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On the values of a function related to Euler's gannna function 

by 

J. van de Lune & M. Voorhoeve 

ABSTRACT 

In this note it is shown that the meromorphic function 

f3(s) := l: =O(-l)n/(s+n) assumes every complex value infinitely many times. 
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O. INTRODUCTION 

Section 40 of NIELSEN's Handbuch der Theorie der Gammafunktion 

[4;pp. 101-102] is devoted to the (possible) zeros of the meromorphic 

function 

Since 

and 

00 
(-l)n 

B(s) := l -------- , s =a+ it Et\ {0,-1,-2,~3, ••• }. 
n=O s+n 

B(s) > 0 for s > 0, 

1 
B(s-1) = s-l - B(s), 

B(s-2) = 1 + B(s), 
(s-1) (s-2) 

it is clear that for every n E JN0 := {O, 1,2,3, ••• } we have 

B(s) < 0 if - 2n-- 1 < s < - 2n 

and 

B(s) > 0 if - 2n - 2 < s < - Zn - 1, 

so that B(s) has no real zeros. 

As to the (possible) complex zeros of B(s) Nielsen shows that, in case 

of existence, they must lie in the half-plane Re(s) < - ½ and then states: 

"Es ist mir nicht gelungen allgemein zu beweisen, dass B(s) ••• wirklich 

komplexe Nullstellen hat; doch halte ich dies fiir wahrscheinlich". 

In addition Nielsen recalls a claim by SCHLOMILCH [5] that B(s) does 

not assume the value - 1, whereas CLAUSSEN [1] gave the numbers 

5794 + i *. 6950 and - 2.51 + i *. 63 as approximate solutions of the 

of the equation B(s) = - I. 

In this note we shall clarify these matters by showing that B(s) assumes 

every complex value infinitely many times and we conclude this note by pre­

senting a number of roots of the equations 



13 ( s) = 0 , 13 ( s) = I , 13 ( s) = - I , 13 ( s ) = 1 and 13 ( s ) = - i. 

I • PRELIMINARIES 

We recall that (cf.[6;p.22I]) 

1T I ---= -+ sin 1rs s 
00 2s \' (-I)n -- = 
l 2 2 

n=I s -n s 

so that 13(s) satisfies the functional equation 

13(s) + 13(I-s) = 1T 

sin 1rs 

From this it follows that 

00 

(I.I) 
1T 

13(s) = --­sin 1rs - I ( I 
2n-s-I n=I 

Hence, for a := Re(s) < I, we may write 

00 

_I_) 
2n-s · 

+ 

13(s) = 1T ~ J -( 2n-s- I ) x 
. - l { e dx -

sin 1rs n=I 
0 

so that 

( I • 2) 13(s) = 1T 

sin 1rs r ::: 
0 

dx , a < I • 

00 

l (-I )n{_I_ + 
s-n n=I 

} , 
s+n 

I e-(2n-s)x dx} , 

0 

In section 2 we will use this formula in order to show that the equation 

13(s) = c0 , c0 # O, has infinitely many solutions. 

REMARK. For u > 0 we obtain from (I.I) that 

00 

(I. 3) 13(-u) = 
1T 

sin 1ru - I 
n=I (2n+u-I) (2n+u) 

so that 

I 13 (-u) I > 1T - log 2 ( > 2. 448) , u > 0, 

2 
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a result somewhat more precise than saying that S(s) has no zeros on the 

negative real axis. 

Since 1T is periodic and S (I +u) decreasing on 
+ 

it is easily sin 1ru 1S lR 

seen that S( -u) I is minimal on ]R.+ 1n the interval ( l, 2). The function 

S(l+u) is easily computed by means of Euler's transformation of alternating 

series (cf. FICHTENHOLZ [2;Vol.II,p.401]) and we found that 

I S(-u) I, l < u < 2, is minimal for u = l, 498 400 476 330 ••. with minimal 

value 2. 988 658 431 004 

From (1.2) we obtain by integration by parts 

00 

S(s) = 'IT 

sin 'ITS 
+ 

s 

In section 3 we will use this formula in order to show that the equation 

S(s) = 0 has infinitely many solutions. 

