TWISTED LUBIN-TATE FORMAL GROUP LAWS, RAMIFIED WITT VECTORS AND (RAMIFIED) ARTIN-HASSE EXPONENTIALS

BY

MICHIEL HAZEWINKEL

ABSTRACT. For any ring R let $\Lambda(R)$ denote the multiplicative group of power series of the form $1+a_1t+\cdots$ with coefficients in R. The Artin-Hasse exponential mappings are homomorphisms $W_{p,\infty}(k)\to \Lambda(W_{p,\infty}(k))$, which satisfy certain additional properties. Somewhat reformulated, the Artin-Hasse exponentials turn out to be special cases of a functorial ring homomorphism $E\colon W_{p,\infty}(-)\to W_{p,\infty}(W_{p,\infty}(-))$, where $W_{p,\infty}$ is the functor of infinite-length Witt vectors associated to the prime p. In this paper we present ramified versions of both $W_{p,\infty}(-)$ and E, with $W_{p,\infty}(-)$ replaced by a functor $W_{q,\infty}^F(-)$, which is essentially the functor of q-typical curves in a (twisted) Lubin-Tate formal group law over A, where A is a discrete valuation ring that admits a Frobenius-like endomorphism σ (we require $\sigma(a) \equiv a^q \mod m$ for all $a \in A$, where m is the maximal idea of A). These ramified-Witt-vector functors $W_{q,\infty}^F(-)$ do indeed have the property that, if k = A/m is perfect, A is complete, and l/k is a finite extension of k, then $W_{q,\infty}^F(l)$ is the ring of integers of the unique unramified extension L/K covering l/k.

1. Introduction. For each ring R (commutative with unit element 1) let $\Lambda(R)$ be the abelian group of power series of the form $1 + r_1 t + r_2 t^2 + \cdots$. Let $W_{p,\infty}(R)$ be the ring of Witt vectors of infinite length associated to the prime p with coefficients in R. Then the "classical" Artin-Hasse exponential mapping is a map $E: W_{p,\infty}(k) \to \Lambda(W_{p,\infty}(k))$ defined for all perfect fields k as follows (cf. e.g. [1] and [13]). Let $\Phi(y)$ be the power series

$$\Phi(y) = \prod_{(p,n)=1} (1 - y^n)^{\mu(n)/n},$$

where $\mu(n)$ is the Möbius function. Then $\Phi(y)$ has its coefficients in \mathbb{Z}_p , cf. e.g. [13]. Because k is perfect every element of $W_{p,\infty}(k)$ can be written in the form $\mathbf{b} = \sum_{i=1}^{\infty} \tau(c_i) p^i$, with $c_i \in k$, and $\tau: k \to W_{p,\infty}(k)$ the unique system of multiplicative representatives. One now defines

$$E \colon W_{p,\infty}(k) \to \Lambda \big(W_{p,\infty}(k) \big), \qquad E(\mathbf{b}) = \prod_{i=0}^{\infty} \Phi(\tau(c_i)t)^{p'}.$$

Now let W(-) be the ring functor of big Witt vectors. Then W(-) and $\Lambda(-)$ are isomorphic, the isomorphism being given by $(a_1, a_2, \dots) \mapsto \prod_{i=1}^{\infty} (1 - a_i t^i)$, cf. [2]. Now there is a canonical quotient map $W(-) \to W_{p,\infty}(-)$ and composing E with $\Lambda(-) \simeq W(-)$ and $W(-) \to W_{p,\infty}(-)$ we find an Artin-Hasse exponential E: $W_{p,\infty}(k) \to W_{p,\infty}(W_{p,\infty}(k))$.

Received by the editors October 31, 1977.

AMS (MOS) subject classifications (1970). Primary 14L05; Secondary 12B25, 13K05.

1.1. THEOREM. There exists a unique functorial homomorphism of ring-valued functors $E\colon W_{p,\infty}(-)\to W_{p,\infty}(W_{p,\infty}(-))$ such that for all $n=0,1,2,\ldots,w_{p,n}\circ E=\mathbf{f}^n$, where \mathbf{f} is the Frobenius endomorphism of $W_{p,\infty}(-)$ and where $w_{p,n}\colon W_{p,\infty}(W_{p,\infty}(-))\to W_{p,\infty}(-)$ is the ring homomorphism which assigns to the sequence $(\mathbf{b}_0,\mathbf{b}_1,\ldots)$ of Witt vectors the Witt vector $\mathbf{b}_0^{p^n}+p\mathbf{b}_1^{p^{n-1}}+\cdots+p^{n-1}\mathbf{b}_{n-1}^p+p^n\mathbf{b}_n$.

It should be noted that the classical definition of E given above works only for perfect fields of characteristic p > 0. In this form Theorem 1.1 is probably due to Cartier, cf. [5].

Now let A be a complete discrete valuation ring with residue field of characteristic p, such that there exist a power q of p and an automorphism σ of K, the quotient field of A, such that $\sigma(a) \equiv a^q \mod \mathfrak{m}$ for all $a \in A$, where \mathfrak{m} is the maximal ideal of A. It is the purpose of the present paper to define ramified Witt vector functors $W_{q,\infty}^F(-)$: $\mathbf{Alg}_A \to \mathbf{Alg}_A$, where \mathbf{Alg}_A is the category of A-algebras, and a ramified Artin-Hasse exponential mapping E: $W_{a,\infty}^F(-) \to W_{a,\infty}^F(W_{a,\infty}^F(-))$.

Artin-Hasse exponential mapping $E: W_{q,\infty}^F(-) \to W_{q,\infty}^F(W_{q,\infty}^F(-))$. There is such a ramified-Witt-vector functor $W_{q,\infty}^F$ associated to every twisted Lubin-Tate formal group law F(X,Y) over A. This last notion is defined as follows. Let $f(X) = X + a_2 X^2 + \cdots \in K[[X]]$ and suppose that $a_i \in A$ if q does not divide i and $a_{qi} - \omega^{-1}\sigma(a_i) \in A$ for all i for a certain fixed uniformizing element ω . Then $F(X,Y) = f^{-1}(f(X) + f(Y)) \in A[[X,Y]]$, and the formal group laws thus obtained are what we call twisted Lubin-Tate group laws. The Witt-vector functors $W_{q,\infty}^F(-)$ for varying F are isomorphic if the formal group laws are strictly isomorphic. Now every twisted Lubin-Tate formal group law is strictly isomorphic to one of the form $G_{\omega}(X,Y) = g_{\omega}^{-1}(g_{\omega}(X) + g_{\omega}(Y))$ with $g_{\omega}(X) = X + \omega^{-1}X^q + \omega^{-1}\sigma(\omega)^{-1}X^q^2 + \omega^{-1}\sigma(\omega)^{-1}\sigma^2(\omega)^{-1}X^q^3 + \cdots$ which permits us to concentrate on the case $F(X,Y) = G_{\omega}(X,Y)$ for some ω . The formulas are more pleasing in this case, especially because the only constants which then appear are the $\sigma^i(\omega)$, which is esthetically attractive, because ω is an invariant of the strict isomorphism class of F(X,Y).

The functors $W_{q,\infty}^F$ and the functor morphisms E are Witt-vector-like and Artin-Hasse-exponential-like in that

- (i) $W_{q,\infty}^F(B) = \{(b_0, b_1, \dots) | b_i \in B\}$ as a set-valued functor and the A-algebra structure can be defined via suitable Witt-like polynomials $w_{q,n}^F(Z_0, \dots, Z_n)$; cf. below for more details.
- (ii) There exist a σ -semilinear A-algebra homomorphism \mathbf{f} (Frobenius) and a σ^{-1} -semilinear A-module homomorphism \mathbf{V} (Verschiebung) with the expected properties, e.g. $\mathbf{f}\mathbf{V} = \omega$ where ω is the uniformizing element of A associated to F, and $\mathbf{f}(\mathbf{b}) \equiv \mathbf{b}^q \mod \omega W_{\sigma,\infty}^F(B)$.
- (iii) If k, the residue field of A, is perfect and l/k is a finite field extension, then $W_{q,\infty}^F(l) = B$, the ring of integers of the unique unramified extension L/K which covers l/k.
- (iv) The Artin-Hasse exponential E is characterized by $w_{q,n}^F \circ E = \mathbf{f}^n$ for all $n = 0, 1, 2, \ldots$

I hope that these constructions will also be useful in a class-field theory setting.

Meanwhile they have been important in formal A-module theory. The results in question have been announced in two notes, [9] and [10], and I now propose to take half a page or so to try to explain these results to some extent.

