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*) 
Exceptional presentations of three generalized hexagons of order 2 

by 

Arjeh M. Cohen 

ABSTRACT 

Exceptional presentations of the generalized hexagon of order (2,1) on 

21 points in the complex projective plane and of the dual of the classical 

generalized hexagon of order (2,2) on 63 points in the quaternionic projec

tive plane are known. In this note, a third presentation of this kind is 

described, namely that of the (unique) generalized hexagon of order (2,8) 

on 819 points in the octonionic projective plane. 

The construction employed leads to an embedding of the finite group of 

Lie type 3n4 (2) in the Lie group of type F4 (1R). 

KEY WORDS & PHRASES: generalized hexagons, 3n4 (2), octonionic projective 

plane 

*) This report will be submitted for publication elsewhere. 





1. PECULIARITIES OF THE OCTONIONS 

Let© be the real division algebra of the octonions (also called octaves 

or CayZey numbers). Choose an :IR-basis e0 = 1, e 1 , ••• , e7 such that multi

plication in ID is determined by the rules 

(1) 

and 

(2) 

2 
e. = -1 

l. 
(i = 1,2, ••• ,7) 

whenever (ijk) is one of the 3-cycles (l+r,2+r,4+r), 

where i, j, k, r run through the integers modulo 7 

and take their values in {1,2, ••• ,7}. 

The anti-automorphism x ~ i of order 2 defined by 

7 
(3) X = l;, -0 I 

i=l 
l;.e. 

l. l. 
whenever x = 

7 
I 

i=O 
l;,.e. E 0 

l. l. 

is called conjugation. The real part Re(x) of an element x of O, is given by 

(4) 1 -Re (x) = 2 (x+x) • 

We recall that© is nonassociative and satisfies the following equations 

for x,y,z E ©: 

(5) x(yx) = (xy)x (hence also denoted by xyx) 

(6) x(yi) = (xy)i (hence also denoted by xyi) 

(7) (zxz)y = z(x(zy)) and y(zxz) = ((yz)x)z 

(8) (zx) (yz) = z(xy)z 

(9) x(xy) 2 and x<xy> cix>y = X y = 



2 

For more details and an excellent introduction, the reader is referred to 

[7] or [8]. 

We shall need a particular element of~: 

(IO) 
1 7 

a= z I 
i=O 

e. 
l. 

and a particular subset of (I): 

(11) Q = {-e.,e. Ii= 0,1, ••• ,7}. 
l. l. 

The following relations hold ford E Q: 

ada + a = -2dad 1 if Re ad I ada -2d - a = 
(12) 

ada + a = -2<l 
} if Re ad 

ada - a = 2dad 

1 
= -2 

1 
= -2 

The stabilizer in Aut (I) of Q is denoted by C. This group is known (see [4], 

[7]): 

(13) C = <(1234567),(124)(365),o-{1 2 4 7}(12)(46)>, , , , 

where a permutation TT stands for the JR-linear transformation induced on (I) 

by the permutation ei i+ eTT(i) (i = 0,1, ••• ,7) and a; for Ks {0,1, ••• ,7} 

stands for the JR-linear map sending e. to -e. whenever i EK and fixing e. 
l. l. l. 

if ii K (i = 0,1, ••• ,7). 

C is a nonsplit extension of a (diagonal) group of order 23 by PSl2 (7). 

Thus Chas order 26.3.7. The stabilizer in C of a, denoted by c0, is a non

abelian group of order 21: 

(14) c0 = <(1234567),(124)(365)>. 

The set (Qa)Q will be used frequently in the sequel; we record some of its 

properties here: 



(15) (Qa)Q = C(a) u C(-a) 
7 7 

= { 21 I £ • e. I £ • E { - I , I} ; . no £ • = I }. 
i=O ii i i= i 

Let c,d,e,f E Q. Then 

(16) (ca)d = (ea)f =0- c = ±e and d = ±f 

(17) c(da) E Qa 

(I 8) (ac) (cd) E (Qa)d 

(19) (Qa)~ = Q(ad) 

By use of c0 and C, the verification of these equalities may be reduced to 

a slight amount of work. Details are omitted here. 

