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A characterization of subspaces of given rank in a projective space*) 

by 

Arjeh M. Cohen 

ABSTRACT 

A theorem by Cooperstein that partially characterizes the natural 

geometry A d(F) of subspaces of rank d-1 in a projective space of rank n n, 
over a finite field F, is somewhat strengthened and generalized to the case 

of an arbitrary division ring F. 

Moreover, this theorem is used to provide characterizations of A 2(F) 
n, 

and A5 , 3(F) which will be of use to characterizations of other (exceptional) 

Lie group geometries. 

KEY WORDS & PHRASES: projeative geometry, Grassmann varieties 

*)This report will be submitted for publication elsewhere. 





1 • INT°RODUCTION 

Theorem A by Cooperstein in [2] provides a partial characterization of 

the geometry A d(F) on all subspaces of rank(= projective dimension) d-1 
a, 

of a projective space of rank a over a finite field F. Though there are more 

(partial) characterizations, cf. [5], [6], this one has the advantage of 

being ready-made for characterizations of geometries corresponding to groups 

of Lie type, see for instance ~heorem B of [2]. This note deals with a 

generalization of Theorem A to the case of a projective space of finite rank 

over an arbitrary division ring F. The present version is stronger than the 

original theorem in that it describes more specifically what happens in 

'case (iii)'. In fact, it shows that case (iii) does not occur at all if the 

geometry is finite. 

However, many steps in the proof are taken from or inspired by 

Cooperstein's proof of Theorem A. The infinite case (i.e. where the geometry 

and hence Fis infinite) depends on the classification of polar spaces of 

rank 3 (used in 4.2) as given in [71. 

Two applications of the theorem are given: a characterization of the 

lines in a projective space of finite rank, and a characterization of the 

planes in a projective space of rank 5. Precise formulation of the results 

will be given in Section 2 after some notation and terminology has been 

introduced. 

2. TERMINOLOGY, NOTATION AND MAIN RESULT. 

An inaidenee system (P,L) is a set P of points together with a collec­

tion L of subsets of cardinality> 1, called lines. If (P,L) is an incidence 

system then the point graph or collinearity graph of (P,L) is the graph 

(P,r) whose vertex set is P and whose edges consist of the pairs of collinear 

points. The incidence system is called aonneated whenever its collinearity 

graph is connected. Likewise terms such as (ao)aliques, paths will be 

applied freely to (P,L) when in fact they are meant for (P,r). We let d(x,y) 

for x,y E P denote the ordinary distance in (P,r) and write 

r.(x) = {y E PI d(x,y) = i}. 
1 



2 

Also r (x) =, r 1 (x) and x.L = {x} u r (x). 

For a subset X of Pandy E P we write d(y,x) = min d(y,x), 
XEX. 

x.1 n x.1 and r(x) - U r(x). 
XEX XEX 

(P,L) is called nondegenerate if P.L = 0. 
A subset X of Pis called a subspace of (P,L) whenever each point of Pon 

a line bearing two distinct po_ints of X is itself in X. A subspace X is 

called singuZar whenever it induces a clique in (P,r). The length i of a 

longest chain _x0 ~ x 1 ~ ••• ~Xi= X of nonempty singular subspaces Xj of X 

is called the rank of X and denoted by rk(X). 

For a subset X of P, the subspace generated by Xis denoted <X>. Instead 

of <X> we also write <x1,Y> if X = {x1} u Y, and so on. 

If Fis a family of subsets of P and Xis a subset of P, then F(X) 

denotes the family of members of F contained in X, while FX denotes the 

family of members of F containing X. If X = {x} for some x E P, we often 

write Fx instead of F{x}" Furthermore, if His another family of subsets of 

P, then F(H) denotes {F(H)IH EH}. 
G If G 1.s a group of automorphisms of (P,L) such that L 1:_ x for any 

x E P and LE L, then (P,L)/G denotes the quotient of (P,L) by G, i.e. the 

incidence system whose points are the orbits in P of G and whose lines are 

of the form {xGlx EL} for LE L. The incidence system (P,L) is called Zinear 

if any two distinct points are on at most one line. If x,y are collinear 

points of a linear incidence system, then xy denotes the unique line through 

them; thus xy = <x,y>. 

A line is called thick if there are at least three points on it, other­

wise it is called thin. Recall (from [2]) that (P,L) is a poZar space if 

lx.L n LI~ I implies L .=. x.L for any x E P and LE L that the rank of a 

polar space is the maximal number k ~ such that there exists a chain 

0 = v0 ~ v1 ~ ••• ~ Vk of singular subspaces in (P,L) and that a generaUzed 

quadrangZe is a polar space of rank 2. The objects under study here are in­

cidence systems (P,L) in which the following four axioms hold: 

(PI) for any x E P and L E L with lx.L n LI > I the line L is entirely con­

tained in x.L (this means (P,L) is a Gamma space in D.G. Higman's 

(terminology) 
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the connected components of (P,L) are not complete. 
. l l 

For any two x,y E P with d(x,y) = 2, the subsets x n y forms a sub-

space isomorphic to a nondegenerate generalized quadrangle. 

For x E P, LE L such that xl n L = 0 but xl n Ll I 0 the subset 

xl n Ll is a line. 

For ease of reference and with the result below in mind, an incidence 

system (P,L) satisfying (Pl), (P2), (P3), (P4) (but not necessarily connected) 

will be called a GPassmann spa~e. The incidence structure whose points are the 

subspaces of rank d of a projective space over a division ring F of rank n and 

whose lines are the subspaces incident to an incident pair x,y of a subspace 

x of rank <t-1 and a subspace y of rank d+l, is denoted by An,d+l(F). 

MAIN THEOREM. (P,L) is a connected GPassmann space with thick lines all whose 

singulaP subspaces have finite Panks iff one of the following holds 

(i) (P,L) is a nondegenePate polaP space of Pank 3 with thick lines. 

(ii) ThePe aPe a~ 4, d ~ (a+l)/2 and a division Ping F such that (P,L) 

~ A d(F). a, 
(iii) ThePe aPe d ~ 5~ an infinite division Ping F and an involutoxy auto-

morphism cr of AZd-l,d(F) induced by a polaPity of the undePlying 

ppojective space oveP F of Pank 2d-1, with d(x,xcr) ~ 5 fop all points 

x of AZd-l,d(F), such that (P,L) ~ Azd-l,d(F)/<cr>" 

This theorem is proved in Section 6. 

APPLICATIONS. Suppose (P,L) is an incidence system with thick lines. 

(i) (P,L) is a GPassmann space all whose singulaP subspaces have finite 

Panks and in which xi n Li ~ 0 foP any x E P and L E L iff (P,L) is 

eitheP a nondegenePate poZaP space of Pank 3 OP isomorphic to A 2 (F) 
a, 

foP some a> 4 and some division Ping F. 

(ii) (P,L) is a GPassmann space in which fop any two intePsecting lines 

L1,L2 EL and any point z E P thePe eixsts u E zl with ui n L1 ~ 0 and 

ui n L2 ~ 0 iff (P,L) is eitheP a nondegenePate polaP space of Pank 3 

OP isomorphic to one of A4, 2(F), A5, 3(F) foP some division Ping F. 

These applications are treated in Section 7. 
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3. PRELIMINARY RESULTS 

Tfa:ooughout this section, (P, L) wi U be a Grassmann space. 

The definitions of generalized quadrangles and polar spaces and some 

of their properties can be found in [2]. We shall first recall some facts 

from [2] whose proofs do not depend on any finiteness assumptions. 

LEMMA 3.1. Let (P,L) be a Graesmann space. Then (P,L) is linea:r and is deter­

mined by its collinearity graph in the sense that for any t;i,,,o distinct 

collinea:r x,y E P, {x,y}LL is the unique line on x,y. Moreover, we have 

(i) maximal·cliques a:re singular subspaces; 

(ii) for any clique X of P, the.subspace <X> is singula:r; 

(iii) if Xis a subset of P, then XL is a subspace; 

(iv) if x,y,z foI'ITI a clique of P not contained in a line, then {x,y,z}L 

is a ma.ximal singula:r subspace. 

PROPOSITION 3.2. (Cooperstein) Let (P,L) be a Grassmann space. For any 

x,y E P with d(x,y) =. 2, the subset S(x,y) defined by S(x,y) = 

{z E Pl (VL E L)(L =. {x,y}L,.. zL n L :;t QI)} is a subspace isomo:rphic to a 

pola:r space of rank 3 with the property that zL n Sis a singula:r subspace 

for any z E P\S. 

As a matter of fact, (P4) is not needed for the lennna and the proposi­

tion. The proof of Proposition 3.2 can be found in [2] though some care has 

to be taken to relax the condition that lines are thick (cf. [1]). The 

family of all S(x,y) obtained as described above will be denoted by S, and 

the family of all maximal cliques will be denoted by M. A member of Swill 

be called a symp or a hyperline; a maximal singular subspace will often 

be called ma,:x; space for short. 

COROLLARY 3.3. 

(i) Each singula:r subspace of rank ~ 2 is contained in a symp. Hence, it 

is a point, a line or a projective plane; 

(ii) If M is a singula:r subspace and M properly contains a line, then M 

is a projective space. 
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We shall denote the family of s.ingular subspaces of rank 2 by V and call its 

members planes. 

REMARK 3.4. Axiom (P4) can be replaced by 

(P4)' (VS E S)(Vx E P\S)(!xi n s! >I=> (xi n S) EV) 

PROOF. (P4) => (P4)'. Let lxL n SI > I for SES and x E P\S. By the above 

proposition, xi n Sis a singuiar subspace of Sand hence of rank I or 2. 

