

Vm(rn-1) 

has asymptotically a normal distribution with mean zero and variance r(22Y+l + l)/{2(2Y- l)log2}2 for 
sequences m=m(n) satisfying m(n)=o(nlg .... (n)) where g(t):= ~ t 3- 2Y (U'(t)/a(t)}2• 

Before we prove this theorem we will formulate the conditions on U in terms of the distribution func­
tion F and its density. The proof of theorem 2.4 will be given in section 3 (theorem 3.1, 3.3 and 3.8; 
lemma 3.3). 

THEOREM 2.4: Suppose Uhas a positive derivative U'. Equivalent are (with either choice of sign) 
a. +t1-YU'(t)EI1 
b. for y>O: +tl+ l!y F'(t)eII, 

fory<O: U(oo):=limU(t)<oo and +1-l-l!yF'(U(oo)-t-1)eII, 
l-+00 

for y=O: let fo=(I-F)IF' and x*:=sup(xlF(x)<l}. There exists a positive function a with 
a(t)~O (tjx

0
) such that for x>O 

1-F(t + xfo(t)) 
e-x 2 

1;..., _ __.;;.1_-~F_.( .... t) _____ + x -x 
~ -a(t) - -Te · 

In case y=O the following condition is sufficient for (b): suppose F is three times differentiable, 
+fo'>O, limf0"(t)f0(t)lfo'(t)=O and limf0'(t)=O then (b) holds with y=O. 

HOO Hoo 

PROOF of theorem 2.3: Assume for the moment that + t 1-YU'(t)eIT. This implies FeD(Gy). Write 
V(t): = U(e1

). We have 

V'(t)-e-yxV'(t +x) _ 
a(t) ~ x locally uniformly , 

for some positive function a satisfying a(t + x ),..,,e yx a(t) locally uniformly and a(t)I V'(t)~O (t ~ oo ). 
Now 

V(t +x)-V(t)-eYxV(t)+e1xv(t-x) = 
x 

= J (V'(t +s)-e'YXV'(t +s-x)}ds = 
0 

= a(t)f V'(t+s)-e'YxV'(t+s-x).a(t+s)ds, 

0 
a(t +s) a(t) 

hence locally uniformly 

lim V(t +x)-V(t)-e'YxV(t)+eYxV(t-x) 
Hoo a(t) 'Y 

(2.1) 
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We write as in the proof of theorem 2.1 

Xcm>-X<2m> 21 = V({Acm>-A<2m>}+Ac2m»- V(Ac2m» _ 21 = 
x(2m)-x(4m) V(A(2m))-V({A(4m)-A(2m)}+Ac2m» 

V({Acm> -A(2m)} + Ac2m>)- V(A(2m))-21 V(A(2m))-21 V({A(4m) -A(2m)} + A(2m)) 
V(A(2m))- V(A(4m)) 

In view of the result of lemma 2.1 we introduce 

Qn: = V2m°(A <m> -A (2m) - log2) and 

Rn:= yl4;;(A(2m)-A(4m)-log2). 

(2.2) 

Note that Qn and Rn are independent and asymptotically standard normal. 
We start by evaluating the denominator of (2.2) asymptotically. Note that t l -1 U'(t) e II implies 

V'(t +x}-e1xv1(t) locally uniformly (t-Hx:>). Hence 

, Jo V'(A(2m) +s) , _ _ V(Ac2m>)-V(Ac4m>)=V(Ac2m» V'(A ) dr-V(Ac2m>)-y 1(1-2 l) 
-log2-R,,/Vi,;; (2m) 

in probability (n~oo), with the usual convention log2=: l-i-l when y=O. 
'Y For the numerator of (2.2) we proceed as follows: 

Qn Rn V(A(2m) +log2+ - r;:-)-V(Ac2m»-21V(A(2m))+21V(A(2m)-log2- - ,.-) . r- v2m v4m 
v m V'(A <2m» 
__ r-Q.iJVb; V'(A(2m)+log2+s) _ r- 1 Jo V'(A(2m)-log2+s) 
- vm V'(A ) dr+ vm 2 V'(A ) dr + 0 (2m) - R,,/Yi,;; (2m) 

_ r- V(A(2m) + log2)- V(A(2m»-21V(Ac2m»+21 V(A(2m) -log2) 
+ v m V'(A(2m)) . 

Now V'(t+x)-e1xv1(t) locally uniformly (t~oo), hence the sum of the first two terms converges in 
distribution to 2Y-*Q-2- 1R where Q and Rare independent and standard normal. Our aim is to 
make the last term negligible by choosing the sequence m(n) appropriately. 

