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A Lie algebra L(E) can be associated with each nonlinear filtering problem, and the 
realizability or, better, the representability of L(:E) or quotients of L(E) by means of vector 
fields on a finite dimensional manifold is related to the existence of finite dimensional 
recursive filters. In this paper, the structure and representability properties of L(E) are 
analyzed for several interesting and/or well known classes of problems. It is shown that, for 
certain nonlinear filtering problems, L(E) is given by the Wey! algebra 

It is proved that neither W. nor any quotient of W. can be realized with C"' or analytic 
vector fields on a finite dimensional manifold, thus suggesting that for these problems, no 
statistic of the conditional density can be computed with a finite dimensional recursive filter. 
For another class of problems (including bilinear systems with linear observations), it is 
shown that L(:E) is a certain type of filtered Lie algebra. The algebras of this class are of a 
type which suggest that "sufficiently many" statistics are exactly computable. Other examples 
are presented, and the structure of their Lie algebras is discussed. 

1. INTRODUCTION 

This paper is motivated by the problem of recursively filtering the state x1 

of a nonlinear stochastic system. p:iven the past observations z1 
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={z.,O;;;;s;;;;t}. The systems we consider satisfy the Ito stochastic 
differential equations 

where x E IR", w E !Rm, z E !RP, w and v are independent unit variance Wiener 
processes, and R>O. The optimal (minimum-variance) estimate of x1 is of 
course the conditional mean .X1 ~ E[xr I z'] (also denoted x111 or E1[x1]); x1 ,.. 

satisfies the (Ito) stochastic differential equation [1]-[3] • 

dx1 = f(x1)-(;;hT - x.f?)R- 1(t)h dt +(;;h T -x1flT)R - 1(t) dz1 (1.1) 

where~ denotes conditional expectation given z' and h denotes h(x1). The 
conditional probability density p(t, x) of x 1 given z1 itself (we will assume 
that p(t, x) exists) satisfies the stochastic partial differential equation [3], 
[4] 

dp(t, x) = fi'*p(t, x) dt + (h(x)- li(xW R- 1(t)(dz1- h(x) dt)p(t, x) (1.2) 

where 

(1.3) 

is the forward diffusion operator. 
Notice that the differential Eq. (1.1) is in general both infinite 

dimensional and nonrecursive (because of the occurrence of the 
expectations J, XJir, and h). Equation (1.2) is recursive but of course still 4 
infinite dimensional. Aside from the linear-Gaussian case in which the 
Kalman filter is optimal, there are very few known cases in which the 
conditional mean, or indeed any nonconstant statistic of the conditional 
distribution, can be computed with a finite dimensional recursive filter (a 
number of these are summarized in [5]). More precisely, a finite 
dimensional recursive filter is a stochastic differential equation driven by 
the observations of the form · 

p 

d171 = a(171) dt + L b,{l'/1) dzi,, (1.4) 
i=I 

where 11 evolves on a finite dimensional manifold and a and b; are 
sufficiently smooth to insure existence and uniqueness (these conditions 
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will be strengthened later). The conditional statistic E[c(xr) I z'] is said to 
be .finite dimensionally computahle (FDC) if it can be computed "pointwise" 
as a function of the state of a finite dimensional recursive filter: 

l'(xrJ ~ E[c(x,) I z'] = ;'(IJ,). ( 1.5) 

As a practical matter, it is also useful to require that the combined 
estimator ( 1.4H1.5) yield a statistic c(x,) which is a continuous function of 
z; we will comment on this later in this section. 

Recently, Brockett and Clark [38] and Brockett [6], [7] have shown 
that Lie algebras and concepts of non!incar system theory play an 
important role in nonlinear recursive estimation theory, and Mitter [8]. 
[9] has emphasized the importance of functional integration and group 
representations and has shown the connection between certain Lie 
algebras arising in estimation and those arising in mathematical physics. 
The approach of Brockett [6] is the following. Instead of studying the Eq. 
( 1.2) for the conditional density, we consider the Duncan -Mortensen · 
Zakai (D--M-Z) equation for an unnorrnalizcd conditional density p(t, x) 
[ 1 OJ, [45, Chapter 6]: 

p 

dp(t,x)=2'*p(t,x)dt+ 2: h;(x)p(t,x)dz;c 
i:::-1 

where zi and hi are the ith components of;:; and h, and p(t, x) is related to 
p(t, x) by the normalization 

p(t, x) = p(t, x) · cf p(t, x) dx) · 1 ( 1.7) 

The D-M-Z Eq. ( 1.6) looks much simpler than (l.2); indeed, ( 1.6) is an 
(infinite dimensional) bilinear differential equation [l 1] in p, with z 
considered as the input. This is the first indication (given work on the 
roles of Lie algebras in solving finite dimensional bilinear equations [32], 
[33]) that the Lie algebraic and differential geometric techniques 
developed for finite dimensional systems of this type may be brought to 
bear here. Modulo some conjectured infinite dimensional extensions of 
some known results in the finite dimensional case (to be discussed below) 
this can be made more precise as follows: suppose that, for some given 
initial density, some statistic of the conditional distribution of x, given z' 
can be calculated with a finite dimensional recursive estimator of the form 
(l.4Hl.5), where a, bi, and }' are ex or analytic. Of course, this statistic 
can also be obtained from p(t, x) by 

c(x,) = J c(x)p(t, x) dx(J p(t, x) dx) · 1 . ( 1.8) 
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For the rest of the development, it is more convenient to write (1.4) and 
(1.6) in Fisk-Stratonovich form (so that they obey the ordinary rules of 
\:alculus and so that Lie algebraic calculations involving differential 
operators can be performed as usual): 

where the ith component 

(here bik is the kth component of bJ 

(l.10) 

