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A characterization of subspaces of given rank in a projective space*)
by

Arjeh M. Cohen

ABSTRACT

A theorem by Cooperstein that partially characterizes the natural
geometry An d(F) of subspaces of rank d-1 in a projective space of rank n
3

over a finite field F, is somewhat strengthened and generalized to the case

of an arbitrary division ring F.

Moreover, this theorem is used to provide characterizations of A 2(F)

b
and A5 3(F) which will be of use to characterizations of other (exceptional)
, .

Lie group geometries.
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1. INTRODUCTION

Theorem A by Cooperstein in [2] provides a partial characterization of
the geometry Aa,d(F) on all subspaces of rank (= projective dimension) d-1
of a projective space of rank a over a finite field F. Though there are more
(partial) characterizations, cf. [5], [6], this one has the advantage of
being ready-made for characterizations of geometries corresponding to groups
of Lie type, see for instance Theorem B of [2]. This note deals with a
generalization of Theorem A to the case of a projective space of finite ramk
over an arbitrary division ring F. The present version is stronger than the
original theorem in that it describes more specifically what happens in
'case (iii)'. In fact, it shows that case (iii) does not occur at all if the
geometry is finite.

However, many steps in the proof are taken from or inspired by
Cooperstein's proof of Theorem A. The infinite case (i.e. where the geometry
and hence F is infinite) depends on the classification of polar spaces of
rank 3 (used in 4.2) as given in [71.

Two applications'of the theorem are given: a characterization of the
lines in a projective space of finite rank, and a characterization of the
planes in a projective space of rank 5. Precise formulation of the results
will be given in Section 2 after some notation and terminology has been

introduced.
2. TERMINOLOGY, NOTATION AND MAIN RESULT.

An incidence system (P,L) is a set P of points together with a collec-
tion L of subsets of cardinality > 1, called ZZnes. If (P,L) is an incidence
system then the point graph or collinearity graph of (P,L) is the graph
(P,T') whose vertex set is P and whose edges consist of the pairs of collinear
points. The incidence system is called comnected whenever its collinearity
graph is connected. Likewise terms such as (co)cliques, paths will be
applied freely to (P,L) when in fact they are meant for (P,T). We let d(x,y)

for x,y € P denote the ordinary distance in (P,T) and write

Pi(x) ={y e P | d(x,y) = il}.



Also T(x) = fl(x) and x* = {x} v r(x).

For a subset X of P and y € P we write d(y,x) = min d(y,x),
xeX"

xt = n x* and T'(x) = U T'(x).

xeX xeX
(P,L) is called nondegenerate if Pt = ¢,
A subset X of P is called a subspace of (P,L) whenever each point of P on
a line bearing two distinct points of X is itself in X. A subspace X is
called singular whenever it induces a clique in (P,T). The length i of a
longest chain X

S X G eee S Xi = X of nonempty singular subspaces Xj of X

0 1
is called the rank of X and denoted by rk(X).
For a subset X of P, the subspace generated by X is denoted <X>. Instead

of <X> we also write <x,,Y> if X = {Xl} v Y, and so on.

>
If F is a family oé subsets of P and X is a subset of P, then F(X)
denotes the family of members of F contained in X, while FX denotes the
family of members of F containing X. If X = {x} for some x ¢ P, we often
write FX instead of F{x}' Furthermore, if H is another family of subsets of
P, then F(H) denotes {F(H)|H e H}.
If G is a group of automorphisms of (P,L) such that L f_xc for any
x € Pand L € L, then (P,L)/G denotes the quotient of (P,L) by G, i.e. the
incidence system whose points are the orbits in P of G and whose lines are
of the form {XG|x € L} for L ¢ L. The incidence system (P,L) is called linear
if any two distinct points are on at most one line. If x,y are collinear
points of a linear incidence system, then xy denotes the unique line through
them; thus xy = <x,y>.
A line is called thick if there are at least three points on it, other-
wise it is called thin. Recall (from [2]) that (P,L) is a polar space if
[x‘L nL| # 1 implies L E_xl for any x € P and L € L that the rank of a
polar space is the maximal number k > 1 such that there exists a chain
@ = V0 < Vl S eee G Vk of singular subspaces in (P,L) and that a generalized
quadrangle is a polar space of rank 2, The objects under study here are in-

cidence systems (P,L) in which the following four axioms hold:

(P1) for any x ¢ P and L ¢ L with |xl n LI > 1 the line L is entirely con-
tained in x* (this means (P,L) is a Gamma space in D.G. Higman's

(terminology)



(P2) the connected components of (P,L) are not complete.

(P3) For any two x,y € P with d(x,y) = 2, the subsets x~ n y‘L forms a sub-
space isomorphic to a nondegenerate generalized quadrangle.

(P4) For x ¢ P, L € L such thatAxl nL=0hbut x  nL" # @ the subset

1 1. .
X n L 1is a line.

For ease of reference and with the result below in mind, an incidence
system (P,L) satisfying (P1), (P2), (P3), (P4) (but not necessarily connected)
will be called a Grassmann space. The incidence structure whose points are the
subspaces of rank d of a projective space over a division ring F of rank n and
whose lines are the subspaces incident to an incident pair x,y of a subspace

(¥).

x of ramnk d—l-and a subspace y of rank d+1, is denoted by An a+1
H

MAIN THEOREM. (P,L) Zs a comnected Grasémann space with thick lines all whose
singular subspaces have finite ranks iff one of the following holds
(i) (P,L) Zs a nondegenerate polar space of rank 3 with thick lines.
(ii) There are a =z 4, d < (a+1)/2 and a division ring F such that (P,L)
= Aa,d(F)'
(iii) There are d = 5, an infinite division ring F and an involutory auto-

morphism ¢ of A (F) induced by a polarity of the underlying

2d-1,d
projective space over F of rank 2d-1, with d(x,xc) 2 5 for all points

x of A (F), such that (P,L) = F)/

2d-1,d A2d—1,d <g>’

This theorem is proved in Section 6.

APPLICATIONS. Suppose (P,L) s an incidence system with thick lines.

(1) (P,L) Z8 a Grassmann space all whose singular subspaces have finite
vanks and in which x* n L' = @ for any x e P and L e L iff (P,L) is
either a nondegenerate polar space of rank 3 or isomorphic to Aa,Z(F)
for some a > 4 and some division ring F.

(ii) (®,L) Zs a Grassmann space in which for any two intersecting lines
LsL, € L and any point z € P there eixsts u € 2t with ut n L,z @ and
ut n L, # O 2ff (P,L) is either a nondegenerate polar space of rank 3

or isomorphic to one of A, 2(F), A5 3(F) for some division ring F.
E] E

These applications are treated in Section 7.



3. PRELIMINARY RESULTS

Throughout this section, (P,L) will be a Grassmann space.
The definitions of generalized quadrangles and polar spaces and some
of their properties can be found in [2]. We shall first recall some facts

from [2] whose proofs do not depend on any finiteness assumptions.

LEMMA 3.1. Let (P,Ll) be a Grassmann space. Then (P,L) is linear and is deter-
mined by i1ts collinearity graph in the sense that for any two distinct

collinear x,y € P, {x,y}J'l is the unique line on x,y. Moreover, we have

(1) maximal cliques are singular subspaces;

(ii) for any clique X of P, the‘subspaoe <X> 78 singular;

(iii) Zf X Zs a subset of P, then xt is a subspace;

(iv) <Zf x,y,z form a clique of P not contained in a line, then {x,y,z}l

18 a maximal singular subspace.

PROPOSITION 3.2. (Cooperstein) Let (P,L) be a Grassmann space. For any
X,y € P with d(x,y) = 2, the subset S(x,y) defined by S(x,y) =
{zeP|(VL e L) (L E_{x,y}l=¢ 2V 0Lz @)} isa subspace isomorphic to a

polar space of rank 3 with the property that z' nSisa singular subspace
for any z e P\S.

As a matter of fact, (P4) is not needed for the lemma and the proposi-
tion. The proof of Proposition 3.2 can be found in [2] though some care has
to be taken to relax the condition that lines are thick (cf. [1]). The
family of all S(x,y) obtained as described above will be denoted by S, and
the family of all maximal cliques will be denoted by M. A member of S will
be called a symp or a hyperline; a maximal singular subspace will often

be called max space for short.

COROLLARY 3.3.

(i) Each singular subspace of rank < 2 is contained in a symp. Hence, it
i8 a point, a line or a projective plane;
(ii) If M Zs a singuldr subspace and M properly contains a line, then M

18 a projective space.



We shall denote the family of singular subspaces of rank 2 by V and call its

members planes.

REMARK 3.4. Axiom (P4) can be replaced by
(P4)" (VS € S)(Vx e PAS)(|x" n 8| > 1= (x"ns) e V)

PROOF. (P4) = (P4)'. Let le nS| >1 for S e S and x ¢ P\S. By the above
proposition, x'nSsisa singular subspace of S and hence of rank 1 or 2.
Take z € xl nSandye S\(x‘L U zl). Apply (P4) to the point y and the line
L = xz. Since yl n (xl ns)z@, as S is a polar.space and xl n S contains

a line, we have yl n Ll # . Moreover, u € y'L n L would yield u € yl n zi'

b
hence u € S\{z} and x € uz, so x € S, which is absurd. Therefore yl nL=40,
so that yl n L' is a line contained in x' n S but not on z. It follows that

1 .
X n S is a plane.

