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This volume is devoted to modeling and analysis of 

uncertain dynamical systems in an uncertain environment and the 

synthesis of filters, identifiers and adaptive controllers in 

such a setting. All this with particular emphasis on recursive 

(and/or on-line) techniques. 

This is a large and varied field of inquiry.It was the 

intention of the conference,of which this volume constitutes 

the proceedings, to review the most important themes and new 

developments in a coherent manner without making too many 

demands on the audience in the matter of prerequisites. 

As a result this volume contains tutorial material, reviews 

and surveys, as well as research papers on the topics of modeling, 

adaptive control, identification and filtering and applications. 

The present introduction is intended to provide an informal 

outline of the main themes of the volume: identification and 

filtering and recursiveness, and to indicate how the various 

contributions fit together, That is, it is essentially an 

(annotated) navigation chart, We have concentrated mostly on the 
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tutorial and the invited survey-and-state-of-the-art papers 

(marked with a*) or**) in the table of contents). 

J, THE SETTING AND THE BASIC THEMES. 

An uncertain dynamical system may be defined as a map F 

from an input space 'U. (which is a family of maps from the time 

axis T cJR to the space of input values U) and an uncertainty 

space N to an output space '} (which is a family of maps from 

T to the space of output values Y) which is nonanticipating, 

that is to say that for all values of the uncertainty parameter 

n the output y is independent of future values of the input u. 

The uncertain system under consideration is often called the 

plant and is depicted by the following signal flow diagram 

(fig. l): 

input 
uE:'U 

uncertainty 

plant 
F 

figure 

l 
n E N 

output 
yEy 

We think of the inputs as variables which can be manipulated 

(controls) or, more generally, through which the environment 

can influence the system; we think of the outputs as variables 

which can be measured (observations) or, more generally, through 

which the system can influence the environment. The uncertainty 

reflects the fact that the dynamic behaviour is unknown (for 

example because the numerical value of a parameter is not known) 

or that it may depend on a stochastic phenomenon. We think of the 

uncertainty as a parameter n being choosen by 'nature'. 

For the purpose of th~ contributions in this volume it is 

in fact insightful to assume that the uncertainty space N is a 

product space, H= P x R with P a set of unknown parameters and 

R the outcome space of a general random variable. Formally, there 
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is a probability space {~,A,P} and a map T : ~ ~ R which 

selects the value in R in a random fashion. Finding out from 

measurements the actual value (or 'best' approximation) of the 

unknown parameter p E P is the basic problem in system 

identification while finding the actual value (or 'best' 

estimate) of the random parameter (vector) r E R is (indirectly) 

the basic problem in filtering. Preferably one wants to do this 

in a recursive manner that is, roughly, by a technique which 

updates a 'state-type' parameter vector nt by means of the new 

information gathered at time t while the desired unknown para

meters p E P or r E R are calculated as (known) functions of nt. 

The vector n , so to speak, embodies or codifies all the useful 
t 

information gathered up to time t. 

2. MODELING ISSUES, 

The study of stochastic dynamic systems brines with it the 

problem of modeling, particularly if one wants to use differen

tial equation models. The reason why one wants to use such models 

is, as in the deterministic case, connected with the fact that 

one much prefers, for good (computational) reasons and also 

from a basic mathematical point of view to use recursive 

models, that is, models which display the ~of the system 

explicitely. In a stochastic framework the idea of state leads 

to modeling in terms of a Markov process (since in general there 

is also an input we should really think of a controlled Markov 

process). Writing down the evolution of a Markov process leads 

to differential equations with a white noise term on the right 

hand side and the rigorous interpretation of such equations 

leads to Ito calculus. 

An Ito equation is a differential equation of the form 

( I) dx f(x)dt + g(x)dw x(t ) 
0 

x 
0 
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n n n n nxm( . ) with x E lR , f: lR + lR , g: lR + lR the nxm-matrices , w 

an lRm-v~lued Wiener stochastic process, and x E lRn a random 
0 

vector. Assume that w and x 
0 

are defined on the probability 

space (n,A,P). The above equation can be thought of intuitively 

as the equation 

dw 
f(x) + g(x) dt x(t ) = x 

0 0 

. ) . h dw (at least as long as w1 is scalar valued wit dt 'white 

noise'. This, however, is not a process defined in the 

convential way. The rigorous interpretation of equation (!) is 

made in terms Ito calculus and is the subject of CURTAIN's 

tutorial [section 2.2 in this volume]. Under suitable 

assumptions, explained in the tutorial, (1) yields a well

defined Markov process x. We may add inputs and outputs to (1) 