Let R be a $\mathbb{Z}_{(p)}$ -algebra and let $\operatorname{Cart}_p(R)$ be the Cartier-Dieudonné ring. This is a ring "generated" by two symbols \mathbf{f} , \mathbf{V} over $W_{p,\infty}(R)$ subject to "the relations suggested by the notation used". For each formal group F(X,Y) over R let $C_p(F;R)$ be its $\operatorname{Cart}_p(R)$ module of p-typical curves. Finally let $\hat{W}_{p,\infty}(-)$ be the formal completion of the functor $W_{p,\infty}(-)$. Then one has

- (a) the functor $F \mapsto C_p(F; R)$ is representable by $\hat{W}_{p,\infty}$ [3].
- (b) The functor $F \mapsto C_p(F; R)$ is an equivalence of categories between the category of formal groups over R and a certain (explicitly describable) subcategory of $Cart_n(R)$ modules [3].
- (c) There exists a theory of "lifting" formal groups, in which the Artin-Hasse exponential $E: W_{p,\infty}(-) \to W_{p,\infty}(W_{p,\infty}(-))$ plays an important rôle. These results relate to the so-called "Tapis de Cartier" and relate to certain conjectures of Grothendieck concerning crystalline cohomology ([4] and [5]).

Now let A be a complete discrete valuation ring with residue field k with q elements (for simplicity and/or nontriviality of the theory). A formal A-module over $B \in \operatorname{Alg}_A$ is a formal group law F(X, Y) over B together with a ring homomorphism $\rho_F \colon A \to \operatorname{End}_B(F(X, Y))$, such that $\rho_F(a) \equiv aX \mod(\deg 2)$. Then there exist complete analogues of (a), (b), (c) above for the category of formal A-modules over B. Here the rôle of $C_p(F; R)$ is taken over by the q-typical curves $C_q(F; B)$, $W_{p,\infty}(-)$ and $\hat{W}_{p,\infty}$ are replaced by ramified-Witt-vector functors $W_{q,\infty}^{\pi}(-)$ and $\hat{W}_{q,\infty}^{\pi}(-)$ associated to an untwisted, i.e. $\sigma = \operatorname{id}$, Lubin-Tate formal group law over A with associated uniformizing element π . Finally, the rôle of E in (c) is taken over by the ramified Hasse-Witt exponential $W_{q,\infty}^{\pi}(-) \to W_{q,\infty}^{\pi}(W_{q,\infty}^{\pi}(-))$.

As we remarked in (i) above, it is perfectly possible to define and analyse $W_{q,\infty}^F(-)$ by starting with the polynomials $w_{q,n}^F(Z)$ and then proceeding along the lines of Witt's original paper. And, in fact, in the untwisted case, where k is a field of q-elements, this has been done, independently of this paper, and independently of each other by E. Ditters [7], V. Drinfel'd [8], J. Casey (unpublished) and, very possibly, several others. In this case the relevant polynomials are of course the polynomials $X_0^{q^n} + \pi X_1^{q^{n-1}} + \cdots + \pi^{n-1} X_{n-1}^q + \pi^n X_n$.

Of course the twisted version is necessary if one wants to describe also all ramified discrete valuation rings with not necessarily finite residue fields. A second main reason for considering "twisted formal A-modules" is that there exist no nontrivial formal A-modules if the residue field of A is infinite.

Let me add that, in my opinion, the formal group law approach to (ramified) Witt-vectors is technically and conceptually easier. Witness, e.g. the proof of Theorem 6.6 and the ease with which one defines Artin-Hasse exponentials in this setting (cf. §§6.1 and 6.5 below). Also this approach removes some of the mystery and exclusive status of the particular Witt polynomials $X_0^{p^n} + pX_1^{p^{n-1}} + \cdots + p^nX_n$ (unramified case), $X_0^{q^n} + \pi X_1^{q^{n-1}} + \cdots + \pi^n X_n$ (untwisted ramified case).

 $X_0^{q^n} + \sigma^{n-1}(\omega)X_1^{q^{n-1}} + \sigma^{n-1}(\omega)\sigma^{n-2}(\omega)X_2^{q^{n-2}} + \cdots + \sigma^{n-1}(\omega) \cdots \sigma(\omega)\omega X_n$ (twisted ramified case). From the theoretical (if not the esthetic and/or computational) point of view all polynomials $\tilde{w}_{q,n}(X_0,\ldots,X_n) = a_n^{-1}(a_nX_0^{q^n} + a_{n-1}X_1^{q^{n-1}} + \cdots + a_0X_n) \in A[X]$ are equally good, provided $a_0 = 1, a_2, a_3, \ldots$ is a sequence of elements of K such that $a_i - \omega^{-1}\sigma(a_{i-1}) \in A$ for all $i = 1, 2, \ldots$ (cf. in this connection also [6]).

2. The functional-equation-integrality lemma.

2.1. The setting. Let A be a discrete valuation ring with maximal ideal m, residue field k of characteristic p>0 and field of quotients K. Both characteristic zero and characteristic p>0 are allowed for K. We use v to denote the normalized exponential valuation on K and ω always denotes a uniformizing element, i.e. $v(\omega)=1$ and $m=\omega A$. We assume that there exist a power q of p and an automorphism σ of K such that

$$\sigma(m) = m, \quad \sigma a \equiv a^q \mod m \quad \text{for all } a \in A.$$
 (2.2)

The ring A does not need to be complete.

Further let $B \in \mathbf{Alg}_A$, the category of A-algebras. We suppose that B is A-torsion free (i.e. that the natural map $B \to B \otimes_A K$ is injective) and we suppose that there exists an endomorphism $\tau \colon B \otimes_A K \to B \otimes_A K$ such that

$$\tau(b) \equiv b^q \bmod \mathfrak{m} B \quad \text{for all } b \in B. \tag{2.3}$$

Finally let f(X) be any power series over $B \otimes_A K$ of the form

$$f(X) = b_1 X + b_2 X^2 + \cdots, \quad b_i \in B, b_1 \text{ a unit of } B,$$
 (2.4)

for which there exists a uniformizing element $\omega \in A$ such that

$$f(X) - \omega^{-1} \tau_{\bullet} f(X^q) \in B[[X]]$$
 (2.5)

where τ_* means "apply τ to the coefficients". In terms of the coefficients b_i of f(X) condition (2.5) means that

$$b_i \in B$$
 if q does not divide i ,

$$b_{qi} - \omega^{-1} \tau(b_i) \in B$$
 for all $i = 1, 2, ...$ (2.6)

- 2.7. FUNCTIONAL EQUATION LEMMA. Let A, B, σ , τ , K, p, q, f(X), ω be as in 2.1 above such that (2.2.)–(2.6) hold. Then we have
- (i) $F(X, Y) = f^{-1}(f(X) + f(Y))$ has its coefficients in B and hence is a commutative one-dimensional formal group law over B. (Here $f^{-1}(X)$ is the "inverse function" power series of f(X); i.e. $f^{-1}(f(X)) = X$.)
- (ii) If $g(X) \in B[[X]]$, g(0) = 0 and h(X) = f(g(X)) then we have $h(X) \omega^{-1}\tau_*h(X^q) \in B[[X]]$.
- (iii) If $h(X) \in B \otimes_A K[[X]]$, h(0) = 0 and $h(X) \omega^{-1} \tau_* h(X^q) \in B[[X]]$, then $f^{-1}(h(X)) \in B[[X]]$.
- (iv) If $\alpha(X) \in B[[X]]$, $\beta(X) \in B \otimes_A K[[X]]$, $\alpha(0) = \beta(0) = 0$ and $r, m \in \mathbb{N} = \{1, 2, \dots\}$, then $\alpha(X) \equiv \beta(X) \mod(\omega'B)$, degree $m \in \beta(\alpha(X)) \equiv \beta(X) \mod(\omega'B)$, degree $m \in \beta(\alpha(X))$.

