
---·--·---- ·-· --

SYSTEM IDENTIFICATION AND 
NONLINEAR FILTERING: LIE ALGEBRAS 
AND 
A SUMMARY OF APPROXIMATION METHODS FOR 
NONLINEAR FILTERING PROBLEMS ARISING IN 
SYSTEM IDENTIFICATION 

--------------------·--·--

P.S. KRISHNAPRASAD, S.I. MARCUS AND M. HAZEWINKEL 
AND 
P.S. KRISHNAPRASAD, M. HAZEWINKEL AND B. HANZON 

[ ---·--·--·-·--------·-··--·-·--·-··-··------·--·----- -----·------·-·--

REPRINT SERIES no. 299 
·------ ---··-·--· ·- ---·- --- -- --------------·---------------------------------------~--------

·-·. ---------- ---------··---------- .. ---.--·------···-- -------------·--
This article appeared in "IEEE Conference on Decision & 
Control 11, (1981). 

-- --------·----·----

.._ __________ -·-- ·----
ERASMUS UNIVERSITY ROTTERDAM - P.O. BOX 1738 - 3000 DR ROTTERDAM - THE NETHERLANDS 



SYSTEM IDENTIFICATION AND NONLINEAR FILTERING LIE ALGEBRAS 

* P.S. Krishnaprasad ** Steven I. Marcus *** Michiel Hazewinkel 

~*** 

* ** Univ. of Hd. : Uni v .. of Texas 
Erasmus Univ. 
Rotterdam. College Park, Hd. 20742 Austin, Texas 78712 
The Netherlands 

• <c(9) ,x> . 
Abstract 

This paper is continuation of our previous 
work ( [ l), [ 2], [ 3)) to understand the identifica· 
tion problem of linear system theory from the 
vie"Point of nonlinear filtering. Tbe estimation 
algebra of the identificatiQil problem is a sub­
algebra of a current algebra. It therefore 
follows that the estimation algebra is embeddable 
as a Lie algebra of vector·~ields on a finite 
dimensional manifold. Th~se features permit 
us to develop a Wei-Norman type procedure for 
the associated Cauchy problem and reveal a set 
of functionals of the observations that play the 
role of joint sufficient statistics for the 
identification problem. 

1. Introduction 

Consider the stochastic differential system: 

de • o 
dxt • A(e)xtdt + b(9)dwt 

dyt • <c(e),xt>dt + dvt. 

(1) 

Here {wt} and {vt) are independent, scalar, 

standard, Wiener processes, and {xt} is an Rn-valued 

process. Assume that 6 takes values in a smooth 

manifold ~-<JRN, and the map e~r(e): • (A(9), b(9), 
c(9)) in a smooth map taking values in minimal 
triples. By the identification problem we shall 
mean the nonlinear filtering problem associated 
with eqn. (l); i.e. the problem of recursively 
computing conditional expectations of the form 
11t(4>)~E[Hxt,e)\Yt) where Ye is the o-algebra 

generated by the observations {ys:O_::.s.::.t} and 4> 

belongs, to a suitable class of functions on lRniCl. 

The joint unnormalized conditional density 
p~(t,x,9) of xt and 9 given Yt satisfies the 

stochastic partial differential equat~on 
(Stratonovitch sense) 

dp • A0 pdt + B0 ndyt (2) 

where the operators A and B are given by 
1 a 0 2 · • a 0 2 

A0 : • y=b(e), a; >- <ax,A(e)x>- <c(B) ,x> /2 
(3) 

. B : 
0 

(see (4) for background). 

( 4) 

From the Bayes formula ([S]), it follows that 

where 

ot(4>)· I 
0 

f Hx,B)p(t,x,e)ldxl .jdel 

lRn 

(5) 

(6) 

where !dxl and jdel are fixed volume elements on !Rn 
and 8 respectively. Further if Q(t,e) denotes the 
unnonnalized posterior density of 9 given t' then 

it satisfies the Ito equation: 

dQ • E(<c(e),xt le,\].Q(t,B)dyt. (7) 

Recent work in nonlinear filtering theory (see the 
proceedings [6]) shows that it is natural to look 
at eqn. (2) formally as a deterministic partial 
differential equation, 

(8) 

By the Lie algebra of the identification problem, 
we shall mean the operator Lie algebra G generated 
by A0 and B0 • For more general nonlinear filtering 

problems, estimation algebras analogous to C have 
been emphasized by Brockett and Clark [7]. Brockett 
([8] - [ll)), Hitter ([12]. [13]), lla~e1.,.inkel and 
Harcus [14] and others (see [6)1 as being objects 
of central interest. In the papers ([l], [2]) the 
Lie algebra G is used to classify identification 
problems and to understand the role of certain 
sufficient statistics. 