1

(P4) « (P4)'". Suppose x € P and L ¢ L are such that x n L = @ and x- n 1t =

@. Take y € L and consider S = S(x,y). Since <y,xl nil> is a singular sub-
; L

space of S of rank > 1, it is a plane by (P4)'. It follows that x n 1t is

a line, as wanted K.

LEMMA 3.5. If S Z8 a symp and x,y € P\S are collinear, while x* nSeVand
yl ns =@, then either yl ns E_xl n S or y'L nSeland xtn y'L nsSisa

singleton.

PROOF. Suppose z ¢ yl n S\ x*. First of all we show that yl n S is a plane,
too. As xl nS e V(S) and S is a polar space, zt n x* nS is a line in S.
Now both z* n x" n S and y are in the generalized quadrangle xT n zl, so

. . 1 .
there is u € x* n S with {u} = x* n z" n § n yl. Since uz E_y'L n S, Remark

1

3.4 implies that y‘L n S is a plane, Finally, x" n y‘L ns=z" nxtn yl ns-=

{u} H

COROLLARY 3.6. If S € S and M ¢ M satisfy |M n S| > 1, then M n S € V(S).

PROOF. For any w ¢ M\S, we have winSe V(S) by Remark 3.4. If z,w € M\S,

then z- n S =w" n S by Lemma 3.5. If M c S, there is nothing to prove; so

. L
assume M\S # . Taking z ¢ M\S, we get ztns=n wnS= N wons-=

weM\S weM



=M nS=MnS. In particular, Mn S =z"n S e V(S). K

Let S be a symp. On the set of planes V/(S) a gfaph (V(s),~) is defined
i & V2 iff rk(V] n V2) =0 (V],V2 € V(S). It is well known that (V(S),)

has either one or two connected components. In the latter case, each line is

by V

in precisely two members of V(S), one of each connected component, and the

connected components are complete graphs.

COROLLARY 3.7. Let S € S and tet K be a union of comnected components of
W(S),~). Then

H(K,S) = U K'
ReK

18 a subspace on S.

PROOF., As S = K, the subset H(K,S) clearly contains S. We need only show

e cleatly
that if x,y € P\S are collinear and X n S, ¥y n S € K, then any z ¢ xy is
contained in H(K,S). If xT n yl ns-= xl n S, then clearly ztn s =

xt n S e K, so we are done. Therefore, we may assume x* n y'L n S = {u} for
some u ¢ P. Consequently, z ¢ P\S. Take v ¢ x'L n S\{u} and w € vl n yl n

n S\{u} (note that w exists because v,yl n S are in the polar space S). Now
X,¥,W,v 18 a 4—-circuit and z ¢ xy, so that there is z, € zt n vw. Note that
z, # U, for otherwise v € uw, whence Vv ¢ y'L n S conflicting v # u. Thus

L

|z" n S| > 1 as z;,u € zt n S, and we are done by Remark 3.4 and Lemma 3.5.K

LEMMA 3.8.(i) If M € M and x € P\M satisfy X a Mz B, then xt nMe L.
(ii) If M e M and L € L with rk(L n M) = 0, then there is a unique N ¢ M
with M n N ¢ L.

PROOF. (i) Suppose z € x° n M. Take y € M\xl and consider S = S(x,y). If
M c S, there is nothing to prove. Otherwise, M n S contains z and y, so
Mn S e V(S) by Corollary 3.6. It results that s aM=x"n (MnS) is a
line.

(ii) By (1), L' n M is a line. Thus N = <L,L‘L n M>1 is the unique max space

containing L with M n Ne L §

Notice that Lemma 3.8(ii) can be reformulated as (Lx’Mx) 18 a general-



ized quadrangle for each x € P.

LEMMA 3.9. The graph (V,®) defined by V, ® V, iff V| < V," and Vi onV,el
for VsV, € V <Zs comnected. In particular, any plane V is contained in a

sSYymp.

PROOF. Note that the subgraph induced on V(S) is connected for any S e S.
Let V ¢ V. By connectedness of (P,L), it suffices to prove that any plane
Wwith V.nW=@ is joined to X by a path in (V,%). Let W ¢ V\{V} with
VnW=#@. Take v € V\W and w ¢ W\V. If v ¢ wl, consider S(v,w). There are
planes M,N in S(v,w) such that <v,V n W> ¢ M and <w,VnW> c N. Now

rk(M n V)‘> tk(V n W) and rk(N n W) > rk(U n W), so by induction we are
reduced to the case where V E'WL. It suffices to treat the case where
VnWel.

Since symps exist we may assume V < S for some S € S. Let U be a plane
in S with V.n U =V n W, Again, take v € V\W, w ¢ W\V and u € U\V. Then
u ¢ v'L and w € vl. If w e ul, then w € u’L n vl E_S(u,v) =8, and W =
= <w,V n W> E_<u'L n v+, Un V>cS. So we may assume w ¢ u'. But then W <

S(u,v), finishing the proof of the Lemma. K

COROLLARY 3.10. The graph (M,%) defined by M, R M, off tk(M, 0 M

connected.

2) =1, <8

PROOF. Note that M1 and M2 are adjacent in(M,®) iff there are planes V ¢ M
and W M, with V g_wl and V. n W ¢ L. Thus there is a surjective morphism
(V,®) >~ (M,®) of graphs given by V B vt (cf. Lemma 3.1 (iv)). The desired

result is therefore a consequence of the above lemma. [

1

FROM NOW ON WE ASSUME THAT THE LINES OF (P,L)
ARE THICK

LEMMA 3.11. The graph (L,~) defined by L, ~1L, iff rk(L1 nL
L1 f_L;, 18 connected.

2) = 0 and

PROOF. As before, the proof comes down to the case where L] c L; and

rk(L1 n L2) = 0. But then <L1,L2> € V, so the lemma results from the analo-
gous statement for polar spaces with thick lines. [



LEMMA 3.12. Let L;sL, € L. There is a bijection between

M(Ll) and M(Lz).

PROOF. By connectedness of (L,~) as defined in Lemma 3.11, we need only
prove the lemma for LisL,y € L with L, f_Lzl and L, nL, is a point. Take
x e L \L2 and y € L2\Ll and let u:M(Ll) > M(Lz) be given by u(M) =

1
= <y,M n yl>l. It is not hard to verify that u is a bijection. K

LEMMA 3.13. Let M,N € M satisfy rk(M n N) = 0. Then rk(M) = rk(N).

PROOF. M n N = {u} for some u ¢ P. In view of 3.8, the map ¢:Lu(M) > Lu(N)
given by ¢(X) = Xl n N is well defined. Moreover, it is an isomorphism of
projective spaces. Hence the result. X

Consider the graph (M,®) defined by M1 ~ M2 iff rk(M1 n MZ) = 0. The
above lemma states that the members of a connected component of (M,¥) all
have the same rank. Lemma 3.8(ii) and connectedness of (P,L) yield that
for any line L and each connected component K of (M,®) there is a member
of K on L. The following lemma shows that in fact (M,X) cannot have more

than two connected components.

LEMMA 3.14. Suppose a line is contained in at least three max spaces. Then

M,=) s comnected. In particular, all max spaces have the same rank.

PROOF. By Lemma 3.12, any line is contained in at least three max spaces.
Let M,N be two max spaces with M n N ¢ L. We claim the existence of K ¢ M
with Kn M=K n N a singleton.

In view of Corollary 3.10 it follows that (M,®) is connected. The last
statement is then a direct consequence of 3.13. To show the existence of K
as described choose x e MnNand y ¢ (M n N)l\(M n N). Note that y exists
because of the assumption that M n N is in at least three members of M.

By Lemma 3.9, <M n N,y> is contained in a symp, so there is z ¢ P with

zh 0 <M n N,y> = <x,y>. Now K = <x,y,z>'L e Mand {x} cKn M= zt n (yl nM=
=zt ¢ M n N) = {x} by Lemma 3.8. So K n M = {x}. Similarly, K n N = {x},

so the claim holds. K v



LEMMA 3. 15. If’ rk(M) = 2 for some M € M, then for any x ¢ P and L ¢ L we
have x~ n L* = @. In particular, the diameter of (P,L) Zs 2.

PROOF. We may assume that xl

n L =@. By induction with respect to d(x,L),
it suffices to prove the first statement in the case where d(x,L) = 2. Let
v,z € P be such that x € yl and z € y'L n L, and take w ¢ L\{z}. The hypo-
thesis implies that there is a max space N of rank 2 on yz. Since x* nN
and wl n N afe lines in N, they intersect in a point, say u. Since u ¢ xt n
nw nN E_xl nwtnzt=xt n'Ll, we have shown x* n L' # ¢ as wanted. N
COROLLARY 3.16. If all max spaces have rank 2, then (P,L) Zs a polar space

of rank 3.

