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This volume is devoted to modeling and analysis of 

uncertain dynamical systems in an uncertain environment and the 

synthesis of filters, identifiers and adaptive controllers in 

such a setting. All this with particular emphasis on recursive 

(and/or on-line) techniques. 

This is a large and varied field of inquiry.It was the 

intention of the conference,of which this volume constitutes 

the proceedings,to review the most important themes and new 

developments in a coherent manner without making too many 

demands on the audience in the matter of prerequisites, 

As a result this volul'lE! contains tutorial material, reviews 

and surveys, as well as research papers on the topics of modeling, 

adaptive control, identification and filtering and applications, 

The present introduction is intended to provide an informal 

outline of the main themes of the volume: identification and 

filtering and recursiveness, and to indicate how the various 

contributions fit together. That is, it is essentially an 

(annotated) navigation chart. We have concentrated mostly on the 

M. H•zmnli~l and /. C. llltllem1 (eds./, Stochastic Sy11tms Tiie Me1he11111tic1 of Filteri111 a11d fdmtlficotion 
and Appllc11tion1, 3-26. 
Copyr~ht C> 1981 by D. Reid~ Publi1hU., Comp11ny. 
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tutorial and the invited survey-and-state-of-the-art papers 

(marked with a *) or **) in the table of rontents). 

I, THE SF.TTI'.'G AND THE BASIC THEMES. 

An uncertain dvn<imical system may be defined as a map F 

from an input space 'U. (which is a family of maps from the time 

axis T c :rn. tu the space of input values U) and an uncertainty 

space N to an c>utput srace 'j (which is a family of rnaps from 

T to the space of output values Y) which is 11onanticipatinr,, 

that is to say chat for all values of the uncertainty parameter 

n the output y is independent of future v;:iL11es of the input u. 

The uncertain sy~tem under consideration is often called the 

plant and is depined by the following signal flc>w diagr.1m 

(fig. I): 

input 
uCU. 

uncc•r ta i nty 

pl:mt 
F 

figure 

1 
n E t\ 

output 
yE 1j 

\~.,; think of the inputs as variables whi ,·h c11:1 be r.lilnipul:,rc"~ 

(controls) or, m.:ir.:· gcner.Jlly, throur,h whi;'h the .·nvironment 

can influence the, system; we think of the outputs as variable,_; 

which can be !"leasured (observations) or, more r,•:ner,1lly, thn>ugli 

which the system can influence the environment. The uncert.Jint 

reflects the fact that the dynaMic behaviour is unknown (for 

example because the numerical value of a parameter is not kno\<.'L1) 

or that it May depend on a stochastic phenomenon. We think of the 

uncertainty as a parameter n bein?, choosen by 'nature'. 

For the purpose of the contributions in this volume it is 

in fact insightful to assume that the uncertainty space N is a 

product space, :'= P x R with P a set of unknown parameters and 

R the outcome space of a general random variable. Formally, there 
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is a probability space {n,A,P) and a map t : n ~ R which 

selects the value in R in a random fashion. Finding out from 

measurements the actual value (or 'best' appr0ximation) of the 

unknown parameter p E P is the basic probleM in system 

identification while findinp, the actual value (or 'best' 

estimate) of the random parameter (vt:c-tor) r E: R is (indirectly) 

the basic problem in filtering. Preferably one wants to do this 

in a recursive manner that is, roughly, by a tec.:hnique which 

updates a 'state-type' paraMeter vector n by means of the new 
t 

information gathered at time t while the desired unknown para-

meto0rs P E P or r E R are calculated as (known) functions of n . 
t 

The vector r\, so to speak, embodies or codifies all the useful 

inforl'lB.tion p,athered up to timf' t. 

2. MODELING ISSUES. 

The study of stochastic dynamic systems brinr.s 1-·ith it the 

problem of modeling, particularly if one w.1nts to use differen

tial equation models. The reason why one wants to use such model~ 

is, as in the deterministic case, connected with the fact that 

one much pr.:fers, for eood (co!'lputational) reasons and also 

from a basic mathematical point of view to use re~ursive 

models, that is, models which display the ~ of thE> :;ystem 

explicitely. In a stochastic framework the idea of state leads 

to modeling in teTMS o[ a Markov process (since in general there 

is also an input we should really think of a controlled Markov 

process). Writing down the evolution of a Markov process leads 

to differential equations with a white noise term on the right 

hand side and the rigorous interpretation of such equations 

leads to ItB calculus. 

An Ito equation is a differential equation of the forr. 