2. The Structure of the Estimation Algebra G 

To understand the structure of the estimation 
algebra G it is well-~orth considering an example. 

·Example 1: 

Let dxt . e. dw t; de ~ 0 

dy, • :x dt + dv 
t 2 t 

Then A 
e2 a2 x 

B and ·2 -- - - and - x, 0 ax2 2 0 

G • {A ,B )1 A 
2 20 0 .•• 

is spanned by the set of operators 

e a :x 2 
(-- --) 

2 ax2 2 
(e 2ni__J"' and 

:x n=l 
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{0 201}= . We then notice that, 
n•l 

- 2 a2 a a 2 
G ~lR(6 ]-61 {-2 , ~· cx'x ,x,lJL.A. 

ax 

·ii a subalgebra of the Lie algebra obtained by 

tensoring the polynomial" ring lR[El 2] with a 6 
dimensional Lie algebra.// 

The general situation is very much as in this 
example. Consider the vector space (over the reals) 
of operators spanned by the set, 

a2 a 
S:m(axiaxj • xi a;;-· hi' xixi,xj,1} 

i • 1,2, .. ,n, j~1,2, .. ,n 

This space of operators has the stEUcture of a 
Lie algebra henceforth denoted as G0 (of 

dimension 3n2+2n+l) under operntor commutation 
a2 

(the commutation rules bein_g [-3--3-,xk] • 
xi xj 

C I 

6 _a_+ 6 -- etc., where 6jk denotes the 
jk ax 1 ik axj 

Kronecker SY!llbol). For each choice 6d::J, A0 and 

(7) 

B0 take values in G0 • It follows that in general 

A and B are smooth maps from e into G • So let 
0 0 0 -

us consider the space of smooth. maps c"" (8 ;G0 ). 

This space can be given the structure of a Lie 
algebra (over the reals) in the following way: 

given <j>,ljl£ C00 (6;G0 ), 

define the Lie bracket [ .•• l c on c"'@. G ) by 
' 0 

[<j>,iji]c(P) • [q,(P),l/l(P)]. (10) 

for every PcB. Here the_bracket on the right hand 
side of eqn. (10) is in G • We denote as t the 

- 0 c 
Lie algebra (C00 (3;G0 );[.,.]c). Whenever the 

dimension of El is greater than zero, G 0 is 

infinite dimensional and is an example of a current 
algebra. Current algebras play a fundamental role 
in the physics of Yang-Mills fields l./here they 
occur as Lie algebras of gauge transformations [15). 
Elsewhere in mathematics they are studied under the 
guise of local Lie algebras ([16] [18)). The 
following is immediate. 

Proposition 1: 

The Lie algebra G of operators generated by 

A • l.~(8) ~>2 - <.~·x,A(B)x> 
0 2 • ax a 

and B • <c(e),x> 
0 -

algebra c"" (B ;G0 ) • 

2 <c(6),x> / 2 

is a subalgebra of the current 

3. Representation questions: 

In [3] we observe that G admits a faithful 
representation as a Lie algebra of vector fields on 
a finite dimensional manifold. Specifically, 
consider the system of equations, 

de • o 
dz - [A(6)-Pc(B)cT(6)lzdt + Pc(e)dyt 

dP A(e)P + PAT(6) + b(e)bT(e)-Pc(e)cT(e)P dt -
ds • -}<c(6),z> 2dt -<c(6),z>dyt (11) 

The system of equations (.!l.) evolves on the 

product manifold 8 x lRn(n+))/ 2+1 • Associate with 

eqn. (11) the pair of vector fields (first order 
differential operators), 

* T a 0=<(A(8)-Pc(6)c (El))z,~/az> 

and 

+tr((A(6)P+PAT(e)+b(6)bT(8)-Pc(0)cT(6)P).a/aP) 

+ 1/2<c(6),z>2a/as 

b* • <P(e),a/az> - <c(e),z> a/as. (12) 
0 

T 
(Here o/'iP • [a/apijl - (a/aP) • nxn syuunetric 

matrix of differential operators). Consider the 
Lie algebra of vector fields generated by a0 and 
* * * . b0 . Since a and b are vertical vector fields 

O O • n(n+3)/2+1 
with respect to the f ibenng ex lR - • so 

is every vector field in this Lie algebra. One 
of the main results in [3] is the follo.,ing: 

Theorem 1: The map 

- '" lR n(n+3)}2+1 
~k: Ge -+i.ox 

defined by 

* * r 
<l>k (Ao) ~ aO ; <l>k (BO) ,. bO •• 

is a faithful representation of the Lie algebra 
of the identification problem as a Lie algebra of 
(vertical) vector fields on a finite dimensional 
manifold fibered over 0J. 