Using (2.1) we get that the last term converges to -y-1(/og2X2l -1) for any sequence m(n) with if 

Vm"' V'(Ac2m» , n~oo. (2.3) 
Vla(Ac2m» 

We now investigate what sequences m(n) satisfy (2.3). 
Note that (see e.g. N.V. SMIRNov 1967) 

A(2m)+log 2m(n) ~ 0 in probability, n~oo, 
n 

so that (2.3) reads 

V'(-log 2m(n)) 
..;:£;;,_ n 

V2 a(-log2m(n» 
n 

= 
( ...!L )1-1 U'( ...!L) 

2m 2m 

V2 a(~) 
where a is the auxiliary function for 11- 1 U'(t)ell, or 

I n 3_ 2 n n 2 n n--(-) 1 { U'(-)/ a(-)} = :g(-) 22m 2m 2m 2m 
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with gERV1 (for definition see theorem 2.5 below). Th~ function g has an asymptotic inverse 
g+-ERV1• So (2.3) is equivalent to 

m(n),...., n (n~oo) (2.4) 2g .... (n) 

and the latter sequence is RV0 • Thus the sequences m(n) for which the condition holds, tend to 
infinity rather slowly. 

Let m0(n) be the sequence of integers defined by 

m0(n):=[n/2g .... (n)]. (2.5) 

We claim that the statement of the theorem holds for any sequence of integers m(n)~oo satisfying 

m(n) = o(m0(n)) , n~oo. (2.6) 

To see this recall that 

n n n n V(log-+ log2)- V(log-)-2Y V(log-) + 2Y V(log-)-log2) _ ~ 2mo 2mo 2mo 2mo 
vano 

V'(log-2n ) 
mo 

2Y-} 
~--log2, n~oo . 

y 

Since (2.6) makes Vm of smaller order than y;;; and log(..!!.) of no smaller order than log.!!.., we m m0 
must have 

n n n n V(log- + log2)- V(log-)-2Y V(log-)+ 2Y V(log- -log2) _,- 2m 2m 2m 2m 
0 vm ~ , n~oo 

V'(log...!L.) 
2m 

and the statement of the theorem holds for the sequence m(n). The proof in case -t1-YU'(t)EII is 
now obvious. D 

The normal distribution satisfies the conditions of theorem 2.4 and we then have asymptotic normal­
ity of Yn for sequences m(n)~oo satisfying m(n)=o(log2n). See the end of section 3. For distribu­
tions like the Cauchy distribution we have the following theorem. 

THEOREM 2.5 Suppose that one of the followin~ conditions holds: 
a. For some y>O, p>O, c>O the function t +lly F'(t)-c is of constant sign and 

fun (xt)l+ 11YF'(tx)-c = x-p 
t-+IX) tl+ 11YF'(t)-c 

(regular variation with exponent -p, notation +{tl+ 11PF'(t)-c}ERV-p). 
b. For some y<O, p>O and c>O the function +{t-l-1/y F'(U(oo)-r 1)-c}ERV-p. 
Then 

Vm{(log2)-1 log( X(m)-X(2m)) -y} 
x(2m) - x(4m) 

has asymptotically a normal distribution With mean zero and variance r(22y+I + l)/{2(2Y- l)log2}2 for 
sequences m =m(n) satisfying 

m(n)=o(nlg .... (n)), n~oo, 

where g+- is the inverse function of 

g(t):= ~t3-2Y{U'(t)/(t 1 -YU'(t)-cYlyll+y)}2 . 
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PROOF. Note that +(tl+llyF'(t)-c}EIV-p if and only if +{t1-YU'(t)-cYyr+l}eRV-py, hence 
(t~oo) 

1 V'(t)-e-rxv'(t +x) e-pyx_ 1 . -· ~ - locally uniformly. YP V'(t)-eY'cYyl+y PY 

The rest of the proof is similar to that of theorem 2.3 and is omitted. D 

REMARK 2.1. Note that g(t)eRV1+2py so that tlg .... (t)eRV2pyt(l+Zpy)- So here the asymptotic normal­
ity holds for sequences m (n) increasing more rapidly than in the situation of theorem 2.3. 

The Cauchy distribution satisfies the conditions of theorem 2.5 and we then have asymptotic normal­
ity of Yn for sequences m(n)~oo satisfying m(n)=o(n415 ). We deal with examples more extensively at 
the end of section 3. 

3. ANALYTICAL RESULTS 

The conditions in theorem 2.3 are phrased in terms of U, the inverse functions of 1/(1-F). The aim 
of this section is to formulate these conditions in terms of the distribution function F itself and its 
density. The main result here is actually in terms of F alone but this result is not immediately applica­
ble for theorem 2.3. It is given for completeness and since it will probably be useful in other contexts 
as well. 

The relation to be studied is +t1.,...YU'(t)eIT. We only consider this relation with the + sign except 
for theorem 3.7. In the other case the relevant formula's in the theorems below should be multiplied 
by -1. First we consider the case y>O. 

THEOREM 3.1: Suppose Uhas a positive derivative U' and y>O. 
Equivalent are 

a. t 1-YU'(t)EI1 

b. - U(t)+y-l tU'(t)eRVy. 

c. (rYU(t)YeRV-1. 

d tl+llyp'(t)eIT. 