PROOF. Let x ¢ P and L ¢ L. We prove the Buekenhout-Shult axiom x* n L= §.
Suppose the contrary. Then, since the above lemma yields xt 0Lt o= @, axiom
(P4) implies that %" n Lt is a line disjoint from L. Thus rk(<L,xl n Ll>) =

= 3, conflicting the hypothesis. X

LEMMA 3.17. If S € S and x € P satisfy LX < L(s), then (P,L) Zs a polar

space of rank 3.

PROOF. We prove that P = S, In view of the connectedness of (P,L) it suffi-
ces to show that for any y ¢ x'L all z ¢ yl are contained in S. Let y,z be
as described. If z e x \{x} we must have zx e L(S), so z € S. Suppose

z ¢ x. Then S(x,z) is a symp on xX. But since symps are geodesically closed,

S is the only symp on x. We obtain S(x,z) = S, and z ¢ S as wanted. [
4, A PROPERTY OF CLASSICAL GENERALIZED QUADRANGLES

Throughout this section, (P,L) is a generalized quadrangle with thick
lines (P,L) called elassical-whenever it occurs as the residue of a point in
a nondegenerate poiar space of rank 3 whose lines are thick. Since polar
spaces of this rank are classified [7] the list of all classical generalized
quadrangles is known. The result is quoted in Theorem 4.1. For the duration
of this section, we shall adopt terminology from [7], without recalling

all definitions. The aim of this section is to prove Proposition 4.2.
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THEOREM 4,1, (Buekenhout-Shult, Veldkamp, Tits). Let (P,L) be a classical

generalized quadrangle. Then (P,L) is one of the following:

(i) A polar space Q(w) of a projective space over a division ring F
where w is a polarity determined by a nondegenerate trace-valued
(0,e)~hermitian form of With index 2 for some antiautomorphism o of
F with 02 =1 and some e € {1,~1}.

(i1) A polar space Q(k) of a projective space over a division ring F where
k 18 a projective pseudo-quadratic form represented by a nondegenerate
o—quadratic form of Witt index 2 for some antiautomorphism ¢ of F
with o = 1.

(iii) The dual of the gemeralized quadrangle Q(KO) in a projective space
over the field F defined in (ii) where x, is represented by the quad-

4

ratic form q: E x F' > F over F defined by

(XO,X],XZ,XB,XA) - N(xo) - XX, + X%,

for E a Cayley division algebra over the field F and N:E + F the
quadratic norm form of this algebra.
(iv) {x,y}l for two noncollinear points x,y of A3 2(F).
3

A grid is by definition a generalized quadrangle in which each point is
precisely two lines. Clearly the generalized quadrangles in (iv) are grids.
In Lemma 4.5 we shall find all grids occurring in the list. But first, the
main result of this section will be stated.

We recall that a family R of lines in (P,L) is called a spread in (P,L)
if the members of R partition P (i.e. P = UL and for any two distinct
L= 0. LeR
A grid has precisely two spreads, they are also called the parallel

L],L2 € R we have L

classes of the grid. If LI’LZ are disjoint lines of (P,L) such that the

1,L2> is a grid, then L1L2 denotes the parallel class of the grid

containing L, and L2.

subspace <L

PROPOSITION 4.2. Let (P,L) be a nondegenerate generalized quadrangle with

thick lines which is either finite or classical. Suppose it admits a spread

L,> Zs a grid

R in which for any two distinct LsL, € R the subspace <L 9

and the family L,L, 18 contained in R such that

l’
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(R,{LiLZILl;LZ € R;L] # Lz}) 18 a projective space. Then the rank of R as
a projective space is 1 and (P,L) iZs a grid.

The remainder of this section is devoted to the proof of this proposi-
tion. Thus, from now on until the end of this section we assume that R is
a spread of the generalized quadrangle (P,L). In the next lemma, the finite

case is dealt with by a straightforward computational argument.
LEMMA 4.3. If (P,L) Zs finite; then rk(R) = 1,

PROOF, Suppose rk(R) > 1. Then (P,L) is not a grid. In particular, it is
then a regular generalized quadrangle, i.e. there is a constant number, say
1+t, of lines through each point, and a constant number of points, say l+s,

on each line. lewell—known theory [3], we have t < sz. On the other hand,
m+1 _

l1+st = |R| = E——.—.—l——
s-1

m = 2), A straightforward computation on multiplicities of eigenvalues of

if the rank of R is m., It follows that t = l+s (and

the adjacency matrix of the collinearity graph (cf. [3]) leads to integrality
conditions which are only satisfied if s = 1., But this is excluded by the

requirement that the lines be thick. X

The assumption that lines are thick is necessary, since the regular
complete bipartite graph on 6 points provides a counterexample,

The classical case depends on the classification of classical general-
ized quadrangles as stated in Theorem 4.1. If (P,L) is as in (iv) of this

theorem, there is nothing to prove.

LEMMA 4.4. (P,L) is not isomorphic to a generalized quadrangle as described
in 4,1 (iii).

PROOF, If (P,L) satisfies (iii) of 4.1, then the dual of <L1,L2> is a bi-
partite graph in the dual of (P,L). On the other hand, according to 10,7 of
[7]1, the dual of <L;»Ly> is the dual of (P,L) itself. This yields the ab-
surdity that Q(KO) of 4.1 (iii) is a bipartite graph. K

If X is a subset of a projective space we denote by [X] the projective

subspace of this projective space spanned by X.
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LEMMA 4.5. Let F be a division ring, let o be an antiautomorphism of F such
that 02 =1 and let € € {1,-1}. Suppose & is either a polarity w determined
by a nondegenerate trace valued (o,e)-hermitian form £ of Witt index 2 or

a projective pseudo-quadratic form k represented by a nondegenerate o—quad—
ratic form q of Witt index 2. If L,»L, are lines of Q(&) with L, nL, = )
such that <L;>Ly> i8 a grid, then o = 1 and (Zf £ = 7n) € = 1, Thus, F is a
field. Furthermore, <L, u L,> = [L, v L,]1 n Q(£) unless £ = v and F has
characteristic 2.

PROOF. Take distinct points e se, in L, and e,,e, in L, such that {ez} =
3l n L, and {e4} = el'L n L,. Put Fc,s = {t-t%|t ¢ F}. As in 8.10 of
[7]1, choose EI’EZ’E3’E4’ points of the vector space underlying the projec-

= e

tive space in which Q(&) is defined, such that Ei represents e; (i.e. such

that the ray through E. is e for i = 1,2,3,4) and such that

4 4
__c o o o . _
f(.Z Eixi’.z Eiyi) =% Y * € Y * X3 Yy * €% Y3 =
i=1 i=1
and
4 o o
q(izl Eixi) =X, X, + X3 X, + Fc,e if £ = «,

Now take a € F0 . (where ¢ = 1 if & = k), Then the calculation performed in
b

8.10 of [7] shows that the projective point p(a) represented by (1,a,0,0)

on the basis EI’EZ’E3’E4 is in <L],L2>. But p(a) is collinear with both

e

and e, and hence in {el,ez} as <L ,L,> is a grid. It follows that a = O,

3 1?
and the conclusion is that Fo e = {0}.

If ¢ = -1, this reads t ; t% = 0 for all t ¢ F, so that F has charac-
teristic 2 and € = 1.

It results that e = 1 and t - t° = 0 for all t F, whence 0 = 1,
Since ¢ is an anti-automorphism, F must be commutative and therefore a
field.

The final statement of the lemma now results from (8.10) of [7].

LEMMA 4.6. Let F be a field and let & be either a polarity w determined by
a nondegenerate symmetric form £ of Witt index 2 or a projective quadratic

form « represented by a nondegenerate quadratic form q of Witt index 2.
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Suppose L. ,L.,L, are distinct lines of Q(&) such that for each i e {1,2,3}
PP 1772273
the subspace <L; U L. ,> of Q(&) s a grid and L, Q <L; g UL;>= 1)
| € L1L2\{L],L2} and N, €
L.L\{L,,L,} such that if <N, u N,> s a grid, the intersection
173 1°73 1 2

(tndices modulo 3). Then there are lines N

NN, 0 LyLg does not contain a line of Q(E) which is disjoint with L.

PROOF. Let ereyse and EI’EZ’E3’E4 be as in the proof of 4.5. Thus

3°%
is

e,eq € Ll’ e z eg3 e2,e4 € L2 and e €e,, ey € e3 3 furthermore the

vector Ei represents e for i = 1,2,3,4 and

4 4
ECY Byxs bOEyp) = xy, v xy) 4 xgy, +xy,  if E
i=1 i=1

L[}
3

and

4 .
q(iZ, Eixy) = X%y + X3%, ’ if g

[}
3

o

' . vy oo o v !
Next, take ey € Ly with {es} el n Ly and e; € e es with {es} e

1
5.
Then eg € <L] U L3> so there is a line Lé € R on e contained in <Ll U L3>.

