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Abstract. A one component, one dimensional diffusion model is 

presented in which spatial structure is generated by means of a 

density dependent diffusive mechanism such that for some density 

values mass flow is proportional to the mass density gradient. 

Although stability and attractivity properties of a set of 

analytic periodic stationary solutions are not strong enough, the 

numerical work reported here, supports the possibility that this 

evolution equation in one space variable with zero-flux boundary 

conditions will have stationary attracting periodic limit 

distributions. 
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1. Introduction 

Pattern formation of one kind or another occurs in many systems, 

c.q.: star clustering (astronomy), amoebae concentrations 

(chemotaxis; biology), periodic precipitation (chemistry), 

population concentrations in cities, (spatial economy), self­

fulfilling prophycies (economic behaviour). This tendency to 

order is even seen in some physical systems as the Benard 

convection shows clearly. 

Since a macrosystem is described by the average density of the 

constituents, such cases of pattern formation can be seen as the 

evolution of an initial uniform distribution function to a non­

uniform, well profiled function defined on the space of possible 

outcomes of the process (e.g.: a price distribution function in 

the case of self-fulfilling prophycies; spatial distribution of 

rising water in the case of Benard convection). 

Such an evolution process can be modeled mathematically by 

nonlinear partial differential systems, in which "almost anything 

can happen 11 , reflecting "the beauty and great variation of 

manifestations of the nonlinear in the bio-, geo- and other 

spheres around us" [ 4]. 

We mention here the so called activator-inhibitor models of 

Meinhardt [3]. These models are based on the possibility to 

distinguish between slow diffusing, growth (self-) enhancing 

components and fast diffusing, growth inhibiting components in 

the system. Since the inhibitor substance is almost uniformly 

present, only areas with a high activator concentration can grow 

further. 

However, not in all cases "growth" is inhibited by some 

substance. For instance, an aggregation centre grows by 

attracting substance, at the same time causing low concentration 

in the neighbourhood of the centre. So the rise of new centres 

becomes impossible in the surroundings of already existing 

centres. 

Apart from this depletion effect, these evolution processes are 

characterised by self-enhancement, also called autokatalysis. 

Local higher density areas themselfes are the source of 
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amplyfiing fluctuations of an initial uniform ordening, for 

instance by gravitational instability, or economies of scale. 

In this paper we shall introduce a diffusion equation with 

density dependent diffusion coefficient, such that for some 

values of the density, this coefficient will be negative. This 

means that mass flow will be proportional to the mass 

concentration gradient and as such opposed at the flow direction 

of a Fickian diffusion. In other words: mass flow is directed 

towards higher concentration areas. Instability and self­

amplyfication of fluctuations are due to this reverse diffusion. 

(Section I). In section II we shall give some stationary 

solutions of such an equation. Numerical simulations of the model 

are reported in section III. 

As far as we know it is mathematically still an open question to 

show rigorously that an evolution in one space variable with 

zero-flux boundary conditions can have stationary attracting 

periodic limit distributions. The numerical work reported in this 

note certainly supports this possibility (as does intuition). 

There also are analytic periodic stationary solutions in a number 

of cases whose stability and attractively properties, however, 

are seemingly not strong enough. 

I.1. Thom's river basin model 

In [5] the following situation is described by Thom. Steadily 

rain is falling on a sandy hill; at the top brooklets are formed 

and destroyed almost continuously. Down the hill, the slope is 

less and erosion is less strong. The pattern of watersheds and 

brooklets becomes more stable. Remaining brooks compete with each 

other over the available space. The result will be an almost 

regular pattern at the bottom of the hill. Such pattern can be 

observed in nature, e.g. in Death Valley in California. 

Let s (t) denote the position of the n-the watershed (at time t). n 
Suppose the eroding power of a stream is proportional to its 

basin width, then the position sn will be governed by the 

following differential equation: 
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(I. 1) 

(where•denotes derivative with respect to t). 

Any equidistant distribution with basin width a for all streams 

is a stationary solution of (I.l). 

The character of equation (I.l) becomes clear by doing some 

linear stability analysis. Consider two streams with watersheds 

at +a and -a, and at u near o on R. Assuming c depends also on 

the basin width, we get: 

u = 2c(a)u + 2ac'(a)u + u 2 ( ••• )+ ••• (I. 2) 

We will have stability if c(a) + ac'(a) < O. 

