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<c(e),x> . 
Abstract 

This paper is continuation of our previous 
work ([l], [2], [3]) to understand the identifica­
tion problem of linear system theory from the 
viewpoint of nonlinear filtering. The estimation 
algebra of the identification problem is a sub­
algebra of a current algebra. It therefore 
follows that the estimation algebra is embeddable 
as a Lie algebra of vector fields OP a finite 
dimensional manifold. These features permit 
us to develop a Wei-Norman type procedure for 
the associated Cauchy problem and reveal a set 
of functionals of the observations that play the 
role of joint sufficient statistics for the 
identification problem. 

1. Introduction 

Consider the stochastic differential system: 

de = o 
dxt A(8)xtdt + b(8)dwt 

dyt <c(e),xt>dt + dvt. 

(1) 

Here {wt} and {vt} are independent, scalar, 

standard, Wiener processes, and {xt} is anlRn-valued 

process. Assume that e takes values in a smooth 

manifoldd-illlN, and the map 8+l:(8): = (A(8), b(S), 
c(8)) in a smooth map taking values in minimal 
triples. By the identification problem we shall 
mean the nonlinear filtering problem associated 
with eqn. (l); i.e. the problem of recursively 
computing conditional expectations of the form 
Tit(~)~E[~(xt,e)jYt] where Yt is the cr-algebra 

generated by the observations {ys:O_:.s_:.t} and ~ 

belongs to a suitable class of functions onlRnli!J. 

The joint unnormalized conditional density 
oAP(t,x,8) of xt and 8 given Yt satisfies the 

stochastic partial differential equation 
(Stratonovitch sense) 

dp = A0 pdt + B0 pdyt (2) 

where the operators A and B are given by 
1 a 0 2 a0 2 A0 : = z<b(8), 3i >- <ax'A(S)x>- <c(S),x> /2 

(3) 
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B : 
0 

(see [4] for background). 

(4) 

From the Bayes formula ([5]), it follows that 

where 

Q't (~)= J 
IEi 

J ~ (x, e) p ( t, x, e) l dx[ • J de l 
lRn 

(5) 

(6) 

where ldxj anci [dej are fixed volume elements onJRn 
and IEi respectively. Further if Q(t,8) denotes the 
unnormalized posterior density of e given t' then 

it satisfies the Ito equation: 

dQ = E[<c(e) ,xt I e, Yt] .Q(t,8)dyt. (7) 

Recent work in nonlinear filtering theory (see the 
proceedings [6]) shows that it is natural to look 
at eqn. (2) formally as a deterministic partial 
differential equation, 

le._= A p + yB p. at o o 
(8) 

By the Lie algebra of the identif icatio~ problem, 
we shall mean the operator Lie algebra G generated 
by A0 and B0 • For more general nonlinear filtering 

problems, estimation algebras analogous to G have 
been emphasized by Brockett and Clark [7], Brockett 
( [8] - [ 11]), Mitter ( [ 12] , [ 13]), Hazewinkel and 
Marcus [14] and others (see [6]) as being objects 
of central inter~st. In the papers ([l], [2]) the 
Lie algebra G is used to classify identification 
problems and to understand the role of certain 
sufficient statistics. 

2. The Structure of the Estimation Algebra G 

To understand the structure of the estimation 
algebra G it is well-worth considering an example. 

Example 1: 

Let dxt = e.dwt; de = 0 

dyt = xtdt + dvt 

Then A0 

e2 a2 x2 
B and = - -- - - and = x, 

2 ax2 2 0 

G = {A ,B } is spanned by the set of operators 
2 2o o L.A. 

e d x2 2 2 a (-- --) , {8 nx}"°n--O, {e °-} 00 and 2 ax2 2 3x n=l 



{e2n1}00 
• We then notice that, n=l 

c; '=- mr e2 J<OJ 
a2 a a 2 {-2 , ~· ax•x ,x,l}L.A. 
ax 

is a subalgebra of the Lie algebra obtained by 
tensoring the polynomial ringJR.[6 2] with a 6 
dimensional Lie algebra.// 

The general situation is very much as in 
example. Consider the vector space (over the 
of operators spanned by the set, 

this 
reals) 

a2 a a S:={-0--0- , xi ax.• -0-, x.xi,x. ,l} xi xj J xi i J 

i = 1,2, •. ,n, j=l,2, •• ,n 

This space of operators has the structure of a 
Lie algebra henceforth denoted as G0 (of 
dimension 3n2+2n+l) under operRtor commutation 

a2 (the commutation rules being [-a--a-,xk] = x. x. a a 1 J o. -- + o "k -0- etc., where o "k denotes the Jk axi 1 xj J 

Kronecker symbol). For each choice 6E®, A0 and 

(7) 

B0 take values in G0 • It follows that in general 
A0 and B0 are smooth maps frome into G0 • _so let 
us consider the space of smooth maps C00 (8 ;G0 ). 