~ 

The two systems (1.9), (1.5) and (1.10), (1.8) are thus two representations 
of the same mapping from "input" functions z to "outputs" c(x,): {l.10), 
(1.8) via a bilinear infinite dimensional state equation, and (1.9), {1.5) via a 
nonlinear finite dimensional state equation. Motivated by the results of 
[12], [13] for finite dimensional state equations, the major thesis of [6] is 
that, under appropriate hypotheses, the Lie algebra F generated by 
ii, b1, ••• ,bP (under the commutator [a,b]=(oa/811) b-(ob/017)a) should be a 
homomorphic image (quotient) of the Lie algebra L(:'E) generated by e0 

=f£*-1/2Lf= 1 hf(x) and e;=h;(x), i= l, ... ,p (under the commutator 
[e0 , eJ =e0e;-e,-e0 ), with e0 -+a and e;-+b;, i= 1, ... , p. On the other hand, if 
there is a homomorphism <P of L(L) onto a Lie algebra generated by p + 1 
complete vector fields a, b1, ••• , bP, on a finite dimensional manifold, then 
this is an indication (possibly via appropriate globalized and/or integrated 
infinite dimensional generalizations of some results of [34], [35]) that 
some conditional statistic may be computable by an estimator of the form 
(1.9), (1.5). It is not known in what generality such results are valid, 
especially for cases in which L(:E) is infinite dimensional, and much work 
remains to be done (the fact that existence of a finite dimensional filter 
implies the existence of a Lie algebra homomorphism has been made 
rigorous for a class of estimation problems, including the cubic sensor 
discussed in Section II, in [36]). However, it is clear (in part, from a 
number of examples discussed below) that there is a strong relationship in 
general between the structure of L(L) and the existence of finite 
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dimensional filters. In this paper, we discuss the properties of L(L) for 
some interesting classes of examples. These Lie algebraic calculations give 
some new insights into certain nonlinear estimation problems and 
guidance in the search for finite dimensional estimators. 

ff L(~) is finite dimensional (this seems to occur only in very special 
cases [9], [37]), a finite dimensional estimator can in some cases be 
constructed by integrating the Lie algebra representation [9]. lndeed, if 
L(l:) or any of its quotients is finite dimensional, then by Ado's Theorem 
[27, p. 202] this Lie algebra has a faithful finite dimensional 

i{~prese~tation; th~s it can. be realized with. linear v~ctor fields on a fi~itc 
,01mens1onal mamfold, which may result 111 a hilmear filter computing 

some nonzero statistic (see, e.g., [16] and [26] for examples). However, 
actually computing the mapping from p(t. x) to l'(x1) (i.e., deciding which 
statistic the filter computes) is a difficult probkm from this point of view; 
at the moment at least, one must usually use other, more direct, methods, 
to actually construct this mapping or to derive the filter for a particular 
conditional statistic (see, e.g., [14]-[l 7]). Also, just a Lie algebra 
homomorphism from L(I) to a Lie algebra of vector fields is not enough. 
In addition to the homomorphism of Lie algebras, one needs compatibility 
conditions in terms of isotropy subalgebras [34], [35], or equivalently, in 
tams of the natural representations of the Lie algebras operating on the 
spaces of functions on the manifolds involved. Even if L(I) or its quotients 
are infinite dimensional, it is still possible that these Lie algebras can be 
realized by nvnlinear vector fields on a finite dimensional manifold. 
Conditions under which this can be done is an unsolved problem in 
general; we prove in Section 2 that this is nvt possible for certain classes 
of Lie algebras. As an almost totally trivial example that two vector fields 
on a finite dimensional manifold can generate an infinite dimensional Lie 
algebra, consider the vector fields a=x 2c/h and b=x3 0/11x on a one-

• dimensional manifold; it is easy to see that a and b generate the infinite 
dimensional Lie algebra of vector fields of the form x 2 p(x)o/cx, where p is 
a polynomial. 

If a statistic c(x,) is finite dimensionally computable, the Lie algebraic 
approach also gives some insight into the continuity of the estimator. 
Since there is a Lie algebra homomorphism as discussed above, the vector 
fields b1, •• • , bP are homomorphic images of the operators e 1, ... , eP which 
all commute with each other (these are just multiplication operators). Thus 
h1, ... ,bP also commute, and the results of [18] imply that the filter (1.9) 
represents a continuous map (in the c0 and LP topologies) from the space 
of "inputs" z to the solutions 17. Hence, the estimator (1.9), (1.5) gives a 
continuous map from z to t.~x,); this is a very useful property, indicating 
the "robustness' of the filter (see also [ 19], [20]). 
STOCH-· B 
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Brockett and Clark [38] used this approach to study the estimation of 
a finite state Markov process observed in additive Brownian motion; the 
Lie algebraic approach led to the discovery of new low dimensional filters 
for the conditional distribution, even in some cases when the number of 
states was arbitrarily large. And even in the extremely well known case of 
linear systems (Kalman filter), the Lie algebraic approach gives an 
additional result in that it tells us how to propagate a non-Gaussian initial 
density. 1) In this case the Lie algebra is finite dimensional; in fact, one 
finds higher dimensional relatives of the so called oscillator·-algebra of 
some fame in physics (incidentally, this is no accident [9]). In [21], a 
similar analysis is carried out for an example of the class of estimatio~ 
problems considered in [14]-[l 6]; for this class of nonlinear stochastic 
systems, the conditional mean (and all conditional moments) of x1 given z1 
are finite dimensionally computable. For this example, the Lie algebra 
L("f.) is infinite dimensional but has many finite dimensional quotients 
corresponding to the Lie algebras of the finite dimensional filters; these are 
analyzed in detail in [21]. These last two examples, as well as the example 
of Benes [l 7], are special cases of the class considered in Section 3. 

