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INTRODUCTION 
Concurrency 
A process is· the behaviour of a system. The system can be a machine, a communication protocol, a 
network of falling dominoes, a chess player, or any other system. Concurrency is the study of parallel 
processes. The features studied include communication between parallel processes, deadlock 
behaviour, abstraction from internal steps, divergence, nondeterminism, fairness, priorities in the 
choice of actions, tight regions, etc. Processes are mostly studied within a model, capturing some of 
the features of concurrency. Among these models one finds Petrinets (see for instance REISIG [12)), 
Topological models (as in DE BAKKER & ZUCKER [3]), Algebraical models (like the projective limit 
models in BERGSTRA & KLOP [4]), Graph models (as in MILNER [9] and in BAETEN, BERGSTRA & 
KLoP [2]) and observation models, in which a process is fully determined by its possible interactions 
with the environment (like Hoare's failures model of Communicating Sequential Processes, see 
BROOKES, HOARE & RoscoE [7], and the models used in Trace theory, see for instance REM [13]). 
Parameters in the classification of these models of concurrency are the features captured by the 
model, the identifications made on processes and the particular way of representing them. The 
identification issue deals with the question when two processes are to be considered equal. This is of 
importance on judging whether or not a certain system correctly implements a specification. The pos­
sible answers constitute a broad spectrum of process semantics, ranging from trace semantics, where 
two processes are identified as soon as their possible sequences of actions coincide, to bisimulation 
semantics, where all information about the timing of the divergencies of those traces is preserved. 

Process algebra 
Process algebra is an algebraic approach to the study of concurrent processes. Its tools are algebraical 
languages for the specification of processes and the formulation of statements about them, together 
with calculi for the verification of these statements. Process algebra is not to be regarded as a model 
of concurrency. On the one hand it is a method for specifying processes and proving statements about 
them without being limited to a particular model; on the other hand it is a method for analysing and 
comparing the different models of concurrency. 

To illustrate the first application, consider a typical example. Suppose a machine is composed out 
of two components. In order to verify that it behaves as it should, one specifies the behaviour of the 
two components as well as the intended behaviour of their composition in an algebraical language. 
This language should be equipped with a composition operator and with a calculus, consisting of laws 
concerning the equality relation, the composition operator and the operators involved in the 
specifications of the three processes. In selecting the calculus it should be checked that all its rules 
and axioms are valid in the environment in which the machine is operating. Now one is able to for­
mulate and prove the statement: the behaviour of the composition of the two components is equal to 
the intended behaviour of the desired machine. 

The creation of an algebraical framework suitable to deal with such applications, gives rise to the 
construction of building blocks of operators and axioms, each block describing a feature of con­
currency in a certain semantical setting. The models of concurrency serve to prove the consistency of 
the theories built from these blocks, and to illustrate the range of their applicability. 

As to the second application, the various models of concurrency can be studied and classified by 
axiomatising them, and pointing out which axioms constitute the differences between them. 

The first axiomatic treatment of concurrency is Milner's Calculus of Communicating Systems [9]. 
This calculus is closely linked to Milner's graph model (of 'synchronisation trees') with bisimulation 
semantics, and the axioms are presented as theorems, valid in this model. Other calculi are Milne's 
CIRCAL [8] and the Algebra of Communicating Processes (ACP) of BERGSTRA & KLoP [4]. The last 
one is not tied to a particular model. It is the core of a family of axioms systems, fitting in the process 
algebra methodology sketched above. Its standard semantics is bisimulation semantics, since it 
identifies the least; any theorem proved in bisimulation semantics remains valid in coarser semantics; 
but there are building blocks with axioms for more identifications. The present paper examines some 
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rules and axioms, belonging to this family, and employs the notation of ACP. Although it builds 
further on the research done in [4] and [2], it can be read independently. Only the proofs of theorems 
10, 12 and 14 require knowledge of [6]. These theorems are not essential for the conclusions in section 
15. 

1. ATOMIC ACTIONS AND COMMUNICATIONS 

An atomic action is the most elementary component of a process. It is considered not to be divisible 
into smaller parts and not subject to further investigations. Mostly an atomic action is considered to 
be observed pointwise in time, for if the time it takes is to be observed, two atomic actions can be dis­
tinguished: its beginning and its end. It depends on the level of abstraction, which actions one wants 
to see as atomic. 

Atomic actions are thought to occur simultaneously in a process only if they are communicating, 
like the actions 'give' and 'receive'. The simultaneous occurrence of actions a and b is denoted by a I b. 
In general a lb = b la and (a lb)lc =a l(b le). A multiset a1 I · · · Ian (with n;;a.2) of communicating 
atomic actions is called a communication. The presentation of an algebra of communicating processes 
starts with postulating an alphabet A 0 of atomic actions and specifying which communications can 
occur. 

Formally, an alphabet A of atomic actions and communications is defined as a set of nonempty 
multisets of symbols, such that if a EA and b i;;;;a then also b EA. Elements of A are called actions. A 
singleton action is called atomic; other actions are communications. A 0 is the set of atomic actions in 
A. Two actions a and b EA are said to communicate if their union a I b EA. 
Example: A = {a, b, c, b I c, c I c, b I c I c}. There is communication possible between b and c, c and 
c, b I c and c and between b and c I c, while there is no communication possible between a and b or 
between b and b I c. 

If A= {a, b, alb} andonewantstousecasanabbreviationforalb,writeA ={a, b, alb=c}. 
This presentation differs slightly from the presentation in BERGSTRA & KLoP [4,5], where A contains 
only atomic actions and communication is given by a partial binary function I: A XA~A. There the 
last example would be A = { a,b,c} and a I b = c. 

2. A LANGUAGE FOR COMMUNICATING PROCESSES 

The language employed in this paper is built inductively from a set V = {x,y,z, ... } of variables, and 
the constants, functions and predicates of the signature ~ of table I. The equality predicate = is 
always present, but never mentioned. An alphabet A of atomic actions and communications occurs as 
a parameter in~. 

~: constants: 

unary operators: 

binary operators: 

unary predicates: 

a 
~ 

for any atomic action a EA 0 

deadlock 
T silent action 
a H encapsulation, for any H i;;;;A 
-r1 abstraction, for any I i;;;;A 
'1T n projection, for all n EN 
+ alternative composition (sum) 

sequential composition (product) 
II parallel composition (merge) 
lL left-merge 
I communication merge (bar) 
Bn boundedness up to level n (n EN) 

Table I 
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The meaning of these constructs will be given informally below, together with an explanation of the 
axioms of table 3 (on page 9). 
a represents the process, starting with an a-step and terminating after some time. 
8 is the action of acknowledging that there is no possibility to proceed. Put A 8 = A U {8}. 
T represents the process terminating after some time, without performing observable actions. 

