WP3 - 5:30

SYSTEM IDENTIFICATION AND NONLINEAR FILTERING : LIE ALGEBRAS

> P.S. Krishnaprasad* Steven I. Marcus** Michiel Hazewinkel ***
> *Univ. of Md. \quad ** Univ. of Texas $\quad{ }^{* * *}$ Erasmus Univ.
> College Park, Md. 20742
> Abstract

This paper is continuation of our previous work ([1], [2], [3]) to understand the identification problem of linear system theory from the viewpoint of nonlinear filtering. The estimation algebra of the identification problem is a subalgebra of a current algebra. It therefore follows that the estimation algebra is embeddable as a Lie algebra of vector fields on a finite dimensional manifold. These features permit us to develop a Wei-Norman type procedure for the associated Cauchy problem and reveal a set of functionals of the observations that play the role of joint sufficient statistics for the identification problem.

1. Introduction

Consider the stochastic differential system:

$$
\mathrm{d} \theta=0
$$

$$
\begin{equation*}
d x_{t}=A(\theta) x_{t} d t+b(\theta) d w_{t} \tag{1}
\end{equation*}
$$

$$
d y_{t}=\left\langle c(\theta), x_{t}>d t+d v_{t}\right.
$$

Here $\left\{\mathrm{w}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{v}_{\mathrm{t}}\right\}$ are independent, scalar, standard, Wiener processes, and $\left\{\mathrm{x}_{\mathrm{t}}\right\}$ is an \mathbb{R}^{n}-valued process. Assume that θ takes values in a smooth manifold $\Theta \rightarrow \mathbb{R}^{N}$, and the map $\theta \rightarrow \Sigma(\theta):=(A(\theta), b(\theta)$, $c(\theta)$) in a smooth map taking values in minimal triples. By the identification problem we shall mean the nonlinear filtering problem associated with eqn. (l); i.e. the problem of recursively computing conditional expectations of the form $\pi_{t}(\phi) \triangleq E\left[\phi\left(x_{t}, \theta\right) \mid Y_{t}\right]$ where Y_{t} is the σ-algebra generated by the observations $\left\{y_{s}: 0 \leq s \leq t\right\}$ and ϕ belongs to a suitable class of functions on $\mathbb{R}^{n} \times \oplus$.

The joint unnormalized conditional density $\rho \Delta \rho(t, x, \theta)$ of x_{t} and θ given Y_{t} satisfies the
stochastic partial differential equation (Stratonovitch sense)

$$
\begin{equation*}
\mathrm{d} \rho=\mathrm{A}_{\mathrm{o}} \rho \mathrm{dt}+\mathrm{B}_{\mathrm{o}} \rho \mathrm{dy} \mathrm{t}_{\mathrm{t}} \tag{2}
\end{equation*}
$$

where the operators A_{0} and B_{0} are given by

$$
\begin{equation*}
\left.A_{0}:=\frac{1}{2}\left\langle b(\theta), \frac{\partial}{}_{\partial x}{ }^{2}\right\rangle-<\frac{\partial^{0}}{\partial x}, A(\theta) x\right\rangle-\langle c(\theta), x\rangle^{2} / 2 \tag{3}
\end{equation*}
$$

From the Bayes formula ([5]), it follows that

$$
\begin{equation*}
\pi_{t}(\phi)=\sigma_{t}(\phi) / \sigma_{t}(1) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{t}(\phi)=\int_{\Theta} \int_{\mathbb{R}^{\mathrm{n}}} \phi(\mathrm{x}, \theta) \rho(\mathrm{t}, \mathrm{x}, \theta)|\mathrm{dx}| \cdot|\mathrm{d} \theta| \tag{6}
\end{equation*}
$$

where $|d x|$ and $|d \theta|$ are fixed volume elements on \mathbb{R}^{n} and Θ respectively. Further if $Q(t, \theta)$ denotes the unnormalized posterior density of θ given t, then it satisfies the Ito equation:

$$
\begin{equation*}
\mathrm{dQ}=\mathrm{E}\left[<\mathrm{c}(\theta), \mathrm{x}_{\mathrm{t}} \mid \theta, \mathrm{Y}_{\mathrm{t}}\right] \cdot Q(\mathrm{t}, \theta) \mathrm{d} y_{\mathrm{t}} . \tag{7}
\end{equation*}
$$