PROOF. This lemma is a quite special case of the functional equation lemmas of [11, cf. §§2.2 and 10.2]. There are also infinite-dimensional versions. Here is a quick proof. First notice that (2.6) implies (with induction) that

$$b_i \in \omega^{-i}B$$
 if j is not divisible by q^{i+1} . (2.8)

We now first prove a more general form of (ii). Let $g(Z) = g(Z_1, \ldots, Z_m) \in B[[Z_1, \ldots, Z_m]], g(0) = 0$. Then by the hypotheses of 2.1 we have

$$g(Z_1, \dots, Z_m)^{q'n} \equiv \tau_* g(Z_1^q, \dots, Z_m^q)^{q'^{-1}n} \mod(\omega' B).$$
 (2.9)

Combining (2.8) and (2.9) and using (2.6) we see that mod(B[[X]]) we have

$$h(Z) = f(g(Z)) = \sum_{i=1}^{\infty} b_i g(Z)^i \equiv \sum_{j=1}^{\infty} b_{qj} g(Z)^{qj} \equiv \omega^{-1} \sum_{j=1}^{\infty} \tau(b_j) g(Z)^{qj}$$

$$\equiv \omega^{-1} \sum_{j=1}^{\infty} \tau(b_j) \tau_* g(Z^q)^j = \omega^{-1} \tau_* f(\tau_* g(Z^q)) = \omega^{-1} \tau_* h(Z^q).$$

This proves (ii). To prove (i) we write $F(X, Y) = F_1(X, Y) + F_2(X, Y) + \cdots$, where $F_n(X, Y)$ is homogeneous of degree n. We now prove by induction that $F_n(X, Y) \in B[X, Y]$ for all $n = 1, 2, \ldots$. The induction starts because $F_1(X, Y) = X + Y$. Now assume that $F_1(X, Y), \ldots, F_m(X, Y) \in B[X, Y]$. We know that $f(F(X, Y)) \equiv b_1 F_{m+1}(X, Y) + f(g(X, Y))$ mod(degree m + 2), where $g(X, Y) = F_1(X, Y) + \cdots + F_m(X, Y)$. Hence, using the more general form of (ii) proved just above, we find mod(B[X, Y], degree m + 2):

$$f(F(X, Y)) \equiv b_1 F_{m+1}(X, Y) + f(g(X, Y))$$

$$\equiv b_1 F_{m+1}(X, Y) + \omega^{-1} \tau_* f(\tau_* g(X^q, Y^q))$$

$$\equiv b_1 F_{m+1}(X, Y) + \omega^{-1} \tau_* f(\tau_* F(X^q, Y^q))$$

$$= b_1 F_{m+1}(X, Y) + \omega^{-1} \tau_* f(X^q) + \omega^{-1} \tau_* f(Y^q)$$

$$\equiv b_1 F_{m+1}(X, Y) + f(X) + f(Y) = b_1 F_{m+1}(X, Y) + f(F(X, Y))$$

where we have used the defining relation f(F(X, Y)) = f(X) + f(Y), which implies $\tau_* f(\tau_* F(X^q, Y^q)) = \tau_* f(X^q) + \tau_* f(Y^q)$, and where we have also used the fact that $F(X, Y) \equiv g(X, Y) \mod(\deg m + 1) \Rightarrow F(X^q, Y^q) \equiv g(X^q, Y^q) \mod(\deg m + 2)$. It follows that $b_1 F_{m+1}(X, Y) \equiv 0 \mod(B[[X, Y]], \deg m + 2)$ and hence $F_{m+1}(X, Y) \in B[X, Y]$ because b_1 is a unit.

The proof of (iii) is completely analogous to the proof of (i).

The implication \Rightarrow of (iv) is easy to prove. If $\alpha(X) \equiv \beta(X) \mod(\omega' B)$, degree m) and $\alpha(X) \in B[[X]]$ then $\alpha(X)^{q^{ij}} \equiv \beta(X)^{q^{ij}} \mod(\omega^{r+i}B)$, degree m) which, combined with (2.8), proves that $f(\alpha(X)) \equiv f(\beta(X)) \mod(\omega' B)$, degree m). To prove the inverse implication \Leftarrow of (iv) we first do the special case

$$f(\beta(X)) \equiv 0 \mod(\omega' B, \text{ degree } m) \Rightarrow \beta(X) \equiv 0 \mod(\omega' B, \text{ degree } m).$$

Now $\beta(X) \equiv 0 \mod(\text{degree 1})$, hence $f(\beta(X)) = b_1 \beta(X) + b_2 \beta(X)^2 + \cdots \equiv 0 \mod(\omega'B, \text{degree } m)$, implies $\beta(X) \equiv 0 \mod(\omega'B, \text{degree 2})$, if m > 2 (if m = 1 there is nothing to prove), because b_1 is a unit. Now assume with induction that

 $\beta(X) \equiv 0 \mod(\omega'B, \text{ degree } n)$ for some n < m. Then, because $\beta(X) \equiv 0 \mod(\text{degree} 1)$ we have $\beta(X)^i \equiv 0 \mod(\omega'B, \text{ degree}(n+i-1))$ and hence $b_j\beta(X)^j \equiv 0 \mod(\omega'B, \text{ degree } n+1)$ if j > 2. Hence $f(\beta(X)) \equiv 0 \mod(\omega'B, \text{ degree } m)$ then gives $b_1\beta(X) \equiv 0 \mod(\omega'B, \text{ degree } n+1)$, so that $\beta(X) \equiv 0 \mod(\omega'B, \text{ degree } n+1)$ because b_1 is a unit. This proves this special case of (iv). Now let $f(\alpha(X)) \equiv f(\beta(X)) \mod(\omega'B, \text{ degree } m)$. Write $\gamma(X) = f(\beta(X)) - f(\alpha(X))$ and $\delta(X) = f^{-1}(\gamma(X))$. Then $\delta(X) \equiv 0 \mod(\omega'B, \text{ degree } m)$ by the special case just proved, and $\beta(X) = f^{-1}(f(\alpha(X)) + f(\delta(X))) = F(\alpha(X), \delta(X)) \equiv \alpha(X) \mod(\omega'B, \text{ degree } m)$ because F(X, Y) has integral coefficients, F(X, 0) = 0 and because $\alpha(X)$ is integral. This concludes the proof of the Functional Equation Lemma 2.7.

3. Twisted Lubin-Tate formal A-modules.

3.1. Construction and definition. Let A, K, k, p, m, σ, q be as in 2.1 above. We consider a power series $f(X) = X + c_2 X^2 + \cdots \in K[[X]]$ such that there exists a uniformizing element $\omega \in m$ such that

$$f(X) - \omega^{-1} \sigma_{\star} f(X^q) \in A[[X]]. \tag{3.2}$$

There are many such power series. The simplest are obtained as follows. Choose a uniformizing element ω of A. Define

$$g_{\omega}(X) = X + \omega^{-1}X^{q} + \omega^{-1}\sigma(\omega)^{-1}X^{q^{2}} + \omega^{-1}\sigma(\omega)^{-1}\sigma^{2}(\omega)^{-1}X^{q^{3}} + \cdots$$
 (3.3)

Given such a power series f(X), part (i) of the Functional Equation Lemma says that

$$F(X, Y) = f^{-1}(f(X) + f(Y))$$
(3.4)

has its coefficients in A, and hence is a one-dimensional formal group law over A. We shall call the formal group laws thus obtained twisted Lubin-Tate formal A-modules over A. The twisted Lubin-Tate formal A-module is called q-typical if the power series f(X) that it is obtained from is of the form

$$f(X) = X + a_1 X^q + a_2 X^{q^2} + \cdots$$
 (3.5)

From now on all twisted Lubin-Tate formal A-modules will be assumed to be q-typical. This is hardly a restriction because of Lemma 3.6 below.

3.6. LEMMA. Let $f(X) = X + c_2X^2 + \cdots \in K[[X]]$ be such that (3.2) holds. Let $\hat{f}(X) = \sum_{i=0}^{\infty} a_i X^{q^i}$ with $a_0 = 1$, $a_i = c_{q^i}$. Then $u(X) = \hat{f}^{-1}(f(X)) \in A[[X]]$ so that F(X, Y) and $\hat{F}(X, Y)$ are strictly isomorphic formal group laws over A.

PROOF. It follows from the definition of $\hat{f}(X)$, that $\hat{f}(X)$ also satisfies (3.2). The integrality of u(X) now follows from part (iii) of the Functional Equation Lemma.

3.7. REMARKS. Let k, the residue field of K, be finite with q elements, and let $\sigma = id$. Then the twisted Lubin-Tate formal A-modules over A as defined above are precisely the Lubin-Tate formal group laws defined in [12], i.e. they are precisely the formal A-modules of A-height 1. If k is infinite there exist no nontrivial formal A-modules (cf. [11, Corollary 21.4.23]). This is a main reason for also considering twisted Lubin-Tate formal group laws.