x+y 

XJ' 

xl[y 

xll_y 
xly 

Put A.,.= A U {T}. 
represents the process, first making a choice between its summands x and y, and then 
proceeding with the chosen course of action. There is no order in the presented alternatives 
(axiom Al) and a sequence of choices can be regarded as a single choice between all occur­
ring alternatives (A2). Furthermore a choice between two identical alternatives is neglected 
(A3) and in the presence of an alternative, 8 is never chosen (A6). So 8 represents deadlock 
only if it is not occurring in a sum context. 
represents the process x, followed after possible termination by y. The process x fails to ter­
minate if it ends in deadlock (A 7), or if it performs an infinite sequence of actions, or if it 
goes on forever without performing any action. The last possibility is called divergence. The 
axioms A4 and AS are rather straightforward, but since (at least in bisimulation semantics) 
the timing of the choices is of importance, there is no axiom x (y + z) = xy + xz. 
represents the simultaneous execution of x and y. It starts when one of its components starts 
and terminates if both of them do. 
is as xl[y, but under the assumption that x starts first (CM2,3,4, TMl,2). 
is as xl[y, but starting with a communication between x andy (CMS,6,7,8,9). This communi­
cation may be preceded by some silent steps, but these are no part of the process (TC3,4). 
Silent processes do not take part in communications (TCI ,2). Axiom CMl states that a pro­
cess x l[y starts either with x or with y or with a communication between x and y. If the first 
actions from x and y do not communicate (as is always the case if x = 8 or y = 8) the 
summand x ly can be removed, using C3 and A6,7. 

a H(X) represents the process x without the possibility of performing actions from H. a H renames 
the actions from H into 8 (DT, Dl-4). Mostly it is used to remove the remnants of unsuc­
cessful communication from a merge, thereby indicating that the process is not at the same 
time communicating (through H at least) with the environment. This is why aH is called 
encapsulation. 
Example: A = {give, receive, give I receive}; H = {give, receive}. 

dH(givellreceive) = dH(give·receive + receive·give + give I receive) = 
= 8·8 + 8·8 + give I receive = give I receive. 

T1(x) represents the process x, of which the actions from I are not considered important anymore. 
T1 renames the actions from I into T (TI 1-5). 

'1Tn(x) represents the process x, which is only allowed to perform n visible actions. The next visible 
action is blocked, i.e. renamed into 8 (PR). 

Bn(x) states that the nondeterminism displayed by x before its n 1h visible step is bounded. This 
means that for any sequence u of length < n of visible actions there are only finitely many 
different processes to which x can evolve by performing u (B). 

3. ACTION RELATIONS BETWEEN PROCESSES 

Let us enlarge the signature ~ with the binary predicates ~ and the unary predicates ~ y, both 
for a EA ... 

x ~y means that the process x can evolve into y during a period in which only the action a is per­
formed. 



a: a~y 

. 
x ~x' x~-J a 

E~V +: !'.~!'.' 
a 

x+y ~x' x+y~y a 
x+y ~y' x+y~y 

x ~x' x~-J 
a 

xy~xy 
a 

xy~y 

x~x' x ~-J a 
!'.~V II: !'.~t 

a 
xlly ~x'lly 

a 
xlly ~y 

a 
xlly ~xlly' 

a 
xlly ~x 

a b a b a b a b 
x~x',!'.~!'.' x ~-J.E ~t x ~x','}!_ ~-J x ~-J.E ~-J (if a lb EA) alb alb ajb alb x lly ~ x'lly' xlly ~ y' xlly ~ x' xlly ~ v 

a 
x ~-J lL: x ~x' 

a 
xlly ~xlly 

a 
xlly ~y 

a b a b a b a b 
I : x ~x','}!_ ~!'.' x ~-J.!'. ~t x ~x','}!_ ~-J x ~-J.!'. ~-J (if a lb EA) alb alb alb alb xly ~ x'lly' xly~y' xly~ x' xly~ V 

OH: x ~x' x ~-J (if a~H) a 
aH(x) ~v oH(x) ~oH(X') 

x ~x' x~y 
(if a~l) 'TJ: 

a 
7)(X) ~y T1(X) ~T1(X') 

x ~x' x ~-J (if aE/) 
'T 

T1(x) ~T1(x') T1(X) 4 V 

x ~x' x~y 
(if a=i=T) '1Tn: 

'1Tn+dx) ~'1Tn(x') '1Tn+1(x) ~v 

x 4x1 x 4-J 
'T 

'1Tn(X) ~'1Tn(x') '1Tn(X) 4y 

a 
<txlE> ~v 

recursion: 
<txlE> ~y 

a 
<xlE> ~y <xlE>~y 

'T a 
x 4'}!_, '}!_ ~-J 

a 'T a 'T 

T - laws: a ~T X~'}!_,'}!_~Z X~'}!_,'}!_~Z X~'}!_,'}!_~1:'. 

x~z x~y x~z x~y 

Table 2 
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x 4y means that x can evolve into y, taking a positive amount of time in which no visible actions 
occur. 

x ~ y means that x can terminate after having done only an a-step, and 

x 4 y means that x can terminate after some time, without performing visible actions. 

A proof system for these action relations is presented in table 2. All these rules are in fact schemes in 
a and b, with a,b ranging over A.,., unless further restrictions are made in the table. The rules for 
recursion will be explained in section 5; they may be skipped for the moment. Let 0> denote the set of 

-----..;.. 
closed process expressions { = closed ~-terms). The proof system of table 2 will be called ACP.,.. 
~ 

ACP.,. is soun~d complete on 0> with respect to the intended interpretation of process expressions. 
In this way ACP.,. provides an alternative explanation of the meaning of the ~-operators. Write 

p ~q. with p,qE0> and a EA.., if ACP.,. I- p ~q and p ~v if ACP.,. 1-p ~y. Write p ~if 
either p ~ y or p ~q for some qE~. 

A closed process expression may be regarded as a specification or description of a process. All infor­
mation concerning where or when a process takes place is neglected, so there are a lot of processes, 
meeting the same specification. However, process expressions do provide some information about the 
timing of the actions in a process. The process a for instance has to st~µt with an a-step immediately, 
while w may wait some time first (see figure 1). The reason for makidg this distinction is the follow­
ing. Suppose a process like a +b operates in an environment where a cannot be executed {the process 
expression a +b appears in the scope of a a{a} operator); then this option cancels out and the process 
will perform a b-step. However, if the process a can start without being recognizable as the process a, 
then it will be too late to do a b-step if the action a turns out to be impossible, and deadlock occurs. 
So in order to define a aH operator properly, one has to assume that the identity of a process a is 
clear from its beginning, at least for an environment oH(-). This motivates the distinction made, 

between •ra and a. In terms of action relations the difference can be stated as follows: w 4a, but 

not a 4a. 

a 
a: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I • time 

a 
ta: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I • time ' 

fig. 1 

As suggested by figure 1, the essential features of a process, specified by a process expression a or •ra 

are its beginning, the occurrence of the action a and its termination. In the process a, the first two 
coincide. The termination of a process is detectable by means of sequential composition: if b is 
scheduled right after a, the termination of a coincides with the beginning of b. 

Using the axioms of table 3 it turns out that T{a}(allb) is equal to Tb and hence different from b: 

T{a}(allb) = T(a}(ab +ba) = Tb +bT = Tb +b = Tb. 

This fits in with the meaning of xlty, given in section 2. allb starts when one of its components starts 



7 

and terminates if both of them do. 

a: a 

b: b 

<a 11 b): 
a b 

I I I I I I I I I I I I I I 111111111111111111111111111• time 

r{a} <al lb): 
b 

fig. 2 

As indicated in figure 2, it is quite possible that the process a starts before b does. After abstraction 
from a, the resulting process is Tb. 