Take z E xi n Sandy E S\(xi u zi). Apply (P4) to the pointy and the line 
i L . i 

L = xz. Since y n (x n S) ;t 0, as Sis a polar space and x n S contains 

a line, we have yin Li ;t 0. Moreover, u E yin L would yield u E yL n zi; 

hence u E S\{z} and x E uz, so x ES, which is absurd. Therefore yin L = 0, 
i i i so that y n L is a line contained in x n S but not on z. It follows that 

i x n Sis a plane. 

(P4)., (P4)'. Suppose x E P and LE Lare such that xi n L = 0 and xi n Li ;t 

0. Take y EL and consider S = S(x,y). Since <y,xi n Li> is a singular sub­

space of S of rank~ I, it is a plane by (P4)'. It follows that xi n Li is 

a line, as wanted ~-

i LEMMA 3.5. If Sis a symp and x,y E P\S are coUinear, while x n SE V and 
yin S ;t 0, then either yin Sc xi n SOP yin SE V and xi n yin Sis a 

singleton. 

i i i PROOF. Suppose z E y n S \ x. First of all we show that y n Sis a plane, 
i i i too. As x n SE V(S) and Sis a polar space, z n x n Sis a line in S. 

i i i i Now both z n x n Sandy are in the generalized quadrangle x n z, so 
h . i S'h{} ii Si. i t ere is u Ex n wit u = x n z n n y. Since uz 5:. y n S, Remark 

3 4 . 1' h i S ' 1 F' 11 i i L i i • imp ies tat y n is a pane. ina y, x n y n S = z n x n y n s = 

{u} ~ 

COROLLARY 3.6. If SES and ME M satisfy !Mn s! > I, then Mn s E V(S). 

i PROOF. For any w E M\S, we have w n SE V(S) by Remark 3.4. If z,w E M\S, 

then zi n S =win S by Lemma 3.5. If M 5:. S, there is nothing to prove; so 

assume M\S ;t 0. Taking z E M\S, we get zL n S = n win S = n win S = 
WEM\S 
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= K1- n S =Mn S. In particular, Mn S = z.L n SE V(S). ~ 

Let S be a symp. On the set of planes V(S) a graph (V(S),Z) is defined 

by v1 i:::l V2 iff rk(V1 n V2) = 0 (V1,v2 E V(S). It is well known that (V(S),Z) 

has either one or two connected components. In the latter case, each line is 

in precisely two members of V(S), one of each connected component, and the 

connected components are complete graphs. 

COROLLARY 3.7. Let SES and Zet K be a union of connected components of 

(V(S),Z). Then 

H(K,S) = U K.L 
KEK 

is a subspace on S. 

PROOF. As S = UKK, 
KE 

the subset H(K,S) clearly contains S. We need only show 

that if x,y E P\S are collinear 
.L .L and x n S, y n SEK, then any z E xy is 

contained in. H(K,S). If x.L n y.L .L .L n S = x n S, then clearly z n S = 
.L .L .L x n SEK, so we are done. Therefore, we may assume x n y n S = {u} for 

some u E P. Consequently, z E P\S. Take v E x.L n S\{u} and w E v.L n y.L n 
.L n S\{u} (note that w exists because v,y n Sare in the polar space S). Now 

x,y,w,v is a 4-circuit and z E xy, so that there is z 1 E z.L n vw. Note that 

z 1 ~ u, for otherwise v E uw, whence v E y.L n S conflicting v ~ u. Thus 

jz.L n sl > 1 as z 1,u E z.L n S, and we are done by Remark 3.4 and Lemma 3.5.~ 

LEMMA 3.8.(i) If ME Mand x E P\M satisfy x.L n M ~ 0, then x.L n MEL. 

(ii) If ME Mand LE L with rk(L n M) = 0, then thePe is a unique NE M 

with M n N E L. 

PROOF. (i) Suppose z E x.L n M. Take y E M\x.L and consider S = S(x,y). If 

M ~ S, there is nothing to prove. Otherwise, Mn S contains z and y, so 

Mn SE V(S) by Corollary 3.6. It results that x.L n M = x.L n (MnS) is a 

line. 

( . ') (') .L ' 1' h .L .L ' h . ii By i, L n Mis a ine. T us N = <L,L n M> is t e unique max space 

containing L with Mn NE L ~ 

Notice that Lennna 3.8(ii) can be reformulated as (L ,M) is a genePaZ­x X 



ized qua<lrangle for each x E P. 

LEMMA 3.9. :Fhe graph (V,~) defined by v1 ~ v2 iff v1 =. v/ and v1 n v2 E L 

for v1,v2 EV is connected. In particular3 any plane Vis contained in a 

syrrrp. 

PROOF. Note that the subgraph induced on V(S) is connected for any SES. 

Let VE V. By connectedness of (P,L), it suffices to prove that any plane 

W with V n W ~ 0 is joined to :X: by a path in (V,~). Let WE V\{V} with 

V n W ~ 0. Take v E V\W and w E W\V. If v ,/. w\ consider S(v,w). There are 

planes M,N in S(v,w) such that <v,V n W> c Mand <w,VnW> c N. Now 

rk(M n V) > rk(V n W) and rk(N n W) > rk(U n W), so by induction we are 

reduced to the case where V c Wi. It suffices to treat the case where 

VnWEL 

Since symps exist we may assume V c S for some SES. Let Ube a plane 

in S with V n U = V n W. Again, take v E V\W, w E W\V and u E U\V. Then 

U J vi d i If i h i i S( ) S d W ,_ an w E v • w E u , t en w E u n v =. u, v = , an = 
i i i = <w,V n W> c <u n v, Un V> c S. So we may assume w I. u. But then W c 

S(u,v), finishing the proof of the Lennna. 181 

COROLLARY 3 .. 10. The graph (M,~) defined by M1 ~ M2 iff rk(M1 n M2) = I, is 

connected. 

PROOF. Note that M1 and M2 are adjacent in(M,~) iff there are planes V =. M1 
and W =. M2 with V 'i.. ~ and V n W E L. Thus there is a surjective morphism 

(V,~) + (M/~) of graphs given by V 1+ Vi (cf. Lemma 3.1 (iv)). The desired 

result is therefore a consequence of the above lemma. 18] 

FROM NOW ON WE ASSUME THAT THE LINES OF (P, L) 

ARE THICK 

LEMMA 3.11. The graph (L,~) defined by 1 1 ~ 1 2 iff rk(L 1 n 1 2) = 0 and 

1 1 'i.. L~, is connected. 

PROOF. As before, the proof comes down to the case where 1 1 
rk(L 1 n 12) = 0. But then <L 1,L2> E V, so the lennna results 

gous statement for polar spaces with thick lines. 181 

i 
c 1 2 and 

from the analo-

7 
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LEMMA·3.12. Let L1,L2 EL. There is a bijection be-tween 

PROOF. By connectedness of (L,~) as defined in Lemma 3.11, we need only 

prove the lemma for L1,L2 EL with L1 't. L2i and L1 n L2 is a point. Take 

x E L1 \L2 and y E L2 \L 1 and let u.:M(L 1) + M(L2) be given by u(M) = 
= <y,M n yi>i. It is not hard to verify that u is a bijection. ~ 

LEMMA 3.13. Let M,N EM satisfy rk(M n N) = O. Then rk(M) = rk(N). 

PROOF.Mn N = {u} for some u E P. In view of 3.8, the map $:L (M) + L (N) 
--- u u 
given by $(X) = Xi n N is well defined. Moreover, it is an isomorphism of 

projective spaces; Hence the result. ~ 

Consider the graph (M,~) defined by M1 ~ M2 iff rk(M1 n M2) = O. The 

above lemma states that the members of a connected component of (M,~) all 

have the same rank. Lemma 3.8(ii) and connectedness of (P,L) yield that 

for any line Land each connected component K of (M,~) there is a member 

of Kon L. The following lemma shows that in fact (M,~) cannot have more 

than two connected components. 

LEMMA 3.14. Suppose a line is contained in at least three max spaces. Then 

(M,~) is connected. In particular, all max spaces have the same Pank. 

PROOF. By Lemma 3.12, any line is contained in at least three max spaces. 

Let M,N be two max spaces with Mn NE L. We claim the existence of KEM 

with Kn M =Kn Na singleton. 

In view of Corollary 3.10 it follows that (M,~) is connected. The last 

statement is then a direct consequence of 3.13. To show the existence of K 

as described choose x EM n N and y E (Mn N)i\(M n N). Note that y exists 

because of the assumption that Mn N is in at least three members of M. 

By Lemma 3.9, <Mn N,y> is contained in a symp, so there is z E P with 
i i M i i z n <Mn N,y> = <x,y>. Now K = <x,y,z> E and {x} ~Kn M = z n (y n M) = 

= zi n (Mn N) = {x} by Lemma 3.8. So Kn M = {x}. Similarly, Kn N = {x}, 

so the claim holds. ~ 



LEMMA 3.15. If rk(M) = 2 for some ME M, then for any x E P and LE L we 

have xL n LL~ 0. In partiauZar, the diameter of (P,L) is 2. 

PROOF. We may assume that xL n L = 0. By induction with respect to d(x,L), 

it suffices to prove the first statement in the case where d(x,L) = 2. Let 
L L y,z E P be such that x E y and z E y n L, and take w E L\{z}. The hypo-

9 

thesis implies that there is a max space N of rank 2 on yz. Since xL n N 

and wL n N are lines in N, they intersect in a point, say u. Since u E xL n 
L LL L L,L LL 

n w n N c x n w n z = x n L, we have shown x n L ~ 0 as wanted. ~ 

COROLLARY 3.16. If aZZ ma:x: spaces have rank 2, then (P,L) is a poZar space 

of rank 3. 