which leads to the usual form of a stochastic differential 

system given by: 

dx f(x,u(t))dt + g(x,u(t))dw 

(2) 

dy g(x)dt + dv 

x(t ) 
0 

y (t ) 
0 

x 
0 

0 

where v is a stochastic Wiener process assumed to be independent 

of w. The noises w and v are respectively called the system 

noise and the output noise. (Problems where the system noise 

w and the output noise v are dependent are of interest but are 

usually not given much attention; cf., however, e.g. section 

7.3 in this volume; this introduces fundamental extra difficul

ties). Model (2) leads then to an uncertain dynamical sy~tem of 

the type informally discussed in section I, with uncertainty 

random variables. 

Two 'case studies' of modelin8 of stochastic systems are 

contained in part 3 of this volume, both taken from areas where 
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there is a great deal of recent activity in applied mathematics 

The first one of these contributions is by BOEL [section 3.3] 

and describes how one may set up stochastic models of computer 

networks. The models proposed are in terms of queues and 

contrary to (I) involve mainly Poisson noise, An interesting 

feature in the analysis of these models is the important role 

played by 'quasi-(time) reversibility'. 

The second paper about modeling is by ARNOLD [section 3.1] 

and treats chemical reactions. Such reactions show irregularities 

in space and one can consider the local behaviour versus the 

global behaviour where one expects to be able to derive some 

type of space average behaviour. Chemical reactions also have 

a stochastic feature due to the fact that particles react when 

they 'meet' which is modeled as a random phenomenon, The purpose 

of ARNOLD's paper is to demonstrate how global deterministic 

models may be viewed as suitable limits of global stochastic 

models or of local deterministic models both of which may Ln 

turn be viewed as a limit of a local stochastic model. 

One of the important issues in mathematical control theory 

is the realization theory problem. This means essentially the 

realization (or modeling) of a given input/output operator by 

means of a 'machine' of type (2). It also means the construction 

of a stochastic process of a certain type with a pregiven 

covariance function. 

As we have already mentioned many applications 

(in fact most of those discussed in this volume as Kalman 

filtering and nonlinear filtering) need, in order to carry out 

the required calculations, a model in state space form. Often, 

one starts with a model in input/output form - some model of 

the type introduced in section I - and the question then arises 

how to construct an equivalent state space model. In the 

context of random processes, this problem becomes the following: 

Let y(t), t ET en\ be a given stochastic process with outcome 
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space Y. The problem then is to construct a space X, a Markov 

process x(t), t ET cJR. with outcome space X, and a map 

h: X + Y such that h(x(t)) is in some sense equivalent to the 

original process y(t). In the paper by LINDQUIST and PICC! the 

realization theory for multivariate stationary gaussian 

stochastic processes is presented. 

In addition part 3 of this volume contains two papers on 

the more qualitative properties of stochastic differential 

equations 
x(t) 

x(t) 

f(x(t),~(t)), x(O) =XO 

f(x(t), ~(t)), x(O) = x 
0 

with random initial condition x and ~(t) a random process. 
0 

Here solutions are to be interpreted pathwise, i.e. this 

equation is really a collection of equations, one for each 

noise trajectory (and initial condition). 

The paper by Arnold [section 3.2] is a survey in extended 

abstract form of problems, concepts and results of the 

qualitative theory of such equations. Qualitative concepts 

include such things as stationary solutions, attractors, 

stability and ergodicity. This last topic is the subject of the 

paper by Wihstutz, Obviously something like ergodicity for 

instance is of relevance whe~ discussing the compatibility 

between local (micro) stochastic models and global (average) 

deterministic models. Think of statistical mechanics. 

3. NONLINEAR FILTERING. 

The filtering problem takes up by far the largest part 

of this volume. In abstract terms the filtering problem is a 

stochastic version of an obtimal observer design problem. Take 

an uncertain plant as introduced in section 1, and make, to 

simplify the discussion, the (inessential) restriction that 

there are no inputs. Assume furthermore that there are two types 
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of outputs: one output, which we will denote by y, which is a 

signal which can be measured - the observations - and another 

output, which we will denote by z, which is a signal which we 

would like to know - the to-be-estimated output, These outputs 

take on their values in a space Z; often z = x, the state of 

the plant processor, which accepts as inputs the observations 

Y and produces as outputs estimates z of z. Formally we have 

a plant (F ,F ): N + Y x Zand we wish to construct a 
y z 

nonanticipating map K: Y + Z such that, in some sense, 

z =Ky KF(n) is close to z = F (n) (see Figure 2). Expressing 
y z 

"l n 
to-be-estimated-output 

Plant ;; z 
F 

observation Filter z 
K r 

y 

figure 2 

9 

'being close to' in terms of a loss functional and assuming the 

uncertainty to be a random variable it is natural to express this 

problem in terms of the minimization of the average loss 

E{d(z,z)}. It is furthermore clear that one can forrriulate this 

minimization for all times t E T which leads to the problem of 

finding, for all t, a Kt: Y + z which minimizes 

E{d(z(t))}, where dis an appropriate distance function. 