Actually 'T{a}(allb) has also a summand bT, reflecting the possibility that the process b starts before 
a does. In the following lines it will be explained why this summand can be calculated away. The ax-

iom a ~,,. says that after the atomic action a in the process a is observed, it may still take some time 
before the process terminates. It reflects the assumption that, although the time interval between two 
atomic actions in a process may be arbitrary long, atomic actions are observed pointwise in time. 
Now b and bT are identified (by the calculus presented in the next section) since their behaviour, as 

far as it can be expressed in terms of action relations, is the same: b -4 y and b -4,,. versus 

bT -4 y and bT -4,,. (and bT -4,,.,,., but n and,,. also behave similarly). For the same reason Tb and 

Tb + b are identified: Tb -4 y, Tb -4,,., Tb ~ b, Th ~Tb versus Tb + b -4 y, Tb + b -4,,., 
'T 'T 

Tb +b ~b. Tb +b ~Tb. The second T-law of table 2 makes clear that although the process expres-

sion p +aq denotes a process that can do an a-step immediately, the action relation p +aq ~q does 
not imply this. Thus the processes Tb and Tb + b are different (only Tb + b can do an b-step immedi­
ately) but the difference cannot be expressed in terms of action relations. In the calculus of the next 
section, only processes are distinguished, whose difference can be expressed in terms of action rela-

tions. One might suggest to use relations ~ rather than ~, with x ~ y meaning that x can 
evolve into y, after having done an a-step immediately. However, this would lead to a semantics in 
which the axioms CM 2 and 3 of table 3 would not be satisfied. Therefore this option is not pursued 
in this paper. 

Note that there is a difference between the T-laws and the other action rules of table 2. While the oth­
er action rules describe what is really happening, the T-laws describe also what can be observed, con­
sidering the invisibility of the process T. Therefore the part of Act without the T-laws can be called 
concrete ACPn while the entire proof system can be called abstract. 

Action relations can be regarded as a way to obtain a process graph ( = labeled transition diagram) 
for each closed process expression (in the obvious way). The edges of such a graph are labeled by ele­
ments of AT and the end nodes may be labeled by y. The y-label represents termination, its absence 
(in an end node) represents deadlock. Following the distinction made above, concrete and abstract 
graphical representations of process expressions can be distinguished. An example should suffice to 
explain the idea. The concrete process graph of a( Tb +co) is shown in figure 3a, while its abstract 
version can be found in figure 3c. Figure 3b gives an intermediate version in which only the first T-law 
is not used. 
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a) a 

b) 

c) 

fig. 3 

The names of the nodes in 3a,b are a(Tb +c8), Tb +c8, b, y, and 8. In 3c also the nodes T(Tb +c8), 
Tb, T and T8 occur. In general the intermediate version can be obtained from the concrete one, by 
completing triangles; while in the abstract version each node ( = state = subprocess) is split into two 
processes: an active one that has to do some action (or to lose some option) immediately, and a pas­
sive one that may wait some time first. The process graph of p E0> will denote the concrete version. 

Notice that in the abstract process graph T-loops occur. They originate from the axiom T 4T, 
which is an instance of the first T-law. T 4 T means that after waiting some time on a process to ter­
minate (or in general to reach another state) it may still not be ready. However, this implies by no 
means that the process may fail to terminate. 

4. THE ALGEBRA OF COMMUNICATING PROCESSES WITH ABSTRACTION 

ACP,., the algebra of communicating processes with abstraction, is the equational theory, presented in 
the upper blocks of table 3. As in table 2, all axioms are in fact axiom schemes in a,b and c, but this 
time a,b,c range over A 6 , unless further restrictions are made in the table. ACP,. was first presented in 
BERGSTRA & KLoP [5]. In this presentation only axiom C3 is different, as a consequence of the 
different treatment of communication, mentioned in section I. The T-laws Tl,T2 and T3 originate 



ACP,. x+y=y+x Al XT = X TI 
x +(Y +z) = (x +y)+z A2 Tx+x = TX T2 
x+x = x A3 a(Tx +y) = a(Tx +y)+ax T3 
(x +y)z = xz +yz A4 
(xy)z = x(yz) AS 
x+8 = x A6 
8x = 8 A7 

alb = bla Cl 
(a lb) le = a l(b le) C2 
alb = 8 if albE:eA C3 

xl[y = xlly +ytlx +x ly CMI 
a!Lx = ax CM2 TILX = TX TMI 
(ax)lly = a(xl[y) CM3 (Tx)lly = T(xl[y) TM2 
(x +y)tlz = xtlz +ytlz CM4 TIX= 8 TCI 
(ax)lb = (a lb)x CMS XIT = 8 TC2 
al(bx) = (alb)x CM6 (Tx)ly = xly TC3 
(ax)l(by) = (a lb)(xl[y) CM7 xl(Ty)=xly TC4 
(x +y)lz = x lz +y lz CMS 
x I (Y + z) = x ly + x I z CM9 

09(T) = T DT 
TJ(T) = T Tll 

o9 (a) =a if aE;eH DI T1(a) =a if aE;el TI2 
o9 (a) = 8 if a EH 02 T1(a) = T if ael TI3 
on(x +y) = Cln(x)+Cln(Y) 03 T1(X +y) = T1(x)+T1(y) TI4 
Cln(xy) = Cln(x)·Cln(y) D4 T1(xy) = T1(x)·T1(y) TIS 

PR 7Tn(T) = T 
7To(ax) = 8 
7Tn+1(ax) = a·7Tn(x) 
7Tn(TX) = T"7Tn(x) 
7Tn(X +y) = 7Tn(x)+7Tn(y) 

B 
Bo(x) Bn(a) Bn(T) 

Bn(x) Bn(X) Bn(x),Bn(y) 

Bn(Tx) Bn+1(ax) Bn(X +y) 

Vn EN 7Tn(x)=7Tn(y),Bn(x) 

x=y 

KFAR x =ix+.!:'. 

T(i} (X) = T"T{i} (y) 

CA TJoTJ(x)=TJUJ(x) 

Table 3 
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from MILNER [9]. They reflect the same observational abstractions as the T-laws in table 2; two 
different processes are identified if they are in a certain sense indistinguishable. Apparently, T-steps do 
not engage in. communications (TCI,2) but in combination with the second T-law (of table 2 and 3) 
this leads to an equation TX ly = x ly, rather then TX ly = 8 (TC 3,4). All other axioms are explained 
already in section 2. ACP,. is a theory over the signature ~ - { 'lTn,Bn In EN}. Axioms for the full signa­
ture ~ are added in the blocks PR (projection) and B (boundedness). As usual, these axioms (and 
rules) form a calculus, together with the congruence rules, which are mostly not stated explicitly. 
However, for this occasion, they can be found in table 4. 

x=x 
x=y x=.!:'., .!:'.=z 
y=x x=z 

x =x',.!:'. =.!:'.' x=x',.!:'.=.!:'.' x=x',.!:'.=.!:'.' x=x',.!:'.=.!:'.' x =x',.!:'. =.!:'.' 
x +y =x'+y' xy=x)i' xl[y =x'l[y' xlly=x'lly' xly=x'ly' 

x=x' x=x' x=x' x =x',Bn(X) 

09(x)=oH(x') T1(x)=T1(x') '11'n(x)='1Tn(x') Bn(x') 

Table 4 

ACP,. +PR+ B is a sound and complete proof system for finite closed process expressions, with 
respect to the semantical notion of bisimulation. For ACP,. this is proved in BERGSTRA & KLoP [5]. 
However it is possible to make more identifications (depending on a notion of observability for in­
stance), by adding some axioms. In a completeness proof it is important to know that any finite 
closed process expression can be rewritten as a process expression, built up inductively, following the 
scheme T, ax, TX, x +y. The axioms CM2,5 and 6 are derivable from the others. 