1 5» We may replace L3 by L! without harming generality, so as to

3
obtain e € e nL,. Let e, € L, be such that {e6} = el n L. and let

1M N3 673 37053
T (=3 1 = 3 1 =
e, € L, be such that {ea} eg 0 Ly. The projective space A [L1 UL, u L3]

ele

Since e, # e

2
has rank 3, 4 or 5.

Let us first consider the case where rk(A) = 5, If £ = 7, then char(F) =

# 2 as otherwise the Witt index would be strictly larger than 2. So we may

A

ez be such that EZ = E4 + E2Y (note that ez # ez). It is easily derived.that

there are vectors E5, E6 representing ecs €g such that

assume that & = k. Consider q|[L UL.1° Let vy € F and E! a vector representing
1773

q(sz2 + E4x4 + ESXS + E6x6) = XyX¢ + X, X + VXX
Considering q , we obtain o,B € F\{0} such that
I[L]ULBJ
q(Elx1 + E,x, + E.x. + E X

3%y T EgXg + Egxg) = oxyxg + Bxgxg. (x5 € F).

The foregoing restrictions describe q{A fully:
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<) :
q(izlEixi) = XX, + X3%, + XyXe + X, Xg + ox X + Bx3x5 + VX, Xo (xieF)

Now let n](nz,n3,n4 resp.) be the point of Q(k) n A whose homogeneous co-
ordinates with respect to El,Ez,...,E6 are (1,90,0,0,1,0) ((0,0,~2,0,0,B),

(1,0,0,1,0,0,), (0,-1,1,0,0,0) resp.). Then N, = nn, is a line of L L

173

and N2 = n3n4 is a line of L1L2.

Note that N, nN, = @ as LL, n L1L3 = {Ll}' Now suppose <N, U N>

is a grid with {N} = NINZ n L2L3 for a line N of Q(k). Then clearly
N # N]’NZ' Moreover eye is a line of <L, U L3> not parallel to L2

n N # . .But a point of N\<L1 u L,> has homogeneous coordinates of the

, SO
€2%5
form v + \u for X ¢ F, where v = (¢,0,-0,0,z,8) and u = (1,-n,n,1,0,0) for

z,n € F are homogeneous coordinates of a point in N respectively. Thus

12Ny

ej)eg N N # @ implies the existence of z,n,A,u,v € F such that

(1 + Ag,-n,n-2a,1,Xz,A8) = (0,u,0,0,v,0)

The equation leads to a classical contradiction in the fourth coordinate.
This proves the lemma in the case where rk(A) = 5.

Next, assume that rk(A) < 4. Then L, n [LluLz] s0 Ly N ([L]ULz] n Q(E)\<L,u

UL2>) # (. According to Lemma 4.3, 3his implies that F has characteristic
2 and that & = w. In particular, m is a symplectic form.
If rk(A) = 4, then m is degenerate and has a kernel consisting of a single
(projective) point z. Clearly z ¢ A n Q(&), so we may consider the quotient
by [z] so as to reduce the proof to the case where rk(A) = 3.

Thus, for the rest of the proof, we have that F has characteristic 2,

that rk(A) = 3 and that £ = m is a polarity determined by the symplectic
form whose restriction to A is given by
4 4

ECL Bxgs L Eg¥;) = xyp + xp¥) ¥ Xgy, + Xy, (xpuy; € F)
i=1 i=1

A straightforward computation using e

a € F\{0} such that E

5 € {el,ez}'L yields the existence of

5 given by (0,0,a,1) on the basis El’ E2, E3, E4 re-

presents eg.

Also, e, € {e3,e5}l leads to the existence of B8 € F\{0} such that the vector

6

E6 given by (1,B8,0,0) on the same basis, represents ege
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Now let nl(ﬁz,n3,n4 resp.) be the point of Q(w) whose homogeneous coordin-—
ates with respect to EI’EZ’EB’E4 are (1,0,0,1)((1,8,8,0),(1,0,0,1),
(0,1,1,0) resp.). Then N
in LILZ' Now <N1 U N2> is a grid. Put N = <N] u N2> n <L2 U L3>. Let x,y
be the point of Q(w) whose homogeneous coordinates with respect to

E]’EZ’E3’E4 are

1 = n]n2 1s a line in L1L3 and N2 = n3n4 1s a line

(0,a,0,1) if o = B

(0, (z+1)a,za,z) where 2;2 = a(a+B), if a =2 B
and

Y

(a,0B8,0,0 + nB), where n2 = a(u+3)/32

respectively. Then x,y are distinct collinear points of N and XnB2 + Y(a+ng) =

= (a2+naB,0,u26,0) (= Xa2+Ya if o = B) represents a point of xy on L
It follows that {xy} = N]N2 n L2L3, so that NINZ n L2L3 does not con-

tain a line of Q(w) which 1is disjoint with Ll' This settles the lemma. ¥

The classical case of Proposition 4.2 is dealt with by the following

lemma.,
LEMMA 4.7. If (P,L) Zs classical, then rk(R) = 1,

PROOF. In view of 4.4 and the observation, made before, that (P,L) is a
grid in case (iv) of 4.1, we need only consider cases (i) and (ii). Let

L L2 be two lines from R, Then L, n L, = @ and <L

1? 1 2 1
Lemma 4.5 we may assume that (P,L) = Q(£) for &£ as described in the hypotheses

uL,> is a grid, so by

of Lemma 4.6, Suppose we have Ly e R\Lle. Then L, nL,,, = $ and

<L; UL, > = @ for each i ¢ {1,2,3} (indices taken modulo 3). By Lemma 4.6,

i+1
however, there are N, ¢ LILZ\{LI’LZ} and N, € LILB\{LI’L3} such that

1 2

N]N2 n L2L3 does not contain a member of R. This means that Pasch's axiom is

not satisfied, contradicting that (R,{LlelLl,L2 € R;Ll z L2}) is a projec-—

tive space. The conclusion is that R = L Lys in other words, that rk(R) = 1. K

1
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5. THE POINT RESIDUE OF A GRASSMANN SPACE

We continue the study of Grassmann spaces. In this section (P,L) is a
connected Grassmann space whose lines are thick. Furthermore, « is a fixed
point of P and P",L",S”,M” stand for L_,L_(V ),L_(S_),L_(M_) respectively.
Moreover, if V e V_, then V" denotes L_(V). Similarly for members of L,S
and M,

It is straightforward to check that (Pm,Lw) is a connected incidence
system of diameter 2 satisfyiﬁg axioms (P1) and (P2). By 3.1, the members of
M* are maximal singular subspaces of (Pw,Lw) isomorphic to projective spaces
and of the form L' for any line L contained in them. Moreover, (Pw,Mw) is
a generalized quadrangle by the remark following 3.8, which is easily seen
to be nondegenerate. Members of S lead to generalized quadrangles in (Pm,Lm).
We shall call them quads. Any two noncollinear points are in a unique quad.
Also, if S ¢ S” and x Pm—S, then x° n S is either empty or a line of
(Pw,Lm). This is immediate from (P4)'.

We recall from 3.7 that for S € S and M ¢ M, the subset

Svu {z € M\Slzl n S e V} is denoted by H(V(S),S). We shall also write H(S)
instead of H(V(S),S).

LEMMA 5.1. Suppose there are M e M and S € S with M n S = {=}. Then M n H(S)

18 a subspace of M of rank at most 2.

PROOF. Set V.= M n H(S). It follows from 3.7 that V is a subspace of M,
Recall that Mw,Sm,Voo denote the subspaces of (P”,L™) induced by M,S,V

respectively. Let R be the subfamily of L” whose members occur as zl ns"
for some z € V . Then R is a spread of the quad Sm, for any two members

of R are disjoint (in P7) by 3.5 and if x € Sw, then x~ n M” = {y} for some
y € v by Lemma 3.8(i), whence yl n 8* is a member of R on x. Now let L be
a line of (Pw,Lw) in V. Then U = ng x'ns” is a grid in s”. For suppose
there are XY, € U with X € yll\{y]}. Then there are unique x,y € L with

X

e x* n S® and ¥y € yl ns’. If z, ¢ LN then either x = y and z, €

1 1

1
€ xL nS orx# yv. In the latter case X3¥5¥ 9%

1 is a 4—-circuit, so there

is z € xy with z, € z' n 8”. So U is a subspace. Proceeding with x # y, we

1
see that XY, and x5 n S~ are the only two lines on X, in U, so U is indeed a

grid in s”. Moreover, one parallel class of lines in U is entirely contain-
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ed in R. Denoting by L.L, for L;sL, € R the parallel class of lines in

172
<L;sLy> belonging to R, we obtain a surjective morphism

2

w (V7,LTWT)) - (R,{L L, |L L, € RsL, # L,})

of projective spaces given by u(x) = <t ns” (x e Vw). If X|sX, € v satisfy
1 © 1
1 ns = X,

rk(Mo° nN) = rk(<x1,x2>).Since Nns® = xll
rk(M°° n N) 0. It results that rk(<x1,x2>) =0, i.e. X T Xy This shows
that « is bijective, so that rk(V) = rk(Vw)+1 = rk(R)+1 < 2 by Proposition
4,2, N

X n Sm, then N = <x1,x2,x]l n s> isa singular subspace with

(o] (o]
nsS =@, we have M =# N, whence

A

LEMMA 5.2. Suppose M € M~ and S,T « s” satisfy SnT =@, Mn S = @ and
MnT=@. ThenMnSnT= 0,

PROOF. Let x e SnTand ue Mn S, we Mn T, If x € M or u = w, we are
done. So assume x ¢ M and u # w, Now X ¢ wl would imply w € u™ n x* c S if

. . . L
u ¢ xl and x € (uw)l = M otherwise; similarly x € v- can be settled. Assume

L

x ¢ ul u w'. Then there is a unique point y in x* n M. We have vy € {x,u}'L n

n {x,w}l cSnT,soyeMnSnT M

LEMMA 5.3. Assume that for any M e M~ and S € S*, we have M n S # @, Then
M® = L” and |S”| = 1, so that (P,L) is a polar space of rank 3.