In Section 2, we consider estimation problems for which L(L) is the 
Weyl algebra w •. A number of examples are given and useful properties of 
the Wey! algebra are derived; some of these results have been obtained 
independently by Mitter (9]. The major results of Section 2 are proofs 
that neither Wn nor any quotient of W,, can be realized by vector fields 
with either C"' or formal power series coefficients on a finite dimensional 
manifold; this suggests that for these problems, no statistic of the 
conditional density can be computed with a finite dimensional recursive 
filter. This does not imply that there will not be appropriate 
approximation methods. Possibly partial homomorphisms of Lie algebras 
[39] of L(L) into Lie algebras of vector fields will play a role here. Also~ 
"deformations of algebras" techniques [ 40}-[ 42] suggest a possible 
approach to approximate methods. For example, the Lie algebra of dz, 
=dw1, dz1=(x+ex3 )dt+dv1 is W1 for all e+o, but mod en this algebra is 
finite dimensional for all n (43], [31]. Finally, in Section 4 we present 
another estimation problem with an interesting Lie algebraic structure and 
discuss the possible implications of this structure. 

2. THE WEYL ALGEBRAS Wn 

The Wey/ algebra W,, [22], [23, Chapter l] is the algebra of all polynomial 
differential operators; i.e., W,,=IRl(x 1, ••• ,xn;a/ax 1, ... ,o/ox"). A basis for W" 
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consists of all monomial expressions 

35 

(2.1) 

where 11., f3 range over all multiindices a=(:i 1,. .. ,11.n), P=(/31, ••• ,/Jn), x, 

fJ EN v {O} (the non-negative integers). W,. is a Lie algebra under the Lie 
bracket; as an example, we state the general formula for W1 : 

x'-.,xk- = r!x•+k -'--. --[ . (Ji 81 J j (j)(k) . <Y + 1 - r 

ex' CX1 r~l r r c1x1 +l-r 

I 1 i+k-s 1·' I('/)(.) j}+-1-s 
- s x -----sf:! s s c.. cxj+l-s 

(2.2) 

where 

(') ., ) )· 

r =(j-r)!r! 

is the binomial coefficient and we have used the convention that (!) = 0 if 

r<O or j<r. As is easily checked, the center of Wn (i.e., the ideal of all 
elements z E wn such that [X, Z] = 0 for all x E Wn) is the one-dimensional 
space IR · 1 with basis { 1} (22, p. 148]. We next prove the simplicity of the 
Lie algebra W,./IR · l; this is of course stronger than showing that W,, is 
simple as an associative algebra (22, p. 148]. Our proof follows that of 
Avez and Heslot (24] for the Lie algebra Pn of polynomials under the 
Poisson bracket. A number of the following results are common to P" and 
Wn, but these two Lie algebras are not isomorphic (this is basically 
because the expression in P. corresponding to (2.2) would retain only the 
terms for r= 1 and s = 1). Hence, one must be careful in literally 
interpreting results proved for p n in the context of wn [30]. 

THEOREM 2.1 The Lie algebra Wn/IR · 1 is simple; i.e., it has no ideals other 

than {O} and W,,/!R · 1. Equivalently, the only ideals of W. are {O}, IR · L and 

w,.. 
Proof Suppose l is an ideal of W,. which contains a nonconstant 

element X = L,c2 px::r.cP/iJxP. Since commuting with X; reduces /3; by 1 and 

commuting with 8/cxi reduces :x; by 1, repeated commutation implies that 
an element of the form xi or c/r1x; is in J. Since every element YE Vi'~ can 
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be obtained by commutation of xi (or l1/ux) with another element of w., 
this shows that I= Wn-

This theorem basically shows that if VV,, occurs as the Lie algebra L(I.) 
for some estimation problem, then either the unnormalized conditional 
(kn,ity itself is finite dimensionally computable or no statistic at all is 
lin1t..: dimensionally computable. The next two theorems comrlctc the 
argument by showing that in fact neither H·;, nor its quotients can be 
realized by vector fields on a finite dimensional manifold. 

Let Vm be the Lie algebra of vector fields 

with (formal) power series coefficients J; E lR[[x 1, ... , xmJJ, and let V(M) be 
the Lie algebra of C"-vcctor fields on a C'°-manifold M. The proofs of the 
following theorems arc contained in Appendix A. 

THEOREM 2.2 Fix n i= 0. Then there are no non-zero homomorphisms from 
H~ to vm or from w./lR. 1 to Vmfor any m. 

r111 'lfU \1 2.3 Fix n +o. Then tlwre are no non-zero homomorphisms [i-om 
ll,, '" i I\/) or VV,,/IR ·I to V(M)fi1r any finite dimensional C' -1111111ifi1/d M. 

These results suggest (assuming the appropriate analogs of the results of 
[6], [12]) that if a system L has estimation algebra L(L)= VV,, for some n, 
then neither the conditional density of x, given 21 nor any nonzero statistic 
of the conditional density can be computed with a finite dimensional filter 
of the form (1.9) with a and b C"' or analytic. This is indeed the case for 
the cubic sensor (Example 2.1) [36] (as was mentioned before). We will t 
give several examples of such systems, but first we present a general 
method for showing that L(:E) = w .. 
THEOREM 2.4 The Lie algebra W,, is generated by the elements 

a2 2 a . . I I xi,-2,x; -;i-, 1=1, ... ,n; and X;X;+ 1, != , ... ,n- . 
OX; oxi 

Proof (similar to that of [24] for Poisson brackets): Let L be the Lie 
algebra generated by these elements. Since 

[ 
.2 O k] k k+ I xi -,-,xi = xi , 

CX; 
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L contains x~, k ?;_ !. Now, 

Also. 