The rules AIP- and KF AR, mentioned in table 3, will be explained later. The last axiom of table 
4, the commutativity of abstraction (CA), says that it does not matter in which order actions are con­
sidered unimportant (or made invisible). It occurred already as one of the conditional axioms (also 
abbreviated as CA) in BAETEN, BERGSTRA & KLoP [1], and will play an important role in observations 
to come. 

5. RECURSION 

A recursive specification E is a set of equations { x = tx Ix EVE} with VE a set of variables and tx a 
process expression for xEVE. The variables of VE may appear in tx. Other variables occurring in 
tx (x EVE) are called parameters of E. Mostly, only recursive specifications without parameters are 
used. A solution of Eis an interpretation of the variables of VE as processes (in a certain domain) (as 
a function of an interpretation of the parameters of E), such that the equations of E are satisfied. 

The recursive Definition Principle (RDP) tells us that every recursive specification has a solution. In 
the next section a model for ACP,. will be presented, satisfying RDP. RDP cannot be expressed alge­
braically, since in algebraic languages no existential quantification is permitted. 

Recursive specifications are used to define (or specify) processes. If E has a unique solution, let 
<x I E > (with x EVE) denote the x-component of this solution. If E has more than one solution, 
<x I E > denotes 'one of the solutions of E, and can be regarded as a kind of variable, ranging over 
these solutions. If E has no solutions (possible in a model, not satisfying RDP), then no meaning can 
be attached to <x I E >. In a recursive language, the syntactical constructs <x I E > may appear in 
the construction of terms (possibly nested). This limits the class of models of the language to the ones 
satisfying RDP. 
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In most applications the variables X E Vt in a recursive specification E will be chosen freshly, so that 
there is no n~d to repeat E in each occurrence of <X I E >. Therefore the convention will be adopt­
ed that once a recursive specifications is declared, <X I E > can be abbreviated by X. If this is done, 
X is called a formal variable. Formal variables are denoted by capital letters. So after the declaration 
X=aX, a statement X=aaX should be interpreted as an abbreviation of 
<XJX=aX> = aa<XJX=aX>. 

Let E = {x = tx Ix EVE} be a recursive specification, and t a process expression. Then <t I E > 
denotes the term tin which each (free) occurrence of xEVE is replaced by <x JE> (avoiding name 
clashes). In a recursive language all formulas <x I E > = <tx I E > (with E as above and x EVE) 
may be considered provable. If the above convention is used, these formulas seem to be just the equa­
tions of E. 

Let T be an equational theory (like ACP.,.) over a signature ~ and e a ~-equation, both recursion 
free. The following notation is employed: 
T 1- e: e is provable from T in the recursion free language over ~. 
T 1= e: e is true in all ~-algebras, satisfying T. 
T + RDP 1- e: e is provable from Tin the recursive language over ~. 
T + RDP 1= e: e is true in all ~-algebras, satisfying T and RDP. 
Now Birkhofs completeness theorem for equational logic reads: 

Tl-e<==>Tl=e. 

It can be extended trivially to the case where T contains also conditional equations, and predicates 
are allowed in~. Now the following justifies the notation T + RDP 1- e. 

THEOREM 1. T+RDP 1- e ~ T+RDP I= e. 

PROOF. Omitted. 

The set 0' of closed process expressions over ~. used in section 3, is understood to contain all closed 
recursive process expressions. Recursion free process expressions are called finite. The rules for 
recursion in table 2, state that a process <x I E > behaves exactly as <tx I E >. The~ are schemes, 
ranging over all recursive specifications E = {x=txlxEVE} and all xEVE. Now AC.,. without the 
rules for recursion is sound and complete on ~omain of finite closed process expressions (with 
respect to their intended interpretation), and ACP.,. with these rules on all of o/. Note that while 

<x I E > ~ implies that any x-component of a solution of E can do an a-step, not <x I E > ~ 
does not exclude that some x-component of a solution of E can do an a-step. 

6. A TERM MODEL FOR ACP.,. + RDP 

A bisimulation is a binary relation R on o/, satisfying: 

ifpRq andp ~p', then 3q':q ~q' andp'Rq'(aEA.,.). 

ifpRq and q ~q', then 3p':p ~p' andp'Rq'(aEA.,.). 

if pRq then: p ~ y if and only if q ~ y(a EA.,.). 
p and q Eo/ are bisimilar, notation p ~ q, if there exists a bisimulation R on o/ with pRq. 

THEOREM 2. tt is a congruence on o/. 

THEOREM 3. 0>/~ is a model of ACP.,. +PR+ RDP+CA. 
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THEOREM 4. q}>/t± is isomorphic to the graph model GN, !t:t,,. of BAETEN, BERGSTRA & KLOP [2]. 

PROOFS. Omitted. 

The notion of bisimulation originates from PARK [11]. Bisimilarity is similar to the notion of observa­
tion congruence of MILNER [10] and rooted T8-bisimilarity of BAETEN, BERGSTRA & KLOP [2]. If the 

relations p .!!.:;,q and p .!!.:;, y were defined, using ACP'T without the T- laws, the corresponding ver­
sion of bisimilarity would be strong congruence, or 8-bisimilarity; if they were defined, using 

ACP'T U {x ~x}, it would be observation equivalence or T8-bisimilarity. In [10] and [2] observa­
tion equivalence or T8-bisimilarity appears as a natural equivalence, with the unpleasant property of 
not being a congruence. Then a context requirement or rootedness condition is proposed to make it 
into a congruence. This is not necessary in the present approach: bisimilarity turned out to be a 
congruence in a natural way. 

The model q}>/t:t can be used to prove that the Recursive Definition Principle holds in the graph 
model of [2]. RDP holds trivially in qj>/'=": <x I E >lt:t is the x-component of a solution of E in q}>/t:t. 
From theorem 4 it follows that it holds in the graph model also. Details are omitted here. 

Remark that the meaning of <x I E > E ~after interpretation in the model ~lt:t is different from 
the meaning of <x I E >lt:t E ~/'=". While the former denotes a class of processes, each of which is 
the x-component of a solution of E, the latter denotes a special element from this class, namely the 

one which can only do those moves .!!.:;, , whose occurrence is provable from ACP'T. 

7. BOUNDED NONDETERMINISM 

0 
Let us enlarge the signature ~ again; this time with the binary predicates ~> and the unary predi-

cates ~ y, both for a EA*. Let TEA* denote the empty string. x ~ y means that x can evolve 

into y during a period >0 in which (only) the sequence of actions a is performed. x ~> y means 
that x can terminate after a period >O in which (only) the sequence of actions a is performed. Let - __...,.,. ACP'T denote ACP'T + the rules of table 5. 

'T a 0 --4> z X~J:'. X~J:'. x ~>J:'., !'. 
'T a 

~>z x ~>y x ~>y x 

x~v x .!!.:;, v 
0 ~> v x ~>J:'., !'. 