PROOF. Fix x € P”. Suppose S,T are distinct quads on xX. Write L = S n T.

We shall first show that L is a line. Indeed, it is a singular subspace on
X, so L is either a point or a line. Choose M ¢ M” not on x. By Lemma 5,2,
there must be a point y in M n § n T, so that xy ¢ L. It follows that L = xy
is a line. If N ¢ M is disjoint form Ll, we get a contradiction with

N nL=@. Since such N exist, it follows that S is the only quad on x.
Therefore, S contains all points in P” noncollinear with x. But for each
point z € xl\{x}, there is a point u ¢ zl\xl, so that z ¢ x- n u* < S. This
shows that P~ = S. Thus the maximal cliques are members of L%, ice. M = L7,
Finally, by Lemma 3.17, the Grassmann space (P,L) must be a polar space of

rank 3. K
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LEMMA 5.4, If rk(Mo) = 2 for some M0 e M, then x" 0 M= @ for any x € P and
any M € M of rank > 2.

PROOF., Suppose M ¢ M is of rank > 2 and x € P\M. In view of the connected-
ness of (P,L), we may restrict attention to the case where there are z € P
and y € M such that z ¢ x’L n yl. As y € zl n M, we have zt NnMe L by Lemma
3.8(i). If xt 0L o2 @, we are done. So assume xtn L= #. Now z € x- n Ll,
soxt nLte L by (P4), so <t n Ll,L> is a projective space of rank 3 on
L. But M is the unique space an L of rank > 2 by 3.13 and 3.14, so z ¢ x* n

. . L . .
Lt € M; in particular z € x” n M, terminating the proof. X

LEMMA 5,5. Suppose rk(MO) = 2 for some My € M. If both MM
> 2, then M, n M| = 1.

5 € M have rank

PROOF. We only need to establish M, n M, # @ in view of 3.14. Suppose

MI n M2 = (), Take x € M]. By the previous lemma and Lemma 3.8 (i), L =

= x " n M2 is a line. Take v,w ¢ L with v # w and consider B = vt on M] and
C=w n MI' If B = C, then <B,L> is a projective space of rank 3 on L so

is contained in M2’ which conflicts M1 n M2 = . Thus B =z C. Now B,C are

lines on x in Ml’ so rk(<B,C>) = 2 and there is y ¢ M1\<B,C>. But yl nL=¢
so A = yl nittelasxea by (P4). Consequently, <A,L> has rank 3 and

contains L, so is in M,. It results that A is in M,, whence x ¢ M, n M2. M

COROLLARY 5.6. Suppose there are MM, € M with rk(M]) = 2 and rk(Mz) =m>2,
Let M' (M resp.) be the comnected component of (M,=) whose members have
rank m(2 resp.). Then (M+,PM+), where PM+ = {M;IX e P}, Zs a projective
space of rank m+l such that the points and lines of (P,L) correspond to the
lines and pencils of (M+,PM+) respectively. In other words, (P,L) is iso-

morphic to A

m+1,2(F) for some division ring F.

PROOF. We verify Tallini's axioms in [6]. First of all, it is obvious that
no line is a maximal singular subspace.
(I) Any two members of M* meet in exactly one point.
This is the content of Lemma 5,5.
(I1) IfMe M and M, € M~ then M n M, 18 either empty or a line.

This follows from Lemmas 3.13 and 3.1 (iv).
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(I11) For any line L there is exactly one M e M and one M, € M~ such that
L=Mn Ml'
This results from the remarks preceding Lemma 3,14,

The Corollary now follows from Proposition I in [61].

Instead of referring to [6], a direct proof could have been given, but

this would have lengthened the paper by another few pages.

LEMMA 5.7. Assume that each line is in at least three max spaces. If M n S
is empty for M e M~ and S e S~, then {x M[xl n S e L} contains a sub-
space which is a projective plane.

PROOF. Take x € S. It has a unique neighbor y in M. As L, = y'L n S contains

1

X, it must be a line on x. Let L be another line in S on x, and take x, €

€ L\{x}. There is ¥y € le n M]. Note that y = Yy for yl nsSisa cliqie and
X, ¢ Lll. Write L, = yzl ns,. This is a line disjoint from Ll(cf. 3.5).
Suppose L.° i1s a third line on x, not in Ll'L v Lt (such a line exists by
assumption). Take w € Ll\{x}. If w ¢ S, then w' n S contains X, so must

be a line in S distinct from L, and L. Therefore there is a point

X, € x° n S\(LIUL). Again, take vy € x3l n M and consider y3‘L n S. It is

3
a line on x not in <L1,L2>. Thus 3 ¢ ¥Y, and <Ys¥9s¥3> € V is the subspace

of the desired kind. M

COROLLARY 5.8. Each line of (P,L) is in precisely two max spaces, unless

(P,L) Zs a polar space of rank 3.

PROOF. Suppose there is a line in strictly more than two max spaces. Let
S e Sand M e M satisfy M n S = {~} and consider V = M n H(S) (cf. 3.7 and
5.1). By 5.1, rk(V) < 2 and by 5.7, rk(V) = 3, contradiction. It results
that the conditions of Lemma 5.3 are satisfied, so that (P,L) is a polar

space of rank 3. =]
We summarize the results obtained in this section.

PROPOSITION 5.9. Let (P,L) be a connected Grassmann space with thick lines.

Assume (P,L) is not isomorphic to a polar space (of rank 3) or A.n 2(F) for

some n = 4 and some division ring F. Then for each point x e€ P, the residue
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(PX,MX) is a grid. In particular, each line is in precisely two max spaces.

Moreover , the rank of any max space is > 2.
6. COOPERSTEIN'S THEOREM A.

Throughout this section, (P,L) is a connected Grassmann space whose
lines are thick such that any line is in precisely two max spaces, each of
them of rank > 2, We fix a point = of P and maintain the notation of Section

5 concerning residues on .

LEMMA 6.1. Let M,N ¢ M and S ¢ S.

1) IfMnsS=z@6,NnS=z@andMnN=@, then M n N n S is a singular
subspace. ’ _

(A1) If Mn S, NnSe Vand trk(M nNnS) =0, then MR N.

. .. L . .
PROOF. Both (i) and (ii) follow from the fact that x n S is a singular

subspace for any x € P\S. ¥

We supply the graph (M,®) with the natural family of lines that turns
M into a Gamma space whose collinearity graph is (M,®). To’'avoid confusion,
we denote by M for Me M (rather than M' which has a distinct interpreta-
tion) the set of vertices in (M,x) of distance at most 1 to M. For MI’MZ e M
with M, = M, the line MIMZ
not clear that this turns M into a linear incidence system, but it will

is defined by MM, = {MI,MZ}TT. A priori, it is
follow from 6.3 that it is. By C we denote the family of all such lines, i.e.

C = {MIMZIMI,M e M, M, ® M},

2 1 2

We need some more notation. For x ¢ P, L e L, Ve I/ and M € M with
x € L ¢ V c M, denote by p(L,M) the unique member of M containing L and
distinct from M. Furthermore, put £(x,V) = {p(Ll,V‘L)IL1 € L(V)X},
G, = (p@ ML ¢ LaD_} and

WelV s Wa pL",vh € L

n(x,V) = {p@',W) .
for each L" ¢ L(V)X; L' ¢ L(W)
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LEMMA 6.2. Two distinet max spaces M, M, are of distance 2 in (M,=) Zff
M1 n M2 = @ and there 2s M e M with M n M], M n M2 e L. In particular,
M,=) s not complete.

PROOF. Suppose MI’MZ are of distance 2 in (M,®). Then M1 n M2 = @, for if

T
M, onM, e L then {MI’MZ} = @ by 3.8(ii). Let H € {MI’MZ}T' There are x; €P
1T % 0 M

with H n M, = {Xi} for i = 1,2, Consider L, = x
3.8 we know Li € L. Now <x1,x2,Li>l (i = 1,2) and H are three max spaces on

_ .1
and L2 = x5 MZ' By

XXy while H differs from the first two as it intersects Ml and M2 in a
L
>

point., So M = <x1,x2,L],L2 is a max space with M n Mi = Li'

Conversely, let M be a max space with M n Mi € L for 1 = 1,2 and suppose

1

{xi} so that H € {MI’MZ}T‘ Thus M, ,M, have distance < 2; in fact their

distance is = 2 as M1 n M2 = (). This establishes that M
2.

