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Abstract 
A Lie algebra L(E) can be associated with each 

nonlinear filtering problem, and the realizability of 
L(E) or quotients of L(E) with vector fields on a 
finite dimensional manifold is related to the existence 
of finite dimensional recursive filters. In this paper 
the structure and realizability properties of L(E) are 
analyzed for several interesting classes of problems. 
It is shown that, for certain nonlinear filtering 
problems, L(E) is given by the Weyl algebra 

W =lR<x1, ... ,x,-,f-, ... ,f-> It is proved 
n n x1 xn 

that neither Wn nor any quotient of Wn can be realized 
with C00 or analytic vector fields on a finite 
dimensional manifold, thus showing that for these 
problems, no statistic of the conditional density can 
be computed with a finite dimensional recursive filter. 
For another class of problems (including bilinear 
systems with linear observations), it is shown that 
L(E) is a certain type of filtered Lie algebra; the 
implications of this property are discussed. 

I. Introduction 
This paper is concerned with the problem of 

recursively filtering the state xt of a nonlinear 
stochastic system, given the past observations 
zt = {zs, O~s.2_t}. The systems we consider satisfy 
the Ito stochastic differential equations 

dxt = f( xt) dt + G( xt) dwt 

dzt = h(xt)dt + R~dvt 
(E) 

where x E lRn, w E Dl.m, z E: lRP, w and v are independent 
unit variance Wiener processes, and R > 0. The optimal 
(minimum-variance) estimate of xt is of course the 
conditional mean xt ~ E[xtlzt] (also denoted xtit or 
Et[xt]). Aside from the linear-Gaussian case in which 
the Kalman filter is optimal, there are very few known 
cases in which the conditional mean, or indeed ~ 
statistic of the conditional distribution, can be 
computed with a finite dimensional recursive filter 
(a number of these are summarized in [l]). More 
precisely, a finite dimensional recursive filter is a 
stochastic differential equation driven by the 
observations of the form 

p 
dnt = a(nt)dt+ .I b.(nt)dz.t, (1) 

l =1 l 1 

where n evolves on a finite dimensional manifold and 
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a and {bi} are sufficiently smooth to insure existence 
and uniqueness (these conditions will be strengthened 
later). The conditional statistic E[c(xt) \zt] is said 
to be finite dimensionally computable (FDC) if it can be 
computed "pointwise" as a function of the state of a 
finite dimensional recursive filter: 

( 2) 

As a practical matter, it is also useful to require that 
the combined estimator (1)-(2) yield a statistic c(xt) 
which is a continuous function of z; we will comment on 
this later in this section. 

Recently, Brockett [2],[3] and Mitter [4],[5] have 
shown that Lie algebras play an important role in 
nonlinear recursive estimation theory; the approach of 
Brockett [2] is the following. Consider the Zakai 
equation for an unnormalized conditional density p(t,x) 
[6]: 

p 
dp(t,x) = Lp(t,x)dt + I h.(x)p(t,x)dz.t 

i =l 1 l 
( 3) 

where zi and hi are the ith components of z and h, 
2 T n a(·f.) 1 n n a(-(GG) .. ) 

L(.) = - I --1 + - I I l J ( 4) 
i=l axi 2 i=l j=l axiaxj 

is the forward diffusion operator, and p(t,x) is related 
to the conditional density p(t,x) of xt given zt by 

p(t,x) = p(t,x)•(fp(t,x)dx)-1. (5) 

Notice that (3) is a bilinear differential equation [7] 
in p, with z considered as the input. Suppose that, for 
some initial density, some statistic of the conditional 
distribution of xt given zt can be calculated with a 
finite dimensional recursive estimator of the form (1)
(2), where a, bi, and y are analytic. Of course, this 
statistic can also be obtained from p(t,x) by 

c(xt) = fc(x)p(t,x)dx(fp(t,x)dx)- 1. (6) 

For the rest of the development, it is more convenient 
to write (1) and (3) in Fisk-Stratonovich form (so that 
they obey the ordinary rules of calculus and so that Lie 
algebraic calculations involving differential operators 
can be performed as usual): 