'T a 
~> x ~> x ~> x 

Table 5 

Here a ranges over A and o,p over A*. Write p ~> q, with p,q E~ and oEA *, if ACP; 1- p 

p ~> y if ACF,. 1- p ~> y; and p ~ if either p ~ y or p ~> q for some q Eqp. 

0 
~>q; 

Define the predicates ~> on ~I t:t by: P ~> Q if there are p EP and q E Q with p ~ q. Now 

PE~/t:t"is bounded (P displays only bounded nondeterminism) if {QEq}>/t:t I P ~> Q} is finite for 
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any oEA*. The predicates Bn are defined on 61/~ by: Bn(P) if {QE'!i'/~ IP ~> Q} is finite for 
any oEA * with length <n. Of course P is bounded if and only if for all n EN Bn(P). 

THEOREM 5. 611~ I= B. 

THEOREM 6. ACP.,. +PR+ Bis a complete axiomatisation of 611~ for finite closed process expressions. 

PROOFS. Omitted. In BERGSTRA & KLoP [5], ACP.,. is proved to be a complete axiomatisation for 
finite closed process expressions, of a graph model. 

For future reference a few lemmas will be proved. A process expression p E6J is (syntactically) bounded 

if {qE6J Ip ~ q} is finite for any oEA*. Note that (q)~E6J/~ is bounded does not imply that 
q E6J is bounded. 

a 
LEMMA. If p E6J is bounded and p ~ q, then also q E6J is bounded. 

PROOF. Trivial. 

LEMMA. If PE 6J I~ is bounded, then there is a p EP bounded. 

PROOF. Associate a variable XQ to each subprocess Q of P. (Q is a subprocess of P if Q = P or 

P ~> Q for some oEA *).Write XQ = ~ a;XQ; + ~ bj (for all variables XQ) where the first sum 

; o j b 

is taken over all pairs a;XQ; for which Q 4Q; and the second over all bj for which Q -4 y. 
Together these equations form a recursive specification E and <Xp I E > is a bounded process 
expression with <Xp I E > EP. That <Xp I E > is bounded can be concluded, since P is bounded 

a a 
and <XplE> ~ q implies q = <XQIE> for some QE6JI~ with P -?> Q or 

q = T<XQ I E > for some Q with P ~> Q or q = 'T. 0 

8. FAIR ABSTRACTION 

EXAMPLE (due to F. Vaandrager): A statistician performs a simple experiment in a closed room: he 
tosses a coin until tail comes up; then he leaves the room to report success. Let p be the probability 
that, if he tosses the coin, tail comes up. Assume O<p < 1. The behaviour of the statistician is 
specified by 

S = head·S + tail·success 

Being outside the room, the only part of the process we can observe is the statistician leaving the 
room to report success. So the actions from I = {head, tail} are hidden, and the observed process is 
T1(S). Since O<p < l, the process Swill perform a tail action sooner or later, which yields the identity 

T1(S) = T·success. 

What is needed is an algebraic framework in which one can prove this equation. 
An infinite path of a process x is an infinite alternating sequence of labels a; EA.,. and processes x; 

Oo 01 02 

(iEN), such that x ~x0 ~x 1 ~x2~ •••• 

Such a pfi.th has an exit at X;(i EN) if X; ~y with either b=/=a; + 1 or y=/=x; + 1• This exit is called a 'T-
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exit if b =T. A path is called improbable if it has infinitely many exits. Now a process is said to be 
fair, if for any improbable path the probability that it will be executed is zero. In a theory for fair 
processes ther..e is room for proof rules stating that certain improbable paths may be discarded. There 
is however a problem in discarding improbable paths. If a process is placed in a context aH(·) then 
certain paths may stop to be improbable because their exits disappear. In that case they may not have 
been discarded. Thus only paths may be discarded which are improbable in all contexts. These are the 
paths with infinitely many T-exits. KF AR - is a proof rule, stating that certain paths with infinitely 
many T-exits, which are made invisible by a T1 operator, may be discarded. 

KFAR- x =ix +ry +z 

A version of KFAR- appeared first in BERGSTRA, KLoP & OLDEROG [6]. It is a restricted version of 
Koomen's Fair Abstraction Rule (KFAR), which will be discussed in the next section. 

Using KFAR- and CA the identity T1(S) = T·success from the example of the statistician can be 
derived formally: 

'T{tail)(S) = 'T{tail)(head·S +tail·success) = head·T{tai/)(S)+r·success+8, 

so T1(S) = 'T{head) 0 'T{tail)(S) = 'T"'T{head)(T·success+8) = 'T"SUccess. 

A theory, containing rules like KFAR- is only suited for the study of fair processes. For any appli­
cation it has to be checked that all processes concerned are fair indeed. The model ~I~ satisfies 
KFAR-. 

9. DEADLOCK= LIVELOCK 

EXAMPLE. Choose A ={a, b, c, hie} and H = {b,c}. Then ACP.,. I- aH(aaabllc) = aaa(blc). So 
the process c inside the encapsulated merge aH(aaabll·) waits patiently until it can communicate with 
aaab. If such a communication is not possible, deadlock occurs: 

ACP.,. I- aH(aaallc) = aaa8 

ACP.,. I- aH(aaacllc) = aaa8. 

So deadlock occurs in an encapsulated merge if not all components are terminated, and the ones 
which are not are all waiting for an opportunity to communicate. From this one learns that deadlock, 
as in aaa8, should not be interpreted as a violent crash of the system, but as an eternal sleep. 

EXAMPLE. Specify X by X=aX. Then 'T(a)(X) remains active forever (it performs a-steps), but no 
actions can be observed. This is called livelock. 

In order to distinguish deadlock from livelock one can assume that processes are noisy. The noise 
starts at the beginning of a process, and ends if the process terminates or starts waiting. If a com­
ponent in an encapsulated merge has to wait for a suitable communication it becomes silent until the 
communication is enabled, but as long as at least one component is making progress (visibly or invisi­
bly) noise is being made. Only if all components are waiting (or terminated), the process becomes 
silent. This guarantees that no further action is possible and it will remain silent forever. In such a 
semantics, deadlock is observable (silence is), but livelock is not (one can never know that from some 
moment on no visible action will be performed). In bisimulation semantics, as employed in this paper, 
processes are not assumed to be noisy, and no distinction between deadlock and livelock is made. 
This can be expressed algebraically by the rule: 
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deadlock= livelock 
x=ix 

In this rule livelock is expressed as T{i}(x), with x satisfying x =ix, and deadlock as T8. Note that 
livelock can not be expressed as a process x satisfying x =Tx, since also Ta satisfies x =Tx. Further­
more deadlock can not be expressed by 8, since in a·(b +8) no deadlock occurs. 

Equating deadlock and livelock amounts to stating that in a process invisible infinite paths without 
any exits may be discarded (leaving T8 in place). In combination with fairness this means that any 
invisible infinite path may be discarded, regardless whether it is improbable or not. This is expressed 
by Koomen's Fair Abstraction Rule: 

KFAR 
x =ix +y 

The rule deadlock=livelock can be obtained from KFAR by substituting y=8. KFAR- can be 
obtained by substituting y = ry + z. In BAETEN, BERGSTRA & KLOP [2], KFAR is shown valid in the 
graph model GN, I-=,, •. Therefore it also holds in the isomorphic model 6.YI-=. 