M, nM, = @, Take x; € M n M, and consider i = P(XIXZ’M)' By 3.8, Hn M, =

1,M2 are of distance

Finally, let M ¢ M and let LI’LZ € L be disjoint lines (they exist as
rk(M) = 3). Then p(Ll,M) and p(Lz,M) are not joined as they have distance 2

by the above criterion. K

LEMMA 6.3. Suppose M ,M, € M satisfy M, M M,. Let V e V_ be such that
M0 M, = {=} and V n My, Von M, € L. Then {M],MZ}T =m U n, where

m = m(w,Vl) and n = n(>,V) are maximal cliques in (M,®) with m n n = £(=,V).
Moreover, if for Y e m and Y' € n we have Y ® Y', then at least one of

Y,Y' s in £(»,V). In particular, M M, = £(=,V).

1

PROOF. Clearly £(=,V) = £(»,V') for any V' ¢ V_with V' n M., V' n M, € L,

s
as V. and V'" are parallel lines of a grid in (Pw,Lm) on th; 4-circuit
W' a M), (VM) (Von M), (V' o0 M),

Let us now determine {MI’MZ}T' By Lemma 6.2, any two distinct members
X, X' of m satisfy X n X' = {»}, so m is a clique contained in {MI’MZ}T'

If M € n, there are W e V_ with Wn p(Ll,Vl) e L for each L' ¢ L(V)
and L ¢ L with L = M n W. Note that Mi”n W e L since (W‘L)°° is parallel to
(Vl)m in (Pm,Mw). As £(»,V) = £(»,W), we may replace W by V without loss of
generality., If M ¢ m, we have M ¢ £(»,V) as before. Assume ~» ¢ L, and let

ie {1,2}, Since V n Mi and L are lines in V, there is a point X, € V such
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that {Xi} =Ln Mi' It follows by 3.8(ii) that M n Mi = {Xi} (note that M
and V' meet in xxi). Thus M ¢ {M],MZ}T.

So far, we have shown m U n E-{MI’MZ}' The converse is straightforward:
each member M of {MI’MZ}T is in m whenever M n M] = {«@} and in m otherwise.
Let us now consider m n n., The inclusion £(x,V) cmnn is obvious. To
prove the opposite inclusion, let M € m n n. Since M ¢ n, there is W « vV,
with L' < Wand Wn M, e L for i = 1,2 with M = p(L',W"), so that M n W = L';
but ¢ Mas M e m, so = ¢ L' and M ¢ £(2,W). By the first paragraph of this
proof, this is equivalent to M ¢ £(»,V). This proves m n n = £(»,V). Next,
let Y e m and Y' € n\L(~,V) with Y ® Y', Write L = Y n V' and let X,5 15,
be such that {x} =Y n Y', Y' n M, = {y]}, Y' n M, = {yz}. Then {x,yl,yz}
is a clique (in Y'). Note that y; # y, as Y' ¢ £(»,V), If x ¢ ¥,Y9» then

<X,¥15Yy> € V and <x,y1,y2>l = Y!, But L E_<y],y2,x>l, so L ¢ Y' contradict-
ing that Y n Y' is a singleton. Hence x € Y{Y¥9s SO that L = «x is in V and
Y € £(»,V). This establishes the one but last claim of the lemma. The last

one follows directly. X

COROLLARY 6.4. (M,C) Zs a Gamma space with thick lines, where
C={Lx,V)|x eP, Ve VX}.

PROOF. It follows from the previous lemma that (M,C) is a Gamma space and
that the definition of C coincides with the one given in the text preceding
6.2, Thickness of the lines is a consequence of the bijection L -+ £(x,V)

for fixed L e L(V) with x ¢ L given by v -+ p(xy,Vl) (yel) H
LEMMA 6.5, If X 5%, € M are of distance 2 in (M,C), then {XI’XZ}T is a grid.

PROOF. Note that X1 n X2 = @ and there is H ¢ M with Li =Hn Xi e L for

. T . .
each 1 ¢ {1,2}. We claim that any Y ¢ {XI’XZ} meets X. in a point of L;e

. L .
For let vy € Xl\Ll’ Then yll n L, = @ as otherwise y;oon K would contain

2
more than the line Ll’ leading to vy € K and K = Xl’ conflicting X1 n X2 = @,
Thus L, = yll n Lz'L by (P4), so that yll n X, # § whence X, nXx,# @,

which is absurd. We conclude that yll n X2 = @, so that no max space on v,

. . T . .
is in X T. This implies that any Y € {X],Xz} meets X, in a point of L

2 1 .
Similarly the claim is proved for i = 2, The claim yields the following

description of the subspace under study:
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{xl,xz}-T = {p(L,K)|L € L(K), L n L = #, L n L, # @}.

The lines in {XI’XZ}T are of the form E(x,<x,Li>) for x € L., where
{i,j} = {1,2}.

In particular, {XI’XZ}T is isomorphic to the geometry on the lines
intersecting two given lines L5L, in a projective space of rank 3, in
which two members are collinear whenever they intersect. This geometry is

well known and easily checked to be that of a grid (cf. Section 4). =

LEMMA 6.6, Suppose £ € C and M € M satisfy M nL=0andM nd =@, Then
T T
M nt e C.

PROOF, It suffices to show that M n ZT contains at least two points.

Let x ¢ P and V ¢ VX be such that £ = £(x,V). Suppose H ¢ M oo,
Then by Lemma 6.3 we have H € m U n, where m = m(x,Vl) and n = n(x,V).
Let y € P be such that H n M = {y}. Suppose H ¢ m. Then x ¢ H. Write
L = x° n M, This is a line on y, so W= <x,L> is a plane. Take L' ¢ L(W)x
with y ¢ L', then p(L',Wl) is a member of M' n £' distinct from H.

Suppose H ¢ n\m. Then d(x,y) = 2., Consider S = S(x,y). Note that
y'L NV is a line of x© n yl. Let L be a line of x© n yl parallel (and dis-

tinct) to yl n V, and define H' = <y,L>l. Then H' = p(L',<x,L'>l) € n so

H' ¢ M nn E_MT n L', As H' = H, we are done. K

COROLLARY 6.7. (M,C) Zs a Grassmann space with thick lines.

PROOF. Axiom (P1) is proved in 6.4 (where it is also stated that lines are
thick), (P2) in 6.2, (P3) in 6.5 and (P4) in 6.6. K

LEMMA 6.8, Take M € M_ of rank i. Then m(«,M) <s a projective space in
(M,C) of rank i-1. If V e V_ is such that V. n M e L, then n(=,V) is a

projective space of rank i+l.

PROOF, Write m = m(~,M) and n = n(~,V). By Corollary 3.3, both m and n are
projective spaées. By construction of m, there is a bijective map WM > m
given by w@?) = p(L,M) for L € L_. Given L' ¢ V_ with V' c M, we have that
w{L e L |LcV'}) = {p(L,(V')l)]L c V'} = £(»,V'), so that p maps lines

of (Pm,Lm) in M onto lines of (M,C) in m. As rk(Mw) = i-1, this shows that
rk(m) = i-1,



24

Next, consider n. Choose LI’LZ e L(V)_ distinct and write Mi = p(Li,Vl).

Furthermore let H. be a hyperspace of Mi disjoint from =, Given x, € H

1 1’

the line x]l nM,onew intersects H, in a point Xye
This leads to a map w:H1 + n given by w(xl) = p(xlxz, <w,x]x2>l). This
map is easily seen to be injective. Moreover, if L

w(Ll) is a line of (M,C).

1 is a line of Hl’ then

_ L
Let L2 = Xng X n H2 and take X»Y € Ll’ xl:tyl. Then there are
unique Xy3¥y € L, collinear with X159, respectively, Consider the generaliz-
ed quadrangle xll n yzl. It contains the lines *X, and ®y s SO there is a

1

point ' € x,7 n vy, nx

1 zl n yll\{w}. Now w(Ll) = K(w',<w',L1>) is a line

in N.

As a consequence, w(Hl) is a singular subspace of n of rank i-1 (note
that M1 is of rank i). But £(=,V) is a line of n completely disjoint from
w(Hl). We conclude that rk n > i+l. We finish by showing that any member N
of n is on a line in (M,C) from a member of £(»,V) to a member of w(Hl).
By analogous arguments to what we have seen before, we are easily led to
the case where N = p(ylyz,V) for distinct v; in N n Ml\{w} (i =1,2). Let
x; € N n Hi’ so that X,® = Y., If X =, and X, =Y, then N ¢ w(Hl), so
we may assume that XX, # YY) Since both lines are in V, there is z ¢ V
with XX, 0y,y, = {z}., Now N = p(ylyz,V) is on the line £(z,V) which has
member p(«z,v) in £(«,V) and member p(xlxz,V) in ¢(H1)o

We conclude that n is spanned by £(~,V) and w(H])o Thus rk(n) < i+l,
and equality holds. M

Refore stating the main theorem, we recall the notion of quotient, The
quotient of the incidence system A = (Pl’Ll) by the group G of automorphisms
of A is meant to be the incidence system A/G whose point set is PI/G =
{xGIX € Pl}, the set of orbits of G in Pl’ and whose family of lines is
LI/G = {LGIL € Ll}’ where 1L.C = {xG[x e L} for L ¢ L10 Note that this quotient

is again an incidence system if L f_xG for each x ¢ P, L ¢ L.

