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1. Introduction

Let K= (KyeonKdy Ky 2o 2K, K €N
{0}, X, = n beapartition of n. We define s par-

tial order on the set of all m-part partitions of n as
follows

K> Kjw X sﬁ Ky, re=l....m

We shall say that K specialimee to K' or that K 1s
more general than X' {f (1.1) holds. The reverse

order?ng has been called the daminance order [1]. This
order occurs in many different parts of pure and applied

(.Y

mathematics and we now proceed to discuss some of these.

1.2, The Spapper Conjecture

Let K = (K"...,V\m) be a partition of n. Let
be the subgroup Sx x Sx x ...ox§ of S _, the
1 H "

“n

symmetric group on n letters. For example 5(2 2.1)
12,
c 55 is the subgroup consisting of the permutations

(1), (12), (34), (12)(34). Let o(x) be the represen-
tation of Sn obtained by taking the trivial represen-

tetion of the subgroup S‘ and inducing 1t up to Sn.
Tnen the Snapper conjecture says that po(K) 1sadirect
K2 XK',

Sx

summand of p(K'% if Proofs of this statement
can be found in {2] and [3). :
1.3, The Gale-Ryser Theorem [5],[6]

Let u and v be two partitions of n. Then

there 1s a matrix of zeros and ones whose columns sum
to u and whose rows sum to v iff v zu* There u*
1y the dual partition of u defined by y% =

#ilu, 2 1), For example (2,2,1)* = {3.23. As a rule

we shall not distinguish between two partitions if one
of them 15 obtained from the other by adding some zeros.

1.4, Double Stochastic Matrices ([5])

A matrix M= (n1 ) 1s called double stochastic
if ™y 20 for all {.,j and zmu =1 for all j
1

and Zmu-l for all 4. Llet u and v be two
3

partitions of n. Then there is & double stochastic
matrix M such that u » M (so that u {s an aver-
age of ) tf u >y,

1 5. Completely Reachable Systems

Let ch'" denote the :paeo. of all completely
reachable control systems x = Ax + Bu, x € K",
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uER" That is, L;'n is the space of all pairs

.
{A,B) consisting of a real nxn matrix A and a real
nxm matrix B such that the nx (n+l)m matrix

R{A,B) = (B;AB;...;A"B) has rank n. The transforme-
tions: (A,B) ~ (A+BK,8), K a real mxn matrix

(feedback), (A,B)w (SAS™),58), S an invertible real
nxn_ matrix (basis change in state space) and (A,B) »
(RBT), T an invertible real mxm matrix (basis
change in input space) define an action of the Lie qroup
of all block triangular matrices

S 0
« 1 €6 R)
on L;-ntn' This group 15 called the feedback group.

For each (A.B) € LT let K(A,B) be the set of
y
Kronecker indices of (A,B) (ordered in descending

order). For each m-part partition K of n let OK'
{(A,B)|K(A,B) = K}. Then
1.6. Theorem ([15])
The orbits of the feedback F acting on L;r" are
,

precisely the 0’{.

Tt follows that the topological closure Oy, i.e.

the set of systems which can arise as 1imits (degenera-
tions) of a family of systems with Kronecker {ndices K
is necessarily a unfon of OK and some other orbits

(possibly none). Concerning tnis, several people
(Byrnes, Hazewinkel, Kalman, Martin . . .) have noticed

Lhat
1.7. Theorem
HK E OK‘ iff K> K'.
1.8. Gerstenhaber-Hesselink Theorem

Let N be the space of all nilpotent nxn
matrices, i.e. N * (A €R""Ma" - 0}, Let S (R)
act on KN by conjugation, {.e. N ss Every

N €N 1s similar to a Jordan normal form matrix with
zeros on the diagonal and thus the orbits of SLn(R)

acting on Nn are labelled by partitions X =
(K‘....,Kn) of n, where the K, represent the sizes
of the Jordan blocks. Let K, be the orbit correspond-
ing to  X. Then the Gerstenhaber-Hesselink theorem
(11, 17} says

