stichting mathematisch centrum

A.M. COHEN \& B.N. COOPERSTEIN

A CHARACTERIZATION OF SOME GEOMETRIES OF EXCEPTIONAL LIE TYPE

Preprint
kruislaan 4131098 SJ amsterdam

Printed at the Mathematical Centre, 413 Kruislaan, Amsterdam.
The Mathematical Centre, founded the 11-th of February 1946, is a nonprofit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.w.O.).

A characterization of some geometries of exceptional Lie type *)
by

Arjeh M. COHEN \& Bruce N. COOPERSTEIN

ABSTRACT

For geometries associated with permutation representations of the groups of Lie type $\mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8}$ on certain maximal parabolic subgroups, axiom systems are given that characterize them in terms of points and lines.

KEY WORDS \& PHRASES: geometries of Lie type, buildings, polar spaces, parapolar spaces

[^0]
1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. A graph Γ is always meant to be without loops and without multiple edges. Often, we shall abuse terminology and refer to Γ as the vertex set of the graph Γ. Thus $x \in \Gamma$ means that x is a vertex of Γ. Moreover $\Gamma(x)$ denotes the set of vertices of Γ adjacent to x. For $x, y \in \Gamma$, write $x^{\perp} \Gamma$, or just x^{\perp} if Γ is clear from the context, for the set $\{x\} \cup \Gamma$ (x), and write $x \perp_{\Gamma} y$ (or just $x \perp y$) to denote $y \in x^{\perp} \Gamma$. The tuple (P, \perp) of a set P and a binary symmetric and reflexive relation \perp will be called a looped graph. $\left(\Gamma, \perp_{\Gamma}\right)$ is the looped graph of Γ. Any looped graph is of course, the looped graph of a uniquely determined graph. For $x, y \in \Gamma$, denote by $d_{\Gamma}(x, y)$ (or just $d(x, y)$ whenever no confusion arises) the ordinary distance in Γ. For X a subset of Γ, put $X^{\perp}=\cap_{x \in X^{\prime}} X^{\perp}$. Moreover, if $y \in P$, let $d(y, X)=$ inf $X_{x \in X} d(y, x)$. Instead of $y \in X^{\perp}$, we shall also write $y \perp X$. An incidence system (P, L) is a set P of points and a collection L of subsets of P of cardinality at least two, called Zines. If (P, L) is an incidence system, then the point graph or collinearity graph of (P, L) is the graph whose looped graph is (P, \perp), where \perp denotes collinearity in (P, L). The incidence system is called connected whenever its collinearity graph is connected. Likewise terms such as (co-) cliques, paths will be applied freely to (P, L) when in fact they are meant for its collinearity graph.

A subset X of P is called a subspace of (P, L) whenever each point of P on a line bearing two distinct points of X is itself in X. A subspace X is called singular whenever it induces a clique in (P, L). The length i of a longest chain $X_{0} \underset{\neq}{ } X_{1} \varsubsetneqq \ldots \subsetneq X_{i}=X$ of nonempty singular subspaces X_{i} of X is called the rank of the singular subspace X and denoted by rk (X). The singular rank of (P, L) is the maximal number s (possibly ∞) for which a singular subspace of (P, L) of rank s can be found. If this number is finite, then (P, L) is said to be of finice singular rank. For a subset X of P, the subspace generated by X is written <X>. Instead of $<X>$ we also write <x,Y> if $X=\{x\} u Y$, and so on. If F is a family of subsets of P and X is a subset of P, then $F(X)$ denotes the family of members of F contained in X, while F_{X} stands for the family of members of F containing X. If $X=\{x\}$ for some $x \in P$, we often write F_{x} instead of $F_{\{x\}}$. Furthermore, if H is another family of subsets of P, then we set

$$
F(H)=\{F(H) \mid H \in H\} \text { and } F_{H}=\left\{F_{H} \mid H \in H\right\} \text {. }
$$