(I) dx c f(x)dt + g(x)dw x(t ) • x 
0 0 
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with x E: IRn, f: JRn -• l!<.n, g: IRn ~ lRnxm (the nxm-mat rices), w 

an JR.m_\ _ued Wiener '1tochastic process, and x 0 E lRn a random 

vector. Assume tha~ w and x are defined on the probability 
0 

space (0,A,P). Tl-i:: above equation can be thought of intuitively 

as the equation 

dw 
f(x) + c,(x) dt x( t ) 

0 
x 

() 

(at least as long 
dw 

as w1 ls scalar valued) with ·at 'white 

noise', This, however, is not 3 process defined in the 

cDnvcntial way. "'.iie r: ,_:orous interpretation of equation ( l) is 

made in terms It0 C3Lculus and is the subject of CURTAIN's 

tutorial [section 2,2 in this volume). Under suitable 

assumptions, expiai~,ed in the tutorial, (1) yields a well

defined ~arkcv pruce~s x. ~e may add inputs and outµuts to (!) 

which l«ads tu r:-.e "1su.1l form of a stochastic differential 

system given by: 

dx f ( X , U ( L ) ) <l t + g ( X , u ( t ) ) dw 

( 2) 

dy t.;(x)dt + Jv 

x ( t ) 
(J 

y ( t ) 
0 

x 
0 

0 

where v is a stocha,ti c 1-'iener process assurn.:d c .. be independent 

of w. The noises 1.- .::id v ,11·c: respec'tively cal lcd the system 

noise and the ~.P.2'.:~>ise. (Pr0bll'ms where the system no1st' 

w and the output n.;,i se v are dependent are of interest but are 

usually not given much attention ; cf., however, e.~. section 

7.3 in this volume; this introduces fundamental ex:ra difficul

ties). Model (2) leads then tu an uncertain dynamical system 0f 

the type informally discussed in secLion 1, with uncertainty 

r.;:-idom variables, 

Two 'case stndi.es' uf oodel inp, of stochastic ;,ystcms .1re 

contained in part J uf this volume, both taken from areas where 
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there is a great deal of recent activity in applied mathematice 

The first one of these contributions is by BOEL [section '3.3) 

and describes how one may set up stochastic models of COlll]?uter 

networks. The models proposed are in terms of queues and 

contrary to (I) invol've mainly Poisson noise. An int.eresting 

feature in the analysis of these models is the important role 

played by 'quasi-(time) reversibility'. 

The second paper about modeline is by ARNOLD [section 3. I) 

and treats chemical reactions. Such reactions show irregularities 

in space and one can consider the local behaviour versus the 

global behaviour where one expects to be able to derive some 

type of space average behaviour. Chemical reactions also have 

a stochastic feature due to the fact that particles react wh;on 

they 'meet' which is modeled as a randol'1 phenomenon, The purpose 

of ARNOLD's paper is to demonstrate how global deterministic 

models may be viewed as suitable limits of global stochastic 

models or of local deterministic models both of which may tn 

turn be viewed as a limit of a local stochastic model. 

One of the important issues in mathematical control theory 

is the realization theory proble!'l, This means essencially the 

realization (or modeling) of a given inputfoutput operator by 

means of a 'machine' of type (2). It also means the constructiun 

of a stochastic process of a certain type with a pregiven 

covariance function. 

As we have already mentioned many applications 

(in fact most of those discussed in this volume as Kalman 

filtering and nonlinear filtering) need, in order to carry out 

the required calculations, a model in state space form. Often, 

one starts with a model in input/output form - some model of 

the type introduced in section 1 - and the qu<!stion then arises 

how to construct an equivalent state space model. In the 

context of random processes, this problem becomes the following: 

Let y(t), t ET cR be a given stochastic process with outcome 
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space Y. The probleM then is to construct a space X, a Markov 

process x(t), t ET cJR with outcome space X, and a map 

h: X ~ Y such that h(x(t)) is in some sense equivalent to the 

original process y(t). In the p::iper by LINDQUIST and PICCI the 

realization theory for multivariate stationary gaussian 

stochastic processes is presented, 

In addition part 3 of this volume contains two papers on 

the more qualitative properties of stochastic differential 

equations 
x(t) = f(x(t),~(t)), x(O) 3 x 

0 

x(t) "' f(x(t), ((t)), x(O) = x 
0 

with random initial conditiun x and t;(t) a random process. 
0 

Here solutions are to be interpreted pathwise, i.e. this 

equation is really a collection of equatiuns, one for each 

nois~ trajectory (and initial condition). 

The paper by Arnold [section 3,2] is a survey in extended 

abstract form of prnb lems, concepts and results of the 

qualitative theory of such equations. Qualitative concepts 

include such things as stati<rn<1ry solutions, attractors, 

stability and er~odicity. Thi~ last topic i~ the subj~ct of the 

paper by Wihstutz. Obviuusly somethinp, like ergod; city for 

instance is of relevance when discussinp, the compatibility 

between local (micrcl stnchdsti c 1T1odels and global (average) 

deterministic models. Think of statistical mechanics. 