1.9. Tneorem

ﬁK:,uy, 1Hf XK <K',

Note the reversal of the order fn this statement with
respect to the statemert of Theorem 1.7,

40y
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1.10. Gegeneration of Vector Bundles

let € bs 2 bolomorphic vectorbundle over the Rie-
mann sprere S¢. Then according to [16]) E splits as
3 direct sum of iine bundles (1.e. vectorbundles of
dimenzton 1) £ = l(Kl) ®...® L(Km) and in turn line

bundles are clessified by their degree (or ffrsi Chern-
class). Thus holomorphic vectorbundles over $¢ of

dimension m are classiffed by an m-tuple of integers
K(E) = (K (E),.. k(BN K((D) € 2y k() 2.0 2

Kn(t). The bundle £ 1s called positive {or ample) if
K(€) 20 for 211 1. We have

1.11, Theorsm
et E, be a_holomorphic family of positive vec-
torbundles dver S2. Then K(lu) < "(Et) for all

small enough t. Inversely 4f K < K' are two parti-
tions of n, then there 1s a holomorphic family of
bundles E, such that K(E) =~ k and K(Et) » K' for

Mt g0,

1.12. Interrelations

1t 1s well-known that Snapper conjecture implies
the Gale-Ryser theorem, the result on doubly stochastic
matrices as well as another combinaturial result known
as Muirhead!s frequality, «f. {1], [2]. On the other
hand, the Hermann-Martin vectorbundle associated to a
system provides the connection hetween theorems 1.11
and 1,7, <f. [13], {4), and explains why the same par-
tial order occurs in the two theorems. In this paper
we present 2 direct Yink betwecn theorems 1.8 and 1.7
and show how the Snapper-conjecture and theorem 1,11
relate to the ordering of the Weyl group Snm of the

semisimple Lie group SL . (€), the so-called BGG order

[9], or, more precisely how these results relate to the
natural "closure ordering” on the Schubert cells of the

Grassmann manifold G, (€""™). These notions will be

defined below. This explains why the same ordering
occurred again and again above, It also gives us a new
deformation type proof of the Snapper conjecture. In
addition to these new connections there 1s alsoadirect
connection between the Snapper conitclure and the
Gerstenhaber-Hesselink theorem [12) which completes the
picture 1n a very nice way, as {1lustrated by the fol-
Towing diagram

Terstenhaber-ilesselink |
r

S

Snapper Conjecture | l' Kronecker 1nd3cesl

of 5§stens
Gale-Ryser Theorem
Doubly Stoch, Matrices Holomorphic

irheads_Inequality _yectorbundles |
N
[Tchubert~CelY ordering
. __{BGG Order)

2. (;r_;_s_smg.n Manifolds, the Canonical

Ne and Schuhert Cells

The Grassmann manifold Gn(l""") is, as a set,
the collection of a}1 n-dimensional subspaces of "™,
This set has 2 natural structure of an analytic mani-
fold;‘“ﬂo define a hclomorphit vectorbundle &m over
Rn(l ) by taking as the fibre over x the
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m-dimensional quotient space &"™/x. Llet p: £ -
6,(8"™™) be the projection, and let r(5,) be The
vector space of holomorphic sections of p, 1{.e. the
space of all holomorphic s: G“(C"’-) ~ &, such that
p+s = {d. There are (n'm) obvious elements in
T(k,) defined by ¢ (x) = ¢ mod x € £ (x) » "™y
where e, is the i-th canonical basis vector of "M
These elements are linearly independent (obviously)
and, though we shall not need this, they form a basis
for r(g:?.

For each sequence of n subspaces 4 = (0 g A\1 {
§hy oG A) of T we define the closed Schubert
cell

SC(A) = (x € G, ("™ |dtm(xn A 2 1} (2.1)

In particular if A = (Al.....xn) {s a strictly in-
creasing sequence of natural numbers we define

A1 )«n
SC(A) =S¢ "e...et ).

One easily checks that SU{i) < SC(A') {f and only if
1 £ li for all {. Now assign to an m-part partition
K= (Kl.....Km) the sequence of natural numbers

2K) = (2.3..‘..x]~1. xzn.....xloxz«z.....
K
) L)

Kyvo..4 L LR PPN SR T &
Kyre iy ) Kptm)

%

Then, clearly K > K' 1{f and only if Ai(K) 2 X1(K').