PROOF: (see DE HAAN 1977) 
I I ( )I-YU'( ) I-YU'() (a~): Jsl-rfogsds~ Jtsts( )tt sY-lds = 

o o a t 
(b~c): obvious 
(b~d): Replacing t by 1/(1-F(s))eRVuy in (b) yields 

U(t)-·'C 1 tU'(t) 
tYa(t) 

-1 l-F(s) RV . - 1(1 F( )) F'( ) RV Y F'(s) -se 1 i.e. y - s -s s E -lly· 

(3.1.1) 

(3.1.2) 

(3.1.3) 

(3.1.4) 

This is a relation like (b) for U. The equivalence of this relation and ( d) also and the converse impli-
cation are proved as in the first part of the proof. D 

Relation (c) of theorem 3.1 implies+ rYU(t)eIT. The latter relation can also be translated for F 
even when there is no derivative. That is the content of the next theorem. 

THEOREM 3.2: Equivalent are (for y>O) 

a. rr U(t)Eil (3.2.1) 



b. -tllY(l-F(s))Eil 

PROOF: Suppose for some positive function a and all x >0 

U(tx) _ _Qfil_ 
(tx)Y tY 

a(t) ~ logx (t~oo). 

Then since tYa(t)!U(t)~O (t~oo), 

logU(tx)-logU(t)-ylogx =log( U(tx)),..., U(tx) -1 (t~oo). 
xY U(t) xY U(t) 

Hence with R(t):=logU(e') and a(t):=eY1a(e1)/U(e1) 

Q(t +x)-Q(t)-yx 1 all .. -!4' rml 
a(t) ~x oc y WlllO y, 

for all x and a(t)~O (t~oo). Set S(t): =log{ 
1 

1 
}•then for £>0 and all x 

1-F(e) 

R(S(t)+x)-t-yx ~ 
a(S(t)) ,.,.. 

~ R(S(t)+x)-R(S(t))-yx _ R(S(t))+w(S(t))-R(s(t))-y£aS(t) _ £. 

a(S (t)) a (S (t)) 'Y 

H liminf. R(S(t)+x)-t-yx This th ·th imil" · uali · 
ence t->cx:i a(S(t)) ~x-y£. toge er wt as ar upper meq ty gives 

lim R(S(t)+x)-t -yx = locall unif rml 
t->cx:i a(S(t)) x y o y, 

hence in particular 

R(S(t))-t=o(a(S(t)) (t~oo), 

i.e. with V(t): = 
1 

_ ~(t) (and using loy,...,y -1 for y~l) 
U(V(t))-t = o((V(t))Ya(V(t))) (t~oo). 

Further (3.3) is equivalent to 

t l 1 
U(t)-(y+l)t-l f U(y)dy,..., tYa(tXy+l) f yYloyt[y = tYa(t)-+l (t~oo). 

0 0 'Y 

Replacing t by V(t) in this relation and using (3.4) we obtain 
t 

t- i-~t~ [ xdV(x) eRV1 since aeRV0 and VeRVy-h i.e. 

1 1 1 

-- (l+-)j V(x)dx + V(t)eRVvy 
t 'Y 0 

which is obviously equivalent to t-llyV(t)eII and hence to (b). D 

Next we consider the case y<O. 

7 

(3.2.2) 

(3.3) 

(3.4) 

'THEOREM 3.3: Let y<O and suppose U has a positive derivative U'. Equivalent are, with 
U( oo ): = lim U(t), 

t-.+cx:i 
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a. t1-YU'(t)eII. 

b. U(oo)<oo and -{U(oo)-U(t)+y- 1tU'(t)}eRVy. 

c. U(oo)<oo and -(t-'Y{U(oo)-U(t)})'eRV_1• 

d. U(oo)<oo and -t-1- 11'YF'(U(oo)-r1)ell 

PROOF: 

oo oo ( )l-YU'( ) 1-yU'() U( ) U( )+ -1 U'() 
( L......11..)· J l-y1 ds J tsts -tt y-lds =oo -t y tt 
a.I""'""\.,. I s ogy ~ l a(t) s t'Ya(t) 

(b)<=:>(c): obvious. 

(3.5.1) 

(3.5.2) 

(3.5.3) 

(3.5.4) 

(b)<=:>(d): Write U(oo)-U(t) = s with U(oo)-U(t)eRVy then t = U+-(U(oo)-s) and 
U+-(U( oo)-s-1)= 11 {1-F(U( oo)-s-1)} eRV -lty . 

Replacing t by u+-(U(oo)-s- 1) in (3.5.2) yields 

_ 1 -I U+-(U(oo)-s-1) _ -1 -1 l-F(U(oo)-s-1) RV . (U+-)' _ F' -s -y - - - - - -s -y - - - - E -l usmg - l:'\2 • 
(U+-)'(U(oo)-sr1 F'(U(oo)-s- 1) (1-r, 

Since F'(U(oo)-s- 1) = {l-F(U(oo)-s-
1
)}

2 
eRVl+lly• we obtain finally 

U'(ll {l-F(U(oo)-s-1)}) 
00 

-{s- 1 F'(U(oo)-s-1)+y-1 J F'(U(oo)-u- 1)u-2du} = 
s 

-s-1F'(U(oo)-s-1)-y-1{1-F(U(oo)-s-1)} eRV11y. 