Recent work in nonlinear filtering theory (see the proceedings [6]) shows that it is natural to look at eqn. (2) formally as a deterministic partial differential equation,

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}=A_{0} \rho+\dot{y} B_{0} \rho \tag{8}
\end{equation*}
$$

By the Lie algebra of the identification problem, we shall mean the operator Lie algebra G generated by A_{0} and B_{0}. For more general nonlinear filtering problems, estimation algebras analogous to G have been emphasized by Brockett and Clark [7], Brockett ([8] - [11]), Mitter ([12], [13]), Hazewinkel and Marcus [14] and others (see [6]) as being objects of central interest. In the papers ([1], [2]) the Lie algebra \tilde{G} is used to classify identification problems and to understand the role of certain sufficient statistics.

$$
\text { 2. The Structure of the Estimation Algebra } \tilde{G} \text { : }
$$

To understand the structure of the estimation algebra \tilde{G} it is well-worth considering an example.

Example 1:

$$
\text { Let } d x_{t}=\theta \cdot d w_{t} ; d \theta=0
$$

$d y_{t}=x_{t} d t+d v_{t}$
Then $A_{0}=\frac{\theta^{2}}{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{x^{2}}{2}$ and $B_{0}=x$, and
$\tilde{G}=\left\{A_{0}, B_{o}\right\}_{1} . A$. is spanned by the set of operators $\left(\frac{\theta^{2}}{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{x^{2}}{2}\right),\left\{\theta^{2 n} x\right\}_{n=0}^{\infty},\left\{\theta^{2 n} \frac{\partial}{\partial x}\right\}_{n=1}^{\infty}$ and

$$
\begin{aligned}
\left\{\theta^{2 n} 1\right\}_{n=1}^{\infty} & \text { We then notice that, } \\
\tilde{G} & \subseteq \mathbb{R}\left[\theta^{2}\right] \otimes\left\{\frac{\partial^{2}}{\partial x^{2}}, x \frac{\partial}{\partial x}, \frac{\partial}{\partial x}, x^{2}, x, 1\right\} L . A .
\end{aligned}
$$

is a subalgebra of the Lie algebra obtained by tensoring the polynomial ring $\mathbb{R}\left[\theta^{2}\right]$ with a 6 dimensional Lie algebra.//

The general situation is very much as in this example. Consider the vector space (over the reals) of operators spanned by the set,

$$
\begin{gather*}
S:=\left\{\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}, x_{i} \frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{i}}, \quad x_{i} x_{i}, x_{j}, 1\right\} \\
i=1,2, \ldots, n, \quad j=1,2, \ldots, n \tag{7}
\end{gather*}
$$

This space of operators has the structure of a Lie algebra henceforth denoted as \tilde{G}_{0} (of dimension $3 n^{2}+2 n+1$) under operator commutation (the commutation rules being $\left[\frac{\partial^{2}}{\partial x_{i} \partial x_{j}}, x_{k}\right]=$ $\delta_{j k} \frac{\partial}{\partial x_{i}}+\delta_{i k} \frac{\partial}{\partial x_{j}}$ etc., where $\delta_{j k}$ denotes the Kronecker symbol). For each choice $\theta_{\sim} \Theta$, A_{o} and B_{0} take values in G_{0}. It follows that in general A_{0} and B_{o} are smooth maps from Θ into \tilde{G}_{0}. So let us consider the space of smooth maps $\left.C^{\infty}(\Theta) ; \tilde{G}_{0}\right)$. This space can be given the structure of a Lie algebra (over the reals) in the following way:
given $\phi, \psi \varepsilon C^{\infty}\left(\Theta ; \tilde{G}_{o}\right)$,
define the Lie bracket $[., .]_{c}$ on $C^{\infty}\left(\Theta ; \tilde{G}_{0}\right)$ by

$$
\begin{equation*}
[\phi, \psi]_{c}(P)=[\phi(P), \psi(P)] \tag{10}
\end{equation*}
$$

for every $\mathrm{P}_{\mathrm{E}}($. Here the bracket on the right hand side of eqn. (10) is in \tilde{G}_{o}. We denote as $\tilde{\mathcal{G}}_{c}$ the Lie algebra $\left(C^{\infty}\left(\Theta ; \tilde{G}_{0}\right) ;[., \cdot]_{C}\right)$. Whenever the dimension of Θ is greater than zero, \tilde{G}_{0} is infinite dimensional and is an example of a current algebra. Current algebras play a fundamental role in the physics of Yang-Mills fields where they occur as Lie algebras of gauge transformations [15]. Elsewhere in mathematics they are studied under the guise of local Lie algebras ([16] [18]). The following is immediate.