10. CONSISTENCY, SAFETY & LIVENESS 

Writep -P> ifp ~for no aEAT. Let a= <a0 a 1a2 ••• >EAw be an infinite string of actions a;EA. 
a ~ a0 a, a2 

Write p ~> if there are p; E6.Y (i EN) such that ACPT 1- p ~ p 0 ~ p 1 -~ •••• 

p is divergent, notation pj, if there are p; E6.Y (i EN) such that concrete ACPT I- p ~Po ~p 1 ~ •••• 
Now the following sets of traces of a closed process expression p E6.Y can be defined: 

its unfinished traces: 

its termination traces: 

its deadlock traces: 

its finite traces: 

its finite traces with 8: 

its infinite traces: 

its divergence traces: 

its livelock traces: 

its deadlock/livelock traces: 

its complete traces with 8: 

its fair traces with 8: 

its fair traces: 

u-tr(p) 

y-tr(p) 

8-tr(p) 

Tr(p) 

Tr6(p) 

w-tr(p) 

j-tr(p) 

'A-tr(p) 

8'A-tr(p) 

Trc13 (p) 

Trfl(p) 

Trf(p) 

= {aEA *Ip ~> } 

= {ayl p ~> y} 

= {a81 3qE6J: p ~> q -P>} 

= u-tr(p) U y-tr(p) 

= u-tr(p) U y-tr(p) U 8-tr(p) 
a = {aEA"'I p ~>} 

= {a EA* I 3qE6J: p ~> q & qi} 

= {aEA* 1 3qE6.Y:p ~> q & Tr 13 (q) = {T}} 

= {aEA *I 3qE6.Y: p ~> q & Tr(q) k {T}} 

= w-tr(p) U y-tr(p) U 8-tr(p) U j-tr(p) 

= w-tr(p) U y-tr(p) U 8-tr(p) U 'A-tr(p) 

= w-tr(p) U y-tr(p) U 8>..-tr(p) 

Notice that 8'A-tr(p)8 = 8-tr(p) U 'A-tr(p)8 and that 'A-tr(p) k j-tr(p). 
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The finite traces of p (with S, if deadlock is considered observable, see section 9) are exactly those 
sequences of actions, which can be recorded in a finite time, during a run of the process. Its fair traces 
(with S) are exactly those sequences which can be recorded in an infinite time (assuming fairness). A 
theory T is said to be: 

trace consistent if T I- p = q ~ Tr(p) = Tr ( q) 
&-consistent if TI- p =q ~ Tr6(p) = Tr6(q) 
c6t-consistent if TI- p =q ~ Trc6(p) = Trc6(q). 
f6t-consistent if TI- p =q ~ TrfO(p) = Trfl(q) 
ft-consistent if TI- p =q ~ Trf(p) = Trf(q) 

Only cSt-consistency is violated by the use of fair abstraction. Equating deadlock and livelock violates 
61- cSt- and JOI-consistency. Deadlock behaviour (possibly together with livelock behaviour) is 
preserved by any theory which is either St-consistent or ft-consistent. On the domain of finite closed 
process expressions &-consistency and ft-consistency coincide (since livelock cannot be expressed by 
finite process expressions). Therefore a theory is called consistent if it is &-consistent on the domain of 
finite closed process expressions. Thus a theory T is consistent itf T 1- p = q implies: 

(i) p ~> y if and only if q ~> y 
(ii) p ~> p' -h if and only if q ~> q' -h 

for any pair of finite closed process expressions p and q. This notion was called 'trace consistency' in 
BERGSTRA, KLoP and OLDEROG [6]. A theory T with TI- T=T+TS for instance is inconsistent. In this 
paper process theories are required to be consistent. In figure 4 the implications between the various 
notions of consistency are displayed. 

ft-consistency 
fSt-consistency / j "". 

\ consistency trace consistency 
c6t-consistency , \ I / 

"-.... St-consistency 

fig. 4 

As remarked earlier, a process expression p E <ii> can be regarded as a specification of a process. 
Another process expression q E<!P meets this specification if p and q have similar properties in some 
sense. A useful theory T should have the property that T 1- p = q implies that q meets the specification 
p. In order to make this more precise, the notions of safety and liveness are frequently used in the 
literature. Roughly, safety means that something bad cannot happen, while liveness means that some­
thing good will eventually happen. In this paper these notions will be formalised as follows: 

Let B C A* U A* y U A* S be an arbitrary set of unfinished traces, termination traces and 
deadlock traces, representing the bad. Then B can happen to pE<!P if Tr6(p)nB=j=0. 
B can in no way happen to pE<!P if Tr6(p)nB= 0 and there is no aSEB with <JEA-tr(p). If T 1- p =q 
and there is a B which can happen to q, but in no way top, then T is said to violate safety. Note that 
safety is implied by &-consistency and ft-consistency and implies consistency and trace consistency. 

Let G C A* U A* y be an arbitrary set of unfinished traces and termination traces, representing 
the good. Then G will eventually happen top E<!P if any complete trace of p has an element of Gas ini­
tial part. G will eventually happen top E<!P, assuming fairness, if any fair trace of p has an element of 
G as initial part. If T I- p = q and there is a G which will eventually happen top, but does not have to 
happen to q, not even if fairness is assumed, then T is said to violate liveness. Note that liveness is 
implied by c6t-consistency and .ft-consistency. 

ExAMPLE. If TI- T=T+T"', where T"' is an abbreviation of T{i}(<x Ix =ix>), then Tcan be safe, but 
it violates liveness: at the right hand side the good thing y does not have to happen eventually. ,, 
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11. THE APPROXIMATION INDUCTION PRINCIPLE 

The Appro:xiniation Induction Principle (AIP) is the infinitary rule 

saying that a process is fully determined by its finite projections. It follows if one choses to identify 
processes that can not be distinguished by their finite observations. As demonstrated already in BAE­
TEN, BERGSTRA & KLoP [2], AIP does not hold in the graph model GNJ~ .... which is isomorphic to 
the term model <?PI~ of section 6: 
Let ~ an betheprocess(<x lx=xa+a>~ E 'ff/~ and a"'= (<x lx=ax>)~ E 'ff/~. 

n>O 

Then AIP I= ~ an = ~ an +a"' but not ~ an ~ ~ an +a"' (see figure 5). 
n>O n>O n>O n>O 

a a a a 

a a a a a a a 

a a a a a 

a a a 

fig. 5 

Hence it seems worthwhile to look for another model of ACP.., in which AIP is valid. However, such 
an attempt can only succeed at the expense of RDP, CA or KFAR. 

12. THE INCONSISTENCY OF BPA* + RDP + AIP + CA+ KFAR 

In this section it will be proved that the combination of RDP, AIP, CA, and KFAR is inconsistent on 
top of ACP7 +PR. Since the operators II, lL I and an are not involved in this proof, the result can 
be formulated more sharply. Let BPA* be the subtheory of ACP7 +PR consisting of the axioms A, T, 
TI, and PR of table 3. Assume that the alphabet A contains at least two different actions a and b. 