The implication (d) ~ (b) is proved in an analogous way. D 

The case y = 0 is considerably more complicated. We start with a theorem on U. 

'THEOREM 3.4: Suppose Uhas a positive derivative U'. 
Equivalent are: 

a. tU'(t)eIT(a). (3.6.1) 
t 

b. tU'(t)-U(t) + ..!. J U(s)ds,...,a(t) (t~oo) where a is slowly varying. (3.6.2) 
t 0 

c. U(tx)-U~~~tU'(t)Iogx ~ ~ log2x (t~oo) for x>O, where a is a positive function. (3.6.3) 

PROOF: 
t 

U(t)-l. jU(s)ds-tU'(t) 
t 0 = /1 

txU'(tx)-tU'(t) dx~ 
(a~): a(t) 

0 
a(t) 

l 

~ J Iogxdx = -1 (t~oo). 
0 

(a)~c): For x>O and t-:-»oo 

U(tx)-U(t)-tlogxU'(t) = f tyU'(ty)-tU'(t) EE_ ~ f ]Qgx, dy (t~oo). 
a (t) 1 

a (t) y 1 y 



(c)=>(a): (As in OMEY and WILLEKENS 1986) For x,y>O 

U(txy)-U(ty)-U(tx)+ U(t) _ U(txy)-U(t)-tU'(t)log(xy) + 
a(t) - a(t) 

_ U(ty)-U(t)-tU'(t)logy _ U(tx)-U(t)-tU'(t)logx I ·l 
a(t) a(t) ~ ogx ogy 

9 

It follows that for all x> 1 the function U(tx)-U(t) is in II(a(t)logx) for t~oo. Hence aeRV0 • 

Now for t~oo 

[
lQg.xr.] 2 ~ U(txy)-U(t)-tlog(xy)U'(t) 

s a(t) 

U(txy)- U(ty)-ty logxU'(ty) . .!!_{fil + 
a(ry) a(t) 

+ U(ty)-U(t)-t logyU'(t) + lo x tyU'(ty)-tU'(t) . 
a(t) g a(t) 

Since everything else converges, also the last term must converge, hence tU'(t)eII(a). D 

After these preliminary statements on U we show what the translation to the inverse function is going 
to be in the nice case when one can work with derivatives. This serves as an introduction to the gen­
eral results given afterwards. 

Let Q be a three times differentiable function, then 
2 3 

Q(t +x)-Q(t) = xQ'(t) + x
2 

Q"(t) + x
6 

Q"'(t) + 

If Q'(t)>O and Q"(t)IQ'(t)~O then all terms except the first one are asymptotically negligible: 
Q"(t)IQ'(t)~O implies Q'(t +x)IQ'(t)~l (t~oo) for all x and hence {Q(t +x)-Q(t)}IQ'(t~x 
(t~oo) locally uniformly for all x (just integrate). This is basically II-variation. Suppose next that 
Q"(t)>O and Q"'(t)IQ"(t)~O (t~oo), then all terms except the first two ones are asymptotically 
negligible: Q"'(t)IQ"(t)~O implies Q"(t +x)/Q"(t)~l (t~oo) for all x and hence 

2 
{Q(t +x) - Q(t)-xQ'(t)}IQ"(t) ~ x

2 
(t~oo) (*) 

(use the just mentioned result for Q' instead of Q and integrate). 
Now let P be the inverse function of Q. Let x*:=sup{xlP(x)<l}. We expand Pas follows (we 

still suppose Q'>O, hence P'>O) 

P(t + xl P'(t)) - P(t) = x + .£_ P"(t) + £ P"'(t) + ... 
2 {P'(t)}2 6 {P'(t)}3 

If P"(t)l{P'(t)}2 ~ 0, then P'(t +x!P'(t))!P'(t) ~ 1 (tfx*) locally uniformly, hence 
P(t + xl P'(t))-P(t)~x (tfx ") locally uniformly. This is basically f-variation. Suppose next 
P"(t)> 0, P"(t)l{P'(t)}2~ 0 and P"'(t)l{P"(t)- P'(t)}~ 0 (tfx''), then 

I P"( + IP'( ))-l P"( ) _ _ x_ P"'(t + x8! P'(t)) ,...,, 
og / x 1 og 1 

- P'(t) P"(t + x8! P'(t)) 

xP"'(t + x8! P'(t)) • . 
P'(t + x8! P'(t))P"(t + x81 P'(t)) ~ O (tfx ) locally uniformly 

where 8=0(t,x)e[O, l] and we can prove (see lemma 3.3 below) 

P(t +x!P'(t))-P(t)-x ~ .£ (tfx") locall uniforml. 
- P"(t)I { P'(t) }2 2 y y 

(**) 

Note that the joint statements Q"(t)/Q'(t)~O and Q"'(t)IQ"(t)~O (t~oo) are equivalent to the 
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statements P"(t)/{P'(t)}2~o and P"'(t)l{P"(t)· P'(t)}~o (tjx"). 