Now, since one wants to obtain this estimate z(t) for all t, 

it is very natural and advantageous to attempt to do this 

computation recursively. This is done by trying to find a 'state' 

of the observer s such that the computation of z may be carried 

out according to the diagram: 
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___.Y-.C_-r_)..,._----· s ( t I ) 

t <t<t 1 

0- l 
Z (t I) 

y(-r) 
t 1<-r<t 11 s Ct") 

l 
zCt") 

Storing s(t') instead of y(-r) for t <-r<t' will hopefully also 
()-

lead to an automatic data reduction which could be very 

advantageous from the point of view of computational 

complexity and memory storage requirements. 

Let us be a little more specific~Assume that in continuous 

time we have the Ito equation 

(3) 

dx f(x)dt + g(x)dw 

dy h(x)dt + dv 

z = k(x) 

x(t ) 
0 

y (t ) 
0 

with x EX :=JR.n, y EJRP, z ElRq, and v and w mutually independent 

Wiener processes and independent of the initial randomness 

x ElRn. Assume that we want to obtain the best estimate in the 
0 

quadratic sense of z(t) based on observations y(-r) for 

t < T < t. This is the filterinf, problem. The prediction o-
problem asks for the best estimate of z(s) given y , t < T < t, 

l 0 - -
t < s and the smoothin~ problem asks for the best estimate of 

z(s) given t < T < t, s < t, i.e. given also future observations. o- -
It is wellknown that the conditional expectation 

z*(t) := E{z(t) IYCT), t < T < tl is the best estimate rn the 
o- -

leastsquares sense, i.e. it minimizes every quadratic loss of 

the form E{J lzCt)-z(t) 11 2}. The filtering problem is then to 

give a (recursive) algorithm for computing this conditional 

expectation, 

Because of the special structure of the system (3), in 

particular, because of the Markov property of x, it follows that 
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the conditional distribution'fi" := p (x(t) jy(T), t < i: < t) can 
t 0- -

act as a state for the filter, That is to say that there exists 

an update equation of the type 

(4) 

clrr = A 1 ('rr)dt + B 1 (n.)dy(t) 

z*(t) = f k(x)rr(t)dx 
x 

with TI ( t ) = the distribution of x • Since x E JRn, rr is a 
0 0 

function onlRn and hence one rnay expect that (4) will be a 

type of partial differential equation. In fact Al and B1 are 

integro-differential operators on X. 

In the tutorial article of DAVIS & MARCUS [section 2.3] 

this equation and the rigorous derivation of it is discussed 

together with the role of the so-called Duncan-Mortensen-Zakai

equation which is an unnorrnalized version of (4). That is, 

instead of having an update equation for TI(t), the D-M-Z 

equation computes a function p(t) with the property that n(t) 

is related to it by a simple formula of the type 

'TT (t) 
p(t) 

fp(t)dx 
x 

Working with p(t) has certain advantages: p satisfies a much 

simpler looking equation than rr. The equation of p is a 

stochastic partial differential equation: 

(5) dp = A2p dt + hp dy(t) 

from which z*(t) is calculated by means of the (output) rnap 

(6) z*(t) = (! p(t)dx)-I f k(x)p(t)dx 
x x 

11 



12 M. HAZEWINKEL AND J.C. WILLEMS 

Here A2 is a suitable linear differential operator defined in 

DAVIS-MARCUS [section 2.3]. This is a bilinear equation in the 

sense that p satisfies a linear equation in which the driving 

term is a linear function of the 'input' y. 

This bilinear structure of the Zakai-equation is very much 

exploited by BROCKETT [section 7.1] in his expository article 

in which he explains the geometric structure of the Zakai

equation, with an eye towards finding conditions for the 

existence of finite-dimensional filters. 