The incidence system (P, L) is called Zinear if any two distinct points are on at most one line. In this case, for a pair x, y of collinear points, $x y$ represents this line; thus $x y=\langle x, y\rangle$. A line is called thick. if there are at least three points on it, otherwise it is called thin. A path $x_{1}, x_{2}, \ldots, x_{d}$ of points (i.e., $x_{i} \in x_{i+1}^{\perp}$ for $i=1, \ldots, d-1$) will be called a geodesie whenever $d\left(x_{1}, x_{d}\right)=d$. A subspace X of P will be called geodesically closed, if the points of any geodesic whose endpoints belong to X are all contained in. X. If the incidence system (P, L) satisfies $P^{\perp}=\emptyset$, it is called nondegenerate. Recall from [4] that (P, L) is a polar space if $\left|x^{\perp} \cap L\right| \neq 1$ implies $L \subseteq x^{\perp}$ for any $x \in P$ and $L \in L$. Polar spaces are linear incidence systems, and maximal singular subspaces exist within polar spaces. The rank of a polar space (P, L) is the number k such that $k-1$ is the singular rank of (P, L). A generalized quadrangle is a polar space of rank. 2 .
1.2. We shall now discuss the axioms for incidence systems (P, L) with which we shall be concerned.
(F1) If $x \in P$ and $L \in L$ with $\left|x^{\perp} \cap L\right|>1$, then $x \perp L$.
This means that (P, L) is a Gamma space (in D.G. Higman's terminology). Note (F1) implies that X^{\perp} is a subspace for any subset X of P.

LEMMA 1 (see[9]). Let (P,L) be a Gamma space. Then
(i) For any clique X of P , the subspace $<\mathrm{X}>$ is singular.
(ii) Maximal cliques of P are maximal singular subspaces.

Any singular subspace of a Gamma space is contained in a maximal singular subspace. The collection of all maximal singular subspaces of (P, L) will be denoted by M.
Here are two more axioms:
(F2) The graph induced on $\{x, y\}^{\perp}$ is not a clique whenever $x \in P$ and $y \in x^{\perp}$.
(F3) If $x, y \in P$ with $d(x, y)=2$ and $\left|\{x, y\}^{\perp}\right|>1$, then $\{x, y\}^{\perp}$ is a nondegenerate polar space of rank at least 2 .

An incidence system satisfying (F1), (F2), (F3) will be called a parapolar
space if it is connected and all its lines are thick. A pair of points x, y of P with $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$ is called symplectic if $\left|\{\mathrm{x}, \mathrm{y}\}^{\perp}\right| \geq 2$ and special otherwise. If x, y is a symplectic pair, there exists a unique geodesically closed subspace $S(x, y)$ of P which is isomorphic to a polar space (cf [2], [9]) as we shall see in Proposition 1 below. This explains the importance of symplectic pairs in parapolar spaces. Their existence is guaranteed by axiom (F3).

The following three axioms are special instances of. (F3). Let I be a set of natural numbers ≥ 2.
(F3) I If $x, y \in P$ with $d(x, y)=2$, then $\{x, y\}^{\perp}$ is either a single point or a nondegenerate polar space of rank a member of I.
(P3) If $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ with $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$, then $\{\mathrm{x}, \mathrm{y}\}^{\perp}$ is a nondegenerate polar space of rank at least 2 .
${ }^{(P 3)}$ I If $x, y \in P$ with $d(x, y)=2$, then $\{x, y\}^{\perp}$ is a nondegenerate polar space of rank a member of I.

Note that (P3) ${ }_{I}$ is stronger than any of (P3) and (F3) ${ }_{I}$. If $I=\{k\}$, we shall write $(P 3)_{k}$ rather than $(P 3)_{\{k\}}$.

For the characterizations we have in mind, we need two more axioms for (P, L). (F4) If x, y is a symplectic pair in P and L is a line on y with $x^{\perp} n L^{L}=\emptyset$, then $x^{\perp} \cap L^{\perp}$ is either a point or a maximal clique in $\{x, y\}^{\perp}$.
(P4) If x, y is a symplectic pair in P and L is a line on y with $x^{\perp} \cap L=\emptyset$, then $x^{\perp} \cap L^{\perp}$ is either empty or a maximal clique in $\{x, y\}^{\perp}$.