2. THE EXCEPTIONAL JORDAN ALGEBRA J[ 3 (lF) 

Let lF be a division subalgebra of©. The exceptionaZ Jordan aZgebra 

3 

J[ 3 (]F) is defined on the set of 3x3 hermitian matrices (with respect to con

jugation) over IF. Its multiplication is given by 

(20) Ao B = 1 (AB + BA) (A, B E J[ 3 (lF)) 

2 where AB stands for the usual matrix product of A and B. Note that A = A0 A. 

Let I be the 3x3 identity matrix. Multiplication is conmrutative, but non

associative, (see [8]). The Jordan algebra .n: 3 (lF) has a natural inner pro

duct (.,.) given by 

(21) (A,B) = Re Trace(AB) (A,B E .n:3 (lF)). 

Aut .n: 3 (lF), the automorphism group of .n: 3 (lF) , preserve~ this inner product. 

Let P (lF) be the set of idempotents in J[ 3 (lF) having trace I. Then 

P(lF) together with { {A E P(lF) I A0 B = O} I B E P(lF) } for the collection of 

lines, is a projective plane over lF. For p E P(F), let 

be the map given by 

(J : 
p J[ 3 (lF) • J[3 (lF) 
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(22) 

Then 

(23) 

a (A)= ((I-2p)A)(I-2p) 
p 

2 
and a = 

p 

(A E .n:3 (1F)) . 

if p E P(lF') for lF' a commutative subfield of ]F. 

This observation follows from (5.4) of [8] since any two maximal commutative 

subi.1..elds of (I) are in the same Aut () - orbit. For T E Aut(lF), let T denote 

the automorphism .of ..:n: 3 (lF) given by 

(24) ~ (A) = (Ta .. ) 1 <. • <3 iJ -i,J-
if A = (a .. ) I< .. <3 E .I3 (lF). 

iJ -i,J-

For 1T a permutation of I, 2, 3, denote by 1T the automorphism of .n:3 (lF) given 

by 

~ (25) 1T (A) = (a (.) (.)) I<. . <3 
1T i 1T J _i , J -

if A = (a . . ) I<. . <3 E .n:3 (1F) • 
iJ -i,J-

In fact, T and 1T as above preserve matrix multiplication. 

If p E P(lF') for JF' a commutative subfield of ]F and if cf, is an auto

morphism of ..:n: 3 (<D) preserving matrix multiplication, then 

(26) <f,a cf,- I 
p 

= a 
<f,p 

In fact, a , when defined, is on P(lF) a homology with 
p 

{A E P (JF) I A0 p = 0}. This explains the importance of 

center p and axis 
-I . . h <f,a cf, ; it is a omo-

p 
logy with center cpp. As Aut (.n:3 (lF)) is transitive on P (lF) (see [8] in case 

]F = (I)), this yields that for any q E P(JF) there is a 'canonical' homology 

a q E Aut (.I/lF)) with center q and axis {A E P (lF) I A0 q = O}. 

3. THE GENERALIZED HEXAGON OF ORDER (2,8) 

For 1T = (123); i E {I,2,3}; x E (Qa)Q; c,d,e E Q (see (II)) discern the 

following elements of .n: 3 (<D) in P (<D). 



(27) p(I) =G g g) 
c28) pCi) = 'iri-\o) 

= J_ (~ 
0 

D (29) p ( I , e) 
2 0 e 

(30., p ( i, e) ~i-1 
p (I' e) = 7f 

(32) ~i-1 p(i,x,e) = TT p(l,x,e). 

Recall from (IO) that a 

p (©): 

7 
= 1/2 Ei=O 

(33) LO = {p Ci) I i = 1,2,3} 

(34) LI = {pCi,e) I i = 1,2,3; 

e .• 
l. 

Consider the following subsets of 

e E Q} 

(35) L2 = {p (i,x, e) I l. = 1,2,3; e E Q; X E: (Qa)e} 

The set H = L0 u L1 u L2 has 3(1+16+162) = 819 elements. H 1.s turned into a 

graph (H,~) by requiring: 

(36) p ~ q ~ (p,q) = 0 (p,q E H) 

Note that L0 is maximal clique of (H,~). Let~ be the set of all maximal 

cliques of H;. its members are called lines. Denote by D the subgroup 

5 
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of Aut .][3 (ID). The following result comprises the presentation we are after. 

THEOREM. Let (H,~), ~, D and(.,.) be as described. Then 

(i) D stabiZizes Hand its restriction to His faithfuZ. Its image is a 

transitive group of automorphisms of (H,~). 