The issue of the finite-dimensionality of the filter 

receives a great deal of attention in this volume. Let us explain 

in an informal way what this fuss is all about. Consider 

equation (4) or (5). This defines (the filtering problem was 

precisely set-up this way) a non-anticipating map from the 

observation y which acts as inputs to the filter to produce 

estimates z*which are the outputs of the filter. Now (4) and 

(5) are realizations of this map, but they are infinite 

dimensional realizations because the state n(t) or p(t) is a 

map from X = lRn to lR, i.e. it is an infinite dimensional object 

Ca function space). Now, it may be the case that this filter 

(input/output map) admits a finite dimensional realization. 

This means that there would be a finite dimensional manifold 

M and a differential equation with output map 

(7) v(m,y,t), z* w(m) 

on it such that (7) defines the same input/output map as (5) and 

(6). Obviously finite dimensionality of a filter is a very 

desirable (if not necessary) feature if one actually wants to 

implement it. 

Thus assuming that a finite dimensional machine for 

calculating z* (a filter) exists we would have two equivalent 

ways for processing the data y , 0 < s < t to produce z*(t)). 
s 
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The finite dimensional machine can be assumed to be of minimal 

dimension and assuming this one expects that there exists a map 

from (the from p or rr accessible part of the function space) 
0 0 

to the manifold M which takes the evolution equation for p . t 
(or rrt) to the equation for m. (This infinite dimensional 

extension of a result of Sussrnann stlll has to be proved; it 

seems now very likely to be true in one sense or another). 

In the case of pt there would result a filter of the form 

(8) m = a(m) + S(rn)yt, z* = y(m) 

where a(m) and 8(m) are vectorfields on the manifold M. 

It is also definitely not unreasonable to look for a 

filter of the form (8) because (for linear systems) the Kalman

Bucy filter of considerable fame and enormous applicability is 

precisely a machine of the form (8)0 And so is for that matter 

the extended Kalman filter. 

A main tool in this analysis is the Lie algebra of 

operators generated by the two operators A2 and 'multiplication 

by h' which occur in the equation (5). This Lie algebra is 

13 

called the _e_s_t_i_m_a_t_i_o_n~~-L_i_e~a_l~~e_b.....;..ra_. The necessary differential 

topology and Lie-algebra background material for all this can 

be found in the tutorials of Hazewinkel [sections 2.4 and 2,5). 

One particular most interesting feature of the estimation 

Lie algebra of a system (5) is that it is intrinsic. That is, 

it is {up to isomorphism) invariant under (nonlinear) changes 

of coordinates (cf. Brockett's lectures [section 7.1]).As such 

it could help e.g. in recoenizing that a certain highly non

linear looking system is in fact a linear system to which a 

nonlinear change of coordinates has been applied, This Lie 

algebraic criterion will not be a sufficient, though, e.g. 

because the estimation Lie algebra is also invariant under 

socalled Gauge transformations, which do not correspond to 

coordinate changes. 
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One consequence of the existence of a map as discussed 

just above equation (8) above is the existence of a homomor

phism of Lie algebras from the estimation Lie algebra to the 

Lie algebra of vectorfields on M generated by the vectorfields 

a and Sin (8). In the particular case of linear systems and 

the Kalman-Bucy filter this can be checked by hand (Brockett 

[section 7,1]). Thus finite dimensional exact filters give 

rise to certain homomorphisms of Lie algebras and as a matter 

of fact there is evidence for a reverse statement as well. One 

collection of results which we shall need for this are uniqueness 

existence and regularity results for stochastic partial 

differential equations of the type (5), which is the subject of 

the contributions by Michel (section. 7. 12) and Sussmann 

(section 7.14)'cf, also Pardoux (section 7,4) (Michel uses the 

socalled Mal1iavin Stochastic variational calculus (currently 

a hot topic which was the subject of a conference in Durham 

later in 1980); additional or similar results on existence, 

regularly, uniqueness will probably result from the variational 

path integral formulation of Fleming and Mitter discussed in 

[section 7.2]), Given these one can exploit certain theorems 

concerning Lie algebras discussed in Hazewinkel - Marcus 

[section 7.9] to conclude e.g. that there exist no finite 

dimensional exact filters for any nonconstant statistic of the 

socalled cubic sensor. Though some of the things mentioned 

above are still conjectural this is now a firm theorem. Indeed 

it seems likely that we shall be able to prove that as a rule 

finite dimensional exact filters will not exist, which brings 

us to approximate calculation devices, a topic to which we shall 

return below. 