2. THE EQUATION S(s) = c0 with c0 # O. 

We consider the equation S(s) = c0 , s =a+ it, where c0 is a complex 

constant different from 0. By (1.2) this equation is (for a< l) equivalent 

to 

00 

f(s) := 1T 

sin 1rs dx = 0 . 

Since the function sin (.) assumes every (finite) complex value (infinitely 

many times) (cf .[fr; p. 323]), the periodic function 

<P(s) := 1T 

sin 'ITS - co 

has infinitely many zeros of the form s0 - 2n, where s 0 Ea is fixed and 

is an isolated zero, there exist d > 0 and r > 0 such that 

for all 6 E lR so that due to the periodicity of <P(s), 

~ d for all n E :IN0 and all 6 E lR . 



Since, for a< 1, 

00 

I 
0 

ax 
e 

dx < 

4 

1-a 

it follows from Rouche 's theorem that f(s) has infinitely many zeros in the 

half plane a< O, proving that the equation 8(s) = c0 , with c0 # 0, has in­

finitely many solutions. 

3. THE EQUATION 8(s) = 0 

From section 1 it is clear that we may restrict ourselves to the half­

plane rJ < 0 and, since 8(s) = 13(s) , we may also assume that t > 0 • 

We recall the following theorem of HURWITZ (cf.[6;pp.156-157]): For 

n e: lN let F (s) be analytic in an open set A c Gl and let F (s) -+- F(s), 
n n 

uniformly in every compact subset of A as n-+- 00 , F(s) not being identically 

zero. Then a (finite) point s0 e: A is a zero of F(s) if and only if it is an 

accumulation point of the set of zeros of the functions F (s), points which 
n 

are zeros for an infinity of values of n being considered as accumulation 

points. 

By means of this theorem we now prove the following 

LEMMA. Let G be a aompaat set int with interior GO# 0. Let the funations 

~(s), h (s) and ~(s) be analytia on GO and aontinuous on G, and asswne that 

~(s) is not identiaally zero. 

If for some positive aonstant p, l~(s) If p for alls e: a G (:=the bounda.r>y 

of G) and if ~(s) + A h(s) has at least one zero in GO but not on a G for all 

A satisfying IAI ~ p, then ~(s) + h(s) ~(s) has at Zeast one zero in G. 

PROOF. Suppose the lemma is false. 

We consider 

f 8 (s) := Hs) + e h(s) ~ (s) 

for 0 > 0 ands e: G. = 
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Clearly f O(s) = cj>(s) has a zero in GO and hence in G, whereas by assumption 

f 1(s) = cj>(s) + h(s) ijJ(s) has no zeros in G. Define eO as the infimum of 

all positive e such that f 0(s) has no zeros in G. Using the theorem of 

Hurwitz mentioned above we conclude that eO > O. 

We now claim that feO (s) has a zero on a G. If not, then f 00 (s) t O and we 

have, for some positive constant d, I feO (s) I ~ d on a compact strip Sc G 
CX) 

around a G .. Now choose an increasing positive sequence {en}n=I tending to 

eO and note that f6n (s) tends uniformly to f 60 (s) on Gas n • CX>, Since 

lf 0 (s)J::::: d >O on S there must be an nO E JN such that f 6n(s) :i O on S for 

all On > nO • Since f 6 (s) has at least one zero in G, the zeros of f 6 (s) 
n n 

must lie in G\S for n > nO • It follows (again by Hurwitz's theorem) that 

f 60 (s) has a zero in Go. From this it is clear (by Rouche's theorem) that 

for all 6 which are slightly larger than eO , the functions f 0(s) must also 

have a zero in Go. Since this contradicts the definition of eO , our claim 

has been proved. 