1. NONLTNEAR FILTERINC. 

The filtering problel'l takes up by far the larg<•st part 

of this volume. In abstract terMS the filtering problem is a 

stochastic version of an obtimal observer design problem. Take 

an uncertain plant as introduced in section 1, and make, to 

simplify the discussion, thf:! (inessenti:;il) restri' :tion that 

there are no inputs, Assu!Tle furthermore that tliere are two types 
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of outputs: one output, which we will denote by y, which is a 

signal which can be measured - the observations - and another 

output, which we will denote by z, which is a signal which we 

would like to know - the to-be-estimated output. These outputs 

take on their values in a space Z; often z = x, the state of 

the plant processor, which accepts as inputs the observations 

y and produces as outputs estimates z of z. Formally we have 

a plant (F ,F ): N + Y x Zand we wish to construct a y z 
nonanticipating map K: Y + Z such that, in some sense, 

F 
z =Ky= Ky(n) is close to z s Fz(n) (see Figure 2), Expressing 

0 '-1 n 
to-be-estill\ated-output 

Plant z 
F 

observation Filter z 
K y 

figure 2 

9 

'being close to' in ter~s of a loss functional and assuming the 

uncertainty to be a random variable it is natural to 1:xpress this 

problem in terms of the minimization of the avcraee loss 

E{d(z,z)}. It is furthermore clear that one can forT'!ulate this 

J'llinimization for all times t E T which leads to the proble'[I\ of 

finding, for all t, a Kt:Y + Zwhich!'linimizes 

E{d(z(t))}, where dis an appropriate distance function, 

Now, since one wants to obtain this estimate z(t) for all t, 

it is very natural and advantageous to attempt to do this 

computation recursively, This is done by tryin8 to find a 'state' 

of the observer s such that the computation of z mRy be carried 

out according to the diagram: 
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__.Y_< ... 1_)...--___ _... s ( t I ) 

t <t<t 1 

0- 1 
y (T) 

B ( t 11 ) 
t 1 <T<t 11 

1 
Z (t I) z ( t ") 

Storing s(t') instead ~1f y(T) for t;:_1<t' will hopefully also· 

lead to an automatic data reduction which could be very 

advantageous from the point of view of computational 

complexity and memory storae,e requirements. 

Let us be a little more specific.Assume that 1.n continuous 

time we have the Ito equation 

(3) 

dx 

dy 

f(x)dt + 8(x)dw 

h(x)dt + dv 

z = k (x) 

x (t ) 
0 

y(t ) 
0 

x 
0 

0 

with x E: X := JRn, y E lRr, z E lRq, and v and w mutually independent 

\.:iener processes and independent of the .initial randomness 

x EJR11 • Assul'le that we w3nt to obtain the best estil'late in the 
0 

quadratic sense of z1t) bas~d un observations y(T) for 

t 0 :._ T < t. This is t!ie filterinp problem. The J?!!<!iction 

problel'l asks for the :iest estimate of z(s) given : ~• t 0 :::._ ·r .::._ t, 

t < s and the smootr.ine problem asks for the best "'stirr1atc of 

z(s) given t 0 < : ~ t, s < t, i.e. given also future observation~. 

It is wellknown that th~ conditional expectation 

z*(t) := E{z(t) !y(T), t < 1: < tl is the best estimate in the 
' 0 

leastsquares sense, i.e. it Ainil'lizes every quadratic loss of 

the fonnE{jjz(t)-z(t)', 2}. The filterine problem is then to 

give a (recursive) ~lp.0rithrn for computing this conditional 

expectation. 

Because of the srecial structure of the sysu:-i (3), in 

particular, because of the Markov property of x, it follows that 
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the conditional distribution TI :"' p (x(t) !Y(T), t < T < t) can 
t 0 - -

act as a state for the filter. That is to say that there exists 

an update equation of the type 

(4) 

~TT ,. A I ( 7T) d t + BI (rr) dy ( t) 

z*(t) = I k(x)n(t)dx 
x 

with TI(t) =the distribution of x. Since x ElRn, 1r is a 
0 0 

function on lRn and hence one may expect that (4) will be a 

type of partial differential equation, In fact Al and B1 ar~ 

integro-differential operators on x. 
In the tutorial article of DAVIS & MARCUS [section 2. 3] 

this equation and the rigorous derivation of it is discussed 

together with the role of the sa-~alled Duncan-M0rtensen-Zakai

equation which is an unnormalized version of (4). That is, 

instead of having an update equation for n(t), the D-M-Z 

equation computes a function p(t) with the property that n(t) 

is related to it by a simple formula of the type 

p(t) 
n(t) "' /p(t)dx 

x 

Working with p(t) has certain advantages: p satisfies a much 

simpler lookine equation than n. The equation of p is a 

stochastic partial differential equation: 

(5) dp = A2p dt + hp dy(t) 

from which z•(t) is calculated by means of the (output) map 

(6) z*(t) • (! p(t)dx)-J f k(x)p(t)dx 
x x 

II 
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Here A2 is a suitable linear differential operator defined in 

DAVIS-MARCUS (section 2.3). This is a bilinear equation in the 

sense that p satisfies a linear equation in which the driving 

term is a linear function of the 'input' y. 

This bilinear structure of the Zakai-equation is very much 

exploited by BROCKETT [section 7.1] in his expository article 

in which he explains the geometric structure of the Zakai

equation, with an eye towards finding conditions for the 

existence of finite-dimensional filters. 