This space can be given the structure of a Lie 
algebra (over the r:als) in the following way: 

given $,I/Jc. C00 (8;G0 ), 

define the Lie bracket [.'.] c on c0\t8l ;Go) by 
[$,1/J]c(P) = [$(P),l/J(P)] (10) 

for every PE®. Here the_bracket on the right hand side of eqn. (10) is in G • We denote as ~ the - 0 c Lie algebra (C00 (e;G0 );[.,.]c). Whenever the 
dimension of e is greater than zero, G 0 is 
infinite dimensional and is an example of a current algebra. Current algebras play a fundamental role in the physics of Yang-Mills fields where they 
occur as Lie algebras of gauge transformations (15]. Elsewhere in mathematics they are studied under the guise of local Lie algebras ([16] [18]). The 
following is immediate. 

Proposition 1: 

The Lie algebra G of operators generated by 
1 a 2 a Ao = z<b(S) 'ax> - <ax'A(S)x> 

2 <c(e),x> / 2 

and B = <c(6),x>, is a subalgebra of the current 0 -
algebra C00 (t8l; G 0 ) • 
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3. Representation Questions: 
-In [3] we observe that G admits a faithful 

representation as a Lie algebra of vector fields on a finite dimensional manifold. Specifically, consider the system of equations, 

de o 
dz [A(9)-Pc(9)cT(6)]zdt + Pc(9)dyt 

dP = A(9)P + PAT(9) + b(0)bT(e)-Pc(6)cT(9)P dt 
1 2 ) ds = ~c(9),z> dt -<c(e),z>dyt (11 

The system of equations (11) evolves on the 
product manifold 8 x ]Rn (n+3) t 2+l. Associate with 
eqn. (11) the pair of vector fields (first order differential operators), 

* T a0=<(A(6)-Pc(e)c (9))z,3/az> 

+tr((A(9)P+PAT(9)+b(9)bT(e)-Pc(9)cT(6)P).a/aP) 

+ l/2<c(e),z>2a/as 

and 

* b0 = <P(6),a/az> - <c(e),z> a/as. (12) 

(Here a/'dP = [a/aPijl = (a/aP)T = nxn symmetric 
matrix of differential operators). Conside* the Lie algebra of vector fields generated by a0 and 
* * * b0 • Since a0 and b0 are vertical vector fields 

. n(n+3)/2+l with respect to the fibering ex lR ~' so 
is every vector field in this Lie algebra. One 
of the main results in [3] is the following: 

Theorem 1: The map 
- n(n+3))2+1 ~ ·G +U8Jx:lR" · . k" c 

defined by 

* * ~k(Ao) = aO ; ~k(BO) = bO 

is a faithfu!l representation of the Lie algebra of the identification problem as a Lie algebra of (vertical) vector fields on a finite dimensional 
manifold fibered over ®. 

Example 2: 

To illustrate Theorem 1, consider the Lie 
algebra of example 1. The embedding equations 
(11) take the form 

ae 

dp 

dz 

ds 

Then 

-pzdt + pdyt 
2 z /2dt - zdyt. 



The 

<Ilk (BO) <l!k (x) 

* bo 

= pa/az + (-z)a/as 

induced maps 

<llk(e 2ka/ax) 

<llk(e2kx) 

<l! (82kl) 
k 

on Lie brackets are given 

e2ka/az k = 0,1,2, •.• 

e2k(pa/az - za/as) k 

e2ka/as k = 1,2, ••. // 

by 

1,2, ..• 

The embedding equations have the following 
statistical interpretation. Assume that the 
initial condition for (12) is of the form, 

-n/2 -1 (2ndetI(8)) exp(-<x-µ(8), l: (8) 
2 

· (x-µ(8))>) · Q0 (e) (13) 

where 8+(µ(8);(e),Q 0(e)) is a smooth map, l:(8)>0 

8E!!:l and Q0 (8)>0 for ee:e. Suppose eqn. (11) is 

initialized at, 

Append to t~§ system (11) an output equation, 
Q = e t (15) t 

Now if (11) is solved with initial condition 
(14), one can show by differentiating Qt that Qt 

satisfies eqn. (7). In other words, the system 
(11)-(15) with initial condition (14) is a finite 
dimensional recursive estimation for the posterior 
density Q(t,8 0). We have thus verified the 

homomorphism principle of Brockett [8]: that 
finite dimensional recursive estimators must 
involve Lie algebras of vector fields that are 
homomorphic images of the Lie algebra of operators 
associated with the unnormalized conditional density 
equation. 

4. A Sobolev Lie Group Associated to G: 

It has been remarked elsewhere ([8], [13], 
[21], [22] and [3]) that the Cauchy problem associ­
ated with (8) may be viewed as a problem of inte­
grating a Lie algebra representation. In this 
connection one should be interested whether there 
~s an appropriate topological group associated with 
G. We have the following general procedure. 

