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Holling's 'Hungry mantid' model for the invertebrate functional response 

considered as ·a Markov process. Part 0: A survey of the main ideas and 

results *) 
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ABSTRACT 

In this paper we present an analytical approach to Holling' s simulation 

model for mantid predatory behaviour. Starting from a general representation 

as a Markov process, with a rather complicated state space, we introduce a 

series of approximations, suggested by the relative values of the various 

parameters. As an intermediate step we derive a set of coupled partial 

integro-differential equations from which we can calculate the functional 

response and the variance of the total catch. We end with simple explicit 

expressions for these same quantities. 
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I. Introduction 

In his marvelous 1966 paper 'On the functional response of invertebrate 

predators to prey density' Holling describes the results of a beautiful set of 

experiments on the predatory behaviour of the mantid Hierodula crassa together 

with a rather complicated simulation model in which all the experimental detail 

is combined into one overall picture. He also makes a case for simulation as 

opposed to analytical methods. This now is,a bit of a challenge, and in this 

paper we shall try to convince you that analytical methods are somewhat more 

powerful than Holling seemed to be aware of. 

There was also a less frivolous reason for us to embark upon the research 

sunnnarized here. Holling's (1959) secretary or disk model for predation has 

instigated a spate of applications, experimental as well as theoretical, which 

is still in full flow today. This is much less the case for his hungry mantid 

model, even if for predation (as opposed to insect parasitism) this model 

probably is much closer to biological reality. The reason, no doubt, is its 

complexity. By the judicious use of analytical methods we can break down this 

complexity step by step to arrive at various simple end results. At what place 

we end depends on the relative orders of magnitude of the various parameters. For 

the original parameter values of Holling's mantid the end result turns out to be 

very simple indeed. 

2. The general invertebrate predator 

Figure I shows a representation of the prey catching process broken down 

into its main components according to Holling. The rectangular boxes correspond to 

the various directly observable activities of a generalized invertebrate predator, 

with between parentheses a reference to the particular form this activity takes 

in a preying mantid. The duration and/or success of each of these activities may 

be influenced by the predator's satiation (or, equivalently, hunger as used in 

Holling's original model formulation). Satiation itself increases during eating 

and decreases otherwise. 
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Fig 1: Decomposition of the prey catching process according to Holling. 

For his preying mantid Holling found that 

(1) satiation decreases exponentially durifg periods of fasting (fig 2), 

(2) the form of the search field remains constant, but 

(3) the size decreases linearly with satiation, except that it can never become 

negative (fig 3), 

(4) pursuit occurs at a constant speed, independent of satiation, 

(5) the prey, flies in Holling' s experiment, escaped during pursuit by flying away 

at a constant rate, 

(6) strike success is constant, independent of satiation, 

(7) speed of eating is constant independent of satiation, and so was the time 

needed to eat one fly, as fly size was kept rigorously constant. 
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Fig 2: The decrease of satiation(= gut content) during a period of fasting in the 

mantid Hierodula crassa. Adapted from Holling (1966). 

Fig 3: The size of the mantid's search field as a function of satiation. Adapted 

from Holling (1966). 
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To this list the following additional remarks have to be made: 

(a) The fact that the search field is not circular was corrected for by Holling by 

the introduction of an equivalent circular field, based on the assumption that 

prey arrived from random directions. This is alright for the calculation of prey 

arrival rates, but not for the calculation of the probability of prey escaping 

during pursuit. For the sake of the exposition we shall not go into such minor 

refinements of Holling's original calculations, however. 

(b) Exponential decrease of satiation by now seems to be an almost universal law 

for invertebrate predators (andmanyvertebrates as well). See e.g. Sabelis (1981) 

for a recent reference. In the following we shall therefore often make this special 

asstllllption as it considerably simplifies many of the calculations. 

(c) In Holling's experiments prey speed depended on prey density. This will be 

accounted for here by referring to effectiVie prey density, i.e. prey density 

multiplied by the speed reduction relative to the speed at zero density. 

On the basis of those observations Holling devised a simulation model which 

successively generated the time intervals spent in the various activities. This 

simulation model was completely deterministic: Holling did not take into account 

the inherent random nature of the search process but innnediately replaced any 

random quantity by its expectation, even if he had to deal with some nonlinear 

function of that same quantity later in his calculations. Still, the result of a 

fully stochastic simulation by the second author turned out to match pretty well 

that of Holling's deterministic one. The reason for this later proved to be that 

both the full stochastic process and Holling's deterministic version are very near 

to still another deterministic approximation to be derived below by analytic means. 

The quality of Holling's predictions therefore hinges on the special values of the 

parameters leading to the latter approximation. In the general case one will need 

a fully stochastic model formulation. 