- 3.8. Remark. Let $f(X) \in K[[X]]$ be such that (3.2) holds for a certain uniformizing element ω . Then ω is uniquely determined by f(X), because $a_i \omega^{-1}\sigma(a_{i-1}) \in A \Rightarrow \omega \equiv a_i^{-1}\sigma(a_{i-1}) \mod \omega^{2i}A$ as $v(a_i) = -i$. Using parts (ii) and (iii) of the Functional Equation Lemma we see that ω is in fact an invariant of the strict isomorphism class of F(X, Y). Inversely, given ω we can construct $g_{\omega}(X)$ as in (3.3) and then $g_{\omega}^{-1}(f(X)) = u(X)$ is integral so that F(X, Y) and $G_{\omega}(X, Y) = g_{\omega}^{-1}(g_{\omega}(X) + g_{\omega}(Y))$ are strictly isomorphic formal group laws. In case #k = q and $\sigma = \mathrm{id}$, ω is in fact an invariant of the isomorphism class of F(X, Y). For some more results on isomorphisms and endomorphisms of twisted Lubin-Tate formal A-modules cf. [11], especially §§8.3, 20.1, 21.8, 24.5.
- **4. Curves and q-typical curves.** Let F(X, Y) be a q-typical twisted Lubin-Tate formal A-module obtained via (3.4) from a power series $f(X) = X + a_1 X^q + a_2 X^{q^2} + \cdots$
- 4.1. Curves. Let \mathbf{Alg}_A be the category of A-algebras. Let $B \in \mathbf{Alg}_A$. A curve in F over B is simply a power series $\gamma(t) \in B[[t]]$ such that $\gamma(0) = 0$. Two curves can be added by the formula $\gamma_1(t) +_F \gamma_2(t) = F(\gamma_1(t), \gamma_2(t))$, giving us an abelian group C(F; B). Further, if $\phi: B_1 \to B_2$ is in \mathbf{Alg}_A , then $\gamma(t) \mapsto \phi_* \gamma(t)$ (="apply ϕ to the coefficients") defines a homomorphism of abelian groups $C(F; B_1) \to C(F; B_2)$. This defines an abelian-group-valued functor C(F; -): $\mathbf{Alg}_A \to \mathbf{Ab}$. There is a natural filtration on C(F; -) defined by the filtration subgroups $C^n(F; B) = \{\gamma(t) \in C(F; B) | \gamma(t) \equiv 0 \mod(\text{degree } n)\}$. The groups C(F; B) are complete with respect to the topology defined by the filtration $C^n(F; B), n = 1, 2, \ldots$

The functor C(F; -) is representable by the A-algebra $A[S] = A[S_1, S_2, ...]$. The isomorphism $Alg_A(A[S], B) \xrightarrow{\sim} C(F; B)$ is given by

$$\phi \mapsto \sum_{i=1}^{\infty} {}^{F} \phi(S_i) t^i,$$

i.e. by $\phi \mapsto \phi_* \gamma_S(t)$, where $\gamma_S(t)$ is the "universal curve"

$$\gamma_{S}(t) = \sum_{i=1}^{\infty} {}^{F} S_{i} t^{i} \in C(F; A[S]).$$

Here the superscript F means that we sum in the group C(F; B) just defined (to avoid possible confusion with ordinary sums).

4.2. *q-typification*. Let $\gamma_S(t) \in C(F; A[S])$ be the universal curve. Consider the power series

$$h(t) = f(\gamma_S(t)) = \sum_{i=1}^{\infty} x_i(S)t^i.$$

Let $\tau: K[S] \to K[S]$ be the ring endomorphism defined by $\tau(a) = \sigma(a)$ for $a \in K$ and $\tau(S_i) = S_i^q$ for $i = 1, 2, \ldots$. Then the hypotheses of 2.1 are fulfilled and it follows from part (ii) of the Functional Equation Lemma that $h(t) - \omega^{-1}\tau_*h(t^q) \in A[S][[t]]$. Now let $\hat{h}(t) = \sum_{i=0}^{\infty} x_{q'}(S)t^{q'}$. Then, obviously, also $\hat{h}(t) - \omega^{-1}\tau_*\hat{h}(t^q) \in A[S][[t]]$ and by part (iii) of the Functional Equation Lemma it follows that

$$\varepsilon_q \gamma_S(t) = f^{-1} \left(\sum_{i=0}^{\infty} x_{q^i}(S) t^{q^i} \right)$$
 (4.3)

is an element of A[S][[t]]. We now define a functorial group homomorphism ε_q : $C(F; -) \to C(F; -)$ by the formula

$$\varepsilon_{q}\gamma(t) = (\phi_{\gamma})_{*}(\varepsilon_{q}\gamma_{S}(t)) \tag{4.4}$$

for $\gamma(t) \in C(F; B)$, where $\phi_{\gamma} : A[S] \to B$ is the unique A-algebra homomorphism such that $(\phi_{\gamma})_{+} \gamma_{\varsigma}(t) = \gamma(t)$.

4.5. Lemma. Let B be A-torsion free so that $B \to B \otimes_A K$ is injective. Then we have for all $\gamma(t) \in C(F; B)$,

$$f(\gamma(t)) = \sum_{i=1}^{\infty} b_i t^i \Rightarrow f(\varepsilon_q \gamma(t)) = \sum_{j=0}^{\infty} b_{q^j} t^{q^j}$$
(4.6)

and $\varepsilon_a C(F; B) = \{ \gamma(t) \in C(F; B) | f(\gamma(t)) = \sum_i c_i t^{q^i} \text{ for certain } c_i \in B \otimes_A K \}.$

PROOF. Immediate from (4.3) and (4.4).

4.7. Lemma. ε_a is a functorial, idempotent, group endomorphism of C(F; -).

PROOF. ε_q is functorial by definition. The facts that $\varepsilon_q \varepsilon_q = \varepsilon_q$ and that ε_q is a group homomorphism are obvious from Lemma 4.5 in case B is A-torsion free. Functoriality then implies that these properties hold for all A-algebras B.

4.8. The functor $C_q(F; -)$ of q-typical curves. We now define the abelian-group-valued functor $C_q(F; -)$ as

$$C_a(F; -) = \varepsilon_a C(F; -). \tag{4.9}$$

For each $n \in \mathbb{N} \cup \{0\}$ let $C_q^{(n)}(F; B)$ be the subgroup $C_q(F; B) \cap C^{q^n}(F; B)$. These groups define a filtration on $C_q(F; B)$, and $C_q(F; B)$ is complete with respect to the topology defined by this filtration.

The functor $C_q(F; -)$ is representable by the A-algebra $A[T] = A[T_0, T_1, \dots]$. Indeed, writing $f(X) = \sum_{i=0}^{\infty} a_i X^{q^i}$ we have

$$f(\gamma_S(t)) = f\left(\sum_{i=1}^{\infty} {}^F S_i t^i\right) = \sum_{j=0}^{\infty} \sum_{i=1}^{\infty} a_j S_i^{q'} t^{q'i}$$

and it follows that

$$\varepsilon_q \gamma_S(t) = \sum_{i=0}^{\infty} {}^F S_{q^i} t^{q^i}.$$

From this one easily obtains that the functor $C_q(F; -)$ is representable by A[T]. The isomorphism $\operatorname{Alg}_A(A[T], B) \xrightarrow{\sim} C_q(F; B)$ is given by

$$\phi \mapsto \sum_{i=0}^{\infty} {}^{F} \phi(T_i) t^{q^i} = \phi_*(\gamma_T(t)),$$

where $\gamma_T(t)$ is the universal q-typical curve

$$\gamma_T(t) = \sum_{i=0}^{\infty} {}^{F} T_i t^{q^i} \in C_q(F; A[T]). \tag{4.10}$$

4.11. Remarks. The explicit formulas of 4.8 above depend on the fact that F was supposed to be q-typical. In general slightly more complicated formulae hold. For arbitrary formal groups q-typification (i.e. ε_q) is not defined (unless q = p). But a similar notion of q-typification exists for formal A-modules of any height and any dimension if # k = q.

5. The A-algebra structure on $C_a(F; -)$, Frobenius and Verschiebung.

5.1. From now on we assume that $f(X) = g_{\omega}(X) = X + \omega^{-1}X^{q} + \omega^{-1}\sigma(\omega)^{-1}X^{q^{2}} + \cdots$ for a certain uniformizing element ω . Otherwise we keep the notations and assumptions of §4. Thus we now have $a_{i}^{-1} = \omega\sigma(\omega) \dots \sigma^{i-1}(\omega)$, $a_{0} = 1$. This restriction to "logarithms" f(X) of the form $g_{\omega}(X)$ is not very serious, because every twisted Lubin-Tate formal A-module over A is strictly isomorphic to a $G_{\omega}(X, Y)$, (cf. Remark 3.8), and one can use the strict isomorphism $g_{\omega}^{-1}(f(X))$ to transport all the extra structure on $C_{q}(F; -)$ which we shall define in this section. The restriction $f(X) = g_{\omega}(X)$ does have the advantage of simplifying the defining formulas (5.4), (5.5), (5.8), ... somewhat, and it makes them look rather more natural especially in view of the fact that ω , the only "constant" which appears, is an invariant of strict isomorphism classes of twisted Lubin-Tate formal A-modules (cf. Remark 3.8 above).