PROOF. Let x E P and L € L. We prove the Buekenhout-Shult axiom xL 

Suppose the contrary. Then, since the above lemma yields xL n LL~ 

(p4) . 1 · h L L . 1 · d. . . f h ( L imp ies tat x n L is a ine isJoint rom L. T us rk <L,x 

= 3, conflicting the hypothesis. ~ 

n L ~ 0. 
0, axiom 

n LL>)= 

LEMMA 3.17. If SES and x E P satisfy L c L(S), then (P,L) is a poZar x-
space of rank J. 

PROOF. We prove that P = S. In view of the connectedness of (P,L) it suffi-
L L ces to show that for any y Ex all z E y are contained in S. Let y,z be 

as described. If z E xL\{x} we must have zx E L(S), so z Es. Suppose 

z l xL. Then S(x,z) is a symp on x. But since symps are geodesically closed, 

Sis the only symp on x. We obtain S(x,z) = S, and z ES as wanted. ~ 

4. A PROPERTY OF CLASSICAL GENERALIZED QUADRANGLES 

Throughout this section, (P,L) is a generaZized quad,PangZe with thick 

Zines (P,L) called alassieaZ--whenever it occurs as the residue of a point in 

a nondegenerate polar space of rank 3 whose lines are thick. Since polar 

spaces of this rank are classified [7] the list of all classical generalized 

quadrangles is known. The result is quoted in Theorem 4.1. For the duration 

of this section, we shall adopt terminology from [7], without recalling 

all definitions. The aim of this section is to prove Proposition 4.2. 
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THEOREM 4.1. (Buekenhout-Shult, Veldkamp, Tits). Let (P,L) be a cZassicaZ 

generalized quadx>angZe. Then (P,L) is one of the foUowing: 

(i) A poZar space Q(~) of a projective space over a division Ping F 

where~ is a poZarity deteX'ITlined by a nondegenePate trace-vaZued 

(cr,e)-heX'ITlitian foX'ITI of With index 2 for some antiautomoPphism cr of 

F with cr2 = 1 and some e E {1,-1}. 

(ii) A poZar space Q(K) of a projective space over a division ring F where 

Ki~ a projective pseudo_-quadx>atic foX'ITI represented by a nondegenerate 

a-quadratic foX'ITI of Witt index 2 for some antiautomoPphism cr of F 
. h 2 mt cr = I. 

(iii) The duaZ of the generaZized quadx>angZe Q(K0) in a projective space 

over the fieZd F defined in (ii) where KO is represented by the quad­

ratic foX'ITI q: Ex F4 + F over F defined by 

for Ea CayZey division aZgebra over the fieZd F and N:E + F the 

quadx>atic noX'ITI foX'ITI of this aZgebra. 

(iv) {x,y}i for two noncoZZinear points x,y of A3, 2 (F). 

A grid is by definition a generalized quadrangle in which each point is 

precisely two lines. Clearly the generalized quadrangles in (iv) are grids. 

In Lemma 4.5 we shall find all grids occurring in the list. But first, the 

main result of this section will be stated. 

We recall that a family R of lines in (P,L) is called a spread in (P,L) 

if the members of R partition P (i.e. P = UL and for any two distinct 

L1,L2 € R we have L1 n L2 = 0). 
A grid has precisely two spreads, they are also called the paraZZeZ 

cZasses of the grid. If L1,L2 are disjoint lines of (P,L) such that the 

subspace <L 1,L2> is a grid, then L1L2 denotes the parallel class of the grid 

containing L 1 and L2 • 

PROPOSITION 4.2. Let (P,L) be a nondegenerate generaZized quacb-angZe with 

thick Zines which is either finite or cZassicaZ. Suppose it admits a spread 

R in which for any two distinct L1,L2 ER the subspace <L 1,L2> is a grid 

and the famiZy L 1L2 is contained in R such that 



(R,{LjL21L 1,L2 E R;L 1 ~ L2}) is a pPojeative spaae. Then the Pank of Ras 

a pPojeative spaae is 1 and (P,L) is a grid. 
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The remainder of this section is devoted to the proof of this proposi­

tion. Thus, fPom n01v on until the end of this seation we assume that R is 

a spPead of the genePalized qua.d:z>angle (P,L). In the next lemma, the finite 

case is dealt with by a straightforward computational argument. 

LEMMA 4.3. If (P,L) is finite; then rk(R) = 1. 

PROOF. Suppose rk(R) > 1. Then (P,L) is not a grid. In particular, it is 

then a regular· generalized quadrangle, i.e. there is a constant number, say 

l+t, of lines through each point, and a constant number of points, say l+s, 

on each line. By well-known theory [3], we have t ~ s2• On the other hand, 
sm+l -1 

l+st = IRI =----,-if the rank of R ism. It follows that t = l+s (and s-1 
m = 2). A straightforward computation on multiplicities of eigenvalues of 

the adjacency matrix of the collinearity graph (cf. [3]) leads to integrality 

conditions which are only satisfied ifs= 1. But this is excluded by the 

requirement that the lines be thick. ~ 

The assumption that lines are thick is necessary, since the regular 

complete bipartite graph on 6 points provides a counterexample. 

The classical case depends on the classification of classical general­

ized quadrangles as stated in Theorem 4.1. If (P,L) is as in (iv) of this 

theorem, there is nothing to prove. 

LEMMA 4o4. (P,L) is not isomo-pphia to a genePalized quad:l'angle as desaPibed 

in 4. 1 (iii). 

PROOF. If (P,L) satisfies (iii) of 4.1, then the dual of <L 1,L2> is a bi­

partite graph in the dual of (P,L). On the other hand, according to 10.7 of 

[7], the dual of <L1,L2> is the dual of (P,L) itself. This yields the ab­

surdity that Q(K0) of 4.1 (iii) is a bipartite graph. ~ 

If Xis a subset of a projective space we denote by [X] the projective 

subspace of this projective space spanned by x. 
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LEMMA ·4.5. Let F be a division ring., Zet cr be an antiautomorphism of F such 

that cr2 = 1 and Zet EE {1,-1}. Suppose~ is either a poZarity 1r determined 

by a nondegenerate trace vaZued (cr,E)-hermitian fo1'Ti1 f of Witt index 2 or 

a projective pseudo-quadratic form K represented by a nondegenerate cr-quad­

ratic form q of Witt index 2. If L1 ,L2 are Zines of Q(~) with L1 n L2 = 0 
such that <L 1,L2> is a grid., then cr = 1 and (if~= 1r) E = 1. Thus., Fis a 
field. Furthermore., <L 1 u L2> = [L1 u L2J n Q(~) unZess ~ = 1r and F has 

characteristic 2. 

PROOF. Take distinct points e 1,e3 in L1 and e2,e4 in L2 such that {e2} = 
~ ~ (J = e3 n L2 and {e4} = e 1 n L2• Put Fcr,E = {t-t Elt E F}. As in 8.10 of 

[7], choose E1,E2,E3,E4, points of the vector space underlying the projec­

tive space in which Q(~) is defined, such that E. represents e. (i.e. such 
. 1 1 

that the ray through E. is e. for i = 1,2,3,4) and such that 
1 1 

and 

4 
f( I 

i=l 

4 
q( I 

i=l 

4 
E.x., l E.y.) = 

1 1 i=l 1 1 

E.x.) 
1 1 

if ~ = Ko 

if~=7T 

Now take a E F (where E = 1 if~= K). Then the calculation performed in 
rJ, E 

8.10 of [7] shows that the projective point p(a) represented by (l,a,O,O) 

on the basis E1,E2,E3,E4 is in <L1,L2>. But p(a) is collinear with both 

e3 and e4 and hence in {e 1,e2} as <L 1,L2> is a grid. It follows that a= O, 

and the conclusion is that F = {O}. 
rJ, E 

If E = -1, this reads t + tcr = 0 for all t E F, so that F has charac-

teristic 2 and E = 1. 

It results that E = 1 and t - t 0 = 0 for all t E F, whence cr = 1. 

Since cr is an anti-automorphism, F must be connnutative and therefore a 

field. 

The final statement of the lennna now results from (8.10) of [7]. ~ 

LEMMA 4.6. Let F be a fieZd and let~ be either a poZarity 1r determined by 

a nondegenerate symmetric form f of Witt index 2 or a projective quadratic 

form K represented by a nondegenerate quadratic form q of Witt index 2. 



Suppos·e Ll'L2 ,L3 are distinat lines of Q(O suah that for eaah i E { 1 ,2,3} 

the subspaae <Liu Li+l> of Q(~) is a grid and Lin <Li-I u Li+l> = 0 
(indiaes moduZo 3). Then there are Zines N1 E L1L2\{L1,L2} and N2 E 

L1L3\{L1,L3} suah that if <N1 u N2> is a grid, the interseation 

N1N2 n L2L3 d.oes not aontain a Zine of Q(~) whiah is disjoint with L1• 

~- Let e 1,e2,e3,e4 and E1,E2,E3,E4 be as in the proof of 4.5. Thus 
.L .L e 1,e3 E L1; e 1 ~ e3; e2,e4 E L2 and e 1 E e4 , e2 E e3 ; furthermore the 

vector E. represents e. for i = 1,2,3,4 and 
l. l. 

and 

4 
f < I 

i=l 

4 

4 
E.x., l E.y.) = x1y2 + x2y 1 + x3y4 + x4y3 

1 1 i= 1 1 1 

q( l Eixi) = xlx2 + X3X4 
i=l 

if~ 

13 

Next, take es E L3 with {es}= e~ n L3 and es E eleS with {es}= e~ n eleS. 

Then e5 E <L1 u L3> so there is a line Lj ER on e5 contained in <L 1 u L3>. 