THEOREM 6.9. Let (P,L) be a connected Grassmann space with thick lines,

whose max spaces have finite ranks. Then one of the following holds:

(1) (P,L) Zs a nondegenerate polar space of rank 3 with thick lines,
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(ii) (P,L) = Aa,d(F) for some a = 4, d < (a+1)/2 and some division ring F.

(iii) There is a natural number d > 5, a divieion ring F and an involutory
automorphism ¢ of A = A2 d-1, d(F), interchanging the connected compon—
ents of the graph (M,%) on the max spaces, with d(x,x°) = 5 for all
points x of A such that (P,L) = A/<o>.

PROOF. By 3.13 and 3.14, rk(M) for M ¢ M attains at most two values. Let d
be the minimal of these and let b be the other one if it exists, let b =d
otherwise, The proof runs by induction on d. The case d = 2 has been settled
in Proposition 5.9,

Assume d > 2, and suppose (P,L) is not a polar space of rank 3. By 5.9
we have that each line is in exactly two max spaces. By 6.7 and 6.8, there
is a connected component M of (M,~) such that the induced subgraph
(M+,z) is the collinearity graph of the connected Grassmann space (M+,C+)

where C' = {£ ¢ cle n M = #}, whose max spaces have ranks d-1, b+l, The

ey o

induction hypothesis then yields that (ii) occurs, so that (M+,C+)

= Adsb-1,d-1
of as the incidence system obtained from A

(F) for some division ring F. Now Ad+b-1,d

(F) by taking the max

(F) can be thought

d+b-1,d-1

spaces of rank d-1 from one connected component under = in Ad+b—] d—](F) for
5

points and the relation = (i.e. M ® N iff M n N meet in a point) for collin-
earity. Remember that this determines Ad+b—1,d as any Grassmann space is
determined by its collinearity graph (cf. 3.1).

Let (P',L') be the incidence system that can be obtained from (M+,C+)

in just the way A (F) is obtained from A

d+b-1,d

makes sense as (M',Ct) =

d+b—1,d—1(F) (note that this
Agrb-1,d-1F))

If m ¢ P', then m is a projective space in (M,C) of rank d-1, so
m = m(x,M) for a unique x ¢ P and some M € M\m. Thus there is a map
u:P' > P sending m € P' to the unique x ¢ P for which there is M ¢ M\m with
m = m(x,M). This map is clearly surjective and is either 2:1 or 1:1 accord-
ing as M = M" or not, i.e. according as (M,?) has one or two connected
components. We claim that y is a morphism of graphs. For if m,n are collinear
in (P',L"), the points u(m) and p(n) are both contained in the max space
M for which m n n = {M}. Consequently, u(m) and u(n) are collinear in (P,L).

Thus, if (M,®) is disconnected, we have (P,L) = (P',L') £ A (F).
d+b-1,d
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Let from now on (M,¥) be connected. Now p is a surjective 2:1 morphism,
Also b = d in view of 3.13 and 3.14 so (P',L') = A2d—l,d(F) for some d > 3,
Choose m ¢ P'., We shall show that u is bijective when restricted to the
neighborhood o' of m in (P',L'). Let x,y be distinct collinear points of P

and suppose u(m) = x and let m;,m, € P' both be collinear with m and such

that u(m,) = u(m,) =y. .

As before, we may assume that m = m(x,M) for M ¢ M with xy < M, Simi-
larly we may take Mi e M with xy E_Mi such that m, = m(y,Mi), for each
i e {1,2}. Suppose now that M, # M, Since each of M’Ml’ M, contains xy,
it follows that M coincides with M, or M,. Without loss of generality we
may assume that M = Ml' Since m, is collinear with m, there is Y ¢ M such
that Y € m(x,M) n m(y,Mz). This means that M n Y is a line on x and

M2 nY is a line on y. Thus Y contains xy, so either Y= Mor Y = M2. But

Y = M conflicts M n Y e L and Y = M2 conflicts M2 NnY e L, It results that

M1 = M2, so that m, = p(y,Ml) = p(y,MZ) = m,. We have established that the
restriction of u to the members of P' collinear with a given point is in-

jective, s
Our next step is.to show that the restriction of p to the subset m~ of

P' of members collinear with m is an isomorphism of graphs. Thus for m,m, €
€ P'\{m} collinear with m such that x, = u(m]), x, = u(mz) are collinear in

P, we have to derive that m, is collinear with m, in (P',L')., Let V =

2
= <X,X 5%y, where x = u(m).

Since m ~ m,, there are X. € m n m, for i = 1,2, Thus X contains XX .

If x, € xx,, then X, n X, = xx, € L, conflicting X, ~ X,. It follows that V

1 2 1 2
is a plane. Since V n Xi = xx, € L, we have m, = m(xi,Vl) so that

p(xlxz,Vl) € my nm, whence m o~ m,.

1
Next, define o:(P',L"') >~ (P',L') to be the unique map such that

u_l(u(m)) = {m,mo} for each m € P'. Clearly, o is an involution. Also, o

is an automorphism of (P',L'). For if m ~ n for myn ¢ P', then u(m) ~ u(n)
and m % n° since u is bijective on ml. But then m° ~ n° since u is bijective
on (no)l. So indeed, ¢ is an automorphism of (P',L') and d(m,mc) > 3 for any

me P!

. 1
But if there is m ¢ P' with d(m,mo) = 3, then there are m,m, € P
with m ~ m ~om, mo, so that m ~ m2U ~ mlc ~ m%, Since u is an isomorphism

on the subgraph induced on ml, and {u(ml),u(mz),u(m)} is a clique, this
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. - o] ... . . .
ylelds that m, ~om, . This is in contradiction with m, ~ m

We have shown that d(m,mo) > 4 for any m ¢ P', Sipposz d(m,mc) = 4 for
some m € P', Then there is a minimal path m ~ m; -~ m2 ~mg n® with m, € P!
(i=1,2,3), so that m € o’ n mzl and m3° € o n (mzo)l. This leads to two
connected components u(m+ n mzl) and u(m‘L n (mzo)l) in»u(m)l n u(mz)l. In-
deed, if there are n, e mt n mz'L and"‘n2 e m* n (mZQ)l) with u(nl)fvu(nz),then
n, ~n, as n;,n, € ml, so m, ~ n, ~mn, ~ ng is a path of length 3 contra-
dicting d(mz,mzc) > 4), But this contradicts the fact that u(m)‘L n u(mz)'L
is connected (as it is a generalized quadrangle by assumption). We conclude
that d(m,m’) > 5 for all m e P', Finally, since (P',L') = Bygeq,a(F) has
diameter d, the existence of ¢ implies that d > 5, This ends the proof of

the theorem. M

REMARK 6.10. The converse of 6.9 also holds: if (P,L) is as described in (i),
(ii) or (iii) of the theorem, then (P,L) is a connected Grassmann space
with thick lines whose max spaces have finite ranks.

In case (iii), o is induced by a polarity of the projective space over
F of rank 2d-1 such that x n x° has codimension at least 5 in x for any
subspace x of rank d-1. By the classification of such polarities, cf. [3],

it follows that F must be infinite,

The above remarks put together with 6.9, prove the main theorem stated
in Section 2,

We conclude this section by mentioning that A (R)/ <o> for d =2 5,

2d-1,d"7" ")

where o is the polarity associated with the quadratic form Zi= x; (or any

1
other nondegenerate form of Witt index at most d-5), provides an example of

a Grassmann space of the type occurring in (iii) of the main theorem.
7. APPLICATIONS.

In this section (P,L) is a connected Grassmann space with thick lines.
Consider the following two axioms, each of them stronger than (P4).
(Q4) If xe Pand L ¢ L with x* n L = #, then x* a1t e L.
(R4) If Ll’LZ e L with L1 n L2

unL o= # and ut n L, # @.

# @ and z € P, then there is u € z' with
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It is an easy exercise to show that (Q4) holds for (P,L) iff (Q4)' holds,

where

e’ If S ¢ S and x ¢ P\S, then x' n S is either empty or a maximal
clique in S.

Also, (R4) is easily shown to be equivalent ot (R4)':

(R4 If S € S and x € P\S, then xT n S is either a singleton or a maximal
clique in S.

We note that (P,L) has diameter 2 if (Q4) holds and diameter at most 3 if

(R4) holds.