In this section we shall define an A-algebra structure on the functor $C_q(F; -)$ and two endomorphisms \mathbf{f}_{ω} and \mathbf{V}_q . These constructions all follow the same pattern, the same pattern as was used to define and analyse ε_q in §4 above. First one defines the desired operations for universal curves like $\gamma_T(t)$ which are defined over rings like A[T], which, and this is the crucial point, admit an endomorphism $\tau \colon K[T] \to K[T]$, viz. $\tau(a) = \sigma(a)$, $\tau(T_i) = T_i^q$, which extends σ and which is such that $\tau(x) \equiv x^q \mod \omega A[T]$. In such a setting the Functional Equation Lemma assures us that our constructions do not take us out of C(F; -) or $C_q(F; -)$. Second, the definitions are extended via representability and functoriality, and thirdly, one derives a characterization which holds over A-torsion free rings, and using this, one proves the various desired properties like associativity of products, σ -semilinearity of \mathbf{f}_{ω} , etc.

5.2. Constructions. Let $\gamma_T(t)$ be the universal q-typical curve (4.10). We write

$$f(\gamma_T(t)) = \sum_{i=0}^{\infty} x_i(T)t^{q^i}.$$
 (5.3)

Let $f(X) = g_{\omega}(X) = \sum_{i=0}^{\infty} a_i X^{q^i}$, i.e. $a_i = \omega^{-1} \sigma(\omega)^{-1} \dots \sigma^{i-1}(\omega)^{-1}$ and let $a \in A$. We define

$$\{a\}_{F}\gamma_{T}(t) = f^{-1}\left(\sum_{i=0}^{\infty} \sigma^{i}(a)x_{i}(T)t^{q^{i}}\right),$$
 (5.4)

$$\mathbf{f}_{\omega}\gamma_{T}(t) = f^{-1} \left(\sum_{i=0}^{\infty} \sigma^{i}(\omega) x_{i+1}(T) t^{q^{i}} \right). \tag{5.5}$$

The Functional Equation Lemma now assures us that (5.4) and (5.5) define elements of C(F; A[T]), which then are in $C_q(F; A[T])$ by Lemma 4.5. To illustrate

this we check the hypotheses necessary to apply (iii) of 2.7 in the case of \mathbf{f}_{ω} . Let τ : $K[T] \to K[T]$ be as in 5.1 above. Then by part (ii) of the Functional Equation Lemma we know that

$$x_0 \in A[T], \quad x_{i+1} - \omega^{-1}\tau(x_i) = c_i \in A[T].$$

It follows by induction that

$$x_i \in \omega^{-i} A \lceil T \rceil \tag{5.6}$$

and we also know that

$$v(a_i^{-1}) = v(\omega \sigma(\omega) \dots \sigma^{i-1}(\omega)) = i$$
 (5.7)

where v is the normalized exponential valuation on K. We thus have $\sigma^0(\omega)x_1 = \omega x_1 \in A[T]$ and

$$\sigma^{i}(\omega)x_{i+1} - \omega^{-1}\tau(\sigma^{i-1}(\omega)x_{i}) = \sigma^{i}(\omega)c_{i} + \sigma^{i}(\omega)\omega^{-1}\tau(x_{i}) - \omega^{-1}\tau(\sigma^{i-1}(\omega)x_{i})$$
$$= \sigma^{i}(\omega)c_{i} \in A[T].$$

Hence part (iii) of the Functional Equation Lemma says that $\mathbf{f}_{\omega}\gamma_{T}(t) \in C(F; A[T])$.

To define the multiplication on $C_q(F; -)$ we need two independent universal q-typical curves. Let $\gamma_T(t) = \sum^F T_i t^{q^i}$, $\delta_{\hat{T}}(t) = \sum^F \hat{T}_i t^{q^i} \in C_q(F; A[T; \hat{T}])$. We define

$$\gamma_T(t) * \delta_{\hat{T}}(t) = f^{-1} \left(\sum_{i=0}^{\infty} a_i^{-1} x_i y_i t^{q^i} \right)$$
 (5.8)

where $f(\gamma_T(t)) = \sum x_i t^{q^i}$, $f(\delta_{\hat{T}}(t)) = \sum y_i t^{q^i}$. To prove that (5.8) defines something integral we proceed as usual. We have $x_0, y_0 \in A[T; \hat{T}], x_{i+1} - \omega^{-1}\tau(x_i) = c_i \in A[T; \hat{T}], y_{i+1} - \omega^{-1}\tau(y_i) = d_i \in A[T; \hat{T}],$ where $\tau \colon K[T; \hat{T}] \to K[T; \hat{T}]$ is defined by $\tau(a) = \sigma(a)$ for $a \in K$, and $\tau(T_i) = T_i^q$, $\tau(\hat{T}_i) = T_i^q$, $i = 0, 1, 2, \ldots$ Then $a_0x_0y_0 = x_0y_0 \in A[T; \hat{T}]$ and

$$a_{i+1}^{-1}x_{i+1}y_{i+1} - \omega^{-1}\tau(a_i^{-1}x_iy_i)$$

$$= \omega\sigma(a_i)^{-1}(c_i + \omega^{-1}\tau(x_i))(d_i + \omega^{-1}\tau(y_i)) - \omega^{-1}\sigma(a_i^{-1})\tau(x_i)\tau(y_i)$$

$$= \omega\sigma(a_i^{-1})c_id_i + \sigma(a_i)^{-1}(c_i\tau(y_i) + d_i\tau(x_i)) \in A[T; \hat{T}]$$

by (5.6) and (5.7).

5.9. DEFINITION. Let $\gamma(t)$, $\delta(t)$ be two q-typical curves in F over $B \in \mathbf{Alg}_A$. Let ϕ : $A[T] \to B$ be the unique A-algebra homomorphism such that $\phi_* \gamma_T(t) = \gamma(t)$, and let ψ : $A[T; \hat{T}] \to B$ be the unique A-algebra homomorphism such that $\psi_* \gamma_T(t) = \gamma(t)$, $\psi_* \delta_{\hat{T}}(t) = \delta(t)$. Let $a \in A$. We define

$$\{a\}_{F}\gamma(t) = \phi_{\star}(\{a\}_{F}\gamma_{T}(t)),$$
 (5.10)

$$\mathbf{f}_{\omega}\gamma(t) = \phi_{\star}(\mathbf{f}_{\omega}\gamma_{\tau}(t)), \tag{5.11}$$

$$\gamma(t) * \delta(t) = \psi_*(\gamma_T(t) * \delta_T(t)). \tag{5.12}$$

5.13. Characterizations. Let B be an A-torsion free A-algebra; i.e. $B \to B \otimes_A K$ is injective, then the definitions (5.10)–(5.12) are characterized by the implications

$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i} \Rightarrow f(\{a\}_{F}\gamma(t)) = \sum_{i=0}^{\infty} \sigma^i(a) x_i t^{q^i},$$
 (5.14)

$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i} \Rightarrow f(\mathbf{f}_{\omega} \gamma(t)) = \sum_{i=0}^{\infty} \sigma^i(\omega) x_{i+1} t^{q^i}, \tag{5.15}$$

$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i}, \quad f(\delta(t)) = \sum_{i=0}^{\infty} y_i t^{q^i} \Rightarrow$$

$$f(\gamma(t) * \delta(t)) = \sum_{i=0}^{\infty} a_i^{-1} x_i y_i t^{q^i}.$$
 (5.16)

This follows immediately from (5.4), (5.5) (5.8) compared with (5.10)–(5.12), because ϕ_* and ψ_* are defined by applying ϕ and ψ to coefficients, and because $\gamma(t) \mapsto f(\gamma(t))$ is injective, if B is A-torsion free.