Since erosion power will diminish at greater values of the basin 

width, a reasonable graph of c would be as depicted in figure 

(I. l) 
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Then, say for a ) a 0 with c(a 0 ) + a 0 c'(a 0 ) = O, stability will be 

obtained. 

On the contrary, if stream width is in the range where 

c(a) + ac'(a) ) O, broader streams will grow at the cost of 
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smaller ones. 

As smaller streams coincide with a higher density of the 

watersheds, at least in the instability range of the model, local 

maxima of the watersheds spatial distribution function will grow. 

Now at least two questions are wide open: (i) how does a more or 

less regular spacing of watersheds at characteristic distance a 0 

arise from the initially homogeneous situation, and (ii) how does 

the model select between different possible a 0 • Indeed, what is 

observed e.g. in the Death Valley pictures alluded to above is a 

characteristic wave length for the spacing of the watersheds. The 

"equilibrium restoring force .. for a spacing a 0 is 

2c(a 0 ) + 2a 0 c'(a 0 ) (<O) and one could agree that there would be a 

natural tendency towards that spacing width a 0 for which this 

quantity !c(a )+a c'(a )I is maximal. Other arguments favour the 
0 0 0 

"largest" a 0 for which c(a 0 ) + a 0 c'(a 0 ) is still negative. We 

shall return to this question in the numerical simulation section 

III. 

I.2. The small amplitude scaling continuous limit of the 

Thom's river basin equation 

Let a (t) = s (t) - s 1 (t), v (t) = s (t) and ~(a) = ac(a), then n n n- n n 
(I.I) becomes: 

Assume ~ is such that for 0 < E << 1, ~(E) > ~(a) for all a > E 

then there will be functions v and a, defined on I x ~+, 
I= [O,L] c: IR such that: [6] 

v(s (t),t) 
n 

v (t) 
n 

s (t)+s 1 Ct) 
( n n- ) ( ) a 2 ,t = an t 

(I.4.1) 

(I.4.2) 

a Denoting the partial derivative with respect to sn by -3-, we get: 
n 



[ 1aa ia 2a J 
an+l(t) = a(sn,t) 1+23'11' + 4an2 + ••• 

a ( t) 
n 

= a(s ,t)ll+t(-l+exp;_)a(s ,t)] 
n on n 

a(s ,t)[l+t(-l+exp-~)a(s ,t) J 
n on n 
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(I.5.1) 

(I.5.2) 

Using (I.4) and (1.5), equation (I.3) becomes (suppressing the 

arguments of a): 

v(sn,t) = vn(t) = -~(a+ta{(-l+exp~n)a}) + 

+ ~(a+ta{(-l+exp-~n)a}). 

Take a 0 such that ~'(a 0 ) > 0 (unstable equidistant distribution) 

and expand ~ as a MacLaurin series in a= a 0 , to find: 

v(s ,t) = -~'(a )(a-a +ta{(-l+exp~)a}) -
n o o on 

So we find: 

v(s ,t) 
n 

1 { a } 2 - - ~" ( a ) ( a - a +ta ( - 1 +exp-) a ) -2! o o 3n 

+~'(a )(a-a +ta{(-l+exp-.t-)a}) + 
o o an 

-21 ,~"(a )(a-a +ta{(-l+exp-4-)a}) 2 + ••• 
. o o on 

2 
' aa 1 a a 

-~ (a )(a~-3 ,a...:__..;+3 ••• ) 
o an . Cln 

- -21 ,~"(a )(2(a-a )a~al ••• ) + 
. o o on 

1 "'( )(- 3 ( )2 Cla ) -3 , ~ a a-a aT+• •• . o o on 

Again using (I.4) and (I.5) one gets: 

(I. 6) 



da an+l+an 
at:::: 2 

av :::: an•a 
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v(sn+l't)-v(sn-l't) 

2 

So the continuity equation for a becomes: 

aa 
TI 

Inserting (I.6) in (I.8) gives: 

(I. 7) 

(I. 8) 

2 4 
= a2[-cp'(a ){~ + l_ a a4} - 2lcj>"(a ){~2(a-a )~a+- ••• }+ 

0 an2 3! an 0 on 0 on 

1 {a 2aa }] - -3 , cj>"' (a ) ~3 (a-a ) ~ ••• . o on o on (I. 9) 

Now introduce a scaling factor JI. and write x = Jl.s , so that 
a a n 
- = R, -. an ax 

Given the definition of the function a in (I.4.2), the 
R, 

function p(x,t), defined by p(x,t) = a(x,t)' is a mass 

(watershed) distribution function. 