Since e 1 ~ e5 , we may replace L3 by Lj without harming generality, so as to 
• .L .L . .L obtain e5 E e 1 n e2 n L3• Let e6 E L3 be such that {e6} = e3 n L3 and let 

.L e4 E L2 be such that {e4} = e6 n L2• The projective space A= [L1 u L2 u L3] 

has rank 3, 4 or 5. 

Let us first consider the case where rk(A) = 5. If~= w, then char(F) ~ 

~ 2 as otherwise the Witt index would be strictly larger than 2. So we may 

assume that~= K. Consider ql[LluL3]. Let y E F and E4 a vector representing 

e4 be such that E4 = E4 + E2y (note that e4 ~ e2). It is easily derived,that 

there are vectors E5 , E6 representing e5, e6 such that 

Considering ql[LluL3], we obtain a,8 E F\{0} such that 

The foregoing restrictions describe qlA fully: 

(x. E F). 
l. 
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Now let n1(n2,n3,n4 resp.) be the point of Q(K) n A whose homogeneous co­

ordinates with respect to E1,E2, ••• ,E6 are (l,0,0,0,1,0) ((0,0,-a,0,0,S), 

(I,0,0,t,0,0,), (0,-1,I,0,0,0) resp.). Then N1 = n 1n2 is a line of 1 113 
and N2 = n3n4 is a line of 1 112• 

Note that N1 n N2 = 0 as 1 112 n 1 113 = {11}. Now suppose <N1 u N2> 

is a grid with {N} = N1N2 n 121 3 for a line N of Q(k). Then clearly 

N ~ N1,N2• Moreover e2e5 is a line of <12 u 13> not parallel to 12, so 

e 2e5 n N ~ 0 .. But a point of N\<1 1 u 12> has homogeneous coordinates of the 

form v + AU for A E F, where v = (~.o.-a,o,~.s) and u = (1,-n,n,l,0,0) for 

~,n E Fare homogeneous coordinates of a point in N1,N2 respectively. Thus 

e2e5 n N ~ 0 implies the existence of ~.n,A,µ,v E F such that 

(I+ A~,-n,n-Aa,l,A~,AS) = (0,µ,0,0,v,0) 

The equation leads to a classical contradiction in the fourth coordinate. 

This proves the lennna in the case where rk(A) = 5. 

Next, assume that rk(A) ~ 4. Then 13 n [L 1u12J so 13 n ([L 1uL2J n Q(~)\<L1u 

uL2>) ~ 0, According to Lennna 4.3, this implies that F has characteristic 

2 and that~=~. In particular,~ is a symplectic form. 

If rk(A) = 4, then~ fs degenerate and has a kernel consisting of a single 

(projective)point z. Clearly z i An Q(~), so we may consider the quotient 

by [z] so as to reduce the proof to the case where rk(A) = 3. 

Thus, for the rest of the proof, we have that F has characteristic 2, 

that rk(A) = 3 and that~=~ is a polarity determined by the symplectic 

form whose restriction to A is given by 

4 4 

f( l Eixi, i'=ll Eiyi) = xly2 + x2Y1 + X3Y4 + X4Y3 (xi,Yi E F) 
i=l 

A straightforward computation using e5 E {e1,e2}i yields the existence of 

a E F\{0} such that E5 given by (0,0,a,1) on the basis E1, E2, E3, E4 re­

presents es· 
i Also, e6 E {e3,e5} leads to the existence of SE F\{0} such that the vector 

E6 given by (I,S,0,0) on the same basis, represents e6• 
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Now let nI(n2 ,n3,n4 resp.) be the point of Q(,r) whose homogeneous coordin­

ates with respect to E1,E2 ,E3 ,E4 are (l,O,a,l)((l,B,B,0),(l,O,O,I), 

(O,I,l,O) resp.). Then NI= nin2 is a line in LIL3 and N2 = n3n4 is a line 

in L1L2• No~~ <N 1 u N2> is a grid. Put N = <Nl u N2> n <L2 u L3>. Let x,y 

be the point of Q(,r) whose homogeneous coordinates with respect to 

EI,E2,E3 ,E4 are 

X = {(O,a,a, I) 

(O,(~+l)a,s~,~) where ~2 = a(a+B), 

if a= B 

if a -;t:. B 

and 

Y = (a,aB,0,a + nB), where n2 = a(a+B)/B2 

2 respectively. Then x,y are distinct collinear points of N and XnB + Y(a+nB) = 

= (a2+naB,O,a2B,O) (= Xa2+Ya if a= B) represents a point of xy on LI. 

It follows that {xy} = N1N2 n L2L3 , so that N1N2 n L2L3 does not con­

tain a line of Q(,r) which is disjoint with L1• This settles the lemma. ~ 

The classical case of Proposition 4.2 is dealt with by the following 

lemma. 

LEMMA 4.7. Lf (P,L) is cZassical, then rk(R) = I. 

PROOF. In view of 4.4 and the observation, made before, that (P,L) is a 

grid in case (iv) of 4.1, we need only consider cases (i) and (ii). Let 

L1 ,L2 be two lines from R. Then L1 n L2 = 0 and <LI u L2> 1.s a grid, so by 

Lemma 4. 5 we may assume that (P, L) = Q ( I;) for t;, as described in the hypotheses 

of Lennna 4.6. Suppose we have L3 E R\LIL2• Then Lin Li+l = 0 and 

<L. u L. 1> = 0 for each i E {1,2,3} (indices taken modulo 3). By Lemma 4.6, 1. 1.+ 
however, there are N1 E L1L2 \{L 1 ,L2} and N2 E L1L3 \{L 1 ,L3} such that 

N1N2 n L2L3 does not contain a member of R. This means that Pasch's axiom is 

not satisfied, contradicting that (R,{L 1L2 1L 1,L2 E R;L 1 -;t:. L2}) is a projec­

tive space. The conclusion is that R = L1L2 , in other words, that rk(R) =I.~ 
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5. THE POINT RESIDUE OF A GRASSMANN SPACE 

We continue the study of Grassmann spaces. In this section (P,L) is a 

connected Grassmann space whose lines are thick. Furthermore, oo is a fixed 

point of P and P00 ,L00 ,S00 ,M00 stand for L ,L (V ),L (S ),L (M) respectively. 
00 00 00 00 00 00 00 

Moreover, if VE V, then V00 denotes L (V). Similarly for members of L,S 
00 00 

and M. 
It is straightforward to check that (P00 ,L00

) is a connected incidence 

system of diameter 2 satisfying axioms (Pl) and (P2). By 3.1, the members of 

M00 are maximal singular subspaces of (P00 ,L00
) isomorphic to projective spaces 

and of the form L.L for any line L contained in them. Moreover, (P00 ,M00
) is 

a generalized quadrangle by the remark following 3.8, which is easily seen 

to be nondegenerate. Members of S lead to generalized quadrangles in (P00 ,L00
). 

We shall call them quads. Any two noncollinear points are in a unique quad. 
00 00 _l 

Also, if SES and x E P -S, then x n Sis either empty or a line of 
CO 00 

(P ,L ). This is innnediate from (P4)'. 

We recall from 3.7 that for SES and ME M, the subset 

Su {z E M\Slz.L n SE V} is denoted by H(V(S),S). We shall also write H(S) 
instead of H(V(S),S). 

LEMMA 5. 1. Suppose there are M E M and S E S with M n S 

is a subspace of M of rank at most 2. 

{ 00 }. Then Mn H(S) 

PROOF. Set V =Mn H(S). It follows from 3.7 that Vis a subspace of M. 
00 00 00 00 00 

Recall that M ,S ,V denote the subspaces of (P ,L) induced by M,S,V 

respectively. Let R be the subfamily of L00 whose members occur as z.L n S00 

00 00 

for some z E: V • Then R is a spread of the quad S , for any two members 

of Rare disjoint (in P00
) by 3.5 and if x E S00

, then x.L n M00 = {y} for some 

y E V00 by Lennna 3.8(i), whence y.L n S00 is a member of Ron x. Now let L be 

a line of (P00 ,L00
) in V00

• Then U = UL x.L n S00 is a grid in S00
• For suppose 

XE 

there are x 1,y 1 EU with x 1 E y 1.L\{y1}. Then there are unique x,y EL with 

x 1 E x.L n S00 and y 1 E y.L n S00
• If z 1 E x 1y 1, then either x = y and z 1 E 

E x.L n S00 or x 7 y. In the latter case x,y,y1,x1 is a 4-circuit, so there 

is z E xy with z 1 E z.L n s 00
• So U is a subspace. Proceeding with x 7 y, we 

.L 00 
see that x1y 1 and x n S are the only two lines on x 1 in U, so U is indeed a 

grid in s00
• Moreover, one parallel class of lines in U is entirely contain-



ed in R. Denoting by L1L2 for L1,L2 ER the parallel class of lines in 

<LI,L2> belonging to R, we obtain a surjective morphism 
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_l 00 00 00 

of projective spaces given by u(x) = x n S (x EV). If x 1,x2 EV satisfy 
_l 00 _l 00 _l 00 • 

xI n S = x2 n S, then N = <x1,x2,xI n S > is a singular subspace with 
(

00 ) ( • 00 _l 00 ti, 00 rk M n N ~ rk <xI,x2>). Since N n S - x n S 7 ~, we have M 7 N, whence 
00 

rk(M n N) ~ O. It results that rk(<xI,x2>) = O, i.e. xI = x2• This shows 

that u is bijective, so that rk(V) = rk(V00)+l = rk(R)+I ~ 2 by Proposition 

4.2. 18] 

LEMMA 5.2. Suppose ME M00 and S,T E S00 satisfy Sn T 7 0, Mn S 7 (/J and 

Mn T 7 (/J. Then Mn Sn T 7 (/J. 