Meanwhile there is obvious interest in analysing the 

estimation algebra in various cases c Finite dimensionality of 

this algebra would be nice to have and this is the topic of 

Ocone [section 7.13], though of course a Lie algebra of 
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vectorfields ona finite dimensional manifold need not be finite 

dimensional. Low dimensionality of the estimation algebra and 

ease of computation ought to be related, cf. Baillieul 
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[section 7.5) and the question whether similar estimation 

algebras correspond to filtering problems of equal computational 

complexity is addressed by Baras [section 7.6], It is perhaps 

too early in the game to say just how useful the estimation Lie 

algebra and its concomitant geometrical considerations will be 

in the actual construction of (approximate) filters. (lts 

intrinsic nature exerts of course a powerful appeal and the 

writers of the present words are quite optimistic in this regard). 

Meanwhile, however, these geometrical ideas have certainly 

helped our theoretical understanding and have also helped in 

the actual construction of unexpectedly low dimensional filters 

(for finite state Markov chains, cf. Brockett [section 7.1)). 

In our informal exp.osition of the nonlinear filtering 

problem we have up to now skipped over an important point 

or rather several much related points. Equations (4) and (5) 

are stochastic differential equations, This implies that 

abstractly they define a map from the probability space n to 

the observations y and then via the non-anticipating filter map 

to the optimal estimates z*. However, from the construction of 

stochastic integrals it follows that in principle these maps 

depend on the probability measure on n. This is, of course, an 

unpleasant situation since it says that we cannot just consider 

the filter map as simply acting on realizations of the observation 

process, in other words the filter map does not act (necessarily) 

'sample pathwise' • In DAVIS' contribution [section 7. 3] it is 

shown that in a large class of filtering problems one can in 

fact prove that the filter acts indeed sample-pathwise. 

There is a second point, much related, as it turns out, to 

the first. The conditional expectation 
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z.*= E[k(x) Jyt] = f k(x)-rrt(x)dx is a functional of Yt• I.e. 

given by some function ~ which is only determined up to sets of 

measure zero (with respect to the measure on the function space 

c([O,T]) induced by they and this measure has the same sets of 

measure zero as Wiener measure. Since the set of functions of 

bounded variations has measure zero ~ is so to speak undefined 

on these. However, physical observation paths will be of 

bounded variation and so this approach to filtering would seem 

to be inapplicable unless there exists a version which is e.g. 

continuous w.r.t. the supremum norm on C([O,T]), giving us a 

'robust' form of the filter (Robustness is, roughly, the property 

of a statistical procedure, or observer, or model, or ••• to 

perform well even when the assumptions underlying its construc

tion are not fully met), This fortunately turns out to be the 

case if the observation noises are independent of the system 

noises and also more generally provided the output yt is scalar. 

The issue is much related to the pathwise issue discussed above; 

cf. Davis [section 7.3]. 

This robust-pathwise approach goes via a Feynman-Kac formula 

and thus suggests links with the path-integral approach to 

Quantum mechanics (a la Nelson), Another interesting and 

stimulating observation in this respect is that the estimation 

Lie algebra of the simplest (nonzero) linear system 

dx = dwt' dyt = xtdt + dvt is the four dimensional oscillator 

Lie algebra (of some fame), whose derived Lie algebra is the 

even more famous Heisenberg Lie algebra of the canonical 

quantum mechanical commutation relations, And indeed the 

Kalmanwfilter for this system turns out to be gauge equivalent 

to a forced (euclidean)harmonic oscillator, The deep and 

fundamental relations of (nonlinear) filtering with quantum 

theory of which the two observations above are symptomatic are 

the subject of Mitter [section 7.2], 

As the quantum constant h goes to zero quantum mechanics 
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goes to deterministic mechanics and one may ask to what 

deterministic limit nonlinear filtering converges if the noise 

intensity goes to zero, This matter is discussed in Hijab 

[section 7. 10]. 
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Both the estimation algebra approach and the robust-path

wise approach offer approximation possibilities, For the former 

some speculations are offered in Hazewinkel-Marcus [section 7.9]. 

Approximation by continuous time Markov chains is the subject 

of Di Masi-Runggaldier [section 7.8]. As soon as one starts 

approximating the question of a priori lower and upper bounds 

on the errors arises and whether these bounds are perhaps 

attained asymptotically. This is discussed by Bobrovsky-Zakai 

[section 7.7]. Finally Le-Gland uses the nonlinear filtering 

equations (and robustness) as an approach to maximum likelihood 

estimation for an astronomical observation problem, 

So far, in this section we have concentrated on the filtering 

problem, neglecting the closely related and equally interesting 

prediction and smoothing problems. Pardoux [section 7.4] 