Let 
R, 

and U(x,t) (x,t) then JI. 
Po = = p - Po a-a 

a 0 2 
0 Po 

aa JI. 2 au 
(I. 9) becomes: an = -2- ax' so 

Po 

au 4 a 2 u JI. 6 a 4u .!.cp" (!__). at = cp'(!_){_.fl._ --2 + 62 -} + 
Po P2 ax 4 2 p ax Po 0 

0 

J/, 4 a2u2 6 2 3 
{-4 + ••• }- lcp"'(!_){~ !.._£.__ + ••• } -;;z 6 P 6 a2 

Po o Po x 

u and 

By neglecting higher than sixth order terms in t, and noting 

that cp'(!:__) ) O, our final equation will be of the form (after an 
p 

additiona£ time scaling): 

au 
at 

a2 2 3 a4 u = [-(-U+r U -r U )--y-] 
ax2 1 2 ax4 

(I.10) 
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We take no-flux boundary conditions. 

In the linear approximation (I.10) is a diffusion equation with 

negative diffusion coefficient; mass flux is proportional to the 

gradient of U. As such, equation (I.10) can be called a anti­

diffusion equation stressing the fact that the flux is in the 

opposite direction compared to the usual normal, Fickian 

diffusion. 

It is interesting to note that based on the Landau-Ginzburg free 

energy model, the same form of diffusion equation as (I.10) can 

be derived. In this case, the linear diffusion coefficient 

depends on the diffusing substance environment (e.g. Temperature) 

and becomes negative near the aggregative state. [l] 

II. Stationary solutions and stability 

We seek solutions of (I.10) in the Hilbert space H = L2 [0,L] with 

scalar product: 

L 
<u(t),w(t)) = J U(x,t)W(x,t)dx 

0 

where u(t) = U(.,t). 

II.I. Uniform distributions: 

(II.I) 

In the Hilbert space H, equation (I.10) has the following form: 

du dt = A(y)u + N(u), (II.2) 

where A(y) is a linear operator and N is non-linear operator 

defined for u = U(.) in a subspace of H (U must satisfy boundary 

au conditions and must be square integrable). In the sequel we ax 
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suppress the variable t. 

The linear operator A(y) is specified by: 

[A(y)u] (x) 
4 a U(x)} 

y 4 
ax 

(II.3) 

Stability of the null solution u = 0 depends on the eigenvalues 

w(y) of A(y), which are entirely given by: 

4 
__ {- a 2 u(x) w(y)U 

ax 2 
a U(x)} 

y 4 
ax 

and no-flux boundary conditions, for twice continuously 

differentiable functions U not identically zero. Then the 

eigenvalues w(y) are: 

w(y) 

with eigenvectors proportional 
k'IT 

to cos Lx. 

(II.4) 

(II.5) 

L2 
So the linear system would be stable if y > ~' and in this case 

'IT 

the nonlinear system is conditionally stable ([2]). 

L2 
For y < ~' the system is unstable in one of more modes; the 

'IT 

k 2'IT 2 
fastest growing mode would be given by k such that 

12 

However, solutions (non-constant) of the linear system 

kn k 2 'IT 2 1 
proportional to cos~1 x with k such that -. 

L2 y 

1 
= 

2y" 

are 

Although every constant function U is a solution of (I.10), we 

restrict ourselves to the null solution. Since 

p(x,t) = p 0 + U(x,t), with p 0 > O, constant, equation (I.10) is 

the evolution equation of a deviation U from a uniform 

distribution p(x,.) = p ,Vx E I. So stability of a uniform 
0 

distribution p is given by the stability of the null solution of 
0 
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(I.10). 

Note that the minus a2 u sign of the term was given by 
ax 2 

assuming ~'(a ) > 0 which coincide with unstability of the 4 
0 a u original discrete Thom equations. However, with the term ~-4 , 

the unstability range becomes more restricted, reflectingax 

viscosity-effects. 

II.2.1. Non-constant stationary solutions 

There are stationary solutions of 

au 
at 

a2 2 3 = {-(-u+r u -r u ) 
ax2 1 2 

(II.6) 

with r 1 - t; r 2 ~ t 2 ; y - t 2 , which can be obtained as follows. 

Consider: 

2 3 d 2 U U(x) - r 1 u (x) + r 2 u (x) + y ~- = Constant 
dx 2 

(II. 7) 

If U(x) also satifies the boundary conditions, then it will be a 

stationary solution of (II.6). 