Example 2: 

To illustrate Theorem 1, consider the Lie 
algebra of example 1. The embedding equations 
(11) take the f onn 

Then 

d8 - 0 

2 2 dp .. (0 -p )dt 

dz • -pzdt + pdyt 

2 
ds • z /2dt - zdyt. 



•k<Bo) • •k(x) 

• ·• bo 

• pa/az + (-z)a/as 

The induced maps on Lie brackets.are given by 
i 2k 
•k<e a/ax) • e2ka/az k. 0,1,2, ••• 

•k(e 2kx) • e2k(p3/az --za/as) k -• ~.2, •••. 

• ce2k1> 2k k e a/as k • 1,2, •.• // 

! The embedding equations have the following 
·Statistical interpretation. Assume that the 
.initial condition for (12) is of the form, 

P0 (x,e) • (2ndett(e))-n/2."e~p(-<:x-u(e), r-1 (e) 

2 

•(x-u(0))>) · Q0 (e) (13) 

where e+(u(0)~(6),Q0 (e)) is a smooth map, !(0)>0 

e~ and Q0 (e)>O for 0El3. 1 Suppose eqn. (11) is 

initialized at, 

Append to t~ij system (11) an output equation, 

Q • e t (15) 
t 

Now if (11) is solved wit~ initial condition 
(14), one can show by different.iating Qt that Qt 

satisfies eqn. (7). In other words, the system 
(ll)-(15) with initial condition (14) is a finite 
dimensional recursive estimation for the posterior 
density Q(t,e 0). We have thus verified the 

homomorphism principle of Brockett [8]: that 
finite dimensional recursive estimators must 
involve Lie algebras of vector fields that are 
homomorphic images of the Lie algebra of operators 
associated with the unnonnalized conditional density 
equation. 

4. A Sobolev Lie Group Associated to G: 

It has been remarked elsewhere ([8], [13). 
(21], ·r22] and [3]) that the Cauchy problem associ­
ated with (8) may be viewed as a problem of inte­
grating a Lie algebra representation. In this 
connection one should be interested whether there 
!s an appropriate topological group associated with 
G. We have the following general procedure. 

Let M be a compact Riemannian manifold of 
dimension d. Let L be a.Lie algebra of dimension 
n<m. We can always view L as a subalgebra of the 
general linear Lie algebra gl(m;IR), m>n (Ado's 
theorem). 

Assumption: 

Let C-{exp(L)}Gc:g.e.(m;IR) be the smallest Lie 

group containing the exponentials of elements of L. 
\le assume that G is a closed subset of gl (m; ll.). 

Define, 

R • C .. (M;gl(m,lR)) 

. :l • c• (M; L) 

.& • C .. (M;G). 

Clearly R is an algebra under pointwise multipli­
cation and 

Let ((U0 ,Cf1 0 )} 

£1 ,f2El'?, define 

be a C .. atlas for M. Then for 

ll£1-f2llk·[f 
Cf'a(Ua) 

where 

1£1 2 • tr (f'f). 

(16) 

(17) 

(Here k•d/2+s • s>O). Let Rk be the completion of 

R and <6k the completion of .s in the norm a .1;k. 
Vik is closed inRk). By the Sobolev theorem, Rk 

is a Banach algebra and the group operation 

• :i6k x .ek ... ,gk 

(fl,f2)+flf2 

when (f1f 2)(m) s f 1(m): 2 (m) is continuous. Thus ""k 

is a topological group. 

Proceeding as before, one can given a Sobolev 
completion of £ to obtain :.lk an infinite dimen­
sional Lie algebra where once again by the Sobolev 
theorem the bracket operation 

[ .•. l ::lk >tC\ -':lk 

(fl,f2)-+[fl,f2] 
.,, 

with [f1,r2J(m) • [f 1 (m),f 2 (m)]~is continuous. Now 

for a small enough ne\ghborhood V(O) of O!llk one 
can define 

exp: V(O) ... ofrk 

F;-+ exp(F;) 

by pointwise exponentiation. 
provide a Lie group structure 

canonically identified as the 

This permits us to 
on .bk with :ilk 

Lie algebra of i/tk, 

Th~ procedure outlined above appears to pl~y 
a significant role in several contexts (the index 
theorem, Yang-Mills fields [24] [25] (26] [27]. 

For our purposes L will be id~ntified with a 
faithful matrix representation of G0 . Thus we 

associate with the identification problem a Sobolev 
Lie group which is a subgroup of .bk corresponding 

to G0 • 



~: 

, One of the important differences between the 
; problem of filtering and the problems of Yang-Mills 
I theories is that in the latter case there are 
~natural norms for Sobolev completion. This follows 
: from the fact that in Yang-Hills theories, the 
. algebra L is compact (semi-simple) and one has the 
; Killing form to work with. In filtering problems 
'.c0 is never compact. 
I 

Remark: ·---
We would like to acknowledge here that Prof. 