Let M be a compact Riemannian manifold of 
dimension d. Let L be a Lie algebra of dimension 
n<oo. We can always view L as a subalgebra of the 
general linear Lie algebra g.Q.(m;IR), m>n (Ado's 
theorem). 

Assumption: 

Let G={exp(L)}Gcg.Q.(m;lR) be the smallest Lie 
group containing the exponentials of elements of L. 
We assume that G is a closed subset of g,Q, (m; JR). 

Define, 

R = C00 (M;gR.(m,JR)) 

-£ = C00 (M;L) 

rfl = C00 (M;G). 

ClearlyR is an algebra under pointwise multipli­
cation and 

Let {(Ua ,cp a)} be a C00 atlas for M. Then for 

(16) 

where 

JfJ 2 = tr (f'f). (17) 

(Here k=d/2+s . s>O). Let R k be the completion of 

R and r11k the completion of rfl in the norm ll .Ilk. 
(Gk is closed in R k). By the Sobolev theorem, R k 
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is a Banach algebra and the group operation 

.:i$kxd\+rflk 

(fl,f2)+flf2 

when (f1 £2) (m) = f 1(m;t2 (m) is continuous. Thus .&k 

is a topological group. 

Proceeding as before, one can given a Sobolev 
completion of£ to obtain £k an infinite dimen­
sional Lie algebra where once again by the Sobolev 
theorem the bracket operation 

[ .•. ] :.lkxCk->;lk 

(f1,f2)+[f1,f2l 

with [f1 ,f2 ](m) = [f1 (m),f2 (m)] is continuous. Now 

for a small enough netghborhood V(O) of Oel.k orte 
can define 

exp: V(O)+ rflk 

~+ exp(O 

by pointwise exponentiation. 
provide a Lie group structure 

canonically identified as the 

This permits us to 
on '""k with £k 

Lie algebra of rfl k. 

The procedure outlined above appears to play 
a significant role in several contexts (the index 
theorem, Yang-Mills fields [24] [25) [26] [27]. 

For our purposes L will be id~ntified with a 
faithful matrix representation of G0 . Thus we 

associate with the identification problem a Sobolev 
Lie group which is a subgroup of rflk corresponding 

to G0. 



Remark: 

One of the important differences between the 
problem of filtering and the problems of Yang-Mills 
theories is that in the latter case there are 
natural norms for Sobolev completion. This follows 
from the fact that in Yang-Mills theories, the 
algebra L is compact (semi-simple) and one has the 
Killing form to work with. In filtering problems c0 is never compact. 

Remark: 

We would like to acknowledge here that Prof. 
Sanjoy Mitter was kind enough to acquaint one of 
us (P.S.K) with the work of P.K. Mitter. 

5. The Integration Problem & Sufficient Statistics 

In [3] we look for a representation of the 
form, 

p(t,x,8)=exp(g,(t,8)Al) ..• exp(gn(t,8)An)p 0 (18) 

for the solution to the equation (8). In the case 
of example (1) this takes the form 

82 82 x2 
p(t,x,e)=exp(g1 (t,e)·Cz- -g-- - z-)). 

23 .exp(g2 (t,8)·8 ~) 

x 

. exp(g3 (t,8)x).exp(g4 (t,8).l)p 0 (19) 

Differentiating and substituting in (8) we get, 

~ at'(t,8) 1 

ag2 
at(t, 8) cosh(g1 .e)y (20) 

ag3 
~(t,8) - i- sinh(g1 .8)y 

and g.(0,8) = 0 for i = 1,2,3,4,8&1. The above 
first~order partial differential equations may be 
easily solved by quadrature and one has the 
representation, 

p(t,x,8) f"' 1 1 2lxl 2 
I 2rrsinh(ie!t) exp(- ~oth (~ +z). 

XZ 
2 . tl 8 I) .exp( ) .exp(g4 (t,8)8 ) . 

I leJsinh(i8lt) 

. exp (g2 C t, e) JfefZ). Po (g3 (t, e )8 2 1T8]Z, e) dz 

(21) 

where p0 (,8)EL2 (IR) for every 8eB and is smooth in 
8. Further iB):::JR is a bounded set and Oi closure 8. 

333 

In equation (21) the gi's should be viewed as 
canonical coordinates of the second kind on the 
corresponding SobolevLie group. Now expand g2 and 
g3 to obtain 

ft 
g2(t,e) = L: e2k 

k=O O k=l,2, ••. 

Jt 2k+l _ E 82k cr . 
(2k+ 1) ! y Oda k=O 

k=l,2, ... 
(22) 0 

It follows that all the "information" contained by 
the observations {y0 :0..::_cr..::.t} about the joint 
unnormalized conditional density is contained in 
the sequence 

T~{f ~~ y0 dcr; k=0,1,2, ... } (23) 

Thus T is nothing but a joint sufficient statistic 
for the identification problem. 
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