(ii) Far any -two distinct points p, q of H the inner product (p,q) is one 
1 1 

of O, 4' 2· 
(iii) (H,h) is the cZassicaZ generaZized hexagon of order (2,8) and 

D ~-Aut(3n4 (2)), an extension of 3n4 (2) by an eZement of orcler 3. 

PROOF. 

(i) First, we establish the hardest part of the proof, namely the verifi

cation that D stabilizes H. Frequent use is made of the formulae (5), (6), 

••• ,(19). 

It is innnediate from the construction of H that His invariant under -T for TE c0 and under (123). Let TI= (23). Then for any e E Q and x E (Qa)Q: 

(38) ;p(l,x,e) = p(I,ex,e), 

while XE (Qa)e implies (ex)e E Qa, so that p(I,x,e) EH leads to p(l,ex,e) E 

H. Moreover, 

(39) ;p(2,x,e) = p(3,ex,e) 

As above, p(2,x,e) EH implies (ex)e E Qa so that Tip(2,x,e) EH. It readily 

follows that ;L2 is contained in H, and iH = H. Since (123) and (23) gener

ate Sym(3), this settles that iH = H for any TIE Sym(3). 

Let q = p(l). Fore E Q and x E (Qa)e, we have 

(J p (i) = p(i) (i = 1,2,3) q 
cr p(l,e) = p(l,e) q 
a p(i,e) = p(i,-e) (i = 2,3) 

(40) 
q 

a p(l,x,e) = p (1, -x, e) q 
a p(2,x,e) = p(2,-x,-e) q 
a p(3,x,e) = p(3,x,-e) q 



Thus op(l)H = H. In view of (26), it follows that oqH = H for any q € L0• 

Next, let q = p(l,e) for some e € Q. For any d € Q and x € (Qa.)d, we 

have 

(4 I) 

0 p(l) = p(l) 
q 

o p(2) = p(3) 
q -

o p(l,d) = p(l,ede) 
q 

o p(2,d) = p(3,ed) 
q - -

o p(I,x,d) = p(I,-e(dx),ede) 
q 

o p(2,x,d) = p(3,-e(dx)e,-ed) 
q 

7 

From (5),.:;_:(9) and (17),(18),(19), it is readily deduced that op(I,e)H = H. 

Applying (123), we get oqH = H for any q € L 1• 

Finally, let q = p(I,a.,I). Ford€ Q, we have 

0 p (I) = p(l,1) q 
0 p(2) = p(l,a.,-1) q 
0 p(3) = p(l ,-a,-1) q r (I) 

if d = 
(42) 

0 P (I , d) = p(l,-1) if d = -1 q 
p (I , da., -I) if d € Q\ {±I} 

= r2,--d:d,~) if - I Re a.d = 2 
o p(2,d) I q p (3, -ad, -d) if Re a.cl = -2 

This shows that o q (L0 u L1) S H. 

In verifying that oq L2 s H, 

p = p(i,y,d) with 

we may restrict considerations too p for 
q 

(i) i € {1,2} 
/'., 

(as (23)o q 

/"-.. 

= o (23)). q 

(ii) d = I,-I,e 1,-e 1 <:s c0 ac~s on Q with these octonions as orbit re

presentatives and ,o = o, for,€ c0). 
q q 

(iii) y = (cx)d with c = 1,-I,e1,-e 1,e3,-e3 (as T = (124)(365) acts on Q 

and stabilizes {±e0,±e1,a.} pointwise). 

(iv) Moreover, if d = ±1, we may take c € {l,-I,e1,-e1} (for then all of 

c0 stabilizes d). 
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Thus we need to check whether cr p EH for 40 particular points p. This 
q 

is done in the table. It should be remarked that (still) many equalities list-

ed are superfluous. For instance, crqp(2,-e1a.e 1,-e1) = p(2,e 1) by (42). 

Thus crp(l,a.,I) stabilizes H. The conclusionisthat the generators of D, 

and hence D itself, too, stabilize H. Thus the restriction of D to His a 

permutation group of H. Since H contains an lR-basis of .][3 (ID), this restric

tion is faithful and D may be viewed as a group of permutations on H. Since 

D consists of automorphisms of .][ 3 (©), it preserves the inner product (.,.) 

and therefore adjacency~in H. We obtain that Dis a subgroup of Aut(H,~). 