37 

(2.3) 

with l=O, (2.3) implies that x~(c/cxJEL. k?;.O. Then by induction (2.3) 
implies that 

Notice that 

and commuting this with x~(o/8xJ1 gives X;+ 1 · IR<x;, (o/ilx;)) EL. Repeated 
commutation with 

( c )2 
and ~-:--

ex;+ 1 

It yields (as above) 

By induction, we have that L= Wn. 

Theorem 2.4 provides a relatively systematic method for showing that 
L(l:) = w. for a particular estimation problem: one need only show that by 
taking repeated Lie brackets of!/'* -( 1 2Jli 2 and lz. the generating elements 
of VV,, given in Theorem 2.4 are obtained. Notice that if n = !, the 
generating elements are x, (c 2/cx 2), and x 2(c ?x). There is a "dual" result 
obtained by interchanging x, and Uc'x; in Theorem 2.4. Some interesting 
examples are the following. 
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Example 2.1 (the cubic sensor problem [9], [25]) Consider the system 

The Lie algebra L('E) is generated by the operators 

We can compute a sequence of Lie brackets to obtain a sequence of 
elements e; E LCt.), eventually obtaining the desired generators of W,,: 

{where ad~2e 1 =e1 and ad!+ 1e 1 =[e0, ad~ e1]). Combined with e0, x6 EL(E) 
implies that e3 = a2;ax2 E L(L). Continuing, 

ai a 
[e3, e6] = 12x2 :12 + 24x-;;--+ 6, 

vx ox 

which combined with e5 implies that e7 = 1 and e8 = x 2(82/cx2 ) + 2x(o/cx) 



LIE ALGEBRAS AND FILTERING 39 

are in L(I:). A few more calculations will complete the demonstration: 

Now e 13 , e 11 , and e4 are all linear combinations of the elements 

x2(c3/cx 3), x(c 2/11x 2}, and 1~/1'x, and the coefficient matrix 

0 I 11 

5 9 0 

2 4 

is nonsingular. It follows that L(I:) contains e 14 =1~,('x, l' 15 =x(i' 2/1ix 2 ), and 

e16 =x2 (D 3/ih: 3 ). Finally, 

which combined with e2 gives x 2(?/cx) EL: thus by Theorem 2.4, L(I) 

=W1. 
Analogous computation of selected Lie brackets and the use of 

Theorem 2.4 yields similar results for the following examples. 

fxmnple 2.2 For the system 
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L(l:) is generated by 1/2(c//cx2)-x3(o/ox)-(7/2)x2 and x, and L(l:)= W1• 

Example 2.3 (mixed linear-bilinear type) Consider the system with state 
equations 

with observations 

L(:E) is generated by 

1 a2 1 a2 a t 
--+-x2---x----y2 and y; 
2ax2 2 ay2 ay 2 

it is shown in Appendix B that L(L.) = f!J.-2. The same result is obtained if 
the x,dt term is absent in they equation; in that case we have a multiple 
Wiener integral of Brownian motion observed in Brownian motion noise. 

Example 2.4 Consider the system with state equations 

and observations 

dz 21 =y1 dt+dv 21 • 

L(l:) is generated by 

1 a2 2 a 1 2 1 2 
-2:i2- x ~--2 x -75Y ,x, and y; ex cy _ 

it is easily shown that L(l:) = W2• This is the example studied in [21], but 
here we have the additional observation z2; the relationship between these 
examples will be examined in the next section. 
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3. PRO-FINITE DIMENSIONAL FILTERED LIE ALGEBRAS 

A Lie algebra L is defined to be a pro-finite dimensivncil filtered Lie algebra 
if Lhasa decreasing sequence of ideals L= L_ 1 ::::> L0 ::::> L1 ::::> ••• such that 

a) n L;=O 

b) L/L; is a finite dimensional Lie algebra for all i. 

The terminology is somewhat analogous to that of pro-finite groups 
[28]; no completeness assumptions are made, however. Notice that (a) 
implies that there is an injection from L to EB; L/L,.. In the context of the 
estimation problem, this would correspond to L(2:) having an infinite 
number of finite dimensional quotients; if each of these can be realized 
with a recursively filterable statistic (a plausible conjecture). then the 
injectivity of the map makes it reasonable to conjecture that these 
statistics represent some type of power series expansion of the conditional 
density. Of course, in addition to those discussed in Section 1, other 
difficult technical questions such as moment determinacy will also be 
relevant here, but the structure of the Lie algebra should provide some 
guidance as to possible successful approaches to the problem and some 
insight into the structure of the resulting approximations. 

Example 3.1 [21] A simple example of the class considered in [14]­
[16] is given by the state equations 

and the observations 

d:, =X1 Jt + dv, 

with x0 Gaussian. The computation of x, is of course straightforward by 
means of the Kalman filter; however, as shown in [14]-[16]. all 
conditional moments of y, can also be computed recursively with finite 
dimensional filters. L(I:) is generated by 

as shown in [21 ], a basis for L(~) is given by e o and 
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Defining L; to be the ideal· generated by x( 8;/ cl), i = 0, 1, 2, ... , it is easy to 
see that L(:E) is a pro-finite dimensional filtered Lie algebra, and 
realizations of the L("f.)/ Li in terms of recursively filterable statistics are 
given in [21]. In addition, L(:E) is solvable [21]. 