5.17. THEOREM. The operators $\{a\}_F$ defined by (5.10) define a functorial A-module structure on $C_q(F; -)$. The multiplication * defined by (5.12) then makes $C_q(F; -)$ an A-algebra-valued functor, with as unit element the q-typical curve $\gamma_0(t) = t$. The operator \mathbf{f}_{ω} is a σ -semilinear A-algebra homomorphism, i.e. \mathbf{f}_{ω} is a unit and multiplication-preserving group endomorphism such that $\mathbf{f}_{\omega}\{a\}_F = \{\sigma(a)\}_F \mathbf{f}_{\omega}$.

PROOF. In case B is A-torsion free the various identities in $C_q(F; B)$ like $(\{a\}_F \gamma(t)) * \delta(t) = \{a\}_F (\gamma(t) * \delta(t)), \ \gamma(t) * (\delta(t) +_F \varepsilon(t)) = (\gamma(t) * \delta(t)) +_F (\gamma(t) * \varepsilon(t)), \ldots$ are obvious from the characterizations (5.14)-(5.16). The theorem then follows by functoriality.

5.18. Verschiebung. We now define the Verschiebung operator V_q on $C_q(F; -)$ by the formula $V_q \gamma(t) = \gamma(t^q)$. (It is obvious from Lemma 4.5 that this takes q-typical curves into q-typical curves.) In terms of the logarithm f(X) one has for curves $\gamma(t)$ over A-torsion free A-algebras B,

$$f(\gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^i} \Rightarrow f(\mathbf{V}_q \gamma(t)) = \sum_{i=0}^{\infty} x_i t^{q^{i+1}}.$$
 (5.19)

5.20. THEOREM. For q-typical curves $\gamma(t)$ in F over an A-algebra B,

$$\mathbf{f}_{\omega}\mathbf{V}_{a}\gamma(t) = \{\omega\}_{F}\gamma(t),\tag{5.21}$$

$$\mathbf{f}_{\omega}\gamma(t) \equiv \gamma(t)^{*q} \mod\{\omega\}_F C_q(F; B). \tag{5.22}$$

PROOF. (5.21) is immediate from (5.14), (5.15) and (5.19) in the case of A-torsion free B and then follows in general by functoriality. The proof of (5.22) is a bit longer. It suffices to prove (5.22) for curves $\gamma(t) \in C_q(F; A[T])$. In fact it suffices to prove (5.22) for $\gamma(t) = \gamma_T(t)$, the universal curve of (4.10). Let

$$\delta(t) = f^{-1} \left(\sum_{i=0}^{\infty} y_i t^{q^i} \right), \qquad y_i = x_{i+1} - \sigma^i(\omega)^{-1} a_i a_i^{-q} x_i^q, \tag{5.23}$$

where the x_i , $i = 0, 1, 2, \ldots$, are determined by $f(\gamma(t)) = \sum x_i t^{q^i}$. It then follows from (5.14)–(5.16) that indeed $\mathbf{f}_{\omega}\gamma(t) - \gamma(t)^{*q} = \{\omega\}_F \delta(t)$, provided that we can show that $\delta(t)$ is integral, i.e. that $\delta(t) \in C_q(F; A[T])$. To see this it suffices to show

that $y_0 \in A[T]$ and $y_{i+1} - \omega^{-1}\tau(y_i) \in A[T]$ because of part (iii) of the Functional Equation Lemma. Let $c_i = x_{i+1} - \omega^{-1}\tau(x_i) \in A[T]$. Then

$$y_0 = x_1 - \sigma^0(\omega)^{-1} x_0^q = c_0 + \omega^{-1} \tau(x_0) - \omega^{-1} x_0^q \in A[T]$$

because $\tau(x_0) \equiv x_0^q \mod \omega A[T]$. Further from $x_{i+1} = c_i + \omega^{-1} \tau(x_i)$ we find

$$a_{i+1}^{-1}x_{i+1} = \omega\sigma(\omega)\ldots\sigma^{i}(\omega)c_{i} + \sigma(\omega)\ldots\sigma^{i}(\omega)\tau(x_{i}) = \omega^{i+1}d_{i} + \tau(a_{i}^{-1}x_{i})$$

for a certain $d_i \in A[T]$, and hence

$$a_{i+1}^{-q} x_{i+1}^q = \tau(a_i^{-q} x_i^q) + \omega^{i+2} e_i$$
 (5.24)

for a certain $e_i \in A[T]$. It follows that

$$\begin{aligned} y_{i+1} - \omega^{-1}\tau(y_i) &= x_{i+2} - \sigma^{i+1}(\omega)^{-1}a_{i+1}a_{i+1}^{-q}x_{i+1}^q - \omega^{-1}\tau(x_{i+1}) \\ &+ \omega^{-1}\tau(\sigma^i(\omega)^{-1}a_ia_i^{-q}x_i^q) \\ &= c_{i+1} - \sigma^{i+1}(\omega)^{-1}(a_{i+1}a_{i+1}^{-q}x_{i+1}^q - \omega^{-1}\sigma(a_i)\tau(a_i^{-q}x_i^q)) \\ &= c_{i+1} - \sigma^{i+1}(\omega)^{-1}a_{i+1}(a_{i+1}^{-q}x_{i+1}^q - \tau(a_i^{-q}x_i^q)) \in A[T] \end{aligned}$$

because $a_{i+1} = \omega^{-1} \sigma(a_i)$ and because of (5.24). (Recall that $v(a_{i+1}) = -i - 1$ by (5.7).) This concludes the proof of Theorem 5.20.

- 6. Ramified Witt vectors and ramified Artin-Hasse exponentials. We keep the assumptions and notations of §5.
- 6.1. A preliminary Artin-Hasse exponential. Let B be an A-algebra which is A-torsion free and which admits an endomorphism $\tau \colon B \otimes_A K \to B \otimes_A K$ which restricts to σ on $A \otimes_A K = K \subset B \otimes_A K$ and which is such that $\tau(b) \equiv b^q \mod \omega B$. We define a map $\Delta_B \colon B \to C_q(F; B)$ as follows.

$$\Delta_B(b) = f^{-1} \left(\sum_{i=0}^{\infty} \tau^i(b) a_i t^{q^i} \right).$$
 (6.2)

This is well defined by part (iii) of the Functional Equation Lemma. A quick check by means of (5.14)–(5.16) shows that Δ_B is a homomorphism of A-algebras such that, moreover,

$$\Delta_{B} \circ \tau = \mathbf{f}_{\omega} \circ \Delta_{B} \tag{6.3}$$

(because $\sigma^i(\omega)a_{i+1}=a_i$), and that Δ_B is functorial in the sense that if (B',τ') is a second such A-algebra with endomorphism τ' of $B'\otimes_A K$ and $\phi\colon B\to B'$ is an A-algebra homomorphism such that $\tau'\phi=\phi\tau$, then $C_\sigma(F;\phi)\circ\Delta_B=\Delta_{B'}\circ\phi$.

- 6.4. Remark. Using (B, τ) instead of (A, σ) we can view F(X, Y) as a twisted Lubin-Tate formal B-module over B, if we are willing to extend the definition a bit, because, of course, B need not be a discrete valuation ring, nor is $B \otimes_A K$ necessarily the quotient field of B. In fact B need not even be an integral domain. If we view F(X, Y) in this way then $\Delta_B \colon B \to C_q(F; B)$ is just the B-algebra structure map of $C_q(F; B)$.
- 6.5. Now let B be any A-algebra. Then $C_q(F; B)$ is an A-algebra which admits an endomorphism τ , viz. $\tau = \mathbf{f}_{\omega}$, which, as $\tau x \equiv x^q \mod \omega$ by (5.22), satisfies the hypotheses of 6.1 above (because \mathbf{f}_{ω} is σ -semilinear). It is also immediate from

and (5.4), cf. also (5.14), that $C_q(F;B)$ is always A-torsion free. Substituting B) for B in 6.1 we therefore find A-algebra homomorphisms $E_B: C_q(F;B) \to \mathbb{Z}_q(F;B)$) which are functorial in B because \mathbf{f}_{ω} is functorial, and because of actoriality property of the Δ_B mentioned in 6.1 above. This functorial pra homomorphism is in fact the ramified Artin-Hasse exponential we are and, as is shown by the next theorem, $C_q(F;B)$ is the desired ramified-actor functor.

THEOREM. Let A be complete with perfect residue field k. Let B be the ring of in a finite unramified extension L of K. Let l be the residue field of B. or the composed map

$$\mu_B \colon B \xrightarrow{\Delta_B} C_a(F; B) \to C_a(F; l).$$

 ι_{B} is an isomorphism of A-algebras. Moreover if $\tau \colon B \to B$ is the unique on of $\sigma \colon A \to A$ such that $\tau(b) \equiv b^q \mod B$, then $\mathbf{f}_{\omega} \mu_B = \mu_B \tau$, i.e. τ and \mathbf{f}_{ω} and under μ_B .