3. The behaviour of a predator represented as a Markov process 

The main difference between Holling's secretary model and his mantid model is 

that in the former we have a unique Markovian searching state, during which the 

predator searches at a constant rate, whereas in the latter model, we have to deal 

with a continuum of searching states characterized by different values of the 

satiation. The Markov property of the searching activity in the secretary model 

leads us automatically to renewal theory as the source of appropriate tools (For 

a description of that tool box see Cox (1962). A discussion of the fundamental 

role played by the Markov property in the analysis of behaviour sequences can be 

found in Metz (1974) and Metz et al. (1983).). In the mantid's case we have no way 

to turn but to the general theory of Markov processes. 
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To represent our hungry mantid as a Markov process we have to specify a state 

space, i.e. w~ have to look for a set of characteristics the value of which at any 

one time contains all information about past events relevant to the prediction of 

the animal's future behaviour (A more detailed account of the construction of 

state spaces for animal behaviour can be found in Metz (1977, 1981)). One possible 

such state space is depicted in figure 4 together with some segments of possible 

trajectories representing various behaviour sequences that may occur after a prey 

has entered the predator's visual field. 

Having arrived at a Markovian description we can write down a complicated set 

of partial integrodifferential equations for the probability distribution of the 

predator's state. These equations can not be solved explicitly, however, and for 

o chance event 
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Fig 4: A Markovian state space for Holling's mantid. In the state space some 

segments of trajectories are depicted showing the various possible events that 

may happen after the sighting of a prey. The upper segment corresponds to a 

successful prey capturing sequence. In the second segment the strike is unsuccess­

ful. In the third segment the prey escapes during pursuit, and the fourth segment 

corresponds to the very rare event that during a unsuccessful pursuit a new prey 

has entered the visual field. 

Fig 5: A simulated sample path of the satiation process together with the result 

of a deterministic simulation according to Holling's rules. The chosen sample path 

is not very representative as most sample paths kept much nearer to the path of 

the deterministic simulation. 
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reasons of costs a Monte Carlo solution, i.e. a stochastic simulation, may well be 

preferrable to a full blown numerical one. However, the parameter values of 

Holling's mantid, and probably of many other predators as well, are such that all 

movements off the satiation axis are much more rapid than the downward movement 

of satiation due to digestion. Since moreover the jumps from the satiation axis 

are relatively infrequent compared to the return rate to the satiation axis, the 

main probability mass will be concentrated on the satiation axis itself. This 

effect is also demonstrated in figure 5, which shows a sample path of the satiation 

process, together with a deterministic simulation following Holling's rules. Here 

it can be seen that on catching a prey the satiation jumps almost instantaneously 

to its new level. Therefore we can turn to a simple approximating process in which 

all the horizontal movements in figure 4 are assumed to be instantaneous. 

4. Negligable handling time 

From now on we shall assume that 'handling time' is negligable. i.e. if a 

denotes the rate constant of digestion and & T denotes the expected time needed to 
s 

return to the satiation axis after leaving this axis at s, we assume a& T << 1. 
s 

Under this assumption our predator can be modelled in terms of one state variable, 

satiation, denoted as S, the density p of which satisfies the forward equation 

clp(s,t) = at 

with 

f(s) = -as 

clf(s)p(s,t) - xg(s)p(s,t) + xg(s-w) p(s-w,t), 
as (I) 

(2) 

the digestion rate, w the prey weight, and xg(s) the catching rate where xis the 

effective prey density. To make (1) well-defined we introduce the convention that 

gp equals zero for s negative. Moreover we have to add the (boundary) condition 

p(s,t) = O for s > smax > c+w 

where c is the satiation threshold, i.e. the value of s for which g first becomes 

zero. 

For Holling's mantid the catching rate can be expressed as 

+ 
xg ( s) = xb ( 1-s / c) q ( s) , 

+ q(s) = exp[-d(l-s/c')]. (3) 

The first term of g equals the width of the search field times the (maximal) prey 

velocity times the strike success, and q is the probability that the prey does not 

escape during pursuit. To calculate q we observe that the probability of a fly 

staying put during the 'pursuit' equals the exponential of minus the escape rate 

times the pursuit time. The pursuit time equals the pursuit distance divided by 

the pursuit velocity. Finally the pursuit distance equals the observation distance 
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minus the strike distance. It is the introduction of this latter term which makes 

C 1 < C, 

As an exercize we may integrate the left and right hand sides of (I) overs, 

and use !fa fp = ;}! fp = 0 to arrive at ~ti p(s,t)ds = O, and, since the total 

probability mass at time zero equals zero, 

00 

f p(s,t)ds = I 

0 

(4) 

in conformity to our expectations. (The main reason for introducing this seemingly 

trivial calculation here is that below analogous calculations will be made without 

going into the specifics.) 