A similar analysis for systems of the form of Example 3.1, with x; 
replaced by a general monomial xf has also been done [31 ]; for p > 2, a 
similar but more complex Lie algebraic structure is exhibited. It is 
interesting to compare Example 3.1 with Example 2.4, which is the same 
except for the additional observation dz 21 = y1 dt + d11 21 ; in that case L(:E) 
= W2, so that no conditional statistic can be computed exactly with •· 
finite dimensional filter. However, it is probable that, due to the addition~' 
observation, a suboptimal approximate filter (such as the Extended 
Kalman Filter) for the conditional mean of y, will result in lower mean­
square error than the optimal filter which computes y, in Example 3.1. 
Thus some care must be taken in interpreting the Lie algebraic structure 
of a nonlinear estimation problem; this structure has direct implications 
on the exact computation of conditional statistics, but its implications on 
approximate filtering remains to be investigated (see [31]). 

Example 3.2 (degree increasing operators and bilinear systems) Consider 
a system of the form (~), and suppose that j; G, and h are analytic with 
/(0)=0 and G(O)=O, so that the power series expansions of f and G 
around zero are of the form 

where !al = :x 1 + ... +a,,. It follows that 

G(x)G'(x)= L G.(x)x". 
a JE;l2 

An example of such systems is the class of bilinear systems 

p 

dx, = Ax1 + L B;X1 dw; 
i= 1 

(3.1) 

(3.2) 
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Another example is 

dx, = x, dt +sin x, dw, 

with h analytic; in general, a wide variety of examples can be found. 

Let M = IR[[x 1, •.• , xnJJ be the module of all (formal) power series in 
x1,. .. ,xn, and define the submodules 

so that, e.g., M 0 consists of those power series with zero constant term. If 
I is a system satisfying the condition (3.l), it follows that for all i, the 
forward diffusion operator (1.3) satisfies 

hence 

and of course 

Since the two generators of L(I) thus leave M; invariant, it is obvious that 

L(I)M; c M;; thus, each element of L('L) can only increase (or leave the 

same) the degree of the first term in the power series expansion of an 
element of M. Let 

Li= { X E L(I:) I X Mc M; + i}, i = - I, 0, I, 2, ... 

Then L; is an ideal in L(I:) and we have an induced representation 

Because M/M;+ 1 is finite dimensional, so is L/L;, since P; is injective (by 

definition of LJ It is obvious that n L;= {O}: thus L(I.) is a pro-finite 

dimensional filtered Lie algebra. with filtration L;. One additional 
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structural feature of this filtration is that L0/L; is a nilpotent Lie algebra 
for i=l,2, ... ; also, L;/Li+t is abelian for all i!:;;O. The nilpotency of the 
L0/Li is a property also possessed by the filtration of Example 3.1. 

The Lie algebraic structure of a scalar bilinear example of the form (3.2) 
has been derived independently, and in more detail, by Baras and 
Blankenship [ 44]. 

Since many systems can be well approximated by bilinear ones, these 
results may have important implications for approximate nonlinear 
filtering. We close this section with two interesting examples of this class; 
the first is a bilinear system of the form (3.2), but in which some elements 6t 
of A are also unknown and must be estimated. The second is an angle • 
modulation problem. 

Example 3.3 (Bilinear system with unknown parameter) The simplest 
example of this type is 

dzr =x1 dt+dv1 

Here both the state x, and parameter a are to be estimated recursively. 
The Lie algebra L(L) is generated by 

1 2 a2 a a i 2 -x -+2x--+ 1-ax--a--x 
2 Bx2 ox Bx 2 

and x. Both of these operators are "degree increasing" when operating on 
!R[[x, ,x]], so L(I:) is a pro-finite dimensional filtered Lie algebra. 

Example 3.4 (Angle modulation without process noise) Consider the 
problem of observing 

dz 11 =sin (M + 8) dt + d1• 11 

dz2 , =cos (wt+ 8) dt + d1i 21 

where w and e are constant random variables to be estimated. To place 
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Example A. l A prime example of filtered Lie algebras are the v •. The 
filtration is defined as follows: Li consists of all vector fields L CaJa((!/ox;) 
with ca.i=O for all ex with !al ~i, where the norm of the multiindex 
(cx 1, .. ., a.) is !ex!= cx 1 + ... +ix •. 

Given a filtration L _ 1 => L0 => L 1 => .•• on a Lie algebra L, we define a 
valuation jimction !': L-+ l\J v [O, - 1} v { oo} by 

v(x)=max {j! XE Li}. 

e Properties (A. l) and (A.2) of the filtration translate into 

v(x)= oc,<::::>-x=O (A.4) 

• 

v([x, y]) ;f; v(x) + v(y), (A.5) 

and the fact that the Li are vector spaces implies that 

v(ax +by)~ min (v(x), v(y)); x, y EL, a, b E IR (A.6) 

and 

v(x + y) = v(x) if v(x) < v(y) 

l'(ax)=v(x) if ai=O (A.7) 

In addition, we will need the following results concerning W1• First, we 
have the formula 

(A.8) 

/ this is easily proved by using (2.2) and formulas for the binomial 
coefficients. The following lemma, which also follows by a straightforward 
application of (2.2), shows that xk(c1/c1x1) is an "approximate eigenvector" 
of x'(?'/L1x'). 

LEMMA A. l Let I< t ~ k i= l be natural numbers. Then there are 'I nonzero 
cEIR and d1,. • .,d1 _1 E IR such that 

[ 
ol •! J ,1 r I ~I +i ' c k (" - • k l .k + j !:.__._ x ·~,x -~1 -LX -;;,---:i+ L d;x , .i+; 

lX lX u.: i=I IX 
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The proof of the next lemma is quite involved and is contained m 

Section A.3. 