PROOF. Let x ES n T and u EM n S, w EM n T. If x EM or u = w, we are 

done. So assume x I.Mand u 7 w. Now x E w.L would imply w E u.L n x.L c S if 

u I. x.L and x E (uw).L = M otherwise; similarly x E v.L can be settled. Assume 

J .L .L h . . . . .L { }.L x ~ u u w. Ten there is a unique pointy in x n M. We have y E x,u n 

n {x,w}.L c Sn T, soy EM n Sn T ~ 

LEMMA 5.3. Assume that for any M E M00 and S E S00
, we ha:ve M n S 7 0. Then 

M00 = L00 and IS00 I = l, so that (P,L) is a polar space of rank 3. 

00 

PROOF. Fix x E P. Suppose S,T are distinct quads on x. Write L =Sn T. 

We shall first show that Lis a line. Indeed, it is a singular subspace on 

x, so Lis either a point or a line. Choose ME M00 not on x. By Lemma 5.2, 

there must be a pointy in Mn Sn T, so that xy.::. L. It follows that L = xy 

is a line. If NE M00 is disjoint form L.L, we get a contradiction with 

N n L = (/J. Since such N exist, it follows that Sis the only quad on x. 
00 

Therefore, S contains all points in P noncollinear with x. But for each 
.L .L .L .L .L point z Ex \{x}, there is a point u E z \x, so that z Ex nu cs. This 

shows that P00 = S. Thus the maximal cliques are members of L00
, i.e. M00 = L00

• 

Finally, by Lemma 3.I7, the Grassmann space (P,L) must be a polar space of 

rank 3. ~ 
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LEMMA 5.4. If rk(MO) = 2 for some MO EM, then x.1 n M ;z 0 for any x E P and 

any ME M of rank> 2. 

PROOF. Suppose ME Mis of rank> 2 and x E P\M. In view of the connected­

ness of (P,L), we may restrict attention to the case where there are z E P 

and y E M such that 
J_ J_ J_ 

n M, we have z 
J_ 

L by Lemma Z E X n y. As y E z n M E 

3.8(i). If 
J_ 

n L ;z 0, we are done. So 
J_ 

n L = 0. Now z 
J_ L.l X assume x E X n , 

J_ L.l L by (P4), 
J_ J_ 

is a projective space of rank 3 so X n E so <x n L ,L> on 

L. But Mis the unique space on L of rank> 2 by 3.13 and 3.14, so z E x.l n 

L.l::. M; in particular z E x.l n M, terminating the proof. ~ 

LEMMA 5.5. Suppose rk(MO) = 2 for some MO E M. If both M1 ,M2 E M hcwe rank 

> 2, then IM1 n M2 1 = 1. 

PROOF. We only need to establish M1 n M2 # 0 in view of 3.14. Suppose 

M1 n M2 = 0. Take x E M1• By the previous lemma and Lemma 3.8 (i), L = 
J_ J_ 

= x n M2 is a line. Take v,w EL with v ~wand consider B = v n M1 and 
J_ 

C = w n M1• If B = C, then <B,L> is a projective space of rank 3 on L so 

is contained in M2 , which conflicts M1 n M2 = 0. Thus B ~ c. Now B,C are 

lines on x in M1, so rk(<B,C>) = 2 and there is y E M1 \<B,C>. But y.l n L = 0 
so A= y.l n L.l EL as x EA by (P4). Consequently, <A,L> has rank 3 and 

contains L, so is in M2 • It results that A is in M2 , whence x E M1 n M2 • ~ 

COROLLARY 5.6. Suppose there are M1,M2 E Mwith rk(M 1) = 2 and rk(M2) = m>2. 
+ -Let M (M resp.) be the connected component of (M,:::::) whose members have 

rank m(2 resp.). Then (M+,PM+), where PM+= {M+lx E P}, is a projective 
X 

space of rank m+l such that the points and lines of (P,L) correspond to the 

lines and pencils of (M+,PW) respectively. In other words, (P,L) is iso­

morphic to i\n+l, 2 (F) for some division ring F. 

PROOF. We verify Tallini's axioms in [6]. First of all, it is obvious that 

no line is a maximal singular subspace. 

(I) Any two members of M+ meet in exactly one point. 

This is the content of Lemma 5,5. 

(II) If ME M+ and M1 EM- then Mn M1 is either empty or a line. 

This follows from Lemmas 3.13 and 3.1 (iv). 
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(III) For any iine L there is ereactiy one ME M+ and one M1 EM- such that 

L = M n Ml. 

This results from the remarks preceding Lemma 3.14. 

The Corollary now follows from Proposition I in [6]. 

Instead of referring to [6], a direct proof could have been given, but 

this would have lengthened the paper by another few pages. 

LEMMA 5. 7. Assume that each Une is in at ieast three ma:,; spaces. If M n S 

is empty for ME M00 and SE S00
, then {x E Mlxi n SE L00

} contains a sub­

space which is a projective piane. 

PROOF. Take x ES. It has a unique neighbor yin M. As L1 =yin S contains 

x, it must be a line on x. Let L be another line in Son x, and take x2 E 

E L\{x}. There is y2 E x2i n M1• Note that y ~ Yz for yin Sis a clique and 

x2 t L1i. Write L2 = y2i n s1• This is a line disjoint from L1(cf. 3.5). 

Suppose L1 is a third line on x, not in L1i u Li (such a line exists by 

assumption). Take w E L1\{x}. If wt S, then win S contains x, so must 

be a line in S distinct from L1 and L. Therefore there is 

x3 E xi n S\(L 1uL). Again, take y3 E x3i n Mand consider 

a line on x not in <L 1,L2>. Thus y3 t yy2 and <y,y2 ,y3> E 

of the desired kind. ~ 

a point 
i 

y3 n S. 

Vis the 

It is 

subspace 

COROLLARY 5.8. Each iine of (P,L) is in preciseiy two ma:x; spaces, uniess 

(P,L) is a poiar space of rank 3. 

~- Suppose there is a line in strictly more than two max spaces. Let 

SES and ME M satisfy Mn S = {00 } and consider V =Mn H(S) (cf. 3.7 and 

5.1). By 5.1, rk(V) ~ 2 and by 5.7, rk(V) ~ 3, contradiction. It results 

that the conditions of Lemma 5.3 are satisfied, so that (P,L) is a polar 

space of rank 3. ~ 

We summarize the results obtained in this section. 

PROPOSITION 5.9. Let (P,L) be a connected Grassmann space with thick iines. 

Assume (P,L) is not isomorphic to a poiar space (of rank 3) or An, 2(F) for 

some n ~ 4 and some division ring F. Then for each point x E P, the residue 
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(P ,M) is a grid. In partieula:1', eaah line is in pz,eaisely two ma.x spaaes. 
X X 

Moz,eovez,, the z,ank of any ma.x spaae is> 2. 

6. COOPERSTEIN'S THEOREM A. 

Thl'oughout this seation, (P,L) is a•aonneated Gz,assmann spaae whose 

lines az,e thiak suah that any line is in pz,eaisely two ma.x spaaes, eaah of 

them of z,ank > 2. We fix a point 00 of P and maintain the notation of Section 

5 concerning residues on 00 • 

LEMMA 6.1. Let ,M,N EM and SES. 

(i) If Mn S ~ 0, N n S ~ 0 and Mn N ~ 0, then Mn N n Sis a singulaz, 

subspaae. 

(ii) If Mn S, N n SE V and rk(M n N n S) = O, then M ~ N. 

PROOF. Both (i) and (ii) follow from the fact that xi n Sis a singular 

subspace for any x E P\S. ~ 

We supply the graph (M,~) with the natural family of lines that turns 

Minto a Gamma space whose collinearity graph is (M,~). To'avoid confusion, 

we denote by MT for ME M (rather than Mi which has a distinct interpreta­

tion) the set of vertices in (M,~) of distance at most 1 to M. For M1,M2 EM 

with M1 ~ M2, the line M1M2 is defined by M1M2 = {M1,M2}TT• A priori, it is 

not clear that this turns Minto a linear incidence system, but it will 

follow from 6.3 that it is. By C we denote the family of all such lines, i.e. 

We need some more notation. For x E P, LE L, VE V and ME M with 

x EL.=. V .=. M, denote by p{L,M) the unique member of M containing Land 

distinct from M. Furthermore, put l(x,V) = {p(L1 ,Vi)IL1 E L(V) }, 
X 

m(x,M) = {p(L1 ,M)IL1 E L(M) } and 
X 

n(x,V) = {p{L',~) 
WE Vx; W n p{L",Vi) E L } 

for each L" E L(V) ; L' E L(W) 
X 



LEMMA 6.2. Two distinet max spaees M1,Mz a:l'e of distanee 2 in (M,::::) iff 

M1 n M2 = 0 and there is ME M with Mn M1, Mn M2 E. L. In pa:l'tim1,Za:l', 

(M,~) is not eorrrpZete. 
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PROOF. Suppose M1,M2 are of distance 2 in (M,~). Then M1 n M2 = 0, for if 

M1 n M2 EL then {M1,M2}T = 0 by 3.8(ii). Let HE {M1,M2}T. There are xi E P 

with H n Mi= {xi} for i = 1,2. Consider L1 = x2i n M1 and L2 = x 1i n M2• By 

3.8 we know Li EL. Now <x1,x2,Li>i (i = 1,2) and Hare three max spaces on 

x1x2, while H differs from the first two as it intersects M1 and M2 in a 

point. So M = <x1,x2,L1,L2>i is a max space with Mn Mi= Li. 

Conversely, let M be a max space with Mn M. EL for i = 1,2 and suppose 
l. 

M1 n M2 = 0. Take xi EM n Mi and consider rt= p(x1x2,M). BY 3.8, H n Mi= 

{xi} so that HE {M1,M2}T. Thus M1,M2 have distances; 2; in fact their 

distance is~ 2 as M1 n M2 = 0. This establishes that M1,M2 are of distance 

2. 