~ p 
dnt = a(nt)dt + i~l bi(nt)dzit (7) 

dp(t,x) 
1 p 2 p 

[L- 2 i~l hi(x)J p(t,x)dt+ i~l hi(x}p(t,x)dzit 

(8) 

where the ith component a.\nl = a.(nl _ 12 I b.k(nl 
1 l j,k J 

(here bjk is the kth component of bj). 
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The two systems (7),(2) and (8),(6) are thus two 
representations of the same mapping from "input" 
functions z to "outputs" E(xt): (8),(6) via a bilinear 
infinite dimensional state equation, and (7),(2) via a 
nonlinear finite dimensional state equation. Motivated 
by the results of [8],[9] for finite dimensional state 
equations, the major observation of [2] is that, under 
appropriate hypotheses including minimality of the 
representation (7),(2), the Lie algebra F generated by 

. a,b1, ... ,bp (under the commutator [a,b] = ~~ b - ~~ a) 
should be a homomorphic image of the Lie algebra 

L(l.:) generated by e0 = L-} I h.2(x) and e.= h.(x), 
i=l 1 1 1 

i=l,. . .,p (under the commutator [e0,ei] = e0ei-eie0), 
with e0 ->-a and ei ... bi, i=l,. . .,p. On the other hand, 
if there is a homomorphism~ of L(l.:) onto a Lie algebra 
generated by p+l complete vector fields a,b1··· .,bp' on 
a finite dimensional manifold, then this is an indica
tion that some conditional statistic may be computable 
by an estimator of the form (7),(2). It is not known 
in what generality such results are valid, especially 
for cases in which L(l.:) is infinite dimensional, and 
much work remains to be done (the fact that existence 
of a finite dimensional filter implies the existence of 
a Lie algebra homomorphism has been made rigorous for a 
class of estimation problemS:-including some of those 
discussed in Section II, in [26]). However, it is 
clear that there is a strong relationship between-the 
structure of L(l.:) and the existence of finite 
dimensional filters. In this paper, we discuss the 
properties of L(Z) for some interesting classes of 
examples. These Lie algebraic calculations give some 
new insights into certain nonlinear estimation problems 
and some guidance in the search for finite dimensional 
estimators. 

If L(Z) is finite dimensional (this seems to occur 
only in very special cases [5], [10]), a finite dimen
sional estimator can in some cases be constructed by 
integrating the Lie algebra representation. Indeed, if 
L(l.:) or any of its quotients is finite dimensional, 
then by Ado's Theorem [11, p. 202] this Lie algebra has 
a faithful finite dimensional representation; thus it 
can be realized with linear vector fields on a finite 
dimensional manifold, resulting in a bilinear filter 
(see, e.g., [12] and [16] for examples). However, 
actually computing the mapping from p(t,x) to e(xt) 
(i.e., deciding which statistic the filter computes) is 
a difficult problem from this point of view; one must 
so far use other, more direct, methods to actually 
construct this mapping or to derive the filter for a 
particular conditional statistic (see, e.g., (14]-[17)~ 
On the other hand, if L(l.:) or its quotients are infinite 
dimensional, it is still possible that these Lie 
algebras can be realized by nonlinear vector fields on 
a finite dimensional manifold. Conditions under which 
this can be done is an unsolved problem in general; 
we show in Section II that this is not possible for 
certain classes of Lie algebras. However, to see that 
two vector fields on a finite dimensional manifold can 
generate an infinite dimensional Lie algebra, consider 

the vector fields a = x2 33x and b = x3 33x on a one
dimensional manifold; it is easy to see that a and b 
generate the infinite dimensional Lie algebra of vector 

fields of the form x2p(x) :x , where p is a polynomial. 
If a statistic E(xt) is finite dimensionally 

computable, the Lie algebraic approach gives some 
insight into the continuity of the estimator. Since 
there is a Lie algebra homomorphism as discussed above, 
the vector fields b1, ... ,bp are homomorphic images of 
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the operators e1, ... ,ep which all commute with each 

other (these are just multiplication operators). Thus 
b1, ... ,bp also commute, and the results of [18) imply 

that the filter (7) represents a continuous map (in the 

c0 and LP topologies) from the space of "inputs" z to 
the solutions n. Hence, the estimator (7),(2) gives a 
continuous map from z to c(xt); this is a very useful 
property, indicating the "robustness" of the filter (see 
also [19), (201). 