To relate this to our problem, let P: = -log(l - F) hence Q = U0 exp. Relation(*) is the same as rela­
tion (3.6.3) from theorem 3.4. Note that P(t+x!P'(t))-P(t) ~ x (tjx") means 
{1-F(t+x.fo(t))}/{l-F(t)}~ e-x (tjx*) withfo(t)={l-F(t)}IF'(t). Hence(**) can be translated 
as follows (note /o'(t)~O, (tjx *)) 

1-F(t + xfo(t)) 
e-x1og (1-F(t)) ex 

1-F(t + xfo(t)) _ 
---~--ex 

1-F(t) 
fo'(t) fo'(t) 

= -P(t +x!P'(t))+P(t)+x. -x 2 -x (tj ") locall ··-:" rml 
fo'(t) e ~ x e x , y UllllO y. 

We shall see that this is basically the relation we get in the general case. 
We now work in an order different from what we did for y.#) and start with deriving the result 

with no differentiability assumption. The differentiable case will then be quite obvious. · 

THEOREM 3.5: Suppose Q is non-decreasing and P=Q+--. Equivalent are 

a. 
Q(t +x)-Q(t)-xa1(t) x2 . . . 

a
2
(t) ~T (t~oo) for all x and some positive functions a 1 and a 2 (3.7.1) 

P(t+xf(t))-P(t)-x x2 

b. __ ;(t) ~ T (t~oo)for all x locally uniformly, (3.7.2) 

where f and a are positive functions and a(t)~O (tjx*). 

PROOF: 

(a)=>(b): For £>0 and all x 

Q(P(t)+ x)-t~{Q(P(t)+ x)-Q(P(t))}-{Q(P(t)+£ ::~~~:~~ )-Q(P(t))} 

A similar upper inequality is obtained, hence by the local uniformity in (3.7.1) and because 
a2(P(t))!a 1 (P(t))~O (t~oo), 

litn Q(P(t)+x)-t-xa1(P(t)) x2 
t-+oo a2(P(t)) = T 

locally uniformly and in particular 

Q(P(t))-t = o(.a2(P(t))) (t~oo). (3.8) 

Also, with a(t)=a2(P(t)) la 1(P(t)), 

x2 x2 x2 
Q(P(t)+x-Ta(t))-t-{x-7a(t)}a1(P(t)),..., Ta2(P(t)), 

hence locally uniformly for £>0 and t sufficiently large 

x2 
{Q(P(t)+ x-Ta(t))-t-xa1(P(t))}! a 2(P(t)):s;;;£. 

2 
Then also P(t)+x- x

2 
a(t):s;;;P (t+xa 1(P(t))+w2(P(t))) or (by substitutingy=x+£a(t)) 



P(t +ya 1 (P(t)))- P(t)-y ;:i. -£a(t) - (y +~(t))2 a(t) . 

A similar lower inequality is readily derived. Relation (b) follows. 
(b)~(a): The proof follows the same line. For £>0 

P(Q(t)+xf(Q(t)))-t;;:i. 

;;:i.{P(Q(t)+xf(Q(t))) - P(Q(t))} - {P(Q(t)+£a(Q(t))f(Q(t))) - P(Q(t))} 

In the same manner as above this yields, with a 1 (t): = f(Q(t)), 

P(Q(t)+xa 1(t))-t-x x2 
-+-

-a(Q(t)) 2 

and in particular 

P(Q(t))-t = o(a(Q(t))) (t-+oo). 

Also locally uniformly 

x2 
P(Q(t)+ xa1 (t)-Ta(Q(t))a1 (t))-t-x 
------------ ~ 0 

-a(Q(t)) 

hence for £>0 and sufficiently large t 

x2 
Q(t) + xa1(t) - Ta(Q(t))a1(t)=e;;;Q(t+x+£a(Q(t))) 

and as above 

. Q(t +x)-Q(t)-xa1(t) x2 
limsup os;;; -· 

t-+oo -a(Q(t))a1(t) 2 

The other inequality is obtained similarly. D 
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(3.9) 

CoROLLARY 3.1: If condition (b) of theorem 3.5 holds, then a(t +xf(t)),...,a(t) locally uniformly (ttx*). 

PROOF: Since a(t)~o. P(t +xf(t))-P(t)-+x locally uniformly (ttx*). We must prove (cf. the first 
part of the proof of theorem 3.2) that a;(P(t)+xf(t)),...,a;(P(t)) locally uniformly for i = 1,2. Now 
a;(t +x),...,a;(t) locally uniformly hence a;(P(t + xf (t))-P(t)+ P(t)),...,a; (x + P(t)),...,a;(P(t)) (cf. 
Omey and Willekens 1986). D 

COROLLARY 3.2: If condition (b) of theorem 3.5 holds, then {f(t +xf(t))-f(t)} l{-a(t)f(t)}~x 
locally uniformly (ttx ''). 