Proposition 1:

The Lie algebra \tilde{G} of operators generated by

$$
\begin{aligned}
A_{0}=\frac{1}{2}\left\langle b(\theta), \frac{\partial}{\partial x}\right\rangle^{2} & \left.-<\frac{\partial}{\partial x}, A(\theta) x\right\rangle \\
& -\langle c(\theta), x\rangle^{2} / 2
\end{aligned}
$$

and $B_{0}=\langle c(\theta), x\rangle$, is a subalgebra of the current algebra $C^{\infty}\left(\Theta ; \tilde{G}_{0}\right)$.

3. Representation Questions:

In [3] we observe that \tilde{G} admits a faithful representation as a Lie algebra of vector fields on a finite dimensional manifold. Specifically, consider the system of equations,

$$
\begin{align*}
& \mathrm{d} \theta=0 \\
& \mathrm{~d} z=\left[\mathrm{A}(\theta)-\mathrm{Pc}(\theta) \mathrm{c}^{\mathrm{T}}(\theta)\right] z \mathrm{dt}+\mathrm{Pc}(\theta) \mathrm{dy} t \\
& \frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{A}(\theta) \mathrm{P}+\mathrm{PA}^{\mathrm{T}}(\theta)+\mathrm{b}(\theta) \mathrm{b}^{\mathrm{T}}(\theta)-\mathrm{Pc}(\theta) \mathrm{c}^{\mathrm{T}}(\theta) \mathrm{P} \\
& \mathrm{ds}=\frac{1}{2}<\mathrm{c}(\theta), z>^{2} \mathrm{dt}-<\mathrm{c}(\theta), \mathrm{z>dy} \tag{11}
\end{align*}
$$

The system of equations (11) evolves on the product manifold $\Theta \times \mathbb{R}^{\mathrm{n}(\mathrm{n}+3) / 2 \overline{+1}}$. Associate with eqn. (11) the pair of vector fields (first order differential operators),

$$
\begin{aligned}
& a_{0}^{*}=\left\langle\left(A(\theta)-\operatorname{Pc}(\theta) c^{T}(\theta)\right) z, \partial / \partial z\right\rangle \\
& \quad+\operatorname{tr}\left(\left(A(\theta) P+P^{T}(\theta)+b(\theta) b^{T}(\theta)-\operatorname{Pc}(\theta) c^{T}(\theta) P\right) \cdot \partial / \partial P\right) \\
& \quad+1 / 2\langle c(\theta), z\rangle^{2} \partial / \partial s
\end{aligned}
$$

and

$$
\begin{equation*}
b_{0}^{*}=\langle P(\theta), \partial / \partial z\rangle-\langle c(\theta), z\rangle \partial / \partial s \tag{12}
\end{equation*}
$$

(Here $\partial / \partial P=\left[\partial / \partial P_{i j}\right]=(\partial / \partial P)^{T}=n x n$ symmetric matrix of differential operators). Consider the Lie algebra of vector fields generated by a_{0}^{*} and b_{0}^{*}. Since a_{0}^{*} and b_{0}^{*} are vertical vector fields with respect to the fibering $\Theta x \mathbb{R}^{\mathrm{n}(\mathrm{n}+3) / 2+1} \times$, so is every vector field in this Lie algebra. One of the main results in [3] is the following:

Theorem 1: The map

$$
\Phi_{k}: \tilde{G}_{c} \rightarrow\left[\Theta \times \mathbb{R}^{n(n+3) / 2+1}\right.
$$

defined by

$$
\Phi_{k}\left(A_{0}\right)=a_{0}^{*} ; \Phi_{k}\left(B_{0}\right)=b_{0}^{*}
$$

is a faithful representation of the Lie algebra of the identification problem as a Lie algebra of (vertical) vector fields on a finite dimensional manifold fibered over