The issue of the finite-dimensionality of the filter 

receives a great deal of attention in this volume, Let us explain 

in an informal way what this fuss is all about. Consider 

equation (4) or (5). This defines (the filtering pruhlem w;is 

precisely set-up this way) a non-anticipating !'lap from the 

observation y which acts as inputs to the fi 1 ter to produc.:e 

estiMates z* which are the outputs uf the filter. Now (4) and 

(5) are re«lizations of this !'lap, but they are infinite 

dinensional reali?ations because the state TI(t) l)r p(t) is a 

map from X = lRn tu IR, i.e. it is an infinite dil'lensional object 

(a fun,-tion space), ~ow, it riay be the case that this filter 

(input/output map) admits a finite dimensional realiz.1tiL>n. 

This means that there would be a finite diMel'lsion:ll manifold 

M and a differential equation with output map 

(7) v(m,}',t), z* w(m) 

on it such that (7) defines the snrrie input/output map as ()) and 

(6), Obviously finite dimensionality of a filter is a very 

desirable (if not necessary) feature if one actually wants to 

implement it. 

Thus assuming that a finite dimensional !'lachine for 

calculating z* (a filter) exists we would have tVL) equivalent 

ways for processing the data y , 0 < s < t to produce z*(t)). 
s 
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The finite dimensional machine can be assumed to be of minimal 

dimension and assuming this one expects that there exists a map 

from (the from P or 7l accessible part of the function space) 
0 0 

to the manifold M which takes the evolution equatio~ for pt 

(or 7!t) to the equation for m. (This infinite dimensional 

extension of a result of SussJ'llann still has to be proved; it 

seems now very likely to be true in one sense or another). 

In the case of pt there would result a filter of the form 

(8) m = n(m) + 8{~)yt' z* = y(m) 

"'here a.(rn) and p(M) are vectorfields on the manifold M, 

It is also definitely not unreasonable to look fur a 

filter of the f(1rm (8) because (for linear system~) tlw Kalrnan

Bucy filter of considerable fame and enorT110us applicability is 

precisely a machine of the form (8), And so is for that matter 

the extended Kalman filter, 

A main tool in this analysis is the Lie aleebra of 

operators generated by the two operators A2 and 'multiplication 

by h' which occur in the equntion (5). This Lie algebra is 

13 

called the estimation Lie algebra. The nece:ssary differential 

topology and Lie-algebra background material for all this can 

be found in the tutorials of Hazewinkel [sections 2.4 and 2.5], 

One particular most interesting feature of the estimation 

Lie algebra of a system (5) is that it is intrinsi_s., That is, 

it is (up to isomorphism) invariant under (nonlinear) changes 

of coordinates (cf. Brockett's lectures (section 7. !]).As such 

it could help e.g. in recop.nizing that a certain hir,hly non

linear looking system is in fact a linear system to which a 

nonlinear change of coordinates has been applied. TI1is Lie 

algebraic criterion will not be a sufficient, though, e.g. 

because the estimation Lie algebra is also invRriant under 

socalled Gauge transformations, which do not correspond to 

coordinate changes. 
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One consequence of the existence of a map as discussed 

just above equation (8) above is the existence of a homomor

phism of Lie algebras from the estimation Lie algebra to the 

Lie algebra of vectorfields on M generated by the vectorfields 

a and$ in (8). In the particular case of linear systems and 

the Kalman-Bucy filter this can be checked by hand (Brockett 

(section 7.1)). Thus finite dimensional exact filters give 

rise to certain homomorphisms of Lie algebras and as a matter 

of fact there is evidence for a reverse statement as well. One 

collection of results vhich we shall need for this are uniqueness 

existence and regularity results for stochastic partial 

differential equations of the type (5), which is the subject of 

the contributions by Michel (section, 7, 12) and Sussmann 

(section 7.14)'cf, also Pardoux (section 7,4) (Michel uses the 

socalled Malliavin Stochastic variational calculus (currently 

a hot topic which was the subject of a conference in Durham 

later in 1980); additional or similar results on existen~e, 

regularly, uniqueness will probably result from the variational 

path integral formulation of Fleming and Mitter discussed in 

(section 7.2)). Given these one can exploit certain theorems 

concerning Lie algebras discussed in Hazewinkel - Narcus 

(section 7.9] to conclude e.g. that there exist no finite 

dimensional exact filters for any nonconstant sta tstic: of the 

socalled cubic sensor. Thourh some of the thine;s mentioned 

above are still conjectural this is now a firm theorem, Indeed 

it seems likely that we shall be able to prove that as a rule 

finite dimensional exact filters will not exist, wh"ch brings 

us to approximate calculation devices, a topic to which we shall 

return below. 

Meanwhile there is obvious interest in analysing the 

estimation algebra in various cases. Finite dimensionality of 

this algebra vould be nice to have and this is th<' topic of 

Ocone (section 7.13], though of course a Lie ale;ebra of 
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vectorfields ona finite dil'l€nsional manifold nee<l not be finite 

dimensional, Low dimensionulity of the estiniation algebra and 

ease of computation ought to be related, cf. Baillieul 

15 

[section 7.5] and the question whether similar estimation 

algebras correspond to filtering problel'lS of equal computational 

complexity is addressed by Baras [section 7.6]. It is perhaps 

too early in the gal'lt! to say just how useful the estimation Lie 

algebra and its concomitant geometrical considerations will be 

in the actual construction of (approximate) filters, (Its 

intrinsic nature exerts of course a powerful appeal and the 

writers of the present words are quite optimistic in this regard). 