THEOREM 7. BPA* +RDP+AIP+CA+KFAR 1- T = T+ra. 
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PROOF. Declare the following recursive specifications: 

Xk=aXk+I +bk (k>O) Y=bY Z=aZ+T 

Now the theorem follows from the following 6 lemmas: 

I. T{b}(Xi) = z 
II. T{a}{Z) = T 

III. T(a,b}(X1) = T 
IV. T(a}(X1) = T(a}(Xi)+ y 
v. T(b}(Y) = TB 
VI. T(a,b}(X1) = T+T8 

adl. T(b}(Xk) = aT{b}(Xk+i)+T (for k>O). With induction on n ·it can be proved that 
'ITn(T(b}(Xk)) = 'ITn(Z) {for n EN and k>O): 

Induction Basis:'IT0(T(b}(Xk)) = '1T0(aT(b}(Xk+i)+T) = B+T = 'ITo(aZ +T) = 'ITo(Z). 

Induction Hypothesis: 'ITn(T(b}(Xk)) = 'ITn(Z) 

Induction Step: 'ITn+1(T(b}(Xk)) = 

'ITn+1(aT(b}(Xk+i)+T) = 

a'ITn(T{b}(Xk+i))+T = (by induction hypothesis) 

a'ITn(Z)+T = 'ITn(aZ +T) = 'ITn(Z). 

Thus T(b}(Xk) = Z, using AIP. 

adII. This is an instance of KF AR; even of KF AR - . 

adIV. This follows from AIP, since it can be proved that 'ITn(T(a}(Xk)) = 'ITn(T{a}(Xk)+ Y) for n EN 
and k>O. 

Case 1. k > n. '1Tn°T{a}(Xk) = 'ITn°T(a}(aXk+I +bk)= 

'ITnoT{a}(aXk+I +bk +bk)= 'ITnoT(a}(Xk+bk) = 
'1Tn°T(a}(Xk)+bn8 = 'ITn(T(a}(Xk)+ Y). 

Case 2. k ~ n. Use induction on n - k: 

'ITnoT(a}(Xk) = 'ITnoT(a}(aXk+I +bk) = 
T•'JT n °T( a} (Xk + i) +bk = (by induction hypothesis) 

T['ITn(T(a}(Xk+1)+ Y)]+bk = (using TI) 

T['ITn°T(a}(Xk+J)+bn8]+bk +bn8 = (same way back) 

'1Tn°T{a}(Xk)+bn8 = 'ITn(T(a}(Xk)+ Y). 

adV. V is an instance of KF AR; this time of deadlock = livelock. 

adVI. T{a,b}(Xi) = T(b} 0 T(a}(X1) = T{b}(T(a}(X1)+ Y) = T{a,b}(X1)+T{b}(Y) = T+T8, using CA 
and III. 0 
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To illustrate the proof, the process graphs of X1' T{b}(X1), Z,T{a}(X1) and T{a}(X1)+ Y are presented 

in figure 6. · 

II 

a 

II i'lbl 
a(L_. 

t{a} ..,._ t = t+t8 

fig. 6 

13. ALL INGREDIENTS OF THIS INCONSISTENCY ARE REALLY NEEDED 

A model M is said to be 
ft-consistent if M 1= p =q ~ Trf(p) = Trf(q) for p,qE'?P 
8t-consistentifM1=p=q ~ Tr8(p) = Tr8(q)forp,qE'?P 
consistent if M 1= p =q ~ Tr8(p) = Tr8(q) for p,qE'?P finite. 

Remember that for finite p E'?P, Tr8(p) and Trc(p) provide the same information. Trivially the follow­

ing holds: 
M is ft-consistent ~ M is consistent 
M is 8t-consistent ~ M is consistent 
M is consistent and M 1= T ~ T is consistent. 

Now the consistency of a theory can be proved by giving a model which is either ft-consistent or &­

consistent. 
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THEOREM 8. BPA* + RDP+CA+ KFAR is consistent. 

PRooF. From .theorem 3 in section 6 and the last line of section 9 it follows that: 

ifJ>!'=" 1= BPA*+RDP+CA+KFAR 

>From the definition of bisimulation it follows trivially that ifJ> I'=" is .ft-consistent. D 

THEOREM 9. BPA* +AIP+CA+KFAR is consistent. 

PRooF. QEifJ>I'=" is a subprocess of PEifJ>/'=" if P ~ Q for some oEA*. PEifJ>I'=" is regular if it has 
only finitely many subprocesses. The domain 'iill '=" <;;; ifJ> I'=" of regular processes is closed with respect 
to the operators of l:. Furthermore all its elements are bounded. Thus from theorem 15 of section 15 
it follows that: 

'iill'=" 1= BPA* + AIP+CA + KFAR. 

>As for if}>/'=', it follows from the definition of bisimulation that 'iil/'=" is .ft-consistent. D 

THEOREM 10. BPA* + RDP+ AIP+CA is consistent. 

PROOF. In BERGSTRA, KLoP & OLDEROG [6] a model GNJ::A of BPA* is constructed, clearly satisfy­
ing AIP and CA. Although this model uses a domain of finitely branching process graphs, it also 
satisfies RDP. A proof of this fact is outside the scope of this paper, but a sketch of a proof follows. 

Any recursive specification has a solution in ifJ>/'=", which translates easily into a process graph (see 
section 6). Wherever this graph is infinitely branching, this originates from unguarded recursion (this is 
for insiders; a definition of guardedness is left out). Now the addition of an action rule 

<x I E > 4 <x I E > for any recursive specification E with x unguarded in E, leads to a similar 
graph, which has a r-loop at all its infinitely branching nodes. These r-loops can be replaced by 
infinite r-paths, in such a way that the graph becomes finitely branching. The corresponding process is 
only the x-component of a solution of E in failure semantics, as employed in GN.i I =A. 

GN/::A I= BPA* +RDP+AIP+CA 

>Note that the various notions of consistency, safety and liveness are defined in terms of action rela­
tions. Therefore they depend on the chosen set of action rules. From its definition it follows that 
GNJ::A is &-consistent w.r.t. the extended set of action rules. For finite closed process expressions this 
is the same as &-consistent w.r.t. Act. Hence GNJ =A is consistent. D 

THEOREM 11. BPA* + RDP+AIP+ KFAR is consistent. 

PROOF. Two closed process expressions p and qEifJ> are finitely bisimilar, notation p~.,q, if 
TTn(p )~7Tn(q) for all n EN. ~., is a congruence on ifJ> for all operators of~. except for r1• Now define 

a a ____,,. 
the closed action relations ~cl and ~c1V on ifJ> as the relations generated by ACP,. and the rules 
of table 6. 

.....+ a 
p-.,q, p ~r .....+ a • I p-.,q, p ~ v 

~r 

Table 6 
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Here a ranges over A.,. and p,q,r over <?Jl. With the help of these relations closed bisimilarity 
ttc1 c:; <?P X <?P can be defined as tt in section 6. 

CONJECTURE: ttcl is a congruence on '!P and '!P!t:td I= BPA* + RDP+ AIP+ KFAR. 

>As before <?P!t:td is ft-consisten~t this time w.r.t. ~cl· For finite closed process expressions this is 

the same as ft-consistent w.r.t. ACP.,.. Hence <?P!t:td is consistent. However, CA is not valid in this 

model, since, using the process X, of section 12, 'T{a} 0 'T{b}(X1) = 'T, while 'T{b} 0 'T{a}(X1) = 'T(T+T8). D 

14. BPA* + RDP + AIP + CA+ KFAR- VIOLATES LIVENESS 

In the proof of theorem 7, the equation of deadlock and livelock plays a crucial role. If KF AR is 
replaced by the weaker proof rule KF AR - , only expressing fairness, the inconsistency disappears: 

THEOREM 12. BPA*+RDP+AIP+CA+KFAR- is consistent. 