PROOF: Replace tin (3.7.2) by t +yf (t)-+oo for some realy, then (ttx") 

P(t +{y +x f(t +yf(t)) }j(t))-P(t)-{y +x f(t +yf(t)} 
~~ f © f © 
2 -a(t) 

a(t) + 
a(t +yf(t)) 

_ P(t +y{(t))-P(t)-y. a(t) + 
-a(t) a(t +yf(t)) 

xa(t) { f(t +yf(t)) _ 1 }/ a(t) . 
a(t +yf(t)) f (t) 

Since every other term converges, also the last term must converge, thus giving the statement of the 
corollary. D 
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LEMMA 3.1: Let P:= -log(l-F). The function P satisfies (3.7.2) of theorem 3.5. if and only if 

1-F(t+xf(t)) e-x 

l-F~2(t) ~ x; e-x (tjx*) locally uniformly. (3.10) 

2 2 
Moreover(3.JO)holdswithfreplacedbyg(t),...,f(t) (tjx 0 )and x

2 
e-x replacedby(x

2 
+(c-l)x)e-x 

if and only if {g(t)-f (t) }/ { -a(t)/ (t) }~c (tjx *). 

PROOF: Suppose (3.7.2) holds. Since a(t)~O, P(t+xf(t))-P(t)~x (tjx 0
) locally uniformly i.e. 

{1-F(t +x/(t))}/{l-F(t)}~e-x (tjx*} locally uniformly. Hence 

l-~~;~f(t))ex -1,...,log{ l-~~;~f(t))ex} = -P(t+xf(t))+P(t)+x. 

The converse is proved similarly. Now suppose (3.10). 

P(t+xg(t))-P(t)-x _ P(t+{1f&}J(t))-P(t)-xf(J-

-a(t) - -a(t) 

.K.{Ll__l 
+ x· f(t) . 

-a(t) 

Since the first term on the right converges, the convergence of the other terms imply each other. D 

REMARK 3.2: f can be called the scale function and -a the reference function for 1-F. 

THEOREM 3.6: If P: = -log(l -F) satisfies (3.7.2) then 

1-F(t +x/1(t)) _ ___ ...;;,___ -e x 

1-F(t) ~ (x22 -x)e-x (tjx*) 
-a(t) 

x• 

J 1-F(s)ds 

locally uniformly with / 1 (t): 
t 

1-F(t) . 

PROOF: Write U:=( l~FY- as before and Q:=U0 exp. Then Q satisfies (3.7.1). As in Omey and 

Willekens (1986) one sees that 

U(tx)-U(t)-DU(t)logx 1.. 1 ...2 -l 
() 

~ 2 o5 x ogx 
a 2 t 

locally uniformly (t~oo), with DU(t):=tjU(s)~ -U(t)= j{U(ty)-U(t)}..!l:f. It follows that 
t s 1 y 

locally uniformly (ttx *) 

1 
1-F(t+xDU(l-F(t») -e-x 

1-F(t) 
-a(t) 

1 1 /
00 

ds 1 
Now DU( 1-F(t)) = 1-F(t) __l_ U(s) -;i- - U( 1-F(t)) = 

1-F(t) 

1 00 1 1 00 

= 1-F(t) f ydF(y) - U( 1-F(t)) = 1-F(t) f ydF(y) - t+o(a(t)f(t))' 
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using (3.8) in the last equality. The result now follows from lemma 3.1. D 

CoROLLARY 3.3: Under the conditions of theorem 3.6 

/1(t +xfi(t))-f1(t) . • 
-a(t)/i(t) ~ x locally uniformly (tjx ). 

PROOF: Corollary 3.2. D 

LEMMA 3.2: If (3.10) holds for F, then the same relation holds with F replaced by 
x• 

1-Fi(x): =max(O, lx* {1-F(u)}du) and f replaced by fi(t): = £ /~ :c~;)ds 
PROOF: 

{ 
1-Fi(t+x/i(t)) -x} _ () _ f1(t+xf1(t)) l-F(t+xf1(t)) _ -x _ 

1-Fi(t) e I at - /1(t) { 1-F(t) e }I a(t) + 

+ e-x{/1(t +x/1(t))-/1(t)}/{-a(t)/1(t)}. 

Use corollary 3.3. D 

Next we proceed to give sufficient conditions in terms of derivatives. 

LEMMA 3.3: Suppose Fis three times differentiable and F'>O. Set / 0 : =(1-F)/ F'. If 

fo"(t)fo(t)I fo'(t)~O and /o'(t)~O (tjx *) , 

then 

fo'(t + xfo(t))! fo'(t)~ 1 (tjx ") locally uniformly . 