Finally, let ME Mand let L1,L2 EL be disjoint lines (they exist as 

rk(M) ~ 3). Then p(L1,M) and p(L2,M) are not joined as they have distance 2 

by the above criterion. ~ 

LEMMA 6.3. Suppose M1,M2 EM satisfy M1 ~ M2• Let VE V00 be sueh that 
T Ml n M2 = {oo} and V n M1, V n M2 EL. Then {M1,M2} =mun, where 

m = m(oo,Vi) and n = n(oo,V) are maximal eZiques in (M,~) with m n n = l(00 ,V). 

Moreover, if for YE m and Y' En we have Y ~ Y', then at least one of 

Y,Y' is in l(oo,V). In partim1,Zar, M1M2 = l(00 ,V). 

PROOF. Clearly l(oo,V) = l(00 ,V') for any V' E V00 with V' n M1, V' n M2 EL, 

as V00 and V100 are parallel lines of a grid in (P00 ,L00
) on the 4-circuit 

00 00 00 f 00 

(V' n Ml) , (V n Ml) , (V n M2) , (V n M2) • 

Let us now determine {M1,M2}T. By Lemma 6.2, any two distinct members 

x, X' of m satisfy X n X' = {00}, so mis a clique contained in {M1,M2}T. 
1 i 

If ME n, there are WE V00 with W n p(L ,V) EL for each L' E L(V) 00 

and LE L with L =Mn W. Note that M. n W'E L since (~) 00 is parallel to 
l. 

(Vi) 00 in (P00 ,M00
). As l(oo,V) = l(oo,W), we may replace W by V without loss of 

generality. If ME m, we have ME l(00 ,V) as before. Assume 00 l L, and let 

i E {1,2}. Since V n M. and Lare lines in V, there is a point x. EV such 
l. l. 
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that {:x.} = L n M .• It follows by 3.8(ii) that M n M. = {x.} (note that M 
]. ]. ]. ]. 

and VL meet in xxi). Thus ME {M1,M2}T. 

So far,, we have shown m u n 5.. {M1 ,M2}. The converse is straightforward: 

each member M of {M1,M2}T is in m whenever Mn M1 = {00 } and in m otherwise. 

Let us now consider m n n. The inclusion l(00 ,V) 5.. m n n is obvious. To 

prove the opposite inclusion, let ME m n n. Since ME n, there is WE V 
00 

with L' c Wand W n M. EL for i = 1,2 with M = p(L',W~), so that Mn W = L'; 
]. 

but 00 EM as ME m, so 00 EL' and ME l(00 ,W). By the first paragraph of this 

proof, this is equivalent to ME l(00 ,V). This proves m n n = l(oo,V). Next, 

let YE m and Y' E n\l(00 ,V) with Y i:::1 Y'. Write L = Y n VL and let x,y1,y2 
be such that{~}= Y n Y', Y' n M1 = {y1}, Y' n M2 = {y2}. Then {x,y1,y2} 

is a clique (in Y'). Note that Yt ~ y2 as Y' t l(00 ,V). If x t y 1y2 , then 
V L_ 1 L 1 • <x,y 1,y2> E and <x,y 1,y2> - Y. But L c <y 1,y2 ,x>, so L c Y contradict-

ing that Y n Y' is a singleton. Hence x E y 1y2 , so that L = oox is in V and 

YE l(00 ,V). This establishes the one but last claim of the lemma. The last 

one follows directly. ~ 

COROLLARY 6.4. (M,C) is a Gamma space with thick lines, where 

C = {l(x,v)Jx E P, VE V }. 
X 

PROOF. It follows from the previous lemma that (M,C) is a Gamma space and 

that the definition of C coincides with the one given in the text preceding 

6.2. Thickness of the lines is a consequence of the bijection L • l(x,V) 

for fixed LE L(V) with x t L given by y + p(xy,VL) (y EL) ~ 

LEMMA 6.5. If x 1,x2 EM are of distance 2 in (M,C), then {x1,x2}T is a grid. 

PROOF. Note that x 1 n x2 = 0 and there is HEM with Li= H n Xi EL for 

each i E {1,2}. We claim that any YE {X1,x2}T meets Xi in a point of Li. 

For let y1 E x 1\L 1• Then y 1L n L2 = 0 as otherwise y 1L n K would contain 

more than the line L1, leading to y I E K and K = x 1, conflicting x 1 n x2 = 0. 
Thus LI= Y1L n L2L by (P4), so that Y1L n X2 ~ 0 whence XI n x2 ~ 0, 

L which is absurd. We conclude that y 1 n x2 = 0, so that no max space on y 1 
is in x2T. This implies that any YE {x1,x2}T meets x 1 in a point of L1• 

Similarly the claim is proved for i = 2. The claim yields the following 

description of the subspace under study: 



T The lines in {XI,x2} are of the form l(x,<x,Li>) for x E Lj' where 

{i,j} = {I,2}. 

In particular, {x1,x2}T is isomorphic to the geometry on the lines 

intersecting two given lines LI ,L2 in a projective space of rank 3, ,in 

which two members are collinear whenever they intersect. This geometry is 

well known and easily checked to be that of a grid (cf. Section 4). ~ 
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LEMMA 6.6. Suppose l EC and ME M satisfy MT n l = 0 a:nd MT n lT 7 0. Then 

MT n f T E C. 

T T 
PROOF. It suffices to show that M n l contains at least two points. 

Let x E P and VE V be such that l = l(x,V). Suppose H T T 
E M n f • 

X 
.L Then by Lemma 6.3 we have HE mun, where m = m(x,V) and n = n(x,V). 

Let y E P be such that H n M = {y}. Suppose H E m. Th'en x EH. Write 

L = .L n M. This is a line W = <x,L> is a plane. Take L' L(W) X on Y, so E 
X 

with i L' .L is of MT n lT distinct from H • y , then p (L' , W ) a member 

Suppose HE n\m. Then d(x,y) = 2. Consider S = S(x,y). Note that 
.L n Vis a line of X 

.L .L Let L be a line of x .L .L parallel (and dis-y n Y . n Y 

tinct) .L n V, and define H' .L Then H' = p(L', <x,L 1 >.L) to y = <y,L> • E n so 

H' EMT T T H' done. ~ n ncM nl. As 7 H, we are 

COROLLARY 6.7. (M,C) is a Grassmann space with thick Zines. 

PROOF. Axiom (PI) is proved in 6.4 (where it is also stated that lines are 

thick), (P2) in 6.2, (P3) in 6.5 and (P4) in 6.6. ~ 

LEMMA 6. 8. Take M E M of rank i. Then m(00 ,M) is a projective space in 
00 

(M,C) of rank i-I. If VE V is such that V n MEL, then n(00 ,V) is a 
co 

projective space of rank i+I. 

PROOF. Write m = m( 00 ,M) and n = n(00 ,V). By Corollary 3.3, both m and n are 
co 

projective spaces. By construction of m, there is a bijective map µ:M + m 
co 

given by µ(L) = p(L,M) for LE L. Given 1 1 EV with V' _c M, we have that 
00 00 

µ({LE L00 IL.::. V'}) = {p(L,(V').L) IL.::. V1 } = l(00 ,V'), so thatµ maps lines 
coco• CO 00 

of (P ,L) m M onto lines of (M,C) in m. As rk(M) = i-I, this shows that 

rk(m) = i-1. 
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Next, consider n. Choose L1,L2 E L(V) 00 distinct and write Mi= p(Li,Vi). 

Furthermore let Hi be a hyperspace of Mi disjoint from 00 • Given xI E H1 , 

the line xii n M2 on 00 intersects H2 in a point x2• 

This leads to a map $:HI+ n given by w(xI) = p(xix2, <00,xix2>i). This 

map is easily seen to be injective. Moreover, if LI is a line of HI' then 

$(L 1) is a line of (M,C). 

Let L2 = x~LI xi n H2 and take xI ,y I E LI, xI ~ y I. Then there are 

unique x2,y2 E L2 collinear with xI'YI respectively. Consider the generaliz­

ed quadrangle xii n y2i. It co~tains the lines oox2 and ooy 1, so there is a 

point 001 E xii n Yzi n x2i n y 1i\{ 00}. Now $(LI)= l(00 ',<oo',Lt>) is a line 

in N. 

As a consequence, $(H1) is a singular subspace of n of rank i-1 (note 

that M1 is of rank i). But l(00 ,V) is a line of n completely disjoint from 

$(H1). We conclude that rk n ~ i+I. We finish by showing that any member N 

of n is on a line in (M,C) from a member of l(oo,V) to a member of $(H ). 
1 

By analogous arguments to what we have seen before, we are easily led to 

the case where N = p(y1y2,v) for distinct yi in N n MI\{ 00 } (i = 1,2). Let 

xi EN n Hi, so that xi00 = yi00 • If x 1 = Yt and x2 = Yz the~ NE $(H1), so 

we may assume that x 1x2 ~ y1y2• Since both lines are in V, there is z EV 

with x 1x2 n y 1y2 = {z}. Now N = p(y1y2,v) is on the line l(z,V) which has 

member p(00z,v) in l(00 ,V) and member p(xix2,V) in $(H1). 

We conclude that n is spanned by l(00 ,V) and $(HI). Thus rk(n) ~ i+I, 

and equality holds. ~ 

Before stating the main theorem, we recall the notion of quotient. The 

quotient of the incidence system A= (P 1,LI) by the group G of automorphisms 

of A is meant to be the incidence system A/G whose point set is P1/G = 

{xGlx E P1}, the set of orbits of Gin P1, and whose family of lines is 

LI/G = {LGIL E L1}, where LG= {xGlx EL} for LE LI. Note that this quotient 

is again an incidence system if Li_ xG for each x E P, LE L. 