Meanwhile, however, these geo!'IE'trical ideas have certainly 

helped our theoretical under~tandine and have also helped in 

the actual construction of unexpectedly low dimensional filters 

(for finite state Markov chains, cf. Brockett [section 7. !]). 

In our informal exposition of the nor.-:inear filtering 

problem we have up to now skipped ov r an important point 

or rather several much related points. Eqt.Hions (4) and (5) 

are stochastic differential equations, This implies that 

abstractly they define a map from the probability space n to 

the observations y and then via the non-anticipating filter map 

to the optimal estimates z*. However, from the construction of 

stochastic integrals it follows that in principle these maps 

depend on the probability measure on n. This is, of course, an 

unpleasant situation since it says that we cannot just consider 

the filter map as simply acting on realizations of the observation 

pro~ess, in other words the filter map does not act (necessarily) 

'sample pathwise 1 • In DAVIS' contribution [section 7. 3] it is 

shown that in a large class of filtering probl~ms one can in 

fact prove that 'the filter acts indeed sample-pathwise. 

There is a second point, much related, as it ttl'-'~ out, to 

the first. The conditional expectation 
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z*= E[k(x) jyt] = f k(x)~t(x)dx is a functional of Yt• I.e. 

given by some function ~ which is only determined up to sets of 

measure zero (with respect to the measure on the function space 

Ct[O,T)) induced by they and this measure has the sane sets of 

measure zero as Wiener measure. Since the set of functions of 

bounded variations has !11€asure zero ~ is so to speak undefined 

on these. However, E_hysical observation paths wi 11 be of 

bounded variation and so this approach to filtering would seem 

to be inapplicable unless there exists a version which is e.g. 

continuous w.r.t. the supremu~ norm on C([O,T]), giving us a 

'robust' form of the filter (Robustness is, roughly, the property 

of a statistical procedure, or observer, or model, or ••• to 

perform well even when the assumptions underlying its construc

tion are not fully met). This fortunately turns out to be the 

case if the observation noises are independent of the system 

noises and also more generally provided the output yt is scalar. 

The issue is much related to the pathwise issue discussed above; 

cf. Da·:i.s [section 7. 3]. 

This robust-pathwise approach goes via a Feynman-Kac formula 

and thus suggests links with the path-integral approach to 

Quantum mechanics (a la Nelson). Another interesting and 

stimulating observation in this respect is that the estimation 

Lie algebra of the simplest (nonzero) linear system 

dx • dw , dy • x dt + dv is the four dimensional oscillator 
t t t t 

Lie algebra (of some fame), ~hose derived Lie aleebra is the 

even more famous Heisenbere Lie algebra of the canonical 

quantum mechanical commutation relations. And indeed the 

Kalman-filter for this system turns out to be gauge equivalent 

to a forced (euclidean)harmonic oscillator. The deep and 

fundamental relations of (nonlinear) filtering with quantum 

theory of which the two observations above are symptomatic are 

the subject of Mitter [section 7.2). 

As the quantum constant h goes to zero quantum me..:hani.cs 



!NTRODL!CTION 

goes to deterministic me..:hanics and one may ask to what 

deterministic limit nonlinear filterinp. conver8es if the noise 

;ntensity goes to zero. This matter is discussed in Hijab 

[secticn 7. 10). 
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Both the estimation algebra approach and the rotust-path

wise approach offer approximation possibilities. For the former 

some speculations are offered in Hazewinkel-Marcus [section 7.9]. 

Approximation by continuous time Markov chains is the subject 

of Di Masi-Rungealdier [section 7.8]. As soon as one starts 

approximating the questi )n of a priori lower and upper bounds 

on the errors arises and whether these bounds are perhaps 

attained asymptotically. This is discussed by Bobrovsky-Zakai 

(section 7.7]. Finally Le-Gland uses the nonlinear filtering 

equations (and robustness) as an approach to maxim1rn likelihood 

estimation for an astrono~ical observation problem. 

So far, in this section we have concen!-ated on the filtering 

problem, neglecting the closely related and eGually interesting 

prediction and smoothing proble~s. Pardoux :,,".:tion 7.4} 

discusses the matter of finding DE's driven by the observations 

for optimal smoothers and predictors by !!leans of a novel method 

involving both backward and forward equations. (The latter is the 

Duncan-Mortensen-Zakai-equation). This also yields new results 

for the smoothing problem extending the known results for finite 

state Markov processes. 