Brockett and Clark [13) used this approach to study 
the estimation of a finite state Markov process observed 
in additive Brownian motion; the Lie algebraic approach 
led to the discovery of new low dimensional filters for 
the conditional distribution, even in some cases when 
the number of states is arbitrarily large. In (2), the 
Lie algebraic approach is explicitly carried out and 
analyzed for the problem in which f and h are linear and 
G is constant. In that case, the Lie algebra L(l.:) of 
the Zakai equation is finite dimensional and the 
unnormalized conditional density can in fact be computed 
with a finite dimensional estimator, the Kalman filter. 
In [21], a similar analysis is carried out for an 
example of the class of estimation problems considered 
in [14]-[16); for this class of nonlinear stochastic 
systems, the conditional mean (and all conditional 
moments) of xt given zt are finite dimensionally 

computable. For this example, the Lie algebra L(E) is 
infinite dimensional but has many finite dimensional 
quotients (the Lie algebras of the finite dimensional 
filters), and these are analyzed in detail in [21]. 
These last two examples, as well as the example of Benes 
[17], are special cases of the class considered in 
Section I I I. 

In Section II, we consider estimation problems for 
which L(L) is the Weyl algebra Wn. A number of examples 
are given and useful properties of the Weyl algebra are 
derived; some of these results have been obtained 
independently by Mitter [5]. The major results of 
Section II are that neither Wn nor any quotien; of Wn 
can be realized by vector fields with either C or 
formal power series coefficients on a finite dimensional 
manifold; this shows that for these problems, no 
statistic of the conditional density can be computed 
with a finite dimensional recursive filter. Most of the 
results in this paper will be stated without proof; for 
the proofs, see [27]. 

II. The Weyl Algebras Wn 

The Weyl algebra Wn [ 22], [23, Chapter 1] is the 
algebra of all polynomial differential operators; i.e., 

. a :i wn = lR < X1·····x '-ax , .. ., ax- > A basis for wn 
n 1 n 

consists of all monomial expressions 

a 61 6n 
n a a 

xn -B- ··· -B-
axll axnn 

( 9) 

where a,B range over all multiindices a= (a1, ... ,an)' 

B = (S1,. . .,Bn), a,$ e:l!ll U {O} (the non-negative 
integers). Wn is a Lie algebra under the Lie bracket; 
as an example, we state the general formula for W1: 



i+k-r aj+l-r 
x axj+l-r 

i +k-s aj+.t-s 
x axj+l-s (10) 

. ·1 
where (Jr) t·-Jj 1 1 is the binomial coefficient and 

J r .r. . 
we have used the convention that ( ~) = O if r < 0 or 

j < r. The center of Wn (i.e., the ideal of all 

elements Z e: Wn such that [X,ZJ = O for all X e: Wn) is the 

one-dimensional space lR • 1 with basis {1} (22, p. 148]. 
Our first result is the simplicity of the Lie algebra 
Wn/IR • 1; this is of course stronger than showing that 

Wn is simple as an associative algebra [22, p. 148]. 

Our proof follows that of Avez and Heslot [24) for the 
Lie algebra Pn of polynomials under the Poisson 

bracket. A number of the following results are col!ITIOn 
to Pn and Wn' but these two Lie algebras are not 
isomorphic (this is basically because the expression in 
Pn corresponding to (10) would retain only the terms 

for r=l and s=l). Hence, one must be careful in 
literally interpreting results proved for P in the 
context of Wn [30 J. n 

Theorem 1: The Lie algebra Wn/IR·l is simple; i.e., it 

has no ideals other than {O} and W/lR ·1. Equivalently, 

the only ideals of Wn are {0}, lR • 1, and Wn. 

This theorem basically shows that if Wn occurs as 

the Lie algebra L(E) for some estimation problem, then 
·either the unnormalized conditional density itself is 
finite dimensionally computable or no statistic at all 
is finite dimensionally computable. The next two 
theorems complete the argument by showing that in fact 
neither Wn nor its quotients can be realized by vector 

fields on a finite dimensional manifold. 
Let Vm be the Lie algebra of vector fields 