LEMMA 7.1. Suppose (P,L) satisfies (Q4). Let S,T be distinct symps on «, If
SnTo {x}, then SnTel

PROOF. Consider the residue of =, Suppose x ¢ S n T . Take y € Tm\xl. Note
that y ¢ s” as S n T is a clique., Since L = yl n S must be a line in
S™\{x}, there is z « x* n L\{x}. This implies z € % n yl E_Tm, so that

xz € S n T, =

THEOREM 7.2. If (P,Ll) is a comnected Grassmann space with thick lines whose
max spaces have finite ranks and in which (Q4) holds, then (P,L) is either a
polar space or rank 3 or isomorphic to Aa,Z(F) for some a = 4 and some divi-
ston ring F,

PROOF. Suppose M],M2 € M have rank > 2 and M1 n M2 € L. In order to apply
Proposition 5.9, we verify that L = M1 n M2 is in at least three max spaces.
The hypotheses on the ranks of MI’MZ imply the existence of points

X 9%,y € MI\MZ’ and Y29, € MZ\MI such that rk(<xl,x2,L>) = rk(<y1,y2,L>) = 3,
MM, € L(S1 n Sz),
Lemma 7.1 yields that S, n S, ¢ V. Thus, if S, n S E_Ml, then S, n S, =

1 2 1 2 1 2
S1 n 82 n M1 = S] n M1 = 82 n M2 by consideration of ranks, so <x1,x2,L> <

L . _ .
Clearly x, ¢ y; .+ Consider 5; = S(Xi’yi) for i = 1,2, As M

E_Sl ns, and 3 = rk(<xl,x2,L>) < rk(S1 n Sz) = 2, a contradiction. Hence
L.

§; N 82 f_Ml ;N 82 £'M2. Now (S1 n 52) is a

third max space on L, and we can finish by Proposition 5.9. K

. Similarly, one can prove S

FROM NOW ON WE ASSUME THAT (R4) HOLDS FOR (P,L)
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LEMMA 7.3. Let X[ 5%, %X, 5 Xs be a minimal 5-circuit (i.e. xi'L n X,

I
1 i+271+3

z @ for all i, indices taken modulo 5). If X, n S(xz,x4) e V, then

xil n S(x. ) ond xi'L n S(x.

i41°%143 l_l,xi_3)5arebin V for all i(1<i<5).

1 . 1 L
PROOF. Note that x,7 n S(xz,x4) e V iff {XI’XZ’X3’X4} # . Thus %" 0

n S(xl,x3) € U follows. Also for u € {XI’XZ’XS’X4} , we have ux, < x,” n

4 3
L .. L
n S(xl,x4), $0 X3~ N S(xl,xa) e V. S%mllarly X," N S(xl,x4) e V., The argu-

ment is easily completed. X

COROLLARY 7.4. Let L € L and S e Swith Sn L = @. If x,y € L and X5¥; € S
with x- n S = {xl} and yl nL= {yl} then x| € yll_

PROOF. We may assume X %Y for else there is nothing to prove. Take

u € xll n yll\{x],yl}, and consider the 5-circuit UsX 5X,Y5Y ) Since

x ¢ y]'L U u™ and y ¢ xl'L u ul and xt o S(xl,yl) = {Xl}’ the lemma implies
that x| € yll. X

LEMMA 7.5. Suppose X, N Xy X, 18 a path in (P,L) with X, ¢ x3l and

2 3
L ' 1
X, ¢ X, such that {x],xz,x3,x4} = @, Then for M e M on x

~ X
129 there 18 a

unique max space M, on X X, of distance 2 to M in (M,R),

PROOF, By Lemma 3.8 there is a (unique) max space M' on X,%q collinear with

M. Similarly there is a unique max space M1 on XX, collinear with M', Now

M, nM=@ as M. n M c {x,,%,,X,,X }l, so M. has distance 2 to M in (M,~).
1 — 1272°73°74

1
Suppose M

1
is also a max space on XX, of distance 2 to M. Then by 6.4 there

€ L for each i ¢ {1,2}.

2

are max spaces N],N2 on X,Xu with Ni n M, Ni n M1

But NI’NZ’M are three max spaces on X, the intersection of any two of which

contains a line. This implies N1 = N2° But then N],Ml,M2 are three max
spaces on Xg, the intersection of any two of which contains a line. It

results that M1 = M2. =

LEMMA 7.6. Suppose (P,L) satisfies (R4). If LI STRRRPE 18 a minimal 5-

eircutt in P, then

(1) xil n S(Xi+1’xi+3) e V for each 1 (1<i<5), indices taken modulo 5).

(ii) {xl,xz,...,x5}l = ¢@.
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PROOF. (i) Suppose xl,xz,...,xs.is a minimal 5-circuit which is a counter-

)

. . . . . iR
example to the statement, By 7.3, it is a circuit with x5 S(X1+1’X1+3

3% and take M1 e M on

5 € M on X,Xg with M, nMe L. Now L1 =

1 _ 1 = .1 .
1 M2, L3 = %3N M2 Mn MZ’ L4 X, N M2 are lines

respectively.

a 51ngleton for each i. Let M be a max space on X
X,%g with M1 nM-= {x3} and M

= X L, =x

1 "M Iy
On X, 5X5,X) 5%y
Since L, n L4 c {XI’XZ’X3’X ' and L, n L3 c {XI’XS’X4’X H we have by
the assumption that L, n L4 L, n L3 @. Take u € L \{x } and v € L4\{x3}.
‘ 1

Then u ¢ v'. For u e v' would imply Ly E_L4l and <L3,L4> = M so that

Mon M would contain the line L, conflicting MM = {x3}.

Consider S = S(u,v). Note that V = X N S contains L3 and must there-—
fore be a plane in S. Similarly for W = le n S. Note that X, ¢ S, for else
ll N X%, # @.

Now Xll nS =@ by (R4). As X ) U xsl,
x,n le n S and xl'L n x5l n S are nonempty. If z ¢ {x],xz,xs}l n s,
then z ¢ {xl,xz,x3,x4,x5}l ns, as xs‘L n S is a clique on x, and x tas

X

e x.t Lemma 3.5 implies that

4 2
is a clique on X3 SO we may assume {xl,xz,xs}'L n S =@, Thus lxll ns|=>
> lel n le n S| + |x1l n xsl n S| =2, so that xll nSel, Write U =
= xll n S. Since U,X5,%, are in S, there is w ¢ x3l n xl}‘L n U. But now

zx, is a line in x,© n S(xl,x ); this settles (i).

3 4 3

.. 1 L . L
(1i) Assume u € {X]’X2’°"’x5} o Put L = X0 N (x3 4) o Since x nxx =@

1 374

by minimality of the circuit, L ¢ L., Now <x1,x5,u>l, <x1,x2,u>'L € qu, S0

L
<x1,L> < <x],x5,u> or <x,,L> E_<x1,x2,u> o

]’
Without loss of generality, assume <x],L> S_<x1,x5,u>l. Then

1
n x

L
<x4,L> c X 5

3 conflicting ranks. K

LEMMA 7.7. Let (P,L) satisfy (R4). If S,T are distinct symps, then S n T %s

not a singleton.

PROOF. Suppose S,T are symps such that S n T = {x} for some x ¢ P, Take
z € S\xl. By axiom (R4), there is y € zt n T. Now vy € T\xl, for else
y € xt ozt c8S,s0yeSnT-={x} and y = x conflicting z ¢ x*. Choose

L L. L
VsV, € X 0y with v, ¢ v,", and take u ¢ xt a2t
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' ‘ . P 1L
Let i € {1,2}. Now u,X%,v,,¥,2 is a 5-circuit with u ¢ y~ (for else
. 1 L

ue xtn y'L cT), x ¢ zt v y'L and \ ¢zt (for otherwise v, ex nz < S).

Tl 1 1 ‘ 1
So either u € v and v.,mn §> xu, or v.” n S ¢ V. At any rate, v nSe v

. L

for each i ¢ {1,2}. Put Vi = vil n S and consider W=y n S. As z €
€ W\(Vl u Vz), we must have W ¢ U/ by Lemma 3.5. But then xt n W is a line

. . . 1 1 .
(as both x, W are in S) contained in X n y , hence in T. X

LEMMA 7.8. Suppose (R4) holds for (P,L). Then rk(M) < 3 for any M ¢ M,
Y
PROOF. Suppose M is a singular subspace of rank 4, Pick x ¢ M and V,W ¢ V(M)
with V. n W = {x}, and let S ,T be symps on V,W respectively., Since x ¢ S n T,
we know by Lemma 7.6 that there is a line L on x in S n T, Now V E_Ll would
imply L E_Vl n T =W; but also L ¢ V, as <V,L> is a singular subspace of §,
so that L < S n T = {x} which is absurd. Hence there is z e L\{x} with
1

z ¢ V', Since z, V are in S, we obtain that L=z nV is a line on x.

Similarly, L2 = 2z' 0 Wis a line on X, But now z € L]'L n Lz‘L = <L1,L2>l =
= M%, soLcMandV E_Ll, which has just been excluded.

It follows that no max space of rank 4 exists, K

THEOREM 7.9. If (P,L) Zs a connected Grassmann space with thick lines in
which (R4) holds then (P,L) is either a polar space of rank 3 or isomorphic
to one of A, (F),A. ,(F) for some division ring F.

4,2 5,3

PROOF. This is a direct consequence of 6,9 and 7.8. b
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