LEMMA A.2 Suppose that W1 =L_ 1 :;:, L0 :;:, L1 :;:, . . . is a sequence of 
subalgebras of W1 satisfying (A.2), (A.3), dim (Wi/ L 2 ) < oo, and either n L1 

= {O} or n L; = IR · 1. Let v be the valuation function defined by the filtration. 
Then F(x")-+C() as n-+oo. 

A.2 Proof of Theorem 2.2 

The proof will be carried out for W1; the proof is virtually identical for 
Wif!R · I. and the result is true a fortiori for W,., since W1 is clearly 
isomorphic to the subalgebra of W,. consisting of expressions in x 1 and 

o/ex 1 only. Suppose that there is a nonzero homomorphism r/> from W1 to 
Vm. Then W1 has a filtration defined by the subalgebras M; ~ r/> - 1(L,), 

where { LJ is the filtration on Vm defined in Example A. l; Jet v be the 

corresponding valuation function on W1 . Since Vm/ L 2 is finite dimensional, 
so is W1/ M 2; thus Lemma A.2 implies that u(x;)-* oo as i-+ x. We claim it 

also follows that 

( ~1+1) 
v xk+i_o_-c -+OO 

oxl+1 

and that this will lead to a contradiction. 

First notice that 

[ ~22 ,xk+;+z]=2(k+i+2)xk+i+l: +(k+i+2)(k+i+ l)xk+i, 
OX vX 

so that from (A.5HA.7) and the fact that v(X)~ - I for all X E W1 , 

(A.9) 

v( xk +i+ 1 :x) ~ min { v(xk+i), { -i._:2 , xk+ i+ 2 ]} ~ min { v(xk+i), v(xk+i+ 2)- 1 }. 

(A. 10) 

Then taking r=k+i+l and n=l+i+l in formula (A.8) and using (A.10) 
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yields 

k+· ( al+i ) 
v x , oxT+T 

which converges to oo as i--+oo, proving (A.9). 
Now choose t 0 EN such that 

(' Zi') v x' --;;----. - ~ l 
cx1 

for t~t0 . 
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(A. 11) 

Choose any k0 ~ 1 and consider the sequence { v(xk0+1(c1/13x1)); I= 
0, 1, 2, ... }. Then because by (A.9) this sequence converges to :x there is 
for any 10 an / 1~10 such that 

i ~ 1 (A.12) 

Take l0 =t0 + 1, choose 11 such that (A.12) holds, and take t=/ 1 +1. 
Then we can apply Lemma A.1 with t=l 1 +1, /=1 1, and k=k0 +1 1 

(notice that the assumptions are satisfied). We find 

[ ~' c' J (~j , . 1 ai + i 
,l k .. k k·ri x~1,x-01 =cx 1~+.?:d;x ~i+; ex x c.x , .. 1 cx 

Because of (A.12), we have by (A.7) that 

( 
::=ii t ·- 1 -,1 + i ) ( 1'' ) ku k+-l k" 

v ex FI+ _I d;x ':;1+T =v x -;--:Y . 
x 1=1 ex ex, 

(A.13) 

But because v(x'(o'/c'lx'))~ 1 (cf., (A.11)} we have by (A.5) that 
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Comparing this to (A.13) gives a contradiction, completing the proof of 

Theorem 2.2. 

A.3 PROOF OF LEMMA A.2 

A.3.1 A preliminary reduction 

Le1'.\1A A.3 Under the hypotheses of Lemma A.2, if there is an element 

x" E W1• rz ;;-; 2. such that v(xn) ;;-; 0, then v(xm)-+ :c as m-+ co. 

Proof Suppose we had such an element x". Because dim(Wi/L2)< co, 
there is an element 

of valuation;?;: 2. A simple computation shows that ad~" Y = nss! asxs'" - 1), 

which has valuation ;?;: 2 (by repeatedly using (A.5) and v(x");;;; 0). Thus we 

now have an element x\ k62, with v(xk)62. Now 

has valuation 6 1, and for any q, ad~xq = cxPk +q, c f 0. For any m;;;; k, 

there exist nonnegative integers p, q such that m = pk + q, so we have for m 

large enough: 

> - -1 >---? [m] m 
= k = k -· 

where [m, k] denotes the largest integer ~ m/n. Since k is fixed, this shows 
that i:(xm)-+ cc as m-+ :c. 
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A.3.2 Some combinatorial lemmas 
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To prove that under the conditions of Lemma A.2 there is indeed an 
nE N, n~2 such that v(x")~O, we need some combinatorial lemmas. 

LEMMA A.4 Let r, s EN with r < s, and let a E ~. Then 

J
0 
G>- J)i(a+i + l)(a +i +2) ... (a+ i+r)=O 

Prooj 2l The proof is by induction on (r. s); in case s = 2 and r = l, we 
have 

2 (2) . i~O i ( - 1 )'(a+ i + l) 

Now assume by induction that the lemma has been proved for (r-1,s--1). 
Then 

=a[ (~}a+ 2) ... (a +r)-( ~}a+ 3) ... (a +r + l)+ ... J 

+(~}a +2) ... (a+ r)-2( ~)<a+ 3) ... (a+ r + 1) 

+3G}a +4) ... (a+r+2)- ... (A.14) 

Since each term in (A.14) has a product of r-1 elements and 

the induction hypothesis implies that the sum in the brackets is zero and 
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the other sum is equal to 

-G}a+3) ... (a+r+ 1)+2G}a+4) .. . (a+r+ 2) 

-3C}a+5) ... (a+r+3) + ... 