Example 2:
To illustrate Theorem 1 , consider the Lie algebra of example 1 . The embedding equations (11) take the form

$$
\begin{aligned}
& d \theta=0 \\
& d p=\left(\theta^{2}-p^{2}\right) d t \\
& d z=-p z d t+p d y_{t} \\
& d s=z^{2} / 2 d t-z d y_{t} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\Phi_{k}\left(B_{0}\right) & =\Phi_{k}(x) \\
& =b_{0}^{*} \\
& =p \partial / \partial z+(-z) \partial / \partial s
\end{aligned}
$$

The induced maps on Lie brackets are given by

$$
\begin{aligned}
& \Phi_{k}\left(\theta^{2 k} \partial / \partial x\right) \\
& =\theta^{2 k} \partial / \partial z \quad k=0,1,2, \ldots \\
& \Phi_{k}\left(\theta^{2 k} x\right)=\theta^{2 k}(p \partial / \partial z-z \partial / \partial s) \quad k \quad=1,2, \ldots \\
& \Phi_{k}\left(\theta^{2 k} 1\right)
\end{aligned}=\theta^{2 k} \partial / \partial s \quad k=1,2, \ldots / /,
$$

The embedding equations have the following statistical interpretation. Assume that the initial condition for (12) is of the form,
$\rho_{0}(x, \theta)=(2 \pi \operatorname{det} \Sigma(\theta))^{-n / 2} \exp \left(-\alpha-\mu(\theta), \Sigma^{-1}(\theta)\right.$.

$$
\begin{equation*}
\cdot(x-\mu(\theta))>) \cdot Q_{0}(\theta) \tag{13}
\end{equation*}
$$

where $\theta \rightarrow\left(\mu(\theta), \mathcal{L}(\theta), Q_{0}(\theta)\right)$ is a smooth map, $\Sigma(\theta)>0$ $\theta d \leftrightarrow$ and $Q_{0}(\theta)>0$ for $\theta \varepsilon \Theta$. Suppose eqn. (11) is initialized at,
$\left(\theta_{0}, z_{0}, P_{0}, s_{0}\right)=\left(\theta_{0}, \mu\left(\theta_{0}\right), \Sigma\left(\theta_{0}\right),-\log \left(Q_{0}(\theta)\right)\right.$
Append to the system (11) an output equation,

$$
\begin{equation*}
\bar{Q}_{t}=e^{-s_{t}} \tag{15}
\end{equation*}
$$

Now if (11) is solved with initial condition (14), one can show by differentiating \bar{Q}_{t} that \bar{Q}_{t} satisfies eqn. (7). In other words, the system (11)-(15) with initial condition (14) is a finite dimensional recursive estimation for the posterior density $Q\left(t, \theta_{0}\right)$. We have thus verified the
homomorphism principle of Brockett [8]: that finite dimensional recursive estimators must involve Lie algebras of vector fields that are homomorphic images of the Lie algebra of operators associated with the unnormalized conditional density equation.

4. A Sobolev Lie Group Associated to \tilde{G} :

It has been remarked elsewhere ([8], [13], [21], [22] and [3]) that the Cauchy problem associated with (8) may be viewed as a problem of integrating a Lie algebra representation. In this connection one should be interested whether there is an appropriate topological group associated with G. We have the following general procedure.

Let M be a compact Riemannian manifold of dimension d. Let L be a Lie algebra of dimension $n<\infty$. We can always view L as a subalgebra of the general linear Lie algebra $g \ell(m ; \mathbb{R})$, $m>n$ (Ado's theorem).

Assumption:

Let $G=\{\exp (L)\}_{G} \subset g \ell(m ; \mathbb{R})$ be the smallest Lie group containing the exponentials of elements of L. We assume that G is a closed subset of $g \ell(m ; \mathbb{R})$.