THEOREM 6.9. Let (P,L) be a connected Grassmann space with thick iines, 

whose max spaces have finite ranks. Then one of the foiiowing hoids: 

(i) (P,L) is a nondegenerate poiar space of rank 3 with thick Unes. 



25 

(ii) 

(iii) 

(P,L) ~ A d(F) for some a~ 4, d ~ (a+l)/2 and some division ring F. a, 
There is a naturaZ nwnber d ~ 5, a division ring F and an invoZutory 

automorphism cr of A= A2d-l d(F), interchanging the connected compon-, 
ents of the graph (M,Z) on the max spaces, with d(x,xcr) ~ 5 for aZZ 

points x of A such that (P,L) ~ A/<cr>. 

PROOF. By 3. 13 and 3.14, rk(M) for ME M attains at most two values. Let d 

be the minimal of these and let b be the other one if it exists, let b = d 

otherwise. The proof runs by induction on d. The cased= 2 has been settled 

in Proposition_ 5.9. 

Assume d > 2, and suppose (P, L) is not a polar space of rank 3. By 5. 9 

we have that each line is in exactly two max spaces. By 6.7 and 6 0 8, there 
+ ~ is a connect,ed component M of (M,~) such that the induced subgraph 

(M+,::::::) is thie collinearity graph of the connected Grassmann space (M+,C+) 

where c+ = U. E C ! .t n M+ "7' ~}, whose max spaces have ranks d-1, b+ 1. The 

induction hypothesis then yields that (ii) occurs, so that (M+,C+) ~ 

~ Ad+b-l d-l(F) for some division ring F. Now Ad+b-l,d(F) can be thought 
' ' of as the incidence system obtained from Ad+b-l,d-l(F) by taking the max 

spaces of rank d-1 from one connected component under~ in Ad+b-I,d-l(F) for 

points and the relation ~ (i.e. M:::::: N iff M n N meet in a point) for collin­

earity. Remember that this determines Ad+b-I,d as any Grassmann space is 

determined by its collinearity graph (cf. 3. I). 

Let (P',L') be the incidence system that can be obtained from (MT,CT) 

in J·ust the way A d(F) is obtained from Ad b 1 d 1(F) (note that this d+b-1, + - , -
makes sense as (M+,c+) ~ Ad+b-l,d-l(F)). 

If m E P', then mis a projective space in (M,C) of rank d-1, so 

m = m(x,M) for a unique x E P and some ME M\m. Thus there is a map 

µ:P' • P sen.ding m E P' to the unique x E P for which there is ME M\m with 

m = m(x,M). This map is clearly surjective and is either 2:1 or 1:1 accord­

ing as M = M+ or not, i.e. according as (M,~) has one or two connected 

components. We claim thatµ is a morphism of graphs. For if m,n are collinear 

in (P',L'), the points µ(m) and µ(n) are both contained in the max space 

M for which m n n = {M}. Consequently, µ(m) and µ(n) are collinear in (P,L). 

Thus, if (M,~) is disconnected, we have (P,L) ~ (P',L') ~ Ad+b-l d(F). , 



26 

Let from now on (M,~) be connected. Nowµ is a surjective 2:1 morphism. 

Also b =din view of 3.13 and 3.14 so (P',L') ~ A2d-l,d(F) for some d ~ 3. 

Choose m E P'. We shall show thatµ is bijective when restricted to the 

neighborhood mL of min (P',L'). Let x,y be distinct collinear points of P 

and suppose µ(m) = x and let m1,m2 E P' both be collinear with m and such 

that µ(m 1) = µ(m2) = Y• 

As before, we may assume that m = m(x,M) for ME M with xy.::, M. Simi­

larly we may take M. EM with xy c M. such that m. = m(y,M.), for each 
1 . -i i i 

i E { 1, 2}. Suppose now that M1' ;t M2• Since each of M,M1 , M2 contains xy, 

it follows that M coincides with M1 or M2• Without loss of generality we 

may assume that M = M1• Since m2 is collinear with m, there is YEM such 

that YE m(x,M) n m(y,M2). This means that Mn Y is a line on x and 

M2 n Y is a line on y. Thus Y contains xy, so either Y =Mor Y = M2• But 

Y = M conflicts Mn YE Land Y = M2 conflicts M2 n YE L. It results that 

M1 = M2, so that m1 = p(y,M1) = p(y,M2) = m2• We have established that the 

restriction ofµ to the members of P' collinear with a given point is in­

jective. 
Our next step is.to show that the restriction ofµ to the subset mL of 

P' of members collinear with m is an isomorphism of graphs: Thus for m1 ,m2 E 

E P'\{m} collinear with m such that x 1 = µ(m 1), x2 = µ(m2) are collinear in 

P, we have to derive that m1 is collinear with m2 in (P',L'). Let V = 

= <x,x1,x2>, where x = µ(m). 

Since m ~ m., there are X. Em nm. for i = 1,2. Thus X. contains xx .• i 1 i i i 
If XI E xx2, then XI n x2 = xx2 EL, conflicting XI~ x2. It follows that V 

is a plane. Since V n X. =xx.EL, we have m. = m(x.,VL) so that i i i i 
L 

p(x1X2sV) E ml n m2, whence ml~ m2. 

Next, define a:(P',L') • (P',L') to be the unique map such that 

µ-l(µ(m)) = {m,ma} for each m E P'. Clearly, a is an involution. Also, a 

is an automorphism of (P',L'). For if m ~ n for m,n E P', then µ(m) ~ µ(n) 

d ..I. a . . b". • L B h a a . . b'. • an m T n sinceµ is iJective on m. ut ten m ~ n sinceµ is iJective 

on (na)L. So indeed, a is an automorphism of (P',L') and d(m,ma) ~ 3 for any 

m E P! 
But if there ism E P' with d(m,ma) = 3, then there are m1,m2 E P1 

with m ~ m1 ~ m2 ~ ma, so that m ~ m2a ~ m1a ~ ma. Sinceµ is an isomorphism 

on the subgraph induced on mL, and {µ(m 1),µ(m2),µ(m)} is a clique, this 
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yields that m1 ~ m2cr. This is in contradiction with m1 ~ m2• 

We have shown that d(m,mcr) ~ 4 for any m E P'. Suppose d(m,mcr) = 4 for 

some m E P'. Then there is a minimal path m ~ m1 ~ m2 ~ m3 ~ mcr with mi E P' 
L L cr L cr L . (i = 1,2,3), so that m1 Em n m2 and m3 Em n (m2 ) • This leads to two 

connected components µ(mL n m2L) and µ(mL n (m2cr)L) in µ(m)L n µ(m2)L. In­

deed, if there are n 1 E mL n m/ and 'rt2 E mL n (m/)L) with µ(n 1) ~ µ(n 2), then 

n 1 ~ n2 as n 1,n2 E mL, so m2 ~ n 1 ~ n2 ~ m2cr is a path of length 3 contra­

dicting d(m2,m2 cr) ~ 4). But th_is contradicts the fact that µ(m)L n µ(m2)L 

is connected (as it is a generalized quadrangle by assumption). We conclude 

that d(m,mcr) ~ 5 for all m E P'. Finally, since (P',L') ~ A2d-l,d(F) has 

diameter d, the existence of cr implies that d ~ 5. This ends the proof of 

the theorem. ~ 

REMARK 6.10. The converse of 6.9 also holds: if (P,L) is as described in (i), 

(ii) or (iii) of the theorem, then (P,L) is a connected Grassmann space 

with thick lines whose max spaces have finite ranks. 

In case (iii), cr is induced by a polarity of the projective space over 

F of rank 2d-1 such that x n xcr has codimension at least 5 in x for any 

subspace x of rank d-1. By the classification of such polarities, cf. [3], 

it follows that F must be infinite. 

The above remarks put together with 6.9, prove ,the.main theorem stated 

in Section 2. 

We conclude this section by mentioning that A2d-l d(lR)/<cr> ford~ 5, 
. . . d . h h d ' f, ..,2d 2 ( where cr is the polarity associate wit t e qua ratic orm ~i=l xi or any 

other nondegenerate form of Witt index at most d-5), provides an example of 

a Grassmann space of the type occurring in (iii) of the main theorem. 

7. APPLICATIONS. 

In this seation (P,L) is a aonneated Grassmann spaae ~ith thiak lines. 

Consider the following two axioms, each of them stronger than (P4). 

(Q4) If x E P and LE L with xL n L = 0, then xL n LL EL. 
(R4) If L1,L2 EL with L1 n L2 7! 0 and z E P, then there is u E zL with 

L L · 
u n L1 ·7! 0 and u n L2 7! 0. 



28 

It is an easy exercise to show that (Q4) holds for (P,L) iff (Q4)' holds, 

where 

(Q4)' l. If SES and x E P\S, then x n Sis either empty or a maximal 

clique ins. 

Also, (R4) is easily shown to be equivalent ot (R4)': 

(R4)' If SES and x E P\S, then xl. n Sis either a singleton or a maximal 

clique in s. 

We note that (P,L) has diamete.r 2 if (Q4) holds and diameter at most 3 if 

(R4) holds. 

LEMMA 7.1. Suppose (P,L) satisfies (Q4). Let S,T be distinct symps on 00• If 

Sn T .=. {00 }, then Sn TE V. 