{=1,...,n so that the mapping K= A(K) exhibits
the specialization order as a suborder of the ordering
defined by the inclusion relations between the Schubert
cells SC{X). This ordering {n turn {s a quotient -
ordering of the Bernstein-Gelfand-Gelfand ordering on
the Weyl group Speme f- (s1.

3. VYectorbundles and Systems
{Connection B)
Consider a system L = (A,B) € L:'n. Assign to |

it the holomorphic map ¢a)::s2 U (o) Gn(t""")
s [s1 -A.8], -~ 0 (3

(2.2)

where I, 1s the nxn unit matrix and [M] for an

n<(n+m) matrix M denotes the subspace of [
spanned by the rows of M. This is modified version
of the map defined in [13]. And correspondingly one

has
3.2. Theorem

Let E(%) be the pullback vectortundle ez’ [
Then K(E(Z)) = K(1).

With the present definftions the proof turns out
to be almost a triviality, cf. [14].



4. Systems and Rilpotent Matrices
{Connection A)

This connection takes the form of 3 common proof
of both theorems. The {dea of the proof is two exhibit
a small closed set that intersects each orbit in the
closure of some fixed orbit. This closed set is con-
structed 1n terms of certain filtrations that uniquely
define the ordit, We first consider the case of niT-
potent matrices.

Let ) be the partition xl,...

.x" and associate

with 1 the Young tableaux numbered from left to right
i.e.

1 2)3)4 I 5J

6| 7(8

9

ho)

Let y be a partition such that y > X\ and
y >tz fimplies 1 = ). Then as in the introduction
we know that the Young diagram for vy is obtained from
the Young diagram for X by shifting an end block to
the first possible row above. for example

1]

1

[

Assoctate with the diagram the Young tableaux numbered
from left to right as above

1123 4T5]
6|78
9 (wf”

Now define a function on the first n integers in
terms of Young Tableaux for y by f(i) 1s the number
assigned to the box immediately above the i-th box, if

such a box exists, if not Yet f(i) = O. Note that
f(1) « 0 iff {§ 1is a number in the first row. Also
that if k 1s in the i-th row of ) then f(k) is in

a row of A with number less than or equal to i-1.
will occasstonally refer to f as the upward shift
operator.

We

Let A be a M]pat»mt matrix with associated fi1-
<

tration Ker A c Ker A . Ker AT of type .

Choose a basis for Ker A" such that €1ecei€y o gen-
1

erate Xer A and in general e‘] N *(.1 RETIR

€, 45 Jenerate Ker A’. New define a 1inear
i

function F by defining F(e1)»r ety where we
take e = 0, linearly. Now from

the definition of f we have the following two facts.

and extending F
1 1

1) Ker F' 2 Ker A

P} 141 i

F Ker A < Ker A
We first prove a lemma about ranks of sums matrices.

4.1, Lemma

Let A and B be arbitrary matrices. The rank
of (tA + sB)‘ {s constant except on a finite number
of lines in l?\f(0.0H and rk(ta + s8)! 2
max ri(Ai. rk8').

Proof. Suppose the max remk (tA +sB)' = k. Then

S
there s a k <k minor that evaluated at tyeSe does

not vanish. Since the minor is polynomial in t,s
then there is a Zariski open set on which 1t doesn't
vanfsh. The polynomial is hom?c(eneous SO we can con-
clude that 1t is defined on P'(8) and doesn't vanish
on a Zariski open set of v‘(c) and hence it vanishes
at a finite number of points on 'P)(t) hence on a
finite number of lines. Thus the rank can only go

down at these isolated points. The Lemma follows by
choosing t =0 s=1 and t =1 s =0,

The next lemma will be the key for the proof of
the theorem.