Define,

$$
\begin{aligned}
& R=C^{\infty}(M ; g \ell(m, \mathbb{R})) \\
& \mathcal{L}=C^{\infty}(M ; L) \\
& \mathscr{E}=C^{\infty}(M ; G)
\end{aligned}
$$

Clearly R is an algebra under pointwise multiplication and

$$
\mathcal{L} \subset R, G \subset R
$$

, Let $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}$ be a C^{∞} atlas for M. Then for $f_{1}, f_{2} \mathscr{R}$, define
$\left\|f_{1}-f_{2}\right\|_{k}=\left[\int_{\varphi_{\alpha}\left(U_{\alpha}\right)}^{\left.d \text { vol } \sum_{\ell=0}^{k}\left|D^{\ell}\left(f_{1}-f_{2}\right) \varphi_{\alpha}^{-1}\right|^{2}\right]^{\frac{1}{2}}, ~}\right.$
where

$$
\begin{equation*}
|f|^{2}=\operatorname{tr}\left(f^{\prime} f\right) \tag{17}
\end{equation*}
$$

(Here $\mathrm{k}=\mathrm{d} / 2+\mathrm{s} . \mathrm{s}>0$). Let R_{k} be the completion of R and ${ }_{k}$ the completion of $\&$ in the norm $\|\cdot\|_{k}$. (ξ_{k} is closed in R_{k}). By the Sobolev theorem ${ }^{k} R_{k}$ is a Banach algebra and the group operation

$$
\begin{array}{r}
: \mathscr{H}_{k} \times \mathscr{H}_{k} \rightarrow \mathscr{H}_{k} \\
\quad\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \rightarrow \mathrm{f}_{1} \mathrm{f}_{2}
\end{array}
$$

when $\left(f_{1} f_{2}\right)(m)=f_{1}(m) f_{2}(m)$ is continuous. Thus H_{k} is a topological group.

Proceeding as before, one can given a Sobolev completion of \mathcal{L} to obtain \mathcal{L}_{k} an infinite dimensional Lie algebra where once again by the Sobolev theorem the bracket operation

$$
\begin{aligned}
& {[., .]: \mathcal{L}_{k} \times \mathrm{C}_{k}+\mathcal{L}_{k}} \\
& \quad\left(f_{1}, f_{2}\right) \rightarrow\left[f_{1}, f_{2}\right]
\end{aligned}
$$

with $\left[f_{1}, f_{2}\right](m)=\left[f_{1}(m), f_{2}(m)\right]$ is continuous. Now for a small enough neighborhood $V(0)$ of $0 \mathcal{L}_{k}$ ore can define

$$
\begin{aligned}
\exp : & V(0) \rightarrow \notin k \\
& \xi \rightarrow \exp (\xi)
\end{aligned}
$$

by pointwise exponentiation. This permits us to provide a Lie group structure on ψ_{k} with \mathcal{L}_{k} canonically identified as the Lie algebra of ε_{k}.

The procedure outlined above appears to play a significant role in several contexts (the index theorem, Yang-Mills fields [24] [25] [26] [27].

For our purposes L will be identified with a faithful matrix representation of \tilde{G}_{0}. Thus we associate with the identification problem a Sobolev Lie group which is a subgroup of ξ_{k} corresponding to \tilde{G}_{0}.

Remark:

One of the important differences between the problem of filtering and the problems of Yang-Mills theories is that in the latter case there are natural norms for Sobolev completion. This follows from the fact that in Yang-Mills theories, the algebra L is compact (semi-simple) and one has the Killing form to work with. In filtering problems \tilde{G}_{0} is never compact.

Remark:
We would like to acknowledge here that Prof. Sanjoy Mitter was kind enough to acquaint one of us (P.S.K) with the work of P.K. Mitter.

5. The Integration Problem \& Sufficient Statistics

In [3] we look for a representation of the form,
$\rho(t, x, \theta)=\exp (g,(t, \theta) A 1) \ldots \exp \left(g_{n}(t, \theta) A^{n}\right) \rho_{0}$
for the solution to the equation (8). In the case of example (l) this takes the form

$$
\begin{align*}
\rho(t, x, \theta) & =\exp \left(g_{1}(t, \theta) \cdot\left(\frac{\theta^{2}}{2} \frac{\theta^{2}}{\theta}-\frac{x^{2}}{2}\right)\right) . \\
& \cdot \exp \left(g_{2}(t, \theta) \cdot \theta \frac{2 \partial}{\partial x}\right) \\
& \cdot \exp \left(g_{3}(t, \theta) x\right) \cdot \exp \left(g_{4}(t, \theta) \cdot 1\right) \rho_{0} \tag{19}
\end{align*}
$$