It is clear that our main interest is not in the distribution of S, but in 

the number of prey caught, N. Intuitively 1we write down innnediately from 'law of 

mass action' considerations 

d&N 
dt 

00 

= x f g(s)p(s,t)ds = 
0 

x&g(S). 

A more formal derivation can be given by using the 'generation expansion', 

where 

def p (s,t)ds = P {s < S(t) ~ s+ds, N(t)=n}, n 

(5) 

(6) 

and p_ 1=o by convention. Multiplying the left and right hand sides of (6) with n, 

n2 , sunnning over n, and collecting terms gives us (5) again, but also 

d ~:r(N) = x{2 cov[N,g(S)]+&g(S)}, 

where cov[N,g(S)] can be calculated from 

and 

00 

cov[N,g(S)] = f g(s) z(s,t) ds 

0 

az afz at= - Ts - xgz + xg(s-w) z(s-w) + xg(s-w) p(s-w) - xp&g(S). 

By the same methods as before we find moreover that 

00 

f z(s,t) ds = 0. 

0 

H~ Haymans of the Mathematical Centre at Amsterdam has proven existence 

---11 --

(7) 

(8) 

(9) 

(IO) 



the exponential convergence of those solutions to the stationary solutions 

defined by 

df"" 0 = - __£_ - xgp + xg(s-w)p(s-w) 
ds 

00 

= f p(s)ds 

0 
00 

0 
dfz = - ds -

00 

xgz + xg(s-w)z(s-w) + xg(s-w)p(s-w) - xpJg(o)p(o)do 

0 

0 = I z(s)ds. 

0 

Moreover, probabilistic considerations tell us that 

! 
(N-~N) / (var N) 2 

I 

Gaussian (O, 1). 
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(11 a) 

( I lb) 

( 12a) 

(12b) 

(13) 

To calculate p numerically we make use of the fact that (Ila) reduces on (O,w] 

to an ordinary differential equation. So we can choose a starting value p(w) = 

pw > 0 and integrate backwards from w to zero. Next we integrate from w to 2w, 

using the known values of p on (O,w], and so on. It can be shown that p stays 

positive on (O,c+w) and becomes exactly zero at c+w. Due to the linearity of (9a) 

we can normalize afterwards to conform to (11b). The only troublesome aspect may 

be the singular nature of (Ila) at s=O, due to the fact that f(O)=O. As a result p 
may diverge for s+O. However, near to s=O we can easily derive an analytical 

approximation top to replace the numerical one. The result of such a numerical 

calculation for Holling's mantid parameters and the lowest, highest and middle prey 

density used by Holling in his final experiments is shown in figure 6. 

The calculation of z proceeds in exactly the same manner as that of p except 

that instead of normalizing we add some multiple of p to satisfy (12b). 

Finally if we know p we can calculate the functional response Fas 

00 

F(x) = x f g(s) px(s) ds 

0 

(14) 

where the subscript x refers to the fact that pis dependent on the parameters. 

For Holling's mantid the functional response is numerically found to be increasing 

and concave, but we do not yet have any proof of such properties. Direct 

probabilistic considerations tell us that 

dF 
- (0) = g(O) dx 

lim F(x) = (­
:x-+oo 

(15) 

c+w I f(s)ds)- 1 • (16) 
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Fig 6: Calculated stationary distribution of the satiation for Holling's mantid 

for three values of the effective prey density, corresponding to the lowest, the 

highest and one middle prey density used by Holling in his final experiments. 

To arrive at more managable results we have to go on to the next approximation 

stage. 

5. Small prey weights 

If we look at figure 5 again we see that the prey weight is very small 

relative to the satiation threshold c, but the accumulated prey 

few hours of eating still leads to a considerable upwards shift 

continuous digestion. Therefore we introduce the new parameter~ 

what happens to (1) if w becomes small, ~ remaining constant: 

weight during a 

of S despite the 
def =- x.w, and look 

:i = - 3!~ - xgp + xg(s-w)p(s-w) ~ - 3;~ - xgp + [xg(s)p(s) - xw a~~ (s)]. 

In the limit when w~O we get 

ap _ a (f+~g)p 
at - - as ' 

i.e. the 'jumpterms' have disappeared. So the prey catching process has become 

completely deterministic: the predator is slurping prey soup. 