We now describe how the incidence systems to be characterized are obtained from buildings.
Let. Δ_{n} denote a Coxeter diagram of spherical type (see [12]) labelled as in Table 1. The subscript n is the number of nodes of the diagram and often referred to as the rank of the diagram. Set $I_{n}=\{1,2, \ldots, n\}$. It is the set of labels of the nodes of Δ_{n}.
1.3 We reword the notion of geometry of type Δ_{n} from Tits [13]. First, a geometry over (an index set) I of cardinality n is an n-partite looped graph
($\Gamma, *$) with parts Γ_{i} for $i \in I$ (some of which may be empty). The map $\tau: \Gamma \rightarrow I$ determined by $x \in \Gamma_{\tau(x)}$ for $x \in \Gamma$, is called the type map of Γ and $\tau(X)$ for X an element or subset of Γ, the type of X. The number n is called the rank of Γ. A flag of a geometry Γ over I is a clique of Γ. Two flags are said to be incident if their union is a flag. The rank (corank) of a flag X is $|x|(n-|x| r e s p$.

Table 1

COXETER DIAGRAMS OF SPHERICAL TYPE WITH RANK $\mathrm{n} \geq 3$.

For a geometry Γ we shall often write $*$ rather than \perp_{Γ}. Furthermore, we shall refer to two elements γ, δ of Γ as being incident rather than as being adjacent or equal whenever $\gamma * \delta$ hols. (This implies that the notions of ineidence for γ, δ and for $\{\gamma\},\{\delta\}$ are equivalent). Let X be a flag of Γ. Then the subgraph of Γ induced on $Y=X^{*} \backslash X$ considered as a geometry over $I \backslash \tau(X)$, is called the residue of X in Γ and denoted by Γ_{X}.
A geometry over I is called connected when Γ is connected and nonempty and it
is called residually connected if the residue of every flag of corank ≥ 2 is connected and the residue of every flag of corank 1 is nonempty. In a residually connected geometry Γ over I of rank n any flag is contained in a maximal flag (of rank n) and Γ is nonempty for each $i \in I$.