Differentiating and substituting in (8) we get,

$$
\begin{align*}
& \frac{\partial g}{\partial t},(t, \theta)=1 \\
& \frac{\partial g_{2}}{\partial t}(t, \theta)=\cosh \left(g_{1} \cdot \theta\right) \dot{y} \tag{20}\\
& \frac{\partial g_{3}}{\partial t}(t, \theta)=-\frac{1}{\theta} \sinh \left(g_{1} . \theta\right) \dot{y} \\
& \frac{\partial g_{4}}{\partial t}(t, \theta)=\frac{\partial g_{3}}{\partial t}(t, \theta) g_{2}(t, \theta) .
\end{align*}
$$

and $g_{i}(0, \theta)=0$ for $i=1,2,3,4, \theta \mathrm{a} \Theta$. The above first-order partial differential equations may be easily solved by quadrature and one has the representation,

$$
\begin{align*}
& \rho(t, x, \theta)=\int_{-\infty}^{\infty} \sqrt{\frac{1}{2 \pi \sinh (|\theta| t)}} \exp \left(-\frac{1}{2} \operatorname{coth}^{2}\left(\frac{\left.x\right|^{2}}{\theta \mid}+z\right) .\right. \\
& \cdot t|\theta|) \cdot \exp \left(\frac{x z}{\sqrt{|\theta| \sinh (|\theta| t)}}\right) \cdot \exp \left(g_{4}(t, \theta) \theta^{2}\right) . \\
& \quad \cdot \exp \left(g_{2}(t, \theta) \sqrt{\sqrt{\theta \mid z} \cdot \rho_{0}\left(g_{3}(t, \theta) \theta^{2} \sqrt{|\theta| z}, \theta\right) d z}\right. \tag{21}
\end{align*}
$$

where $\rho_{0}(, \theta) \varepsilon L_{2}(\mathbb{R})$ for every $\theta \Theta$ and is smooth in θ. Further $\Theta \subset \mathbb{R}$ is a bounded set and $0 \notin$ closure Θ.

In equation (21) the g_{i} 's should be viewed as canonical coordinates of the second kind on the corresponding SobolevLie group. Now expand g_{2} and g_{3} to obtain

$$
\begin{align*}
& g_{2}(t, \theta)=\sum_{k=0}^{\infty} \theta^{2 k} \int_{0}^{t} \frac{\sigma^{2 k}}{(2 k)!} \dot{y}_{\sigma} d \sigma \quad k=1,2, \ldots \\
& g_{3}(t, \theta)=-\sum_{k=0}^{\infty} \theta^{2 k} \int_{0}^{t} \frac{\sigma^{2 k+1}}{(2 k+1)!^{2}} \dot{y}_{\sigma} d \sigma \quad k=1,2, \ldots \tag{22}
\end{align*}
$$

It follows that all the "information" contained by the observations $\left\{y_{\sigma}: 0 \leq \sigma \leq t\right\}$ about the joint
unnormalized conditional density is contained in the sequence

$$
\begin{equation*}
\mathrm{T} \Delta\left\{\int \frac{\sigma^{\mathrm{k}}}{\mathrm{k}!} \dot{\mathrm{y}}_{\sigma} \mathrm{d} \sigma ; \mathrm{k}=0,1,2, \ldots\right\} \tag{23}
\end{equation*}
$$

Thus T is nothing but a joint sufficient statistic for the identification problem.

Acknowledgements

Partial support for this work was provided by the Air Force of Scientific Research under grant AFOSR79-0025 and by the Department of Energy under Contract DEACO1-80-RA50420-A001. One of us (P.S.K) would also like to acknowledge the hospitality of Erasmus University during a recent visit.