There are solutions of the form: 

U (x) 
0 

1 
k 1T 

a+Scosy;-x 

2 2 = 2(a -S ) ( kTI)2 and y. L = 1 

(II.8) 

(II.9) 

These yields bounded solutions only if r 2 ) O. Note that one can 

solve for a,S,k in terms of r 1 ,r 2 ,y. (We shall mention other 

solutions at the end of this section). Since we conceive of 

equation (I.10) as the evolution equation of a disturbance U of a 

uniform distribution, (II.8) can not be taken as a solution of 

(I.10). Given the boundary conditions, one must have: 

L 
J U (x)dx o. 
0 0 



Let V0 (x) = U0 (x) - d, with U0 (x) as in (II.8) and 

1 L 
d = L J U0 (x)dx. 

0 

Then V0 (x) will be a solution of: 

* 2 * 3 * d 2V V(x) - r 1v (x) + r 2v (x) - y = Constant 
dx 2 

* 
r 1-3r 2d 

with rl = 2 l-2r 1 d+3r 2d 

* r2 
r2 = 

l-2r 1 d+3r 2 d 2 

* y 
y = 

l-2r 1d+3r 2d 2 

11 

(II.10) 

Since d = 1 !, all the coefficients of (II.10) are of the 

same order in ~, as in equation (I.10). So V0 (x) will be a proper 

* * * solution of equation (I.10) with coefficients r 1 ,r 2 and y • This 

solution has a different wave length then a solution in the 

*k21T2 
linear case (see section II.1 with y ~- = 1). 

L2 

a4u * And definitely, the term -- models "viscosity"-effects. If y 
ax 4 

tends to zero, the wave length becomes infinitely small and there 

is no coherence at all between the mass particles (watersheds!). 

* In the other limit case, y + ~, V tends to the null solution 
0 

(Any uniform distribution is stable !). 

Before reporting on the stability of the solution V0 (x), we 

mention other stationary solutions of (II.6): 

I 



i) U(x) = 1 3 
2 (kn ) with: r 1 = 2 a; 

a+Scos 1 x 

12 

r = 
2 

(This solution belongs to the above mentioned family of 

solutions.) 

ii) U(x) = 1 

r = 
2 

These solutions are bounded only if r 2 > O. 

Of related interest are solutions of: 

3 5 d 2U U(x) + r 2u (x) + r 4u (x) + y~- = o. 
dx 2 

which are of the form 

U(x) 1 
knx' I a+Scos-r-

k 2n 2 2 2 = -4a(< 01), y.---- = 4 and a ) S if r 4 ) O. 
L2 

II.2.2. Instability of a non-constant solution 

(II.11) 

(II.13) 

(II.14) 

In this section we investigate the stability of a solution V0 (x) 

of equation (II.10) as derived in II.2.1. 

Since V0 (x) = U0 (x) - d, wit~ U0 (x) is a solution of (II.7), 

resp.a stationary solution oT (II.6), and the connection between 

the coefficients of (II.10) and (II.6), stability of V0 (x) 

follows from stability of U0 !x) and vice versa. 

Let W(x t) be a disturbance of U0 (x), then: , 
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2 aw , a r 2 t--,,!.-l+2r 1u (x)-3r'>U (x) w - + non-linear terms 
_.., 
at 3x~ o ~ o 

in W (II.15) 

with no-flux boundary conditions. 

And U0 (x) will be stable if the null solution W(.,.) - 0 is a 

stable solution of (II.15 ) 

As in section II.l~ we can write down (II.15 ) in the Hilbert 
space H, and now the linear operator A(y) is specified as: 

[A('l)w](x) a4 W(x) l 
y 4 J 

ax 

with w(.) e: H; w(.) = W(x,.). 

However, eigenvalues of A(y) are not found, so linear stability 

cannot be established along this way. 
2 Denoting 2r 1U0 (x) - 3r 2U0 (x) by f(x), then 

6(0 2-1) f(x) 60 
(II.16) k nx r k 'lTX , 2 

o+cos-r- ', c+cos-1-.l 

where :5 ~and ~n =I~ (see (II.9)). 

Define in H the functional F(t) by: 

[F(t)]w 
L 2 

= J W (x,t)dx = iw~ 2 (II.17) 
0 

Then [F(t)]w = 0 -
dF 1 aw w = 0 and dt(w) = J 2W(x,t)atdx. 