>F. Let $b \in B$. Consider $\Delta_B(\omega'b)$. Then from (6.2) we see that

$$f(\Delta_B(\omega'b)) \equiv a_* \tau'(\omega') \tau'(b) t^{q'} \mod(\omega B, \text{ degree } q^{r+1}).$$

t (iv) of the Functional Equation Lemma 2.7 it follows that

$$\Delta_B(\omega'b) \equiv y_r \tau'(b) t^{q'} \mod(\omega B, \text{ degree } q^{r+1})$$

 $y_r = a_r \tau'(\omega')$ is a unit of B. It follows that μ_B maps the filtration subgroups B into the filtration subgroups $C_q^{(r)}(F; l)$ and that the induced maps

$$l \stackrel{\sim}{\to} \omega' B / \omega^{r+1} B \stackrel{\mu_B}{\to} C_q^{(r)}(F; l) / C_q^{(r+1)}(F; l) \stackrel{\sim}{\to} l$$

en by $x\mapsto y_r x^{q'}$ for $x\in l$. (Here $l\stackrel{\sim}{\to}\omega'B/\omega'^{r+1}B$ is induced by $\omega'b\mapsto \bar{b}$ with image of b in l under the canonical projection $B\to l$, and $|I|/C_q^{r+1}(F;l)\stackrel{\sim}{\to} l$ is induced by $C_q^{(r)}(F;l)\to l$, $\gamma(t)\mapsto (\text{coefficient of }t^{q'})$ in Because l is perfect and $\bar{y}_r\neq 0$, it follows that the induced maps $\bar{\mu}_B$ are all Phisms. Hence μ_B is an isomorphism because B and $C_q(F;l)$ are both their filtration topologies. The map μ_B is an A-algebra homomorphism of Δ_B is an A-algebra homomorphism and $C_q(F;l)$ is an A-algebra-valued R. Finally the last statement of Theorem 6.6 follows because both R and R extend R and R and R map R is R and R by R and R and R by R is R and R and R by R and R by R is an R-algebra homomorphism and R is an R-algebra homomor

The maps $s_{q,n}$ and $w_{q,n}^F$. The last thing to do is to reformulate the definitions F; B) and E_B in such a way that they more closely resemble the correspondicts in the unramified case, i.e. in the case of the ordinary Witt vectors. This y done, essentially because $C_q(F; -)$ is representable.

ed, let, as a set-valued functor, $W_{q,\infty}^F$: $Alg_A \to Set$ be defined by

$$W_{q,\infty}^{F}(B) = \{(b_0, b_1, b_2, \dots) | b_i \in B\},$$

$$W_{q,\infty}^{F}(\phi)(b_0, b_1, \dots) = (\phi(b_0), \phi(b_1), \dots).$$
(6.8)

We now identify the set-valued functors $W_{q,\infty}^F(-)$ and $C_q(F;-)$ by the functorial isomorphism

$$e_B(b_0, b_1, \dots) = \sum_{i=0}^{\infty} {}^F b_i t^{q'},$$
 (6.9)

and define $W^F_{q,\infty}(-)$ as an A-algebra-valued functor by transporting the A-algebra structure on $C_q(F; B)$ via e_B for all $B \in \mathbf{Alg}_B$. We use \mathbf{f} and \mathbf{V} to denote the endomorphisms of $W^F_{q,\infty}(-)$ obtained by transporting \mathbf{f}_{ω} and \mathbf{V}_q via e_B . Then one has immediately that

$$\mathbf{V}(b_0, b_1, \dots) = (0, b_0, b_1, \dots) \tag{6.10}$$

and in fact

$$\mathbf{f}(b_0, b_1, \dots) = (\hat{b_0}, \hat{b_1}, \dots) \Rightarrow \hat{b_i} \equiv b_i^q \bmod \omega B. \tag{6.11}$$

(We have not proved the analog of this for \mathbf{f}_{ω} ; this is not difficult to do by using part (iv) of the Functional Equation Lemma and the additivity of \mathbf{f}_{ω} .)

Next we discuss the analog of the Witt polynomials $X_0^{p^n} + pX_1^{p^{n-1}} + \cdots + p^nX_n$. We define for the universal curve $\gamma_T(t) \in C_o(F; A[T])$,

$$s_{q,n}(\gamma_T(t)) = a_n^{-1}(\text{coefficient of } t^{q^n} \text{ in } f(\gamma_T(t)))$$
(6.12)

and, as usual, this is extended functorially for arbitrary curves $\gamma(t)$ over arbitrary A-algebras by

$$s_{q,n}\gamma(t) = \phi(s_{q,n}(\gamma_T(t))) \tag{6.13}$$

where $\phi: A[T] \to B$ is the unique A-algebra homomorphism such that $\phi_* \gamma_T(t) = \gamma(t)$. If B is A-torsion free one has, of course, the result that $s_{q,n} \gamma(t) = a_n^{-1}$ (coefficient of t^{q^n} in $f(\gamma(t))$). Using this one checks that

$$\begin{split} s_{q,n}(\gamma(t) +_F \delta(t)) &= s_{q,n}(\gamma(t)) + s_{q,n}(\delta(t)), \\ s_{q,n}(\gamma(t) * \delta(t)) &= s_{q,n}(\gamma(t)) s_{q,n}(\delta(t)), \\ s_{q,n}(\{a\}_F \gamma(t)) &= \sigma^n(a) s_{q,n}(\gamma(t)), \\ s_{q,n}(\mathbf{f}_{\omega} \gamma(t)) &= s_{q,n+1}(\gamma(t)), \\ s_{q,n}(\mathbf{V}_q \gamma(t)) &= \sigma^{n-1}(\omega) s_{q,n-1}(\gamma(t)) \quad \text{if } n > 1, \\ s_{q,0}(\mathbf{V}_q \gamma(t)) &= 0, \\ s_{q,n}(t) &= 1 \quad \text{for all } n. \end{split}$$

$$(6.14)$$

Now suppose that we are in the situation of 6.1 above. Then, by the definition of Δ_B , we have

$$s_{q,n}(\Delta_B(b)) = \tau^n(b). \tag{6.15}$$

Now define $w_{q,n}^F(B)$: $W_{q,\infty}^F(B) \to B$ by $w_{q,n}^F = s_{q,n} \circ e_B$. It is not difficult to calculate $w_{q,n}^F$. Indeed

$$f(\gamma_T(t)) = f\left(\sum_{i=0}^{\infty} {}^F T_i t^{q^i}\right) = \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_j T_i^j t^{q^{i+j}} = \sum_{r=0}^{\infty} \left(\sum_{i=0}^r a_i T_{r-i}^{q^i}\right) t^{q^r}$$

and it follows that $w_{q,n}^F$ is the functorial map $W_{q,\infty}^F(B) \to B$ defined by the polynomials

$$w_{q,n}^{F}(Z_{0},...,Z_{n}) = a_{n}^{-1} \left(\sum_{i=0}^{n} a_{i} Z_{n-i}^{q^{i}} \right)$$

$$= Z_{0}^{q^{n}} + \sigma^{n-1}(\omega) Z_{1}^{q^{n-1}} + \sigma^{n-1}(\omega) \sigma^{n-2}(\omega) Z_{2}^{q^{n-2}} + \cdots$$

$$+ \sigma^{n-1}(\omega) \cdots \sigma(\omega) \omega Z_{n}. \tag{6.16}$$

- 6.17. THEOREM. Let (A, σ) be a pair consisting of a discrete valuation ring A of residue characteristic p > 0 and a Frobenius-like automorphism $\sigma: K \to K$ such that (2.2) holds for some power q of p. Let ω be any uniformizing element of A, and let $w_{a,n}^F(Z)$, $n=0,1,\ldots$, be the polynomials defined by (6.16). Then there exists a
- unique A-algebra-valued functor $W_{q,\infty}^F$: $\mathbf{Alg}_A \to \mathbf{Alg}_A$ such that

 (i) as a set-valued functor $W_{q,\infty}^F(B) = \{(b_0, b_1, b_2, \dots) | b_i \in B\}$ and $W_{q,\infty}^F(\phi)(b_0,b_1,\ldots) = (\phi(b_0),\phi(b_1),\ldots)$ for all $\phi: B \to B'$ in \mathbf{Alg}_A ,
- (ii) the polynomials $w_{a,n}^F(Z)$ induce functorial σ^n -semilinear A-algebra homomorphisms $w_{q,\infty}^F \colon W_{q,\infty}^F(B) \to B$, $(b_0, b_1, \dots) \mapsto w_{q,n}^F(b_0, \dots, b_n)$. Moreover, the functor $W_{q,\infty}^F(-)$ has a σ^{-1} -semilinear A-module functor endomor-

phism V and a functorial σ -semilinear A-algebra endomorphism f which satisfy and are characterized by

(iii)
$$w_{q,n}^F \circ \mathbf{V} = \sigma^{n-1}(\omega) w_{q,n-1}^F$$
 if $n = 1, 2, ...; w_{q,0}^F \circ \mathbf{V} = 0$,
(iv) $w_{q,n}^F \circ \mathbf{f} = w_{q,n+1}^F$.