discusses the matter of finding DE's driven by the observations 

for optimal smoothers and predictors by means of a novel method 

involving both backward and forward equations. (The latter is the 

Duncan-Mortensen-Zakai-equation). This also yields new results 

for the smoothing problem extending the known results for finite 

state Markov processes, 

4. LINEAR FILTERING. 

Of course, there is one case in which the filtering problem 

may be solved explicitely, namely where the maps f, g, h, and k 

of (3) are linear, which leads to the model 

dx = F(t)x dt + G(t)dw 

dy H(t)x dt + I(t)dw 

z = K(t)x 

x (gaussian) 
0 

0 
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with F,G,H and I matrices of suitable dimension, The solution 

of the filterin8 problem in this case is given by the celebrated 

Kalman-Bucy filter. These filtering equations are very wellknown 

and play an important role in some of the other papers of these 

volume. The tutorial by WILLEMS [section 2. I] gives a brief 

introduction to the Kalman filter in the context of the general 

LQG (linear-quadratic-gaussian) stochastic control problem. 

If one drops the assumption that there is a state-space 

model the filtering, smoothing and prediction probleMS take the 

following form. We have the following model for the observed 

process yt 

where zt is the (stationary) signal and vt is white random noise, 

'lb.e smoothing problem, filtering problem and prediction problem 

now take the form: find the best estimate y I given observations 
t '[ 

up to and including time T where respectively T > t (smoothing), 

T = t (filtering), T < t (prediction), This is the probleT'l. 

studied and solved by Wiener and Kolrnogorov in the early forties. 

The techniques involved in this solution, their extension to the 

case of finite time interval observations and associated problems 

of (efficient) computation are discussed in Kailath [section 5.1] 

(Wiener-Hopf technique,Ambartzumian-Chandrasekhar equations, 

~rein-Levinson equations). Kailath then goes on to discuss an 

extension to nonstationary models and a scattering theory 

framework for linear estimation. 

Now scattering theory compares the asymptotic behaviour of 

an evolving system as t + -oo with its asymptotic behaviour as 

t + 00 • It is especially relevant when comparing the behaviour 

of a reference system (no scattering object) with that of a 

perturbed system (a scattering object is present) when the 

perturbations are negligible for large It!. Think e.g. of a 
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wave packet traveling from left to right being scattered by 

some object at the origin. Let Ut and Ut denote the evolution 
0 

operators giving the state of the system at time t in terms of 

the state at time 0 for the perturbed and unperturbed system 

respectively. Then there are two 

unperturbed system such that Utx 

states x+ and x_ of the 

behaves as Utx for t + -co and 
0 -

t U0 x+ for t + + ~. The scattering operator is the mapping 

19 

S: x_ + x+ and the inverse scattering problem is the reconstruc

tion of the scatterer from the scattering operator. 

The relation of inverse scattering with linear prediction 

is the main theme of Dewilde, Fokkema en Widya [section 5.2). 

Here, as in Kailath, the 'scatterer' is a transmission line 

with incident and reflected (light) waves from both sides, 

DeWilde e.a. first discuss (Redheffer) scattering, then the main 

theoretical result which says that the predictor filter may be 

obtained by solving a (very special) inverse scattering problem 

and then proceed how this fact can be used to produce concrete 

algorithms. 

As was mentioned above (in the section on nonlinear filtering) 

there are links between quantum theory and the Duncan-Mortensen

Zakai-equation-approach to state-space-model filtering. This is 

not the first time that links between filtering problems and 

quantum theory have appeared, In fact, in a Seminaire Bourbaki 

expose in 1961 Cartier discusses how a certain number of results 

of the spectral theory of Wiener and Kolmogorov filtering can be 

grouped around the ideas related to the Stone-von Neumann 

uniqueness theorem on representations of the Heisenberg Lie algebra 

(canonical commutation relations), and how the Wiener-Kolmogorov 

theory can be deduced from this point of view. This was the 

subject of the lectures by Hazewinkel [section 5.3). 

In this connection it is interesting to observe that Wiener

Kolmogorov filtering can be viewed as a limit of Kalman-Bucy 

filtering and that on the other hand a main result of scattering 
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theory (the translation representation theorem) is in fact 

equivalent to (the Weyl form of) the Stone-van Neumann theorem. 

There seems to be room for future work here. 

5. IDENTIFICATION. 

In the context of Section I, the identification problem 

typically arises in a context where an uncertain system has, in 

addition to a stochastic component, also an uncertain non

stochastic 'P,arameter'. The basic problem is then to find out 

from measurements of the input and the output variables what 

the value of this unknown parameter is. There are, of course, 

more general situations where one may use identification ideas. 