4.2, lemag

let A

ana F be as above, then tA+F {s con-
Jugate to

A for all but finitely many values of t.
Proof. We will prove by induction that Ker(tAtr)‘

SKer A'. For 131 let x € Ker A, Then x € ker F
and hence (tA+F)x = 0 for all t, Now assume =k

that Ker (tA+ F)k > Ker A% Let x & ker A% and
note that x € Ker th we calculate (tA+F)kHz =
(tA+ F)*(tAx + Fx) but Ax € Ker A% and fx € Ler AK
and by the induction hypothesis Ker (tA+ F)k ES

Ker Ak, Thus x € Ker (tA*F)“‘ for all t. Thus we
have proven that rk(tA+ F)‘ < rk A1 for a1l {. By

Temma 4.1 we know that rk A < rk(tA+F) for all but
finitely many t. Thus for all but finitely many t
we have equality of rank and this proves conjugacy.

Cefine a set M = {(F:F" = 0 and for all 1 Ker ¢l

> Ker A1L M {s clearly an algebraic subvariety of
the nilpotent matrices defined in terms of n homo-
geneous equations. [Let a be a basis element in

Ker A\1 then F'a = 0 is one such equation.] Llet <
be any partition greater than A. Then there is an
element of type 1 in M and further more there is a
sequence of line segments in M from A to ap element

of type 1. Thus M 1is contained in the closure of
the orhit of A.
4.3, Lewma
The closure of the oribt of A is contained in
the set
v 1 1
Moo aFirkP oGk A
i=1 )
Proaf. 1f F {5 conjujate to A then rk A
rk &' tor 811 1 and hence the orbit of A {s con-

tained in M. Each of the sets in the intersection
is closed (even algebraic) and hence M is ciosed and
the lemma follows.

The main thecrem now folluws trivially.



Theorem (Gerstenhaber Hecselink)

A metrix B s contains¢ in the closure of the

wouwiy of A Iff the filtration type of B is larger
e tng filtration type of A,
Propf. 1f B € M then there s an F 1in of

e <aine type and F s in the closure of the orbu
2 .

we now consider the case of pairs of matrices and
3he feedback group. Again we must define a shift func-
t1en but this time we need a down shift instesd of an
wp shift. Let X be & partition with Young tableaux
T Let y be less than ) and again have the prop-
erty thet vy <1 s ) implles v =X Let T' be the
tsrlegux for y obtained by moving the appropriate
bus of the dlagrem for A, Define a function on the
first n {ntegers by (i) 1s the number of the box
in the teblesux T' {mmediately below the box of 1
4f such s box exists and zerg otherwise.

tet (A,B) be a controllable pair and let the
filtration of controllable subspaces have type \.
ra)l thet this filtration 1s defined by B.’ is the
space spanned by the columns of B and Bkﬂ . ABI: +
8, . One of the standard theorems is that (A,B) is
controlleble iff 8 E". See [4] for a survey.
Choose a basis for E" such that the first X in 8,
for 311 (. Llet the tableaux for 'y be defined as
sbave. e will define a patr (F,G) fin terms of the
tablesux of vy, Llet G be the matrix whose columns

are the hasis elements numbered by the first row of y.
Nefine f by defining F on the basis bty F(e‘) .

Re-

) with e " 0 and extend F to a linear func-
tion, Now note that F and G have the following
Yroporuu. Let G1 c...c nn be the filtration of
.G

1; (F,G) 1s controllable
2 < 8,
3) F8, < B,

The following lemma s the counterpart of lemma 4.2,

44, teom

lut (A.B) and
tem (tA+F, tB+G)
but finftely many t.

(F,G) be as above. Then the sys-
is equivalent to (A,B) for all

Progf. We use the fact that twu Systems are feed-
back aquivalent iff the filtrations are of the same
type (18], Let VieV,e ... eV be the filtratfon
of (tA4F, WB+G). Tfirst vince Gy By we nave that
v‘ « u‘ for all t. Assume \lk [ B
that (;k c b let x¢€ Yin
there 15 8y, and ¥p € e

and we are given
then by construction
such that

{F + M)y] 4

=X

&
and y, € %lk < 8
Ay e By
o Thus we have MM. VL = B
;wovos trat the k[ (tA+ )] (mvr.). (B4 G)] <

rUA 8.0 B) for al) 1 and a1 L. A sYignt modifi-
Jatten o1 Teema 4, 1 ylelds that for all but finitely
maay L the reverse inequality holds erd thus the lemma

but oy, ¢ v
}‘y.l t K\.

e X

AT
By definition

Y and hence
<0 we have that

for a1l k. This

&

is proven.