If (3.11.2), then 

fo(t + xfo(t))-fo(t) ~ x locally uniformly (tjx *). 
fo '(t)fo(t) 

If (3.11.3), then 

1-F(t + xfo(t)) 
e-x 2 

__ 1-_F~(t_) ___ ~ x
2 

e-x locally uniformly (tjx"). 
fo'(t) 

PROOF: /o'(t)~O implies /0(t)/t~O if x* = co and fo(t)!(x* -t)~O if x* <co, hence 

fo(t + xfo(t)) x 
fo(t) -1 = [ f'(t +ufo(t))du ~ 0 locally uniformly. 

Using this we find 

log/o'(t + x/o(t))- log/'(t) = 

_ .r. fo"(t + x8fo(t)) fo(t + x8fo(t))fo"(t + x8fo(t)) 
- X;o(t) fo'(t +x8/0(t)) "'x fo'(t +x8fo(t)) 

(3.11.1) 

(3.11.2) 

(3.11.3) 

(3.11.4) 

for some 8=8(t,x)e[O, 1]. Hence (3.11.1) implies (3.11.2). Further (3.11.3) follows from (3.11.2) by 
integrating both sides of (3.11.2) over xe[O,y] and (3.11.4) follows from (3.11.3) by integrating both 
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sides of the relationf0'(t)/f0' (t +xfo(t))~I over xe[O,y] and using lemma 3.1. D 

Necessary and sufficient conditions are contained in the next theorem. 

x* 
THEOREM 3.7: Set F0 :=F and 1-F;(t):=max{O,f, (l-F;-1(u))du} for i=l,2, · · ·. Also set 
/;(t): = {1-F;(t)}I {l -F;-1(t)} for i = 1,2, · · · . Eq/,livalent are 

a. For some functions f > 0 , a(t) ~ 0 (tfx*) and a of constant sign=l=Q 

1-F(t+xf(t)) -e-x 

l-F(t) ~ x
2

2 
e-x locally uniformly (tfx*). 

-a(t) 

b. h' is of constant sign =l=Q, /J'(t) -h'(t) and/J(t)-fi(t) (tfx*). 

f1(t +xf1(t))-Ji(t) 
c. ~x, 

-a(t)f1(t) 

locally uniformly (tfx*) for some function a(t)~O (tfx*) of constant sign =l=Q. 

d 1-F(t)=g1(t) exp f ds() with gi, g2 positive, both satisfying (3.12.3), 
0 g2 s 

g2(t) ~ 0 and g1(t) = g2(t){l-2a(t) + o(g2(t))} (tfx*). 

REMARK 3.3. The derivatives are to be taken in the Radon-Nicodym sense, if necessary. 

PROOF: 

(a)~(b): Note that a(t)~O, (tfx*) implies /J(t)-f2(t) ( L. DE HAAN 1970). Now 

l-F1(t+xf1(t)) -x 
-e 

1-Fi(t) x2 
------a(-t) ___ ~ Te-x (tfx*) locally uniformly 

by theorem 3.6 and lemma 3.2. But then according to theorem 3.6 also 

1-Fi(t +xfi(t)) e-x 
l-F1(t) x 2 -x 

-a(t) ~ <2-x)e · 

fi(t)-Ji(t) * 
Hence -a(t)fi(t) ~ 1 (tfx ) by lemma 3.1. 

(3.12.1) 

(3.12.2) 

(3.12.3) 

(3.12.4) 

Repeating this reasoning with 1 - F replaced by 1-F 1, and 1 - F 1 replaced by 1 - F 2. we also get 

fi(t)-/J(t) ~ l (tfx*). 
-a(t)fi(t) 

Now note that /;'(t)= -1 + f;(t)1/;- 1(t) for i";;1:2. 
(b)~(c): 

h"h = 2 f3 + h .h f1-h _ h .h ~o (tfx*) 
h' h h f1 h-h h f1 . 

Hence/J'(t +x/J(t) ,..,h'(t) locally uniformly (tfx*) by lemma 3.3. Using/J'=-1 +f31h gives 

/J(t + x/J(t))-fi(t + x/J(t)) 1 locall unif rml (tf *) 
h'(t)/J(t) ~ y 0 y x 

,, 



and hence (using lemma 3.3 again) 

fi(t + x/J(t))-fi(t) fi(t + x/J(t))-/J(t + x/J(t)) 
~-----= + 

/J'(t)/J(t) h'(t)/J(t) 

+ f 3(t + xf3(t))-/J(t) + f3(t)- fi(t) locall ··-=" rml (tt *) 
h'(t)/J(t) /J'(t)/J(t) ~ x y Wlll0 y x . 

In exactly the same way one then obtains 

fi(t+xfi(t))-fi(t) ,.... /1(t+x/J(t))-/1(t) locall ··-=" rml (tf *) 
h'(t)/1(t) /3'(t)/J(t) ~ x y WlllO y x . 

(c)=>(d): 

Take cg1 = g2 = /1. 