[(s-1) (s-1) = -s 0 (a+3) ... (a+r+ 1)- 1 (a+4) ... (a+r+2) 

+(s; 1}a+5) ... (a+s+2)- ... J 
=0 

by the induction hypothesis, and the proof is complete. 
Another lemma from the same general family is the following. 

LEMMA A.5 Let s E ~. a E !R, k ER Then 

(~}a+s-1) ... (a+ l)a-G}a+s-2) .. . (a+ 1)a(a-k) 

( s\ 
+ 2/a+s-3) ... (a+ l)a(a-k)(a-k-1)- . .. 

+(- lr 1( s )a(a-k) ... (a-k-s+2) 
s-1 

+(- l)'(:}a-k)(a-k-1) ... (a-k-s+ 1) 

=k(k+ 1) . .. (k+s-1) 

Proof Using the fact that ID=(f..:-/)+(5 / 1) and noticing that (a·-k) is a 
factor of all terms except the first one and that a is a factor of all terms 
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except the last one, we rewrite the sum above as 

[(s-1) (s-1) a 0 (a+s-1) ... (a+l)- 1 (a+s-2) ... (a+l)(a-k) 

+ G}a+s-3) ... (a+ l)(a-k)(a-k-1) 

- ... +(-1)•- 1(s- l)(a-k) . .. (a -k-s+2)] 
s-1 

[(s-1) (s-1) -(a-k) 0 (a+s-2) ... (a+ l)a- 1 (a+s-3) 

.. . (a+ l)a(a-k-1)+ ... 

+ (-1)'- 2a(a-k- l) ... (a--k-s+2) ( s-1) 
s-2 

+(-1r 1G= ~)<a-k-1) ... (a-k-s+ l)J 

55 

(A.15) 

The lemma obviously holds for s = 1, since a - (a - k) = k. Assuming the 
lemma is true for s-1, we can by induction write the terms in (A.15) as 

a(k+1) ... (k+s-l) 

(s-+s-1, a-+a + l, k-+k +I with respect to the lemma as stated), and 

(k-a)(k+ 1) ... (k+s-1) 

(s-+s-1, a-+a, k-+k + 1 with respect to the lemma as stated). Summing 
these gives the desired result. 

A.3.3 Idea of the proof and more calculations 

Because L/ L2 is finite dimensional. there is some nonzero linear 
combination L)mxm of valuation ~ 2. Then 
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has valuation ;:;: I. The idea is to produce enough dements of the form 
L:miamxm of valuation ~O to be able to conclude (via Vandermonde 
matrices) that the individual components amxm have valuation ~O, and 
thus that the hypothesis of Lemma A.3 is satisfied. For example, 

and brackets of the form 
(A.16) 

produce similar terms. However, considerable effort is necessary (by 
another application of Vandermonde matrices) to eliminate unwanted 
terms (e.g., the final sum in (A.16)). 

First, we perform some necessary calculations. For m ~ r + n, we shall 
need the sums 

(A.17) 

Now 

xr-1_ xm = ----xm-1+1 __ [ . 8' J r-1 C) m! . . (-i 

ox'' Jo . (m-r+j)!. r!xi' 

so (A.17) becomes 

( - 1 )' xn + l -, x"' - ' + J -·--: • r - 1 { r ·(')[ . 0n C) m! . . zii ]} 
Jo i~O i OX" . (m-r +})! cx1 

(A.18) 

The terms of the inner sum in (A.18) which are obtained by the action of 

are of the form 

·- -----xm+n+;-s - r· . . C)(J.) m! . i)"+ i-• [ r ·(,.) (n + i)' J 
. S (m-r+j)!. CXn+j-s i~O ( ) i (n +i-j)! , 
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this sum is zero by Lemma A.4, since s ~j < r. The terms of the inner sum 
in (A.18) which are obtained by the action of c'/cx5 , i~s~j, on 
xm-i+i(<Ji/ox.i) are of the form 

C)(n) m! . 0n+j-s [ r ··(/') (m-i+j)! J ------xm+n+1-s____ _ (-1)' --------- . 
. s (m-r+j)! cxn+rs Jo i/(m-i+j-s)! ' 

this sum is also zero by Lemma A.4, since s ~j < r. It follows that the only 
nonzero terms in (A.18) arise from the action c•;cx', j+ 1 ~s~n, on 
xm-i+i((Ji/oxi), so that (A.18) (and thus (A.17)) has the form 

(A.19) 

The coefficients bk remain to be calculated. 
Fix a k, 1 ~ k ~ n; the term in (A.18) which contributes to the kth term in 

(A.19) is 

r 1 [ r ·(')C) ml G n ) (m-i+j)! L L (-1)' ··--·---- -----xm+11 
i~O _i-O i · (m--r+j)! ·+k (m-·i--k)! 

~n ·-k J k c 
~--;;-=:-;: ex 

=J~ C)G ~k)(m:!k)!-[t (-l)f;) ;:~~~-~~!! (~~~~~iJi].xm~n-kf~n--kF· 
(A.20) 

According to Lemma A.5, with a_,.m+j-r+ I, s_,.r, k->k+j-r+ l, the 
inner sum is equal to 

(k+j)(k+j-1) ... (k+j-r+ 1) 

Thus (A.20) becomes 

m! [' -- 1 C)G n ) J c?" -k ------- "\""'. . . (k+j) ... (k+j-r+ 1) xm+n-k--;;-. -=-:-
(m-k)! j,_s.,o +k ex" k 

= .1-~ -(n)[' '\'. 1 
(') (n-:=_~l___ k(k - I) ... (k --r + i +I )Jxm+n -k _~.':_·~-