S = {(F,G)! the filtra-
{s contained subspace by subspace in
the filtration of (A,B) and (F,6) f{s controllabie).
Again S 1s an algebraic subvariety of the controll-
able pairs, but seen by choosing, with respect to some
innerproduct, a complementary set of subspaces. Llet 1
be any partition less than y then there is 2 pair
(F,6) € S of type T and furthermore the pair can be
reached fron (A,B) by & sequence of line segments as
constructed {n the previous lemma. Thus S 1s con-
tained in the closure of the orbit of (A,B).

Mow define a set of pairs
tion of (F,6)

For a pnr (F.G) denote the filtration by
WEE) € ... g ¥ (F6)
4.5. Lerma
The closure of the orb{t of (A,8) 4{s contained
in the set
n
S« n {{F,6):dim v (F,6) = dim V,(A,B) and
{=)
(F.6) controlilatle}
Proof. Clearly the orbit of (A,8) {s contained
in S~ and since each set in the intersection 1s clused
so is  S.
The main theorem now follows trivially.
4.2. Theorem
A pair (F,G) fs in the closure of the orbit af
(A,8) 1t the filtration type of (F,G) is less than

or equal to th: filtration type of ({A,8).

Proof. If 1 sy then there 1s a system of type
1 in" S and hence 1f (F,G) 1s of type t then its
equivalent to a system in S.

The two theorems have almost {dentical proofs.
both cases the key s that there is a map from each
orbit onto & flag manifold that is really the cructial
element. The set M and the set S are closely re-
lated to this map for let x be efther a nllpotent
matrix or a controllable system and let =(x) be the
corresponding element of the fiag manifold. Let H be
the stabilizer of the flag and consider the set in the

In

original variety of He+x. It {s not hard to show
that HexcMecr S as the case may be. The closure
of Hx seems to be in general smailer than M or S,
but if we do the same trick for each y 1{n the closur
of Hx then the union is M or S. Closing the sta-
bilizer picks up those elements with adjacent types
and perhaps a little more.

The key to the simplicity of these proofs was the
fact that {n both cases we were working with the cor-
responding filtration {nstead of the canonical forms.

Classifying Maps
(Connecﬁ?ﬁlﬂ
Let E « L(K]) e ... |

bundle of dimension m over $S<.
dimensfon i+1

5.

) be a positive vector-

Now TIL({)) has
and 1t follows that T(E) {s of dimen-

sion nem  For each s € S° et x(s) be the Kerne!
of tne evaluatior map v ~ y(x), y € I{F), y{s) €

Es) the m-dimensional fibre cf E over s. The vec-
torspace horomornhism (i) = E{s) {s surjective (pcsi-
tivity of £} and x(s) therefore has dimension n.



We can therefore define a morphism wE:SZ = 6, (r(E))
by s - x{(s). This map i3 classifying (meaning that
"’é'-m o E (Easy) and moreover

5.1 Theorem

Let SZ.E.-y[ be as above and let K = (K‘.....
)Sn). Then

(1) There is a Schubert-cell SC(A) such that
Im(wi) < SC(A) and such that dim A, »

1
A‘(K) 1eo1,....n (cf. (2.2) for the definti-
tion of li(K)).

1f 8 Schubert-cell SC{8) {s such that
IWE c SC{8) then dim B2 X1(K).

{eY,...,n.

(11)

6. Systems and Schubert Cells
(the coml me& connec.ﬂon (%)

Let I = (AB)€ L:rn. There as in section 3

above we sssociate to 1:' to holomorphic map axzsz -
6,(8™™)  defined by
s~ [sT-8,8], wr {1,0) {6.1)

This 1s the classifying map of the vectorbundle E(L)
of [ (by definition of the latter). It follows that
in terms of systems theorem 5.1 translates as

6.2. Theorem
Let . 6, be as above and let X = (K]()'.)...‘.
K 0E)), A = (k).

{t) There is a Schubert-cell SC(A} such that
dim(A‘) » x1(n) such that Im or_:sc(A).