00 00 00 j_ 
PROOF. Consider the residue of 00 • Suppose x ES n T. Take y ET \x. Note 

that y i S00 as S00 n T00 is a clique. Since L = yl. n S00 must be a line in 
00 j_ j_ j_ 00 

S \{x}, there is z Ex n L\{x}. This implies z Ex n y c T, so that 

xz c s n T. 0 

THEOREM 7.2. If (P,L) is a connected Grassmann space with thick lines whose 

max spaces have finite ranks and in which (Q4) holds, then (P,L) is either a 

polar space or rank 3 or isomorphic to A 2 (F) for some a~ 4 and some divi-
a, 

sion ring Fo 

PROOF. Suppose M1 ,M2 E M have rank > 2 and M1 n M2 E L. In order to apply 

Proposition 5.9, we verify that L = M1 n M2 is in at least three max spaces. 

The hypotheses on the ranks of M1,M2 imply the existence of points 

xl'x2 E M1\M2, and y 1,y2 E M2\M1 such that rk(<x1,x2,L>) = rk(<y 1,y2,L>) = 3. 

Clearly x. i y.1.. Consider S. = S(x.,y.) for i = 1,2. As M1 n M2 E L(S 1 n S2), 
i i i i i 

Lemma 7al yields that s 1 n s2 EV. Thus, if s 1 n s2 .::, M1, then s 1 n s 2 = 

s 1 n s2 n M1 = s 1 n M1 = s2 n M2 by consideration of ranks, so <x 1,x2,L>.::. 

.::. s 1 n s2 and 3 = rk(<x1,x2,L>) ::s:: rk(S 1 n s2) = 2, a contradiction. Hence 
l. s1 n s2 £ M1• Similarly, one can prove s 1 n s 2 £ M2• Now (S 1 n s 2) is a 

third max space on L, and we can finish by Proposition 5.9. 181 

FROM NOW ON WE ASSUME THAT (R4) HOLDS FOR (P, L) 
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LEMMA 7.3.- Let x 1 ,x2,x3,x4,x5 be a minimal 5-ciraui-r; (i.e. x/ n xi+2xi+3 £' 

;t 0 fo1• aU i, indices taken modulo 5). If x/ n S(x2,x4) E V, then 
L L - • 

x. n S(x.+1,x.+3) a:nd x. n S(x. 1,x. 3) ·are ~n V for all i(l~i~5). 
l. l. l. . l. 1.- 1.-

PROOF. Note that x 1L n S(x2,x4) € V iff {x1,x2,x3,x4}L ;t 0. Thus x4L n 
L L n S(x1,x3) EV follows. Also for u E {x1,x2,x3,x4}, we have ux4 ~ x3 n 

n S(x1,x4), so x3L n S(x1,x4) EV. Similarly x2L n S(x1,x4) EV. The argu-

ment is easily completed. .~ 

COROLLARY 7.4. Let L €Land SES with Sn L = 0. If x,y EL and x1,y1 ES 

with xL n S = {x1} and yL n L = {yl( _then x1 E y 1L. 

PROOF. We may assume x1 ;t y1, for else there is nothing to prove. Take 
L L u E x1 n y1 \{x1,y1}, and consider the 5-circuit u,x1,x,y,y1• Since 
L i L L L xi y1 u u and y i x 1 u u and x n S(x1,y1) = {x1}, the lennna implies 

L that x1 E y1 • ~ 

LEMMA 7.5. Suppose x 1 ~ x2 ~ x3 ~ x4 is a path in (P,L) with x1 i x3L and 
L . L . 

x2 i x4 such that {x1,x2,x3,x4 } = 0. Then foP ME Mon x1x2, there ~s a 
unique max space M1 on x3x4 of distance 2 to Min (M,~). 

PROOF. By Lennna 308 there is a (unique) max space M' on x2x3 collinear with 

M. Similarly there is a unique max space M1 on x3x4 collinear with M'. Now 

M1 n M = 0 as M1 n M ~ {x1,x2,x3,x4}L, so M1 has distance 2 to Min (M,~). 

Suppose M2 is also a max space on x3x4 of distance 2 to M. Then by 6.4 there 

are max spaces N1,N2 on x2x3 with Nin M, Nin M1 EL for each i E {1,2}. 

But N1,N2,M are three max spaces on x2 the intersection of any two of which 

contains a line. This implies N1 = N2• But then N1,M1,M2 are three max 

spaces on x3, the intersection of any two of which contains a line. It 

results that M1 = M2• ~ 

LEMMA 7.6. Suppose (P,L) satisfies (R4). If x 1,x2 , ••• ,x5 is a minimal 5-

circuit in P, then 

(i) xiL n S(xi+l'xi+3) EV for each i (l~i~5), indices taken modulo 5). 

(ii) {x1,x2, ••• ,x5}L = 0. 
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PROOF. (i) Suppose x 1,x2, ••• ,x5. is a minimal 5-circuit which is a counter­

example to the statement. By 7.3, it is a circuit with x . .L n S(x. 1 ,x. 3) 
1 1+ 1+ 

a singleton for each i. Let M be a max space on x3x4 and take M1 EM on 

x2x3 with M1 n M = {x3} and M2 EM on x4x5 with M2 n MEL. Now L1 = 
.L .L .L .L 

= XI n Ml, L2 = XI n M2, L3 = X3 n M2 =Mn M2, L4 = X4 n M2 are lines 

on x2,-x5 ,x4,x3 respectively. 

Since L1 n L4 5.. {x1 ,x2,x3,x4 }.L and L2 n L3 5.. {x1 ,x5,x4,x3}.L we have by 

the assumption that L1 n L4 = L2 n L3 = 0. Take u E L3\{x4} and v E L4\{x3} • 
.1.l .L •• .L .L Then u ~ v. For u Ev would imply L3 5_ L4 and <L3,L4> = M so that 

Mn M1 would contain the line L4, conflicting Mn M1 = {x3}. 

Considers·= S(u,v). Note that V = x5.L n S contains L3 and must there­

fore be a plane 
.L 

.L ins. Similarly for W = x2 n S. Note that x 1 i S, for else 

x 1 n x 3x4 ~ 0. 
.L 

Now XI n s ~ 0 by (R4). As XI 
.L .L .L .L x 1 n x2 n Sand x 1 n x5 n Sare 

.L then z E {x1 ,x2,x3,x4,x5} n S, as 

is a clique on x3• So we may assume 

I .L .L I.L .LI ~ x 1 n x2 n SI + x1 n x5 n S 

.L .L E x2 u x5 , Lemma 3.5 implies that 
.L nonempty. If z E {x1,x2,x5} n S, 

.L S . 1· d .L x5 n is a c ique on x4 an x2 n S 

{x1 ,x2,x5}.L n S = 0. Thus lx1.L n sl ~ 
~ 2, so that x 1.L n SE V. Write U = 

.L = x1 n S. Since U,x3,x4 are in S, there is w 

zx3 is a line in x4.L n S(x1,x3); this settles 

.L .L E x3 n x4 nu. But now 

(i). 

(ii) Assume u E {x1,x2, ••• ,x5}.L. Put L = x1.L n (x3x4).L. Since x1.L n x3x4 = 0 
by minimality of the circuit, LE L. Now <x1,x5,u>.L, <x1,x2,u>.L EM , so 

.L .L ~ 
<x 1,L> ~ <x1,x5 ,u> or <x1,L> 5.. <x1,x2,u>. 

Without loss of generality, assume <x1,L> 5.. <x 1,x5,u>.L. Then 

<x4 ,L> 5_ x3.L n x5.L conflicting ranks. ~ 

LEMMA 7.7. Let (P,L) satisfy (R4). If S,T aJ>e distinct symps, then Sn Tis 

not a singleton. 

PROOF. Suppose S,T are symps such that S n T = {x} for some x E P. Take 

S\x.L. By axiom (R4), there is y .L .L for else Z E E Z n T. Now y E T\x, 
.L .L 5.. s, Sn T = {x} and x conflicting z i x.L. Choose y E X n z SO y E y = 

.L .L with v 1 i 
.L , and take .L .L v 1,v2 Ex n Y v2 U E X n z • 
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} · 5 · · · h 1 yJ_ (for else Let i E {1,2. Now u,x,v.,y,z is a -circuit wit u ~ 
i J_ J_ 

u E xJ_ n yJ_ .'.:. T), x i zJ_ u yJ_ and vi i zJ_ (for otherwise vi E x n z c S). 
J_ J_ J_ V J_ V 

So either u E v. and v. n S:::, xu, or v. n S E • At any rate, v. n S E 
i i -J_ i J_ i 

for each i E {1,2}. Put V. = v. n Sand consider W = y n S. As z E 
i i 

E W\(v 1 u v2), we must have WE V by Lemma 3.5. But then xJ_ n Wis a line 
J_ J_ 

(as both x, Ware in S) contained in x n y, hence in T. ~ 

LEMMA 7.8. Suppose (R4) hoZds for (P,L)o Then rk(M) ~ 3 for any ME Mo 

PROOF. Suppose Mis a singular subspace of rank 4. Pick x EM and V,W E V(M) 

with V n W = {x}, and let S ,T be symps on V,W respectively. Since x ES n T, 

we know by Lemma 7.6 that there is a line Lon x in Sn T. Now V c LJ_ would 

imply L c VJ_ n T = W; but also L .=- V, as <V,L> is a singular subspace of s, 
so that L c Sn T = {x} which is absurd. Hence there is z E L\{x} with 

z i VJ_. Since z, V are in S, we obtain that L1 = zJ_ n Vis a line on x. 

Similarly, 1 2 = zj_ n Wis a line on Xo But now z E L11 n L2J_ = <L 1,L2>J_ = 
= MJ_, so L c Mand V c LJ_, which has just been excluded. 

It follows that no max space of rank 4 exists. ~ 

THEOREM 7o9o If (P,L) is a connected Grassmann space with thick Zines in 

which (R4) hoZds then (P,L) is either a poZar space of rank 3 or isomo'l"phic 

to one of A4, 2 (F),A5 , 3 (F) for some division ring F. 

PROOF. This is a direct consequence of 6.9 and 708. 
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