PROOF. The model GK/=· of BERGSTRA, KLOP & OLDEROG [6] satisfies KFAR-. 

GK/=· I= BPA* +RDP+AIP+CA+KFAR­

> As for GK. I=• it follows that GK. I=· is consistent. D 

However this theory has another disadvantage, it violates liveness: 

THEOREM 13. BPA*+RDP+AIP+CA+KFAR- I- 'T = T+'T"'. 

PROOF. As in section 12, but without using Lemma V, it can be proved that 'T = T+'T{b}(Y), where 
'T{b}(Y) can be written as 'T"' (see section 10). D 

At first sight it seems natural to blame AIP for this violation of liveness, since it identifies the 
processes ~ an and ~ an +a"', mentioned in section 11, whereas the first one has to terminate even-

n>O n>O 
tually while the second one does not have to. However, also for this violation all ingredients of 
theorem 13 are really needed: 

THEOREM 14. None of the theories of section 13 violates liveness (w.r.t. their own action rules). 

PRooF. In fact all models of section 13 respect liveness (w.r.t. their own action rules). For the models 
'!P!t:t, 0llt:t and '!P!t:td this is trivial, since they are ft-consistent (w.r.t. their own action rules). Thus 

consider the model GK/=·. From section 10 it follows that GK/=· respects liveness if 

GK. I=• 1= p = q implies that p and q have the same complete traces with 8. Moreover the complete 

traces of a process, which have another complete trace of that process as initial part, may be skipped 
for this purpose. So suppose GK. I=• I= p = q. Call a complete trace minimal if it has no other complete 

trace as initial part. It has to be proved that p and q have the same minimal complete traces with 8. 
Let g,h be the process graphs of p,qE<?P. Then 'ffa(g) = 'ffa(h) (see [6]). Thus 

u-tr(p) = u-tr(q) (from FI, F2 and F4 in [6]) and hence, using Konig's lemma, since GK. is 

finitely branching, any infinite trace of p has an initial part in w-tr(q) U j-tr(q) and vice versa. 
y-tr(p) = y-tr(q) (from F3). 
8-tr(p) = 8-tr(q) (from FI, since 8-tr(p) = { a8 I (a,A U { y})E'ffa(g)} 
p and q have the same minimal divergence traces (from F4, since the minimal divergence traces 
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of a process are the same as its minimal subdivergence traces). 
Hence p and q have the same minimal complete traces with 8, and GN

0 
I=· respects liveness. 0 

The problem around the identification of ~ an and ~ an +a"' and the resulting violation of live-
n>O n>O 

ness is resolved differently in the mentioned models: 
in 'S'I<:::± the processes are not identified, since AIP is not valid. 
in '3ll <:::± the processes do not exist. 
in 'S'l<:::±d only the (closed) process ~an +a"' exists and ~an is just an unusual name for 

n>O n>O 
~an +a"': also ~ an has an a"'-trace and termination does not have to happen eventually. 

n>O n>O 
in GN/ =· they are identified, but since both are divergent (see the proof of theorem 10) no 
good has to happen to any of them. 
in GN/=· liveness is violated anyway. 

15. THE VALIDITY OF AIP-

In this paper a model 'S'I<:::± of ACP ... has been constructed, satisfying RDP, CA and KFAR, but not 
satisfying AIP. In the sections 12 and 14 it is shown that the price of changing this model in such a 
way that AIP holds is rather high: 

either RDP has to be dropped, in which case a lot of interesting processes can not be defined 
anymore, 
or CA has to be dropped, which makes the model very unnatural, 
or KF AR has to be dropped entirely, which makes for instance protocol verification with chan­
nels that can make errors almost impossible, 
or KF AR has to be replaced by KF AR - , in which case only safety properties of protocols can 
be verified, and no liveness properties. 

Therefore another strategy will be pursued: to find a restricted version of AIP, valid in the model 
'5'/<:::±, whose computational possibilities approximate those of AIP as close as possible. This was first 
done in BAETEN, BERGSTRA and KLoP [2]. In table 3 of the present paper, a simpler and less restric­
tive version of AIP, called AIP-, is proposed. For this reason the predicates Bn were introduced. 
Now it remains to be proven that 'S'I<:::± 1= AIP-. 

The proof below can be viewed as a reconstruction of the proof of BAETEN, BERGSTRA & KLoP [2], 
that a more restrictive version of AIP- holds in the graph model GN, I<:::±,,., which is isomorphic to 
'5'1<:::±. It makes use of the lemmas of section 7. As a corollary it follows that all rules of table 3 are 
satisfied by '5'1<:::±, and that ACP ... +PR+B+RDP+AIP- +CA+KFAR is consistent and respects 
liveness. 

THEOREM 15. 'S'I<:::± I= AIP-. 

PROOF. Let P,QE'S'I<:::±, Bn(Q) for nEN and V'nEN: 7Tn(P) = wn(Q). It has to be proved that P=Q. 
Take pEP and qEQ, such that q is bounded. Then V'nEN: wn(p) 'd wn(q). It suffices to prove that 
p 'd q, i.e. that there is a bisimulation R on 'fY with pRq. 
CLAIM: R can be defined by: pRq if V'n: wn(p) 'd wn(q) and q is bounded. 

Suppose pRq and p .!!..:;,p' (with a EA ... ). Then put Sn = {q* E'S'j q .!!..:;,q• & wn(p')'dwn(q*)}, 
and remark that 
I. So ;J S1 ;J S2 ;J ... , since 7Tn+1(p')'d7Tn+1(q*) implies 7Tn(p')'dwn(q*). 
II. Sn =I= 0, for nEN, since 7Tn+1(p)'d7Tn+1(q). 
III. Sn is finite, for n EN, since q is bounded. 
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oo oo a 
From these observations it follows that n Sn =/:= 0. Choose q' E n Sn, then q ~q' and 

· n=O n=O 

p'Rq'. 

Suppo~e pRq and q ~q' (with a EA.,.). Then put Sn = {p* E<!j>I p ~p* & '1Tn(p*)~'1Tn(q')}, 
and remark that S 0 -;;;J ••• and Sn=/:= 0 for nEN (as above). 

Now, for n EN, choose Pn ESn. By the first part of this proof, there are qn E<!j> with q ~% and 

PnR%. But since q is bounded, there must be a process q* in the sequence q0 ,ql>q2, ••• occur­
ring infinitely many times. Let I = { n EN lpnRq *} and choose i El. It suffices to prove that 

p;Rq'. Let nEN, then an mEI exists with m>n. So '1Tn(pm)~'1Tn(q'), since PmESm C Sn. 

Furthermore PmRq* and p;Rq*, so '1Tn(p;)~'1Tn(q*)~'1Tn(pm)~'1Tn(q'). This holds for any n EN, 
thusp;Rq'. 

If pRq then: p ~ y <=;> '1T1 (p) ~ V <=i> '1T1 ( q) ~ V <=i> q ~ Y· 
Thus R is a bisimulation and the theorem is proved. D 
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