(11) 17 1m 4 < S€{B) then dim(B,) b3 X‘(K).
Assume I = (A,8) to be in Brunovsky canonical
form. Then after renumbering the usual basis of

G"m. which amounts to rearranging the columns of
(s1-A,8), the map ¢, looks particularly simple.

for example 1f K = (3,2,1) we fird
s -1 0'oo o:a:o:o}
0 s <1100 0'0'0 g
6 0 s'1'0 0'0'0'0Q
s_._..-i.:.._'..‘..:. (5‘3)
00 0'ols 0’00
{0 0 0'0'c sl1'00
looo"o'o 0'0's '

and we observe that indeed Im 6, < $0(2,3,4,6,7,9).
7. A Femily of Representations of S
o enemy M
Peraneterized by G (87 )
Let M be the regular representation of Sn«m"
i.e. M s a vector space with basis e , o€ Snm
. ©
and S, acts on 2, by (eq) e, Let & be

the classitying vectorbundle over Gn((mm) defined

in section 2 atove,whose fibre over x 15 equal to

nem

r_m(x) = 0 x,

Now for each x € Gn(lnm)

phic of vector spaces

we define an homomor-

IR ‘;m(x)“("'m’. 0 n”“)(x) © ... @ ‘o(mm)(n

(7.1)
where the [REEEERLI. n+m holomorphic sec-
tions of ¢ defined in section 2, f.e. « (x) =

N ul
ey mod !'a(:l,r)the i-th basis vector of € Srmn acts
on (.m(x} i be permuting the factors and with
respect to this action (7.1) is S"w-equwariam and

thus defines o continuous family of homomorphfsms. More
precisely we have a homomorphism of vector bundles

are the

. rtv‘nv L poin+m)
X:H x Gn(t ) Fn (7.2)
which un each fibre is equivariant with respect to the

. o{n+m
Snm actton on M x {xi and (m(x) .

for pach x € Gn(l"m) let w{x) be the Spem”
module xx(M). This gives us a family of representa-
tions of Snvm which 1s "continuous” in the sense that
it arises as the family of 1mages of a continuous “am-
11y of homomorphisms of representations.

Very many regresentatiors of S . o arise fn this

way. We have rct yet determined completely which repre-
sentatfons of Sm-m occur among the n(x). But, for

example, if K 1s a partition of n and R« (KI + 1,
- 2Kp+ 1) then the tnduced representation (k) =
!ndsv_w'n 1 occurs among the n(x). For example if K »

(3,1,8) then G(K) = a(x) AF x
space of & matrix of the form

15 the row vector

1 0 0 0 60
I I I R I oi
6 0 * 1 a o o
W@ o9 0 0 * 1 0

where the * elements are ailnonzero.
case the vectors

inceed in this
are scalar multiples of

each other mod x and s0 are ey and 26’ while €
mod x, 23 mod x and ey mod x are linearly indepen-
dent in l‘m(”‘

e).ez.e1.94

By letting S|_l be the group of permatations of

various sets nf n
which Spem

Ccnjectur'aﬂy all representaticns of S arise in this
vay. ’

letters arnng tne symbois on
acts, many representations of Sn arise

1t {5 perhaps also worth observing tnat for all
s 7 0 tre representstion wis (s)), where I 15 a

system in Brunowsky cancrical forr 1s the induced repre-
sentation p{K). it w»ould be nite to be able to inter-

pret this in control thecretic terms.



g famild u resentations and
i A i

Mo '»o vt see how “continuous” families of repre-
sentalisn: # ¢ $: the type of result oncurring fn the
Smagper conjenwee. The relevant theurem is
8 1. Tpeevem

Let ¥ ssf # be lwo Sn-mdu!es' Suppose we
have s con®‘wamys fanily of homomorphisms ¢,:V - W.
Let nfd} = B4y oft) « Im 4y- Then the representa-
tion aih) 44 @ direct summand of the representation
aft) fer sme’" t.