References

[1] Krishnaprasad, P.S. and S.I. Marcus (1981a). Some nonlinear filtering problems arising in recursive identification. In M. Hazewinkel and J.C. Willems (Ed.), Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht.
[2] Krishnaprasad, P.S. and S.I. Marcus (1981b). Identification and tracking: a class of nonlinear filtering problems. In Proc. 1981 Joint Automatic Control Conference, Charlottesville.
[3] Krishnaprasad, P.S. and S.I. Marcus, (1982). On the Lie algebra of the identification problem. IFAC Symposium on Digital Control. New Delhi, India.
[4] Davis, M, and S.I. Marcus (1981). An introduction to nonlinear filtering. In M. Hazewinkel and J.C. Willems (Ed.), Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht.
[5] Kallianpur, G. (1980). Stochastic Filtering Theory. Springer-Verlag, New York.
[6] Hazewinkel, M. and J.C. Willems (Ed.) (1981). Stochastic Systems: The Mathematics of Filtering and Identification and Applications. Reidel, Dordrecht.
[7] Brockett,R.W. and J.M.C. Clark (1978). The geometry of the conditional density equation. In O.L.R. Jacobs (Ed.), Analysis and Optimization of Stochastic Systems, Academic Press, New York, pp. 299-309.
[8] Brockett, R.W. (1978). Remarks on finite
dimensional nonlinear estimation. In C. Lobry (Ed.), Analyse des Systems, Bordeaux. (1980) Asterisque, 75, 76.
[9] Brockett, R.W. (1979). Classification and equivalence in estimation theory. In Proc. 18th IEEE Conf. on Decision and Control, Ft. Lauderdale. 172-174.
[10] Brockett, R.W. (1980). Estimation theory and the representation of Lie algebras. In Proc. 19th IEEE Conf. on Decision and Control, Albuquerque.
[11] Brockett, R.W. (1981). Nonlinear systems and nonlinear estimation theory. In M. Hazewinkel and J.C. Willems (Ed.), Stochastic Systems: The Mathematics of Filtering and Identification and Applications. Reidel, Dordrecht.
[12] Mitter, S.K. (1978). Modeling for stochastic systems and quantum fields. In Proc. 17th Conf. on Decision and Control, San Diego.
[13] Mitter, S.K. (1980). On the analogy between mathematical problems of nonlinear filtering and quantum physics. Richerche di Automatica, 10, 163-216.
[14] Hazewinkel, M. and S.I. Marcus (1980). On Lie algebras and finite dimensional filtering. Submitted to Stochastics.
[15] Daniel, M. and C.M. Viallet (1980). The geometrical setting of guage theories of the Yang-Mills type. Reviews of Modern Physics, 52.
[16] Hermann, R. (1973). Topics in the Mathematics of Quantum Mechanics: Interdisciplinary Mathematics vol. VI. Math Sci Press, Brookline.
[17] Davies, E.B. (1980). One Parameter Semigroups. Academic Press, London.
[18] Kirillov, A.A. (1976). Local Lie Algebras. Russian Math. Surveys. 31:4, 1976, pp. 55-75.
[19] Benes, V.E. (1981). Exact finite dimensional filters for certain diffusions with nonlinear drift. Stochastics, 5, 65-92.
[20] Liu, C.-H. and S.I. Marcus (1980). The Lie algebraic structure of a class of finite dimensional filters. In C.I. Byrnes and C.F. Martin (Ed.), Lectures in Applied Mathematics, Vol. 18, American Math. Soc., Providence, pp. 277-297.
[21] Ocone, D. (1980a). Topics in Nonlinear Filtering Theory. Ph.D. Thesis, M.I.T., Cambridge, Massachusetts.
[22] Ocone, D. (1980b). Nonlinear filtering problems with finite dimensional Lie algebras. In Proc. 1980 Joint Automatic Control Conference, San Francisco.
[23] Ocone, D. (1981). Finite dimensional estimation algebras in nonlinear filtering. In M. Hazewinkel and J.C. Willems (Ed.), Stochastic Systems: The Mathematics of Filtering and Identification and Applications, Reidel, Dordrecht.
[24] Palais, R.S.. Seminar on the Atiyah-Singer Index Theorem, Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton 1965, (chs. 4, 8, 9, 10).
[25] Narasimhan, M.S. and T.R. Ramadas, "Geometry of $\operatorname{SU}(2)$ Gauge fields", Communications in Math. Physics, 67, (179), pp. 21-36.
[26] Mitter, P.K. and C.M. Viallet, "On the Bundle of Connections and the Gauge Orbit Manifold
in Yang-Mills Theory", Communications in Math. Physics 79, (1981), 457-472.
[27] Mitter, P.K., "Geometry of the space of Gauge Orbits and the Yang-Mills Dynamical System", in Recent Developments in Gauge Theories (Cargese School) eds: G.T. Hooft et al, Plenum Press, 1980.