For example one could try to fit a linear model to a nonlinear 

plant or one could try to fit a low dimensional linear model to 

a (very) high dimensional linear plant. In these cases it is not 

really fair to say that one tries to determine the unknown 

parameters of the plant, However, for the purposes of the present 

discussion, it suffices to think of the identification problem 

in this simple minded context. 

Let us denote the unknown parameter(s) by 8 

If the input used is u then we will observe y = F(u,8,w) which, 

of course, will in general also depend on the parameters e and 

the random element w E n. In a dynamic situation it is natural 

to introduce also the time t E T, At each instant one will then 

have available the past of u and y and an identification scheme 

will give us an estimate G(t) of G(see figure 3). 

\ l w 

u(.) Plant y(.l 

I 
F(.,8,, -Identifier 8(.) . 

u( •) 

figure 3 
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There are two basic issues which are discussed in this 

volume regarding identification: 
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I. conditions for convergence of e*(t) to the true parameter 

2. recursive implementation of identification algorithms. 

The article by HANNAN [section 4.1] contains a general 

convergence result for a class of ·identification problems. 

The model considered is a discrete time multivariable ARMAX 

(= autor~gresaivemoving average with exogenous components) model 

which relates the input and output by 

(10) 
p 
L: A(j)y(t-j) 

j=o 

m q 
L: D(j)u(t-j) + L: B(j)£(t-j) 

j=l j=o 

where one can think of £ as white random noise (the precise 

assumptions are given in the paper) and A(O), ••• , A(p), 

D(I), ... , D(m), and B(O), ... , B(~ as matrices with unknown 

coefficients. Let us denote this strine of matrices by 0. In 

this case 4 is thus a high dimensional Euclidean space. The 

identification principle used is that of maximum likelihood. 

The principle behind this idea is wellknown: at each instance of 

time there is a certain probability density p(u(O), ••• , u(t-1), 

y(O), ••• , y(t); 0) which expenses the likelihood that the 

string y(O), ••• , y(t) would have been observed with the input 

u(.) and the parameter value 8. At each instant of time one then ... 
chooses the parameter 0(t) such that it maximizes this likelihood 

function over all possible 0. The .convergence question is ... 
whether or not lim 0(t) = 0*,where 8* equals the true value of 

t-+oo 

the parameter matrices A(O), ••• , B(q) which generate the data 

y from the input u. HANNAN proves a nice and very general result 

in this direction. 

Of course to state and prove such a result one needs a 
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topology on the space of all possible models and if one wants 

to go beyond this result and discuss also how fast the convergence 

is,one needs more, namely a metric or a Riemannian structure on 

the space of all possible systems of a given type. It is here 

that the geometry and topology of the space of linear systems 

enter the picture and the discrete invariants called Kronecker 

indices turn out to have an important role to play. As such the 

results presented in this paper are a primeur in p,iving hard 

evidence of the relevance of this geometric structure issue in 

system identification. 

Basically the same questions as in Hannan's paper are 

addressed by Deistler [section 4.3] for the case that some 

initial structural information on the to be identified system 

is already given. 

Statistical tests to decide whether ARMA models will be 

adequate are considered by Gueean in [section 4.4]. 

Both from a conceptual and from a practical point of view 

it is important to implement an identification scheme in a 

recursive algorithm. The idea behind this is basically the same 

as explained in the context of nonlinear filterine. However, 

since one in general does notlike to treat the unknowns as 

random variables, the procedure for obtaining recursive algorithms 

goes differently. In addition there are many different ways of 

approaching an identification problem (contrary to the situation 

in nonlinear filtering where there are many reasons for conside

ring in the first place the conditional mean of the to be 

estimated variables), LJUNG's contribution [section 4.2] provides 

a very readable account of various aspects of recursive system 

identification basically all in the context of scalar ARMAX 

models as (10). He describes a number of identification routines 

and discusses their convereence properties. He then gives some 

practical guidelines for the implementation of these algorithms 

and closes by giving some results on the application of 



INTRODUCTION 

identification algorithms in adaptive control (see section 6 

of this article). 

It is possible, of course, to treat an identification 

problem from a so-called Bayesian point of view. In the context 

of the model introduced in the beginning of this section, one 

then puts a probability measure on @, the space of unknown 

parameters. By considering now the product measure on @ x n, 

23 

the total uncertainty space, this problem becomes a purely 

stochastic one and it is possible, for instance, to use nonlinear 

filtering ideas in system identification. This approach applied 

to ARMAX models (written, however, in state space form) is the 

subject of the article by KRISHNAPRASAD & MARCUS [section 4.5]. 