Hence, there exists s 1 Ea G such that 

Defining "o := eo 1/J(sl) we have I "o I$ I eo 1•11/J (sl) I$ I. p = p and the 

function cj>(s) + >.. 0 h(s) has the zero s 1 Ea G. This contradiction proves the 

lennna. D 

We will apply this lennna to the functions 

cj> (s) 7T + := sin 2s ' 7TS 

h(s) := s 

and _ j • (s+I )x 
1/J(s) := dx 

0 (ex+l)2 ' 

with a= £ 0 and G = Ri' where £ 0 is some sufficiently small positive constant, 

whereas, for any i E JN, R. is some closed rectangle to be specified in what 
i 

follows. 
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Let £0 be a fixed small positive number and consider the equation (ins) 

(3. 1) 1T +·_1 _ _ , _1_ O 
• A = , 

Sl.n 1TS 28 S 

where JAi s EO ands= cr +it.Define cA =A-½ and take EO so small that 

jarg(""'."q)I s 3€0 • Since the above equation has infinitely many solutions 

(cf.[6; p. 323]) there must be infinitely many with arbitrarily large absolute 

value. We only pay attention to those with negative real part and positive 

imaginary part. 

As to the location of these solutions we note that 

so that 

= sin ,r s 

-,rt 1TO i 
= e e 

,rt -,rcr i 
- e e 

from which we infer that 

so that 

(3. 2) log 11! s I .?: _1 log 1T lcrl 
1r lcAI 1r ½+Eo 

Note that it follows that tis not bounded. Similarly we find that 

t :$ log ( 2,r Is I + 1) , 
1T lcA I 

from which it is easily seen that for large Isl we have t < lcrl and hence 

t s _1 log ( 4,r I cr I + 1 ) • 
1T 1-g 

2 0 

(3. 3) 

It is clear now that the solutions of our equation (3.1) lie in a rather 

narrow strip described by (3.2) and (3.3) and that for s in this strip 
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a.rg (s) -+ 1T as Is I -+ 00 • 

As to the horizontal distribution of these solutions we note that 

for large positive t 

and that 

arg(sin ,rs) = arg 
-,rt 1rcri ,rt -1rcri e e -e e 

2i 

~ - .2!.. + 1T - ,rcr + 2k 1T for some k E 2'l 
2 

arg = arg s - arg cA ~ 0 

when e0 is small. 

It follows that (uniformly) cr ~ -2k + ½ for some k E 1N if t is positive and 

large and if e0 is small. Hence, all solutions s = cr + it, with sufficiently 

large t > O, and cr < 0 also lie in vertical strips of the form 

- 2k+ ½- ! < cr < - 2k+ ½+!,with k E lN, if IAI :$; e0 and e0 is small enough. 

Compare MAGNUS et al. [3; pp.17-18]. 

From these considerations it follows that we may construct infinitely 

many disjoint closed rectangles R. in cr < 0 all of which contain solutions 
]. 

of our equation (3.1) in their interiors and not on their boundaries. 

Since for cr < -

00 

f (s+l)x 
11/1 ( s) I = I e dx I :$; 

(ex+l)2 
0 

· 1al+ 1 

it is clear that, if lcrl is large enough, our lemma may be applied as an­

nounced above, proving that the equation S(s) = 0 has infinitely many so-

lutions. 

4. SOME NUMERICAL DATA 

As indicated in Section I, there exist excellent methods of computing 

S(s) to a very high degree of accuracy. Utilizing two different methods 

we found (by means of Newton-approximation) the following approximate so­

lutions of the equation S(s) = c, for c = 0,1,-1, and i. 



Some solutions of $(o+it) = 0 

a 

- 1. 346 516 

- 3. 403 159 

- 5. 427 952 

- 7. 442 089 

- 9. 451 307 

Some solutions of e(o+it) = 

a 

- 1. 485 081 

- 3. 495 174 

- 5. 497 670 

- 7. 498 637 

- 9. 499 107 

Some solutions of e(o+it) = -

a 

579 415 

- 2. 512 233 

- 4. 504 305 

- 6. 502 149 

- 8. 501 281 

Some solutions of 6(o+it) = i 

a 

- 1. 073 106 

- 3. 039 841 

- 5. 026 586 

- 7. 019 818 

- 9. 015 763 

t 

1. 055 160 

1. 258 497 

1. 382 406 

1. 471 712 

1. 541 528 

t 

• 506 698 

• 537 892 

• 549 989 

• 556 361 

• 560 284 

t 

694 980 

632 787 

610 889 

601 088 

595 611 

t 

• 558 394 

• 583 444 

588 698 

590 528 

591 362 
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Finally, from the solutions of B(s) = i we obtain those of B(s) = -i by 

observing that S(s) = B(s) and i = -i. 
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