(d)=>(a): Define P(t): = { ~). Straightforward calculation gives 
0 K2\S 

P(t + xg2(t))- P(t)-x ..!. 2 locall ··-=" rml (tt *) 
-a(t) ~ 2X y WlllO y X 

i.e. with 1-F.(t): = exp J ~) 
o g2,s 

1-F.(t + xg2(t)) _ 
--------ex 

l-F.(t) ~ ~ x 2e-x locally uniformly (tfx*). 
-a(t) 

Next use a decomposition like the one in the proof of lemma 3.2 to obtain 
I -F(t + xg2(t)) -x x2 -x . 

l-F(t) -e --a(t)Te . Fmally apply lemma 3.1. D 
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COROLLARY 3.4: If (3.12.1) holds, then (3.12.1) also holds with -a replaced by ~~ -1 = h' (see the first 

part of the proof of theorem 3.7) and/replaced by / 1 -a (see theorem 3.6 and lemma 3.1). 

Finally we tum back to the question how to translate the condition tU'(t)eIT into a condition for 
the distribution function F and its derivative F'. 

x· 

'fHEoREM 3.8: Set F0 := F, 1-F;(t) := max{O,j(l-F;-1(u))du},/o = {1-F}/F' and 
t 

f; := {l-F;(t)}/{l-F;-1(t)}/ori = 1,2, .... Equivalent are 

a. tU'(t)eIT. 

1-F(t + xfo(t)) 
e-x 2 

_ _..;;;..l_-.;;;;..F_,.,(t..t..) ___ ~ x
2 

e-x locally uniformly (tfx*) 
-{J(t) 

b. 

for some positive function /J(t) ~ 0 (tfx*). 

c. f2'(t)-/1'(t)~o (ttx*). 

d fo(t + xfo(t))-fo(t) ~ x 
_ /J(t)/o(t) locally uniformly (tfx*) 

(3.13.1) 

(3.13.2) 

(3.13.3) 

(3.13.4) 
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for some function /3(t)~O (tjx*). 

The proof of this theorem will not be given since it follows exactly the same lines as the proof in the 
general case, but uses theorem 3.4 relation (3.6.3) to get fo in relation (3.13.2). The proof here is actu­
ally easier since inversion is very simple. 

ExAMPLES 
1. The distribution functions F(x): = 1-exp(-x«) satisfy the criterion of lemma 3.3 for all 

a>O, a#=l. 
2. Normal distribution Using the previous example for a=2 and lemma 3.2 we find that the normal 

distribution satisfies (3.12.1) withf(t)=r 1 and a(t)=t-2 • By lemma 3.1 the same relation also 

holds withf(t)=fo(t)=etl e-sl ds since e-sl ds= e-tl {r1-r3 +o(r3)}, t~oo. 
2

21
00 2

2 ~
00 2

2 
2

2 

(see also M. ABRAMOWITZ add I.A. STEGUN ( 965) 26.2.12 pag. 932). Hence (theorem 3.8) u 
satisfies (3.6.3) where tU'(t)-{U(t)}- 1 and a(t)-+{U(t)}-3 (t~oo). It follows that here the 
function g from theorem 2.3 satisfies g(t)-2tlog2t so that the theorem holds for sequences 
m=m(n)~oo satisfying m(n)=o(log2n). 

3. Gamma distribution. The conditions of theorem 3.8 are easily checked using the expansion 
00 

(r#=l) J s'-le-sdY =e-t {tr-l +(r - l)t'-2 +o(t'-3)}. 

t 
4. Cauchy distribution. The condition of theorem 2.5 are satisfied with p = 2 and c =w- 1• Then 

g(t)-ct5 so that the theorem holds for sequences m =m(n)~oo satisfying m(n)=o(n415). 

5. For the exponential and uniform distributions we have t 1-YU'(t)=l so that the lefthand side of 
(2.1) is identically zero. It follows that the conclusion of theorem 2.3 holds for all sequences 
m =m(n)~oo, m(n)ln~O (n~oo). The same is true for the generalized Pareto distribution 
Fy(x) = 1-(l +yx)-llY;yeR and 1 +yx;;;;.O. 

6. Extreme value distribution: Gy(x) = exp-(1 +yx)-llY, yeR. For y > 0, condition (a) of 
theorem 2.5 is satisfied with c = y-l-lly and p = min(l, l/y) and for y < 0, condition (b) is 
satisfied with c = ( -y)- l- l/y and p = -1/y. The theorem holds for sequences 
m = m(n) ~ oo satisfying respectively m(n) = o(nl-l/y{l+min(l,y)}) and m(n) = o(n213). Note 
that for y = 0 the tail of G0(x) = exp(-exp-x) ~ 1-exp(-x) is of the exponential type and 
so the conclusion of theorem 2.3 holds for all sequences m = m(n) ~ oo, m(n)ln ~ 0, n ~ oo. 
The same is true for the Logistic distribution. 
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