From (38), ••• ,(42) and the table it is readily seen that Dis transitive on 

H. This proves (i). 

(ii) Since Dis transitive the claim need only be checked for pairs p, q 

where p = p(l) and q E H\{p}. Thus the proof amounts to the observation that 
I I the 1,1-coefficient of any matrix q E H\{p(l)} is one of O, 4 , 2 . 

(iii) To establish that (H,~) is a generalized hexagon of order (2,8) one 

need only show (see [5]) that (H,~) is a distance-regular graph with inter

section array (18,16,16;1,t,9) in the terminology of [I]. From the preceding 

formulae, it is easily obtained that the stabilizer in D of p (I) has orbits 

{p(2);p(3)} u {p(l,e) I e E Q}, {p(i,e), p(l,(ca.)e,e)le E Q}, and 

{p(i,{ca.)e,e) Ii = 2,3; c,e E Q}. The proof is omitted, but it is noted that 

Op(l,a.,l)crp(l,d)crp(I,a.,I)crp(l,e)op(l,a.,l) fixes p(l) for all d,e E Q\{±1}. 
This implies that Dis d~stance-transitive on Hand that p,q EH are of dis-

tance I (2,3 resp.) iff (p,q) = 0 c!,¼resp.). Distance-transitivity of D 

accounts for distance-regularity of (H,~). It is now straightforward to com

pute the actual intersection array. 

By [6], the generalized hexagon (H,~) is the unique one of order 

(2,8), i.e. the classical one associated with the group 3o4 (2). 
3 As to D, so far we have that D and D4(2) are subgroups of Aut(H,~) 

which are distance-transitive. But crp(l) fixes all vertices of H adjacent to 

p(l), and leaves invariant all lines containing a point adjacent to p(l) (cf. 

(40)), so corresponds to the unique central involution of 3o4 (2) associated 

with p(l) (cf. [6], [9]). Therefore, D contains {<j>op(l)<l>-l I <I> ED} which by 

transitivity of Dis the set of all central involutions in 3o4 (2). By simpli

city of 3o4 (2) these involutions generate all of 3o4 (2), so that 3o4 (2) is 

contained in D. 



p. 
1 

p(i,a., 1) 

p(i,-a.,-1) 

p(i,ae 1,e1) 

p ( i , -a.e 1 , -e 1 ) 

p(i,-a., I) 

p(i,a.,-1) 

p ( i , -a.e 1 , e 1 ) 

p ( i, a.e 1 , -e 1) 

p(i,e 1a., 1) 

p ( i , -el Cl, -1 ) 

p ( i , e 1 ae 1 , e 1 ) 

p ( i, -e 1 ae 1 , -e 1) 

p ( i , -e 1 a , I ) 

p(i,e 1a,-l) 

p ( i, -e 1 ae 1 , e 1) 

p ( i, e 1 ae 1 , -e 1 ) 

p(i, (e3a)e 1 ,e 1) 

p(i,-(e3a.)e 1,-e 1) 

p(i,-(e3a.)e 1,e 1) 

p(i, (e3a)e 1 ,-e1) 

TABLE 

Images of a for q = p(l,a,l) on 40 points. 
q 

aqpl aqp2 

p(l,a.,1) p(3,-l) 

p (3) p (2, I) 

p (3 , -e 1 a. , 1 ) p(2,e 1a.,l) 

p ( 3, -e 1 a.e 1 , -e 1 ) p(3,e 1a.,-l) 

p (1 , -a.' 1) p(3,-a.,1) 

p(2) p(2,a.,-l) 

p(2,e 1a,-l) p ( I , e 1 ae 1 , e 1 ) 

p ( 2, a.e 1 , -e 1) p ( I , a.e I , -e I ) 

p ( I , -e I a. , I ) p ( 2 , a.e 1 , e 1 ) 

p ( I , -e I) p ( 3 , e l ae l , e l ) 

p(2,-ae 1,e 1) p(3,e 1) 

p ( 3 , -e l a , - I ) p(2,e 1) 

p(l,e1a,1) p ( 1 , e 1 ae 1 , e 1 ) 

p(l,el) p ( I , -ae 1 , e 1 ) 

p (3, -e 1 ae 1 , e 1) p (3, ae 1, -e 1) 

p(2,-e 1a,l) p ( 2, e 1 ae 1 , -e 1) 

p(3,-(e 1a)e6,e6) p(l,-(e6a)e4 ,-e4) 

p(2, (e7a)e5,e5) p(l,-(e7a)e4,e4) 

p(2, (e2a)e6 ,e6) p(2,-(e5a.)e2,e2) 

p(3,(e 1a)e5,e5) p(3, (e4a)e2,e2) 