0 

Now using only the linear part of (II.15.1), then by partial 

integration, 

dF (w) 
L aw 2 L 2 1 a2w 2 r r r (~i 2 ax J = (- dx - y ) + f ( x ) w ( x ' t )--2 d x ] dt L , 'ox ' 2) 
0 0 :a x 0 dX 

(II.18) 

f k ( ) i 1 to Cos kL~x 'with kL~ I we ta e W x,. proport ona 1_ "' 1.!.) then y 
(II.18) reduces to: 

"" 2 
L a2w J f(x)W(x,t)--2dx 
0 ax 

(II.19) 

k'l'>X dF And in this case (W proportional to cos--r-), dt > 0 if 
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L 
2(k1TX) J f(x)cos -y- dx < 0 (II.20) 

0 

(II.20) is equivalent with: 

6 - 12o 2 + 12010 2-1 < 0 (II.21) 

2 
which holds for any o, with o2 > l (o 2= ~ > l if r 2 > O). 

132 

Since F gives the norm of w, and w with w(.) = W(x,.) 
k1TX 

proportional to cos~1- can be taken as close in norm to w = 0 as 
dF one wishes, dt > 0 means linear unstability of the solution U0 (x) 

(in L2-norm). 

So the solution V0 (x) is unstable. 

III Numerical simulations 

We have made numerical simulations of 

au 2 a4 u 
at = ~<j>(U) - y 

ax 4 ox 
(III.l) 

where <I> ( U) -u + 2 3 = r 1u - r 2U (III.2) 

defined on the interval [O,L] c ~ with no-flux boundary 

conditions. 

IIl.l Case r 2 > 0 

The stationary solutions of section 11.2 are never found 

numerically. Even if the initial value is a discretization of 

such a non-constant solution, in time the solution becomes 

unbounded. Since these solution are unstable, another outcome 

could not be expected 

III.2 Case r 2 < 0 

IlI.2.1. y = 0 

If y = O the discretization of (lII.l) gives a set of equations 
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similar to Thom's original model. 

The null solution is unstable and the smallest possible 

wavelength mode grow fastest. The final pattern is characterised 

by two constant values U0 and u1 with: 

(III.3) 

In figure III.l, r 1 = O, r 2 = -~ and U0 = 13, u1 = -13 

4 1 4+ 19 3 u = 4-19 3 In figure III.2, r 1 = -5, r 2 = -5 and U0 3 1 3 
Typical block-like solutions can be generated also (figure 

III.3.6). 

The values U0 and u1 are in the following way deduced. 

First we note that solutions of (III.1) are independent of 

transformations: ~(U) + ~(U) + C0 , with C0 some constant. Given 

the boundary conditions, stationary solutions of (III.1) with 

y = 0 are given by: 

~(U) 

or equivalently: 

1 
S and J U(x)dx = 0 

0 

L 
V(U) = SU + a and J U(x)dx = 0 

0 

u 
where V(U) = J ~(s)ds and a,$ constants. 

0 

Define on L2 [0,L], the functional F(t): 

L 
[F(t)](U) = f V(U)dx 

0 

(III.3) 

(III.4) 

(III.5) 

Now differentiating F with respect to t, we find by partial 

integration: 

dF 
dt 

S dF < 
0 ' d t -

dF 
0 and dt = 

HU) = s. 

(III.6) 

0 if and only if U is a stationary solution 
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Further, by variational methods, the first order condition for 

extreme points of: 

L L 

J V(U)dx + A J U(x)dx (III.6) 
0 0 

L 
is <PC u) = -:\, J U(x)dx = o. 

0 

Using (III.4) the value of (III.6) at these points is given by: 

L 
J a dx 

L 
subject to J U(x)dx 

0 0 

Now using <P is cubic in U, we find: 

L 

0 (III.7) 

if r 2 > 0: J a dx has an absolute (bounded) maximum value and is 
0 unbounded from below. 

L 
if r 2 < 0: J a dx has an absolute (bounded) minimum value and in 

0 unbounded from above. 

These bounded extreme values are attained for stationary 

solutions characterised by only two values U0 and u1 , such that: 

<J>'(U) = <J>'(U) 
0 1 

(if <P is cubic in U). 

< 0 if r 2 > 0 

> O if r 2 < 0 

(III.8) 

(III.9) 

Combining (III.6), (III.8) and (III.9) give that, for r 2 < 0 a 

solution of the form: 

U(x) = u + H(x-x )(u 1-u ) 
0 0 0 

with H(x-x 0 ) is Haeviside function, will be conditional stable if 

LU l 
U0 , u 1 satisfy (III.8) and (III.9). (x 0 = u -U ). 