These endomorphisms f and V have (among others) the properties

- (v) $\mathbf{fV} = \omega$,
- (vi) $\mathbf{f}b \equiv b^q \mod \omega W_{q,\infty}^F(B)$ for all $\mathbf{b} \in W_{q,\infty}^F(B)$, $B \in \mathbf{Alg}_A$,
- (vii) V(b(fc)) = (Vb)c for all $b, c \in W_{q,\infty}^F(B), B \in Alg_A$.

Further there exists a unique functorial A-algebra homomorphism

$$E: W_{q,\infty}^F(-) \to W_{q,\infty}^F(W_{q,\infty}^F(-))$$

which satisfies and is characterized by

- (viii) $w_{q,n}^F \circ E = \mathbf{f}^n$ for all $n = 0, 1, 2, \ldots$ (Here $w_{q,n}^F \colon W_{q,\infty}^F(W_{q,\infty}^F(B)) \to W_{q,\infty}^F(B)$ is short for $w_{q,n,w_{q,\infty}^F(B)}^F$, i.e. it is the map which assigns to a sequence $(\mathbf{b}_0, \mathbf{b}_1, \ldots)$ of elements of $W_{q,\infty}^F(B)$ the element $w_{q,n}^F(\mathbf{b}_0, \mathbf{b}_1, \ldots) \in W_{q,\infty}^F(B)$.) The functor homomorphism E further satisfies
- (ix) $W_{q,\infty}^F(w_{q,n}^F) \circ E = \mathbf{f}^n$, where $W_{q,\infty}^F(w_{q,n}^F)$: $W_{q,\infty}^F(W_{q,\infty}^F(B)) \to W_{q,\infty}^F(B)$ assigns to a sequence $(\mathbf{b}_0, \mathbf{b}_1, \dots)$ of elements of $W_{q,\infty}^F(B)$ the sequence $(w_{q,n}^F(\mathbf{b}_0), w_{q,n}^F(\mathbf{b}_1), \dots)$ $\in W_{a,\infty}^F(B)$

Finally if A is complete with perfect residue field k and l/k is a finite separable extension, then $W_{a,\infty}^F(l)$ is the ring of integers B of the unique unramified extension L/K covering the residue field extension l/k and under this A-algebra isomorphism fcorresponds to the unique extension of σ to τ : $B \to B$ which satisfies $\tau(b) \equiv b^q$ mod ωB . In particular $W_{a,\infty}^F(k) \simeq A$ with **f** corresponding to σ .

PROOF. Existence of $W_{q,\infty}^F(-)$, V, f, E such that (i), (ii), (iii), (iv), (viii) hold follows from the constructions above. Uniqueness follows because (i), (ii), (iii), (iv), (viii) determine the A-algebra structure on $B^{N\cup\{0\}}$, V, f, E uniquely for A-torsion free A-algebras B, and then these structure elements are uniquely determined by (i)-(iv), (viii) for all A-algebras, by the functoriality requirement (because for every A-algebra B there exists an A-torsion free A-algebra B' together with a surjective A-algebra homomorphism $B' \to B$). Of the remaining identities some have already been proved in the $C_q(F; -)$ -setting ((v) and (vi)). They can all be proved by checking that they give the right answers whenever composed with the $w_{q,n}^F$. This proves that they hold over A-torsion free algebras B, and then they hold in general by functoriality. So to prove (vii) we calculate

$$w_{q,0}^{F}(\mathbf{V}(\mathbf{b}(\mathbf{fc}))) = 0,$$

$$w_{q,n}^{F}(\mathbf{V}(\mathbf{b}(\mathbf{fc}))) = \sigma^{n-1}(\omega)w_{q,n-1}^{F}(\mathbf{b}(\mathbf{fc})) = \sigma^{n-1}(\omega)w_{q,n-1}^{F}(\mathbf{b})w_{q,n-1}^{F}(\mathbf{fc})$$

$$= \sigma^{n-1}(\omega)w_{q,n-1}^{F}(\mathbf{b})w_{q,n}^{F}(\mathbf{c})$$

and, on the other hand,

$$w_{q,0}^F((\mathbf{Vb})\mathbf{c}) = w_{q,0}^F(\mathbf{Vb})w_{q,0}^F(\mathbf{c}) = 0, \quad w_{q,0}^F(\mathbf{c}) = 0,$$

$$w_{q,n}^F((\mathbf{Vb})\mathbf{c}) = w_{q,n}^F(\mathbf{Vb})w_{q,n}^F(\mathbf{c}) = \sigma^{n-1}(\omega)w_{q,n-1}^F(\mathbf{b})w_{q,n}^F(\mathbf{c}).$$

This proves (vii). To prove (ix) we proceed similarly.

$$w^F_{q,m} \circ W^F_{q,\infty} (w^F_{q,n}) \circ E = w^F_{q,n} \circ w^F_{q,m} \circ E = w^F_{q,n} \circ \mathbf{f}^m = w^F_{q,n+m} = w^F_{q,m} \circ \mathbf{f}^n.$$

(Here the first equality follows from the functoriality of the morphisms $w_{q,m}^F$ which says that for all $\phi: B' \to B \in \mathbf{Alg}_A$ we have $w_{q,m}^F \circ W_{q,\infty}^F(\phi) = \phi \circ w_{q,m}^F$; now substitute $w_{q,n}^F$ for ϕ .)

6.18. Remark. Vf = fV does not, of course, hold in general (also not in the case of the usual Witt vectors). It is, however, true in $W_{q,\infty}^F(B)$ if $\omega B = 0$, as easily follows from (6.11), which implies that $f(b_0, b_1, \ldots) = (b_0^q, b_1^q, \ldots)$ if $\omega B = 0$.

REFERENCES

- 1. E. Artin and H. Hasse, Die beide Ergänzungssätze zum Reciprozitätsgesetz der lⁿ-ten Potenzreste im Körper der lⁿ-ten Einheitswürzeln, Abh. Math. Sem. Hamburg 6 (1928), 146-162.
- 2. P. Cartier, Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A49-A52.
- 3. _____, Modules associés à un groupe formel commutatif. Courbes typiques, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A129-A132.
- 4. _____, Relèvement des groupe formels commutatifs, Sem. Bourbaki (1968/1969), exposé 359, Lecture Notes in Math., no. 179, Springer-Verlag, Berlin and New York, 1971.
 - 5. _____, Séminaire sur les groupes formels, Inst. Hautes Études Sci., 1972 (unpublished notes).
 - 6. J. Dieudonné, On the Artin-Hasse exponential series, Proc. Amer. Math. Soc. 8 (1957), 210-214.
- 7. E. J. Ditters, Formale Gruppen, die Vermutungen von Atkin-Swinnerton Dyer und verzweigte Witt-vektoren, Lecture Notes, Göttingen, 1975.
- 8. V. G. Drinfel'd, Coverings of p-adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), 29-40. (Russian)
- 9. M. Hazewinkel, Une théorie de Cartier-Dieudonné pour les A-modules formels, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), 655-657.
- 10. ____, "Tapis de Cartier" pour les A-modules formels, C. R. Acad. Sci. Paris Sér. A-B 284 (1977),

- _____, Formal groups and applications, Academic Press, New York, 1978.
 J. Lubin and J. Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380-387.
- 13. G. Whaples, Generalized local class field theory. III, Second form of existence theorem, Structure of analytic groups, Duke Math. J. 21 (1954), 575-581.
- 14. E. Witt, Zyklische Körper und Algebren der Characteristik p vom Grad p^m , J. Reine Angew. Math. **176** (1937), 126–140.

Department of Mathematics, Erasmus University, 50, Burg. Oudlaan, Rotterdam, The NETHERLANDS