Standard permutation representation theoretic arguments yield that 

9 

3 Aut(H,~) is a subgroup of Aut( D4 (2)). On the other hand, (H,~) is isomor-

phic to the graph whose vertex set is the conjugacy class of central involu

tions and in which two vertices are adjacent whenever they COIIllllUte. There

fore Aut(H,~) = Aut( 3n4 (2)), up to isomorphism, and 3n4 (2) is a normal sub

group of D. 

Now T = (235)(476) regarded as an element of C (cf. [13]) induces an 

automorphism~ of (H,~) that fixes p(l) and three of the nine lines through 
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p(l). Since the stabilizer of p(1) in 3n4 (2) induces PSL2(8) in its natural 

action on these 9 lines,; is not contained in 3n4 (2). This yields that IDI 
3 . 

is a multiple of I n4 (2)1 .3. 

We finish by showing that Aut(H,~) has exactly this order, thus esta

blishing D = Aut(H,~) = <3D4 (2),;> of order 212 .35 .7 2.13. 

Write G = Aut(H,~) and let G0 be the stabilizer in G of p(l). If cr E G0 
stabilizes each of the 18 points of H adjacent to p(l). Then cr E {l,crp(I)} 

by the arguments of [ 6 ] . 

Suppose now that cr is an element of G0 of prime order r I 2,3,7. Thencr 

acts nontrivially on the 9 lines through p(l), so that r = 5. Since there is 

no point in H all whose neighbours are fixed by cr (by the same reasoning as 

for p(l)), the set of fixed points under cr is a generalized hexagon of order 

(2,4). Since there are no such geometries, this leads to a contradiction. 
a b c So far, we have that G0 has order 2 .3 .7 for a,b,c E lN and that the 

kernel of the action of G0 on the neighbours of p(l) has order 2. 

The kernel of the action of G0 on the 9 lines through p(l) has order a 

d ' ' f 2 29 210 h d ' 210 ' ' 1v1sor o • = • Butte or er is not , for there is no 1nvolutory 

automorphism fixing all neighbours of p(l) except for two (collinear) points, 

as the labels, in the terminology of [6], of the points at distance 

3 of p(l) in (H,~) all have the same parity. It follows that the order of 

the kernel is at most 29• Next consider th: action of G0 on the 9 lines 

through p ( 1). We already know that <D n G0, T> induces a group isomorphic to 

PrL2 (8) on these lines. This is a maximal subgroup of Sym(9). As G0 does 

not have elements of order 5, it follows that IG01 divides 291PrL2 (8)1 and 

that JG! divides ! 3n4 (2)1 .3. This ends the proof of the theorem. D 

4. TWO MORE GENERALIZED HEXAGONS OF ORDER 2 

Let Q1 = {l,-1,e1,-e1} and Q2 = {1,-1}. For j = 1,2, write 

Lj = {pCi,e) I i = 1,2,3; e E Q.}, ] J 

Lj = {p(i,x,e) i = 1,2,3; e E Q.; X E (Q.a)e}, 2 J J 

and define H. LO u Lj u j = L2. 
J ] 



1 1 

Then H. is a subset of Hand it is straightforward to see that the sub
J 

graph (H.,~) of (H,~) is the point graph of a generalized hexagon of order 
J 

(2,3-j). In fact, (H1,~) is the dual of the classical generalized hexagon 

associated with G2 (2) (see [4]) and (H2,~) is the unique generalized hexagon 

associated with PSL2 (7) (whose line graph is the Heawood graph on 14 points). 

( ( )) . . * ( h * As H1 ~ JI: 3 JR a,e 1 , the orthogonality preserving map v ~ vv were v 
3 is the usual conjugate transpose of v) from (JR(a,e 1)) to JI: 3 (JR(a,e 1)) ex-

hibits the above presentation of the dual classical generalized hexagon as 

a well known one on the 'root system' of the quaternionic reflection group 

W(Q) studied in [3] (note that JR (a,e 1) is indeed a quaternion division alge

bra). Similarly, H2 i; JI: 3 (JR(a)) corresponds to the root system of the com

plex reflection group W(J3 (4)) studied in [4]. 
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