The estimation Lie algebras of these problems have a particularly 

pleasing structure with interesting possibilities for the 

existence of explicit recursive (approximate) filters. 

6, ADAPTIVE CONTROL, 

The last main topic discussed in this book is that of 

adaptive control. This is really one of the very early motivations 

of control theory: the design of control algorithms which will 

automatically learn the value of the (changing) plant parameters 

and self-adjust their control strategy accordingly. 

Most of the adaptive control strategies proposed in the 

literature work according to a separation principle of 

identification and control. This is easily explained in the 

context of the general set-up discussed in Section I. Ass'l.lllle that 

we have given an uncertain plant F with observed output 

y F(x,8,w), with control input u EU, unknown parameter 

8 E @ , and stochastic uncertainty w E n. The problem is to 

design a feedback compensator, i.e., a nonanticipating map 

G: Y + U, such that the closed loop system has some desirable 

properties, This control design purpose may be expressible in 

terms of closed loop stability, an optimal stochastic control 
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criterion, or some of the design formulations of mul tivariable 

control as, for example, model matching, pole placement, 

disturbance decoupling, etc. The difficulty, however, is that 

the unknown parameter e is indeed unknown. 

If one uses a recursive identification scheme as explained 

in section 5 one will have at each instant of time an estimate 

S(t) of the unknown parameter. Assume now that if e were known 

one would use the feedback control law G which, since it will 

depend on 8, we denote by Ge. If Ge is implemented recursively, 

this will lead to a set of update equations with coefficients 

depending on EJ, The idea of using separation is to use for 

these parameters the estimate 8(t) at time t, This is illustratec 

in figure 4 
Plant 

F ,____ 
r- - - - - - - - - - - - - - - - -
' 

r - - - ... - - - - - - - - - - - ~ 

I Identifier 
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I 

I - Controller 
' 
I 

~ 

' 
I 

I Controller 
I Coefficient "' I Algorithm 

1-

I 
I 

I 

·- - - - - - - - - - - - .i 

fieure 4 

The ensuing closed loop system will be very nonlinear and 

its properties are difficult to analyze. Moreover, one cannot 

simply conclude that a convergent identification routine will 

remain convergent when used in this closed loop framework, Inc": 

assumptions like u is bounded, deterministic, and if it is 

stochastic, independent of the stochastic disturbance of the 

plant,which one may have to make in order to prove the conver~i: 
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of the identification scheme, need not be satisfied. 

The adaptive separation scheme induces a map ~: Y + U. The 

adaptive control scheme is said to be self-tunine if, as t + 00 , 

the map ~ converges to Ge* in some sense. Here 8* denotes the 

true value of the parameter 8 and Ge* denotes the controller 

which achieves the control objective (optimal performance, model 

matching, etc.) at the true value e~. The surprising part of 

the results obtained so far is that self-tuning may occur even 

when inside the controller the convergence 8(t) + 8* does not 

hold. t--

In this volume we have three papers on self-tuning control. 

The first one is by LANDAU [section 6. 1) and treats self-tuning 

results for model reference adaptive control algorithms for 

scalar systems of the ARMAX type (10). The second paper is by 

CAINES & DORER [section 6,2). It discusses a stabilization 

property for a class of (TV) ARMAX models, that is models of the 

type (JO) but with time-varying coefficients. These coefficients 

are assumed to be stochastically time varying and the purpose of 

the paper is to prove asymptotic stability of the closed loop 

system. 

The third paper in this chapter by FUCHS [section 6.3] 

discusses the stability of the overall system in terms of 

properties of the separate control subsystem and the identifica

tion subsystem. 

7. CONCLUSIONS. 

It is perhaps safer to leave the conclusions and statements 

of future prospects to the reader (after he has carefully read 

and digested the papers in this volume). For ourselves let us 

say that the future seems very bright, strone new impulses seem 

present everywhere in this field of filterine and identification 

and there seems to be a most promising gathering of forces in 

the sense that more and more new mathematical subjects are 
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brought in to bear upon the subject, which, when knowledgeably 

used, seem likely to enhance our understanding and improve 

our techniques, 

To quote Joseph Louis Lagrange: 

'As long as algebra and eeometry proceeded along separate 

paths their advance was slow and their applications liITTited. 

But when these sciences joined company, they drew from each 

other fresh vitality and whence.forward marched on at a rapid 
pace toward perfection'. 

It may well be (in our opinion) that in the field of 

enquiry of these proceedings we are witnessing today the 

]:ieginnings' t>f a similar joining of forces. 