A e:, m a . 
V = { I f.(xl' •.. ,x) -~-}with (formal) power 
m i =l 1 m oXi 

series coefficients fi e:lR[[x1, ••. ,xm]J, and let V(M) 

be the Lie algebra of C00-vector fields on a C00-manifold 
M. 
Theorem 2: Fix n 'f 0. Then there are no non-zero 

homomorphisms from W to V or from W /IR • 1 to V for 
any m. n m n m 
Theorem 3: Fix n 'f 0. Then there are no non-zero 

homomorphisms from Wn to V( M) or from W/IR • 1 to V( M) 

for any finite dimensional C00-manifold M. 
These results show (assuming the appropriate analog 

of the results of [2], [8]) that if a system i: has 
estimation algebra L(E) =W for some n, then neither 

the conditional density ofnxt given zt nor any nonzero 

statistic of the conditional density can be computed 
with a finite dimensional filter of the form (7) with 

a and {b.} C00 or analytic. We will give several 
1 

examples of such systems, but first we present a 
general method for showing that L(l:) = Wn, the proof of 

which is similar to that of [24] for Poisson brackets. 

Theorem 4: The Lie algebra Wn is generated by the 

elements 

a2 2 a 
x., - 2 ,x. -~-· i=l, ... ,n; and x1.x1.+l' i=l, •.. ,n-1. 

1 3X. 1 oXi , 
Theorem 4 provides a relatively systematic method 

for showing that L(i:) =Wn for a particular estimation 

problem: one need only show that by taking repeated 

Lie brackets of L - ~ i: h~ and {hi}, the generating 
elements of W given in Theorem 4 are obtained. Notice 

n 2 
that if n=l, the generating elements are x, ~, and 

ax 
x2 {x. Some interesting examples are the following. 

Example 1 (the cubic sensor problem [5],(25]): 
Consider the system 

dxt = dwt 
3 

dzt = xtdt+dvt. 

The Lie algebra L(l:) is generated by the operators 
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1 a2 1 6 3 
eo = 2 -2 - 2 x ' el = x · 

ax 
We can compute a sequence of Lie brackets to obtain a 
sequence of e 1 ements ei e: L( I:), eventua 1ly obtaining the 

desired generators of Wn: 

[eo,e1l = 3/ a~+ 3x ~ e2 = x2 aax + x 
k ~3 k ad e 1 = 3 · 4 · · · ( k+ 2) x =<> x e: L ( E) , k > 3 
e2 -

0 k+l k 
(where ade2 e1 = e1 and ade0 e1 = [e0, ade0 e1 J). 

Combined with e0, x6 e: L(E) implies that e3 
Continuing, 

a2 
= -2e:L(l:). 

ax 

a2 a [e3,e2J = 4x - 2 + 4 - * a2 a 
e4 = x -2 + -;;-

ax ax 3x oX 

2 2 a2 a e5 = 3x - 2 +5x-;:;- +1 
ax ox 3x2 ~ + 6x ~ + 1 => 

dX oX 

(e4,e1J 6x3 2- + 9x2 => e - 2x3 2- + 3x2 
ax 6 - ax 

2 
[e3,e6J = 12x2 :x2 + 24x {x + 6, which combined with e5 

2 
implies that e7 = 1 and e8 = x2 ~ + 2x 33x are in L(E). 

ax 
A few more calculations will complete the demonstration: 

33 a2 33 
[e3,e8J 4x - + 6 - => e9 = x -

ax3 ax2 ax3 

2 a3 a2 
-5x 3 - 9x - 2 :;, e11 

ax ax 

2 3 L 
5x _a_ + 9x _a_ 

ax3 ax2 
2 

8x3 aax2 + 12x2 a"x ~ e12 
2 

2x3 -3- + 3x2 ..£... 
ax2 ax 



3 2 
12x2 -3- + 24x _a_ + 6 l 

ax3 ax2 ax 
3 2 

2x2 _a_+ 4x a + l 
ax3 ~ ax 

Now e13 • e11 , and e4 are all linear combinations of the 

2 a3 a2 a e 1 ements x 3 ' x -2 • and ax ' and the coefficient 
ax ax 

matrix 

[: 
1 

9 

4 

is nonsingular. It follows that L(E) contains 

a a2 2 a3 
e14 = ax, e15 = x 2, and e16 = x 3 . Finally, 

ax ax 

(el4'el] = 3x2 => el7 = x2 

[e14 ,e171 = 2x => e18 = x 

wh i eh combined with e2 gives x2 a: e:L; thus by Theorem 4 
L(E) =W 1. This example is in the class studied in (26], 
for which the ideas of [2] are made rigorous. Thus 
we have in fact shown that no conditional statistic is 
finite dimensionally computable for the cubic sensor. 