(m -- k)! k i~O J, (n-k-j)! · ex" k 

(A.21) 
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The coefficient of k' (the highest power of k) in the inner sum of (A.21) is 
equal to 

we will assume that r is odd, since the proof is the same for r even. It 
follows that the inner sum in (A.21) is of the form 

where the ci<n) are polynomial functions of n and r. Hence (A.17) can be 
written as 

n ( ) ml 0n--k - n r (r) r -- 1 .(r) • m + n - k --- I k[k+c,. 1(n)k + ... +c 1 (n)k]( -k)'x "'n--k· 
k ~ 1 m . ox 

(A.22) 

For r= I, (A.22) becomes 

n k-!!2:___ xm +n - k ~--. n ( ) I ::in--k 

JI k (m-k)! CXn-k 
(A.23) 

Subtracting c\2>(n) times (A.23) from (A.22) for r = 2 yields 

k2 __ ·_xm+n-k ----. n (n) ml 0n-k 

k~I k (m-k)! OXn--k 

Continuing by induction, we see that there are coefficients b(t, r, n) such 
that, for each t EN, 

k' n m. + -k c = xm n --n [( ) I 'n -k J Jl k (m-k)! cxn-k . 
(A.24) 
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A.3.4 Proof of lemma A.2 
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According to Lemma A.3, we need only show that. ther~ is a _PEN, P?, 2, 
such that 1~xP) ~ O. By assumption W1/ L2 is finite d1mens10nal; let r 
=dim (W1/L2)+ l. Then there is for each u EN a nonzero sum of the form 

u+r-1 
x = '\' a xm L. m· 

m=u 
(A.25) 

with valuation ~ 2. Take u ~ 2r, so that the calculations of the previous 
1 section are valid for all m in_ (A.25). Multiply~ing (A.24) by am and summing 
from m = u to m = u + r - l yields the expressions 

n 

I k1X(k, n); t=O, .. . , r-1, n = 1, ... , r (A.26) 
k=l 

where 

The elements (A.26) have thus been obtained from (A.25) by applying at 
most two brackets and taking linear combinations; therefore, 

Using the nonsingularity of Vandermonde matrices, we can write the 
X(k, 11) as linear combinations of the elements (A.26); thus 

v(X(k,n))~O; k= I, .. .,n,n= l, .. .,r. 

Taking k = n we obtain in particular the elements 

"+r-1 m! 
Y(n) - '\' a -----~ xm n - I r - ~ m ( l . ' ~ ' ... , , 

m=u m--n). 
(A.27) 

~··ith valuation ~O. It is easily shown that the coefficient matrix in (A.27) 
is nonsingular, implying that v(amxm) ;;:=; 0, m = u, .. . , u + r -- l, thus there is at 
least one m such that v(xm) ~ 0 (because not all am are zero). This 
concludes the proof of Lemma A.2, thus proving Theorem 2.2. 
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A.4 PROOF OF THEOREM 2.3 

Suppose that </J: W1 -+ V(M) is a nonzero homomorphism, where M is an n­
dimensional C'' manifold. Then there is a point mE M such that the image 
of 4> contains an element which gives a nonzero tangent vector at m. Let G 
be the Lii.:: algebra of germs of ccso vector fields around m; i.e., in local 
.:oordinates ccntered at m, G = U:.J;(x)C/cxi}, where J; are germs of C"' 
functions around m. Let A be the ideal in G consisting of all elements for 
which the J; are flat functions in a neighborhood of m (a function germ in 
11 variables x 1,. • ., x,, defined on a neighborhood N is flat on N if o}/i3x'(x) 
=0 for all xEN and (a). A is an ideal because derivatives of flat functions 
are flat. Restricting the vector fields of V(M) to their germs around m, we 
obtain a composed homomorphism of Lie algebras 

(A.18) 

which is nonzero because at least one vector field in </>( Wi) was nonzero at 
m. 

By Borel's extension lemma [29, p. 98], G/A is isomorphic to V,,. Thus 
\A.28) gives a nonzero homomorphism from W1 to v •. However, since the 
only ideals of W1 arc {O}, W1, and IR · 1, this would yield a nonzero 
homomorphism from W1 or W 1 /~ · 1 to V,,. This yields a contradiction by 
Theorem 2.2. 

Appendix B 

CALCULATIONS FOR EXAMPLE 2.3 

The Lie algebra L(E) is generated by 

I a2 1 a2 a I 
e0 =---+-x2 --x---y2 e1 =y. 

2 ox2 2 oy2 ay 2 ' 

We proceed as in Example 2.1 
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~,ez]= -2x+4x2(c/oy), which combined with .., 2 implies that e5 =x and 
=x2(8/oy) are in L(L). Also, 

7, es] = 1 a e 8, which combined with e4 implies that e9 = x(o/cx) E L(L.). 
aw 

•18,e14]=yx2 -2x(o 2/cxi3y), which combined with e 14 implies that e19 

'YX 2 and e 20 =x(t 2/ox(1y) are in L(2:). Also, 
~ 17 ,e 19] = 3x2 (c? 2/c?y 2)~e21 , which combined with e0 and e10 implies that 
,2 = (82 /ox 2 )-y 2 E L(I.). Continuing, 
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Noticing that the elements e1' e5 , e 13, e23 , e25 , e26 , and e31 arc precisely 
the generators of W2 given in Theorem 2.4, we conclude that L(IJ = W2. 

Notes added in proof 
1) See [6] for the simplest case of a one dimensional system. 
2) A far better proof of lemma A4 is obtained by writing out n" "(1--n)' in powers of n, 

calculating (d'/dn') n"+'(l -11)' and then substituting n = 1. 
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