1 0 
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IIr.2.2. y * o 

In this case we can choose y such that the null solution is 

unstable in modes with wavelength bounded away from zero. The 

tt 1 i · d · d · · · 11 b h d krrx pa ern evo ut on is ominate 1n1t1a y y t e mo e cos~ 

1 
= 2Y (see section II.l). 

In figure III.3a, the pattern evolution is shown for r 1 = O, 
1 

r 2 = -3 and y = 0,00482; the largest positive eigenvalue is for 

k = 16 which corresponds to a wavelength ~ 0,6 (e.h.) in figure 

III.3. The final pattern shows a wavelength which is at least 

twice as long. The same holds for other values of y; in figure 

III.4 we have taken y = 0,00241 (largest eigenvalue for k = 24, 

wavelength ~ 0,4 (e.h.); figure III.5: y = 0,01563 (largest 

eigenvalue fork= 9, wavelength~ 1,1 (e.h.). 
4 1 

In figure III.6, r 1 = -5, r 2 = -5, Y 0,01563. Compared with 

figure III.5, the difference must be 

that the number of gridpoints with U 
0 

a consequence of the fact 

= 4+; 93 (figure III.2) is 

far less than the number of gridpoints with U = 13 (figure 
0 

III.l) which are the corresponding figures if y = O. 

In figure III.3b, we have set y = 0 after reaching the final 

pattern as depicted in III.3a. The final block form is totally 

given by the values U0 and u1 as derived in section III.2.1. 

We conclude this section with a simulation of the following 

model: 

ap a 2 a 4 p 
-at = -2cp(l/p) - Y -

ax ax 4 

defined on [O,L] + x R , with no-flux boundary conditions. 

(III.9) 

Equation (III.9) is derived from Thom's model without expanding 

cp in a MacLaurin series. We have taken t cubic like: 

cp(a) = 0,16 {Cl+a)e-a/ 8 + 0, 25 }. 
a 
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Initial value and ~ is taken such that in linear approximation 0 

equation (III.9) corresponds with the equation belonging to 

figure III.4. The pattern evolution is shown in figure III.7. 

Depicted is the scaled variable s~ defined p = (l+s). 

As expected from the foregoing analysis, the final patterns in 
figure III.4 and III.7 are quite different. 

We note further that at every stage of the evolution s is greater 
than minus one which is appropriate for this sc ed density 

function. This can always be achieved by choosing the cubic 

diffusion term $, as function of s, such that $(-1) is less than 

the local minimum value of ~' which is the same condition as in 
section I.2. 

III.3. Figures 

Figure III. 1: $( U) = -u + ..!u3· y = 0 3 • 

Figure III.2: 
' '") ..!u3· $( U) = -u - ;:u- + y = 0 5 5 ' 

Figure III.3: ip(U) = -u + ..!u 3 .. 
3 ' 'Y = 0,00482 

III.3a: dotted curve initial evolution pattern; continuous 

curve final pattern. 

III.3b: 

Figure III.4: 

Figure 111.5: 

Figure III.6: 

Figure III.7: 

after setting y = O, the final pattern of figure 

III.3a becomes block-like. 
l 3 ?(U) = -U + -U ; y = 0,00241. 

$(U) = -U + iu 3 ; y = 0 1 01563 

dotted curve: initial pattern; 

continuous curve: final pattern. 

qi(U) 4 '2 1 3 -u - -u + -u . 5 5 , y = 0,01563 

q:(U) = 0,16{(l+U)e-U/S + 0.25i. y u J ' 
... 0,00482 
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Conclusion 

Thom's river basin model describes the situation in which for a 

certain basin width, large basins grow at the cost of smaller 

ones. In defining a continuous distribution function for the 

watersheds of the basins, we have derived an evolution equation 

of pure diffusion type. The diffusion coefficient is density 

dependent and negative for some range of density values. In 

deriving this continuous form of Thom's discrete model, it is 

quite natural to incorporate a fourth order derivative term which 

can be interpreted as modelling viscosity effects. 

We have found a class of stationary solutions of this so-called 

anti-diffusion equation, which are, however, not stable. If the 

diffusion term is of cubic form with two stable branches, 

numerically we have found bounded non-constant solutions. By 

deleting the fourth order derivative term, the solution becomes 

block form like and is totally characterised by two unique 

density values. 

As such, this anti-diffusion equation seems a respectable 

candidate for modelling evolution processes which form patterns 

in the case that there is only one substance involved. 
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