Analogous computation of selected Lie brackets and 
the use of Theorem 4 yields similar results for the 
following examples. 
Example 2: For the system 

dzt xtdt+dvt' 

. 1 a2 3 a 7 2 L(l:) is generated by 2 - 2 - x ax - 2 x and x, and 
L(l:)=W1. ax 

Example 3 (mixed linear-bilinear type): Consider the 
system with state equations 

dxt = dw1t 

dyt = xtdt + xtdw2t 

with observations 

1 a2 1 2 a2 a 1 2 L(E) is generated by - - + - x --.,.. - x - - - y and 
2 ax2 2 ay£ ay 2 

y, and L(l:) = w2• The same result is obtained if the 
xtdt term is absent in they equation; in that case we 
have a multiple Wiener integral of Brownian motion 
observed in Brownian motion noise. 
Example 4: Consider the system with state equations 

dxt = dwt 
2 

dyt = xtdt 

and observations 

dzlt = xtdt+dv1t 
69 

dz2t = Ytdt+dvzt· 

1 a2 2 a 1 2 1 2 L(E) is generated by2-2 - x ay -2x -2Y, x, 
ax 

and y; it is easily shown that L(i:) = w2. This is the 
example studied in [21], but here we have the 
additional observation z2; the relationship between 
these examples will be examined in the next section. 

III. Pro-Finite Dimensional Filtered Lie Algebras 
A Lie algebra L is defined to be a pro-finite 

dimensional filtered Lie algebra if L has a decreasing 
sequence of ideals L = L_ 1 => L0 => L1 => ••• such that 
(a) n Li = o 
(b) L/L; is a finite dimensional Lie algebra for all i. 

The terminology is analogous to that of pro-finite 
groups (28]. Notice that (a) implies that there is an 
injection from L to$ L/L .. In the context of the 

i l 

estimation problem, this would correspond to L(~) 
having an infinite number of finite dimensional 
quotients; if each of these can be realized with a 
recursively filterable statistic, then the injectivity 
of the map makes it reasonable to conjecture that these 
statistics represent some type of power series 
expansion of the conditional density. Of course, in 
addition to those discussed in Section I, other 
difficult technical questions such as moment 
determinacy will also be relevant here, but the 
structure of the Lie algebra should provide some 
guidance as to possible successful approaches to the 
problem and some insight into the structure of the 
resulting approximations. 
Example 5 (21): A sjmple example of the class 
considered in [14]-(16] is given by the state equations 

dxt = dwt 
- 2 dyt - xtdt 

and the observations 

with x0 Gaussian. The computation of xt is of course 
straightforward by means of the Kalman filter; however, 
as shown in (14]-[16], all conditional moments of Yt 
can also be computed recursively with finite 
dimensional filters. L(l:) is generated by 

_ 2 a 1 a2 1 2 _ . e - -x - + - - - - x and e - x, as shown in [21], o ay 2 ax2 2 1 
a bas.is for L_(;::) i_s given by e0 and 

a1 a a1 a1 • {x-. ·a-· •i; i=0,1,2, ... }. Defining Li to be 
ay1 x ay1 ay 

ai . 
the ideal generated by x i' i=0,1,2, ... , it is easy 

ay 
to see that L(l:) is a pro-finite dimensional filtered 
Lie algebra, and realizations of the L(l:)/Li in terms 
of recursively filterable statistics are given in (21]. 
In addition, L(l:) is solvable (21]. 

A similar analysis for systems of the form of 
Example 5, with x~ replaced by a general monomial x~ 
has also been done [31]; for p > 2, a similar but more 
complex Lie algebraic structure is exhibited. It is 
interesting to compare Example 5 with Example 4, which 



is the same except for the additional observation 
dz2t = ytdt + dv2t; in that case L(l:) = w2, so that no 
conditional statistic can be computed exactly with a 
finite dimensional filter .. However, it is probable 
that, due to the additional observation, a suboptimal 
approximate filter (such as the Extended Kalman Filter) 
for the conditional mean of Yt will result in lower 
mean-square error than the optimal filter which 
computes Yt in Example 5. Thus some care must be taken 
in interpreting the Lie algebraic structure of a 
nonlinear estimation problem; this structure has direct 
implications on the exact computation of conditional 
statistics, but its implications for approximate 
filtering remains to be investigated. 
Exam le 6 de ree increasin o erators and bilinear 
s stems : Consider a system of the form i: , and 
suppose that f, G, and h are analytic with f(O) = 0 and 
G(O) = O, so that the power series expansions of f and 
G around zero are of the form 

f(x) = I 
la.I ~.l 

G(x) = l 
la.I~ 1 

where \a.\ 

G(x)G'(x) 

= a1+ ••. +an. It follows that 

I G (x)xa.. 
\al ~2 a. 