[Remark: The fact that we can make our approximation in two steps is based on the 

fact that a& T « w/c« I for alls.] 
s 
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s- C 

Fig 7: The processes contributing to the satiation in the deterministic limit model 

for one particular value of the effective prey density. Also indicated are the 

equilibrium level of the satiation, s, and the corresponding value of the 

functional response F. 

Figure 7 depicts what happens to our soup eating predator. Its satiation will 

quickly stabilize at some values, defined by 

-f(s) = xwg(s) (17) 

and 

F(x) % xg(s) (18) 

Both sand F can be read off innnediately in the figure. Changing x corresponds to 

multiplying the wg curve by different constants. From the construction we can 

easily prove that for f linear and g decreasing F will always increase. When g is 

moreover concave F will be concave too. 

When pursuit is always successful, i.e. if g is equal to b(l-s/c), and if 

f(s) = -as as usual, the model formulation derived here corresponds exactly to 

that of Rashevsky (1959). 

6. (Local) linearization 

During the limiting process described in the previous section we have lost all 

information concerning the variance of the catch. To retrieve this information we 

may co~sider a diffusion approximation locally around the deterministic trajectory. 

It is easier, however, to derive the results we need by more direct means. To this 

end we consider a 'linearized' version of the satiation process, which results from 

replacing g with a straight line, For the sake of the exposition we shall do this 

here by setting q equal to 1 in (3). For a local linearization we should replace 

g with its tangent line at s. Moreover it is essential for the following calcula­

tions that f(s) = -as. 

As a first step we observe that, on neglecting the probability mass situated 

between c and c+w, 
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&g(S) ~ b(l-&S/c). 

To calculate &s we multiply both sides of (1) withs and integrate overs to 

obtain 

d&S 
dt ~ -a&s + xw&g(S) ~ - ( a + xwb / c) &s + xwb . 

(19) 

(20) 

Proceeding in this manner we can also derive approximate differential equations for 

variances, covariances and so on. We shall not bother you here with the detailed 

calculations, but confine ourselves to giving the two most important final results: 

d&N bx 
dt (oo) = l+xwb/(ac) (2 I) 

which' corresponds to the deterministic result (18) under the same assumptions on 

f and g, and 

bx d vc1.r N (oo) 
dt = --,(-1-+xw___,b_/.,...(.,....a_c..,...).,...) .... 3 

As a 'worst case' check of the accuracy of (21) we can let x+xi, giving 

d&N (oo) = ac/w, 
dt 

which should be compared to an exact value, calculated from (16),- of 

a/ln(l+w/c) = (ac/w)(l+½w/c+o(w/c)). 

(22) 

So (21) is correct to first order in w/c even for p concentrated near the satiation 

threshold, For Holling's mantid w/c = 0.0372. 
d var (N) The limiting value of dt (00 ) for x-+<x> calculated from (22) even 1.s exact 

(i.e. zero). 

7. Concluding re.marks 

The main conclusion that emerges from our analysis 1.s that a clear specifica­

tion of Holling's 'hungry mantid' model as a stochastic process leads to a great 

number of additional insights. First of all we found that Holling's deterministic 

simulation method was not as general as he thought. It only works under specific 

conditions on the parameters; conditions which also make it possible to derive a 

much simpler deterministic model of the type discussed in section 5. These con­

ditions are short handling time, a&s' << I for alls, and small prey weight, 

w/c << 1. For Holling's mantid even the stronger assumption .a&s, << w/c << 1 holds, 

which made it possible to derive a very simple approximate expression for the 

asymptotic variance of the total catch. If the handling time is small but the prey 

weight not it is still possible to derive more complicated equations from which we 

can calculate numerically the functional response as well as the asymptotic 
-----.! .--,,.,,.. -.C ...,.t-,.,... .......... +-..,,1 ..... n+- .... k U.,......,..,.... ...... .,.,.. ...... ..,.. t ,.......,...-,.11 f ..:I ...... _.., --+- ...,. ...... ,.,.,....,...,..,...,...; 1.,. ... ....,.,..,.n_ .,..,.,...,....~,,. r,.,....-i11 • 
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the various approximations seem to be pretty robust. 

Various extensions of the previous calculations are possible. One important 

possibility is to consider variable prey size. In that case we are not only inte­

rested in the variance of the number of prey caught but also in the variance of 

the accumulated prey weight, as this effectively determines the probability of a 

predator dying due to random starvation. We may also consider different regions 

of the parameter space. For example, when a&sT and w/c are both small but of the 

same order of magnitude, we get a different deterministic limit in which Holling's 

secretary model becomes merged into a Rashevsky type hunger model as deduced in 

section 5. These topics as well as a more detailed exposition of the preceding 

calculations will be the subject of forthcoming papers. 
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