4. LINEAR FILTERINC. 

Of course, there is one case in which the filtering problem 

may be solved explicitely, namtly where the rMPS f, ~. h, and k 

of (3) are linedr, which leads to the l'lOdel 

dx F (t lx dt .. G(t)dw )C ( t ) ... x (gaussi,,.,) 
,) 0 

dy » H ( t) x dt .. I ( t) dw y(to) "' 0 

z : K(t)x 
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with F,G,H and I matrices of suitable dimension. The solution 

of the filcerinE problem in this case is given by the celebrated 

Ka~r::.i:rBucy filter. These filtering equations are very wel lknown 

and ;;~J.Y an iri!j)ort:rnt role in some of the other papers of these 

vcl;.::-ie. ;i1:c tutc,rial by WILLEMS [section 2. l] ,e;ives a brief 

introduction to the Kalman filter in the context of the general 

:.<.!C ( linear-q"adratic-gaussLrn) stochastic cuntrol problem, 

If one drops the asSufllption that there is a state-space 

riC'del the fi lterinp,, smoothinp, and prediction probleMS take the 

f,,llowing form. We have the followine model for the observed 

v . t 

i..:l:erc zt ;.s the (~t:iti•Jnary) signal and vt is white random noise. 

1he :or.:ioothins problem, filterine problem and prediction problem 

new t. kc tl:t: fonn: find the best estimate y I given observations 
t T 

t.:p tu and includinr, time 1 where respectively 1 > t (smoothing), 

: = t \filtering), 1..: t (prediction). This is the problem 

:>tudieJ and soh·ed by Wiener and Kolrnogorov in the early forties. 

The techniques involved in this solution, their extension to tile 

case of finite time interv:il observations and associated problems 

nf (efficit-nt\ computation are discussed in Kailath [section 5. J] 

(',.;i 1.: :it: r-Hop f technique, Anb:ir r zumi an-Chandrasekhar equations, 

!(rei:.-Levinson equations). Kailath then goes on to discuss an 

extension to nonstationary models and a scattering theory 

frame1.•ork for linear estimation. 

:\ow sC'attering theory compares the asymptotic behaviour of 

an evolving system as t _,.-«>with its asymptotic behaviour as 

t _,. ~. It is especially relevant when comparin3 the behaviour 

of a reference system (no scattering object) with that of a 

perturbed system (a scattering object is present) when the 

perturbations are negligible for large !tl. Think e.g. of a 
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wave packet traveling from left co right being scattered by 

some object at the origin. Let Ut and Ut denote the evolution 
0 

operators giving the state of the system :it time t in terms of 

the state at time 0 for the perturbed and unperturbed system 

respectively. Then there are two states x+ and x of tlHe 

unperturbed system such that Utx behaves as Utx for t +-«> and 
0 -

U~x+ for t + + 00 • The scattering operator is the m::ipping 

i9 

S: x + x+ and the inverse scattering problem is the reconstruc

tion of the scatterer from the ~cattering operator. 

The relation of i;, 'erse scattering i.rith linear prediction 

is the main theme of DeWilde, Fokk'2P1a en WidyJ. [section 5.2]. 

Here, as in Kailath, the 'scatter.;r' is a transmis;;ion line 

with incident and reflected (lieht) waves frorr, both sides, 

Dewilde e.a. first discuss (Redheffer) scattering, then the m,11n 

theoretical result which says that the pn .. ci-:'tor ii.lter may be 

obtained by solving a (very special) inver~ ~~atterin~ µrotlerr 

and then proceed h0w this fact can be used l prcduce co11cH·te 

algori thrns. 

As was mentioned above (in the sectiun , .... ncmline<lr filu•rin&I 

there are links between quantum theory and t;:e Dun<.:i-!n-Mortensen-

Zakai-equation-approach to state-space-modr·l. filtering. Thi~ is 

not the first time that links between fi l cering problerns ,rnct 

quantum theory have appeared. In fact, in a Seminaire Bourbak1 

expose in 1961 Cartier discusses boi.r a certain number of results 

of the spectral theory of Wiener and Kolmogorov filtering can be 

grouped around the ideas related to che Stone-van Neumann 

uniqueness theorem <'l1 r.::presentations of the lleisenlHrf, Lie algebra 

(canonical commutation relations), and hoW' th<: Wiener-Kolmogorov 

theory can be dt:dnct:d from this point of view, Tni~ was the 

subject of the lc~tures by Hazewinkel (section 5.3 1 • 

In this connection it is interestinp, to obser· that \.Jiener-

Kolmogorov filtering can be viei.red as a limit of Kalm,rn-Bucy 

filtering and that on the othei: hand a main result of scattering 
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theory (the translation representation theorem) is in fact 

equivalent to (the Weyl form of) the Stone-von Neumann theorem. 

There seems co be room for future work here, 

5. IDENTIFICATION. 

In c~e ~ontext of Section l, the identifi~ation problem 

typicJlly arises in i1 context ·where an uncertain system has, in 

addition to a stochJstic component, also an uncertain non

stochJ.stic ';iararnettr'. The basic problem is then to find out 

from r:ieasurements of the input and the output variables what 

the vJlue ,,f this uni<no·wn pdrameter is. There are, of course, 

niore general situati0ns where one may use identification ideas. 

For exampl~ one could try to fit a linear model to a nonlinear 

plant or one could try to fit a lciw dimensional linear model to 

a r':ery) Ligh dimensional linear plant. In these c.:ises it is not 

rea:ly L;ir to say that one tries to determine the unknown 

para~eters of the ?lane. However, for the purposes of the present 

discu"si.on, it suffices to think of the identifici.1tion problem 

in this simple minded context. 