( 11) 

An example of such systems is the class of bilinear 
systems 

p . 
dxt =Axt+ .l Bixtdw~ (12) 

1=1 

dzt = Cxtdt + dvt. 

Another example is 

dxt = xtdt +sin xt dwt 

dzt = h(xt)dt+dvt 

with h analytic; in general, a wide variety of examples 
can be found. 

Let M = lR [[xl' ... ,xn]J be the module of all 
(formal) power series in x1, ..• ,xn' and define the 
submodules 

M. = {E a xa.la =O for la\~ i}, i=0,1,2, ••• , 
1 Cl Cl 

so that, e.g., M0 consists of those power series with 
zero constant term. If i: is a system satisfying the 
condition (11), it follows that for all i, the forward 
diffusion operator (4) satisfies 

LMi c:: Mi; 

hence, 
1 2 

(L- 2h x)M; c:: Mi 

and of course 

h(x)Mi c:: Mi. 

Since the two generators of L(l:) thus leave Mi 
invariant, it is obvious that L(i:)M; c:: M;; thus, each 
element of L(l:) can only increase (or leave the same) 
the degree of the first term in the power series 
expansion of an element of M. Let 

Li = {X e: L(l:) \XMc:: Mi+l}, i=-1,0,1,2, .... 

Then Li is an ideal in L(E) and we have an induced 
representation 

pi: L/Li + End(M/Mi+l). 

Because M/Mi+l is finite dimensional, so is L/L;• since 
p. is injective (by definition of L.). It is obvious 

1 1 
that n L. = {O}; thus L(E) is a pro-finite dimensional 

1 
filtered Lie algebra, with filtration L;· One 
additional structural feature of this filtration is 
that L0/L; is a nilpotent Lie algebra for i=l,2, ..• ; 
also, L/L;+l is abelian for all i ~O. The nil potency 
of the L0/L; is a property also possessed by the 
filtration of Example 5. 

Since many systems can be well approximated by 
bilinear ones, these results may have important 
implications for approximate nonlinear filtering. We 
close this section with two interesting examples of 
this class; the first is a bilinear system of the form 
(12), but in which some elements of A are also unknown 
and must be estimated. The second is an angle 
modulation problem. 
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Example 7 (bilinear system with unknown parameter): 
The simplest example of this type is 

dxt = atxtdt + xtdwt 

da.t = 0 

dzt = xtdt + dvt 

Here both the state xt and parameter a are to be 
estimated recursively. The Lie algebra L(E) is 

1 2 a2 a a 1 2 generated by -2 x -2 + 2x -a + 1 - a.x ax - Cl - 2 x 
Clx x 

and x. Both of these operators are "degree increasing" 
when operating on lR [[x,a]], so L(E) is a pro-finite 
dimensional filtered Lie algebra. 
Example 8 (angle modulation without process noise): 
Consider the problem of observing 

dzlt = sin(wt+a)dt+dv1t 

dz 2t = cos(wt+a)dt+dv2t 

where wand a are constant random variables to be 
estimated. To place this problem in the present 
framework, we have the three state equations 
w = 0 

e = o 
t = 1 

The Lie algebra L(E) is generated by e0 = ;t - ~, 
e1 = sin(wt+e), and f1 = cos(wt+e). It i~ easily 
shown.that L(E) has basis elements e0,e; =w1 sin(wt+ e), 

f; =w1 cos(wt+a), i=0,1,2, ...• The nonzero commutation 
relations are [e0,e;] = fi+l' [e0,fi] = -ei+l· Hence 
L(i:) is a pro-finite dimensional filtered Lie algebra, 
with filtration {L;}, where Li is the ideal generated 
by ei+l and fi+l' i=0,1,2, ..•. Phase-lock loops are 
often used for filtering problems such as this, but the 
form of the optimal estimator is unknown. This 
calculation suggests that an infinite number of 
statistics of the conditional density may be finite 
dimensionally computable. 
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