. Sanjoy Hitter was kind enough to acquaint one of 
,us (P.S.K) with the work of P.K. Mitter. 

'.5. The Integration Problem- & Sufficient Statistics 

In [3] we look for a representation of the 
form, 

n p(t,x,8)•exp(g,(t,B)Al) .•. exp(gn(t,0)A )P 0 (18) 

for the solution to the e9tlation (8). In the case 
of example (1) this takes the form 

82 82 } 
p(t,x,e)•exp(g1(t,0)·(z- a- - z-)). 

2il 
.exp(g2 (t,8)·8 -a,z) 

x 

. exp(g3(t,0)x).exp(g4(t,8).l)o 0 (19) 

Differentiating and substituting in (8) we get, 

*· (t,8) • 1 

ag2 
~(t,8) • cosh(g1 .8)y (20) 

ai3 
-ac-<t,8) • - i sinh(g1 .8)y 

and gi(0,8) • 0 for i ~ 1,2,3,4,ecB. The above 
first-order partial differential equations may be 
easily solved by quadrature and one has the 
represe,ntation, 

p(t,x,9) • I"' 1 l 2 \x\ 2 
; 2nsinh(ja\t) exp(- zcoth <ier- +z). 

xz 
.tjaj) .exp( ·).exp(g4 (t,8)e2). 

I je\sinh(\8\t) 

• exp(g2 (t,e) 116TZ).p0 (g3 (t,a)e 21ieTZ.e)dz 

(21) 

where o0 ( ,9)ct2 (IR) for every 8d3 and is smooth in 

6. Furt:her 0=.JR is a bounded set and Oi closure 8. 

In equation (21) the g1 's should be viewed as 

canonical coordinates of the second kind on the 
corresponding Sobolevtie group.~-Now expand g2 and 

g3 to obtain 

It follows that all the "information" contained by 
the observations {y 0 :020_::.t} about the joint 

unnormalizcd conditional de_n'sity is contained in 
·the sequence 

T~[J ~: y0 do; ka0,1,2, ••. } (23) 

Thus T is nothing but a joint sufficient statistic 
for the identification problem. 
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APPROXIMATION METHODS FOR NONLINEAR FILTERING PROBLEMS 
ARISING IN SYSTEM IDENTIFICATION 

Summary 
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Rotterdam, The Netherlands 

Abstract: In this paper we investigate various 
approximate methods for computing the condition­
al density of a parameter. These techniques 
are related to the structure of certain Lie 
algebras of operators with the identification 
problem. 

Summary 

Consider the stochastic differential system: 

df>=O 

dyt= <-c(t:i),xt>dt + dvt. 

Here (wt} and (vt] are independant, scalar, 

standard Wiener processes and (xt) is anit1-

valued process. We let e take values in a 

smooth manifold b Rn. Assume that the map 

(1) 

ti .... l..(b):=(A(b), b(0),c(0)) (2) 

is sufficiently smooth and takes values in the 
space of minimal triples. 

Define two differential operators, 

A :• i<.b(0), o/ox>2 - <o/Ox., A(a)x> 
0 

- <c(0) x >2/2 (3) , 

The problem is to devise approximate finite di­
mensional, recursive techniques for calculating 
the conditional density of the parameter a given 
Yt= the a-algebra generated by the observations 

ly : {)::;;sst]. The general formulas are known: 
$ 

( l:l) ! P(t,x,&) ldxl 
Qt, •I! p(t,x,t!)ldxl·ldel (5) 

where jdxJ and jdf>j are fixed Riemannian volume 
elements on JR and ~ and " 

<. c (0 ), x.>y 
P(t,x,0)= e ~~ V(t,x,0) (6) 

and 

(7) 

where 
;;(. := A 

0 0 

~:= <c(&) ,b(0)><.b(0) ,o/Ox.>-< c(6) ,A(&)x> 

.e.3 := <c(0), b(6)>2 

.e.4 ~ -tr (A(6)). (8) 

Let Q(t,0)= e-S(t,9). In this pair we consider 
approximations related to 

(a) local series accroximation~ 

.. (t} t:l[i) 
i 

(b) Gaussian initial conditions: 

p(0,.,6) Gaussian for 6Ei::i 

Both these approximations are connected to the 
following algebraic objects. (G(kh= 

(a) A sequence of Lie algebras "J 
k=O 

where 

[ :~o 0 ] ) L.A. 

c& Bo 

(b} Finite dimensional quotients of G(O) 
in one-to-one correspondence with rings that are 
quotients of JR[9]. -(O) 

Our results use the fact that G is a 
subalgebra of a current algebra ((l],[2)). 
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