Let us denotL· the unknown p:iraneter(s) hy 0 

If the input used is u then we will obsPrve y = F(u,0,~) which, 

of .:ourse, will in g.::neral .1lso deJ't·nd .:,n the p:ir;i.Meters 0 and 

the randcir. t?l.::ment t.; f i:. In a dynamic si tuatiun it is natural 

to introdu.:i:: also the time t E T. At each instant one will then 

have :ivailable the past of u and y and an identification scheme 

will give us an estimate C(t) of ''.)(see figure 3). 

\ l',j 
u( •) l'l ant y (.) 

I 
F ( • ,'~', • -Identifier 3(.) 

. 
u (.) 

figure 3 
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There are two basic issues which are discussed in this 

volume regarding identification: 

I. conditions for convergence of e•(t) to the true parameter 

2. recursive implementation of identification algorithms. 

The article by HANNAN [section 4.1] contains a general 

convergence result for a class of identification problems. 

The model considered is a discrete time multivariable ARMAX 

(: autor~gressivemoving average with exogenous components) mode 1 

which relates the input and output by 

( J 0) 
p m 
L A(j)y(t-j) = L 

j=o j=l 

q 
D(j)u(c-j) + E B(j)E(t-j) 

j=o 

where one can think of £ as white random n.- se (the prt:!cise 

assumptions are given in the paper) and A( ), •.• , A(p), 

D(I), •• ., D(m), and B(O), ••• , B(9) as mrcri.-es with unknown 

coefficients. Let us denote this strine oi matrices by O. In 

this case 4 is thus a high dimensional Euclidean space. The 

identification principle used is that of maximum likelihood. 

'Jbe principle behind this idea is wellknown: at each instance of 

time there is a certain probability density p (u(O), ••• , u(t-1), 

y(O), ••• , y(t); 0) '.lhich expenses the likelihood that the 

string y(O), ••• , y(t) would have been observed with the input 

u(.) and the parameter value 0. At each instant of time one then 

chooses the parameter O(t) such that it maximizes this likelihood 

function over all possible 8. The converg~nce questinn is 

whether or not lim 0(t) '" 0*, where O* equals the true value of 
t->CO 

the parameter matrices A(G), ••• , B(q) which eem·r;1te the data 

y from the input u. HANNAN proves a nice and very ~<"1eral result 

in this direction. 

Of course to state and prove such a result one needs a 
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r.;;:.ology on the space of all p,Js:,ible models and if one wants 

'- d t.•.".·~ ~ •. es•.·,·1r 3nd discuss also how fast the converp.ence tD go ;,ieyun.. -.. 

· d mo~.e, namel'i a metric or a Riemannian structure on ~ s ,one :-.ee s _ 

the space of all ?~ssible systems of a given type. It is here 

:l-'..-.t tl:e geometry and top,>logy L>f the space of linear systems 

e:~ter tl:e p:cc.r<: and the discrete invariants Cill led Kronecker 

indice.; terr. Jut ::o have an important role to play. As such tile 

n:::;ults p:-eser.::ed in this puper are a primt·ur in p,iving hard 

evidence of the re:evance of this geometric structure issue in 

system identific~tion, 

Basic:ally fr.e same questions as in Hannan' s paper are 

aGdr.:ssed by Deiscler [s.;ction 4.3] for the case that so!'le 

initial structura: information on the to be identified system 

is alrc3dy given. 

Statistic:-±l cests tc> decide whether AR}!A models wi 11 be 

ad0Guate arP c0nsidered by Gueean in [section 4,4). 

3oth frc•rn a conceptual and fro!l1 a practical point of view 

lt is import:int u implement an identification scheMe in a 

r.:curs i ve a 1 i:;ori rhm. The ide.:i behind this i. s bas~ ea lly the same 

1s t!Xplaim:d in the context of nonlinear filterinp. However, 

since one in ge:ierd does nut like to treat the unknown~ ;:is 

r:-±nd,,r., vJriabl<'s, :hE' procedurc for obtaining recursive algorithms 

62es aifferent::,-. 1::1 addition there i..lrc many different ways of 

approaching an id~ntificatiun problem (~ontrary to the situation 

in m>nlinear fil~.ering where there arc many reasons for conside

ring in the first place the conditional mean of the to be 

estimated variables). LJl'NG's contribution [section 4.2] provides 

a very readable a:c'.)unt of varioL1S aspects uf rPcurs1ve system 

dentificati0n ba~ic:illy all in the context of scalar ARM.AX 

mode:s as \JC). Ee describes a nuMber of identification routines 

and discusses their convereence properties. He then gives some 

practical ~uidelints for the implementation of these algorith~s 

and closes by gi\·ine some results on the applic.1tion of 
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identification algorithms in adaptive control (see section 6 

of this article). 

It is possible, of course, to treat an identification 

problem from a so-called Bayesian point of view. In the context 

of the model introduced in the beginnins of this section, one 

then puts a probability measure on e. the space of unknown 

parameters. By considering now the product measure on ® x rl, 

23 

the total uncertainty space, this problem becomes a purely 

stocLastic one and it is possible, for instance, to use nonlinear 

filtering ideas in syst~m identification. This approach applied 

to AR.MAX models (written, however, in state space form) is the 

subject of the article by KRISHNAPRASAD & MARCUS (section 4.5). 