The pres? 4s easy. Because the category of sn-

modules 's semti-simple, there exists a homomorphism of
S,modules 3 Im(e ) ~ ¥ such that ¢« o« 4d.
Then becsuse 8, 45 continmuous in t {t follows that
LIERR 15 imjective for small t. This gives us an
embedding of ¢, -wodules o(0)< o(t) and hence, using
;n;sinnci'/ e30in, o¢(0) 1s a direct summand of

9. On_the Propf of the Snapper Confecture

Thus T orove the Snapper conjecture {t suffices
to find faailies of maps of representations ‘t:v - W

such that for & givan K > K' we have Im 4, = o(K)
if ty¢gh (eng smal)) and Im 4y p(K'). Quite pos-

s1bly such familfes can be found within the grand fam-
11y constracted sbove 1n section 7. Certainly the

rand-family contains a1l the representations p(K)
?as pointed nut in section 7. To prove the Snapper
conjectura we rely on & s14ghtly more complicated con-
structior which ¢ perhaps best illustrated by means
of the following exemple.

onstder the rapresentation in the fmil‘ of sec-
tion 7 defined over an x ., t €R in G (E™M) given

by a metrix of the form

{- 1 0 0 0 0 0
o1 00 00
i- 0 0 1 0 0 0 (9.1)
120 0 0 y t O
‘o 00 0 0 * 1

where y,z and all the
Consider the element

*'s are nonzero elements.
ll'ﬁ10'7‘03'e"85'e\'e7

(3.2)
..].ine3ue‘le1de5927

in (("”“)'""", where e, 15 the standard i-th basis
vector. There m* 2, n - 5 Now consider the §

B «{n+n nin
submudy in x{ ot "m"‘t‘ generated by the image

of the element o

Now note that teg + yeg v ze, = 0. Using this
and the extra relation that the image of (9.2) is zero

mod Kt 1t follows readily that for t ¢ O the fmages
of the two elements
e oe, 0,0 ¢ e 0 00,
{9.3)
e ae,0e;0e 0,0 08,
are equal in mod Kt. From this 1t easily follows that
the image of

W% g et B g (ol e

o(K) for t ¢ 0 where X = (9.3},

(9.4)
is

But for t =0, ye, + ze; =0 so that K = {0}.
Also Im ¢, « p(k'), where K' = (5,2) as we saw in
section 7 above. Now choose Wntll 9y~ M such that
oo * id.

Let us take y > -1, 2 =}

for convenience. Then

eg = ey + teg mod L (x,) (9.5)
Consider o'_wo:lmo - Ims, . LA htsis for _g.(xt) for
2all t is given oy the images & and e of Lh
and e, respectively. Now because of (9.5) (and the
other Pelations given by '.m(xt)

o (e ) = s le ) + tale) (9.6)
where s(e ) 1is a tensor product e of e, and ;6
inyolving 3 factors :6 and 4 factors ;] and oo(ea)
involves 2 factors &, and 5 factors e.

Now observe that the fmage of o 4in Em(l‘t)"mII

fs a sum of terms {nvolving 5 factors & and 2 fac-
tors €. So that oy (V) = v+ tB(v (V)] can be

in Kt iff

vEK (9.7)

pe 8lugv)) =0, velm 3

Using the usual 1{ft vy (definec by ?‘ o ...

e &
- 2 1
esnes-.(SIZl)

e ) it is a straightforward
1€ 5:(5 i
mitter to check that By, s injective on Kt' This
proves that ”tot"c is injective so that Im Qoap(K')
is a direct summand of Im LA p(K).

In this vein one proves the Snapper conjecture for
K> K' with K1.Ki 2 1. The remaining cases are
handled by embedding Sns- S"m in 1n the obvious way
and by letting K correspond to K= (K] +1
Kt 1)

Observe thet the representations we are using from
the grand-family are precisely {up to taking a quotient

of one of them) among thase living over the Schubert-
cells SC(K) and SC(K').

veeny
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