The estimation Lie algebras of these problems have a particularly 

pleasing structure with interesting possibilities for the 

existence of explicit recursive (approximate) filters. 

6, ADAPTIVE CONTROL. 

The lAst main topic discussed in this Look is that of 

adaptive control. This is r~ally one of the very early motivations 

of control theory: the design of control algorithms which will 

automatically learn the value of the (changing) plant parameters 

and self-adjust their control strate3y accordin3ly, 

Most of the adaptive control strategies proposed in the 

literature work according to a separation principle of 

identification and control. This is easily explained in the 

context of the general set-up discussed in Section 1. Assume that 

we have given an uncertain plant F with observed output 

Y "' F(x,G,w), with control input u E U, unknown parameter 

8 E @ , and stochastic uncertainty w E 11. The problem is to 

design a feedback compensator, i.e., a nonanticipat ing map 

G: Y + U, such that the closed loop system has some <.-:sirable 

properties. This control design purpose may be expressible in 

terms of closed loop stability. an optil'\al stochastic control 
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criterion, ur some of the dcsiv,n formulations of ~ultivariable 

contr::il as, for .!Xample, model matching, pole placement, 

dist~irb;:incc decouplinB, etc. The difficulty, however, is that 

the u:1t.:riown parameter 0 is indeed unknown. 

If (•llc uses a recursive identification scheme as explained 

:n 5e:cion j on..: will hdve at each instant nf ti~e an estim~te 

C(t\ ..;f the unl\.nown parameter. Assume now that if 1.'..J were known 

~'nt· w,'uld use the feedback control law G which, since it wi 11 

deµen..! L'n ,~·. we denote by c8 • If c0 is implemented recursively, f/f 
thi& will lead to a set of update equations with coefficients · . 

dep.::nding '"n f•, Th·· idea of using separation i$ to use for 

c:1e!:-e r:ua:neten; the estimate O(t) at time t. This is illustraticd 

io~ 

' 

Plant 
F ..._ 

r· - - - - - - - . 
I 

- - - . - - ~ 

I 
ldenti fier 

w Cancro 111: r 
i 

Controller 
Coefficient . 
Algorithm 

-" 

fieure 4 

Tt~ ensuine closed loop system will be very nonlinear and 

its ~r.)~erties ar~ difficult to analyze, Moreover, one ~~nn0t 

sir.:ply c.:indude that a convergent identification routine will 

rena:.n convt?rgent when used in this closed loop framework. Indeed, 

assum?tions like u is bounded, deterministic, and if it is 

stoct~stic, independent of the stochastic disturbance of the 

;ilant, 1.·hich one may have to make in order h to prove t e conver?,ence 
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of the identification scheme, need not be satisfied. 

The adaptive separation scheme induces a map J: y + u. The 

adaptive control scheme is said to be self-tunin~ if, as t + ~. 

the map C' converges to c0* in some sense. Here 0* denotes the 

true value of the parameter 0 and c8* denotes the controller 

which achieves the control objective (optimal perforMance, model 

matching, etc.) at the true value 0*. The surprising part of 

the results obtained so far is that self-tuning may occur even 

when inside the controller the cunver~ence 0(t) • 0* does not 

hold. 

In this volume we have three papers on self-tuning ~ontrol. 

The first one is by LANDAU [section 6. J] and treats self-tuning 

results for model reference adaptive control algorith~s for 

scalar systems of the ARMA\ type (JO). The second paper is by 

CAINES & DORER [section 6,'.:]. It discusse" a stabilization 

property for a class of (T\') ARHAX models rhat is modelr. of the 

type (JO) but with time-varying coefficie it~. These codficients 

are assumed to be stochastically time vai yi :1g and the purpose of 

the paper is to prove asymptotic stability of the closed loop 

system. 

The third paper in this chapter by FUCHS [section 6.3) 

discusses the stability of the overall system in terms of 

properties of the separate control subsy$tem and the identifica

tion subsystem. 

7. CONCLUSIONS. 

It is perhaps safer to leave the conclusions and statements 

of future prospects co the reader (after he has carefully rend 

and digested the papt'rS in this volume). For ourselves let us 

say that the future seems very bright, stronr, new impulses seem 

present everywhere in this field of filtering and iJentification 

and there seems to be a most promising gathering of ton:es in 

the sense that l'lOre and more ne~ ~athematicai subjects are 
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broueht in to bear upon the subject, which, when knowledseably 

used, seem likely to enhance our understanding and improve 

our techniques. 

To quote Joseph Louis Lagrange: 

'As lone .is algebra and ['.C('!'letry proceeded along separate 

paths their advance was slow and their applications linited. 

But when these s2ienccs joined company, they drew from each 

other fresh vitality ;.ind whence-iorward marched on at a rapid 

pace toward perfection'. 

It ~.ay well be (in our opinion) that in the field of 

enquiry of these proceedines we are witnessing today the 

beginnings· of a siMilar joining of forces. 