Let m be a natural number ≥ 2. A geometry Γ of rank 2 is called a generalized m-gon if Γ has diameter 2 and girth 2 m and if every vertex of Γ is in at least two edges. If (P, L) is a projective plane, then putting $\Gamma_{1}=P$ and $\Gamma_{2}=L$ and letting adjacency in $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ stand for incidence in (P, L), we obtain a generalized 3 -gon. Similary, a nondegenerate generalized quadrangle leads to a generalized 4-gon. The converse construction is also possible.
Consider a Coxeter diagram Δ_{n}. For any two labels $i, j \in I_{n}$ let $m(i, j)$ be the label of the bond between the nodes labelled i and j. Thus $m(i, j)=2$ if i, j are not adjacent, $m(i, j)=3$ if they are joined by a single bond, $m(i, j)=4$ if they are joined by a double bond, and $m(i, j)=6$ when joined by a triple bond.
A geometry of type Δ_{n} is defined to be a residually connected geometry over I_{n} such that for any two distinct $i, j \in I_{n}$ the residue of any flag of type $I_{n} \backslash\{i, j\}$ is a generalized $m(i, j)$ - gon. If X is a flag of Γ and Δ^{1} is the subdiagram of Δ_{n} whose nodes are the members of $I_{n} \backslash \tau(X)$, then Γ_{X} is said to be a residue of type Δ^{1}.
Let Γ be a geometry over I and let J be a subset of I. For any flag X of Γ the set $\tau^{-1}(J) \cap X^{*}$ is called the J-shadow of X and denoted by $\mathrm{Sh}_{J}(X)$. The incidence system of type $\Delta_{n, J}$ (associated with the geometry Γ of type Δ_{n}) is defined to be the incidence system (P, L) where $P=\tau^{-1}(J)$ and
$L=\left\{\operatorname{Sh}_{J}(X) \mid X\right.$ is a flag of type $\left.I \backslash J\right\}$. If $J=\{j\}$, we write $S h_{j}(X)$. For $x \in \Gamma$, the expression $\mathrm{Sh}_{\mathrm{j}}(\mathrm{x})$ often replaces $\mathrm{Sh}_{\mathrm{j}}(\{\mathrm{x}\})$. The type $\Delta_{\mathrm{n}, \mathrm{j}}$ will sometimes be referred to as punctured Coxeter diagram. A geometry 「of type Δ_{n} is said to be a building of type Δ_{n} if for any two vertices x, y of Γ and any $i \in I$ with $\mathrm{Sh}_{\mathrm{i}}(\mathrm{x}) \cap \mathrm{Sh}_{\mathrm{i}}(\mathrm{y}) \neq \emptyset$, there is a flag X contained in $\{\mathrm{x}, \mathrm{y}\}^{*}$ such that $S h_{i}(x) \cap S h_{i}(y)=S h_{i}(X)$. We note that this defition is justified by corollary 6 of [13] which states that the buildings as defined above coincide with buildings as defined in [13] and with the weak buildings as (originally) defined in [12]. Buildings in which every flag of corank 1 is contained in at least three maximal flags will be referred to: as thick buildings
(these are the buildings of [12]).
The present notion of building is presented in a way strongly influenced by Buekenhout (cf.[1],[14]). In fact, a geometry of type Δ_{n} is a kind of 'diagram geometry', while buildings are geometries satisfying an 'intersection property'.
The isomorphism classes of thick buildings of type $A_{n}(n \geq 3)$ are parametrized by the isomorphism classes of skew fields, the isomorphism classes of thick buildings of type $D_{n}(n \geq 4), E_{n}(n=6,7,8)$ by isomorphism classes of fields (cf. Tits [12]). For a skew field K (a field K) we shall denote by $A_{n}(K)\left(D_{n}(K)\right.$, $\mathrm{E}_{\mathrm{n}}(\mathrm{K})$ respectively) the unique thick building (up to isomorphism) of type $A_{n}\left(D_{n}, E_{n}\right.$ respectively) parametrized by K, i.e. the unique thick building of the given type all of whose residues of type A_{2} are isomorphic to the incidence structure $A_{2}(K)$ of the projective plane defined over K. Thus, for example, $A_{n}(K)$ for a skew field K, may be viewed as the n-partite graph whose vertex set is the collection of all nonempty proper subspaces of the projective space $P G(n, k)$ of rank n over K and in which two distinct subspaces are incident whenever one of them is contained in the other. The elements of $A_{n}(K)$ whose type is i correspond to the subspaces of rank $i-1$ of PG(n,K). Tits [13] has observed that in fact these examples and their 'joins' are essentially the only geometries of type A_{n} for $n \geq 3$. He also observed that this need not be the case for geometries of arbitrary spherical type.
1.4 We are now in a position to define the spaces of particular interest to our goals. Let. Δ_{n} be a Dynkin diagram (of Figure 1) and let J be a subset of I_{n}. An incidence system of type $\Delta_{n, J}$ associated with a thick building of type Δ_{n} is called a Lie incidence system of type $\Delta_{n, J}$.
For $\Delta_{n}=A_{n}\left(D_{n}, E_{n}\right)$, K a (skew) field, and J a subset of I_{n}, we let $\Delta_{n, J}(K)$ stand for the incidence system (unique up to isomorphism) of type $\Delta_{n, J}$ associated with the building $\Delta_{n}(K)$. Again, for $j \in I_{n}$, we replace $\Delta_{n, J}$ by $\Delta_{n, j}$, and $\Delta_{n, J}(K)$ by $\Delta_{n, j}(K)$. Thus, $A_{n, j}(K)$ may be identified with the incidence system (P, L) whose points are the subspaces of $P G(n, K)$ of rank $j-1$ and whose lines are the sets of all members of P containing a subspace X of rank $j-2$ and contained in a subspace Y of rank j, where $X \subseteq Y$. In particular, $A_{n, l}(K)=P G(n, K)$. Let us briefly sketch the connection with groups of Lie type. Suppose G is a group of Lie type whose Lie rank n is at least 3 . Then G admits a socalled
B, N-pair associated with a Coxeter diagram Δ_{n}. For definitions and a full account, the reader is (again) referred to the celebrated work [12]. Write $I=I_{n}$. There is a $1-1$ correspondence between the subsets J of I and the subgroups P_{J} of G containing B such that if $J \subseteq K \subseteq I$, then $P_{J} \subseteq P_{K}$. Thus, $P_{\emptyset}=B$ and $P_{I}=G$. For J a proper subset of I, let $P=G / P_{J}$ and $L=\left\{\left\{a P_{J} \mid a P_{J}{ }^{n b P}{ }_{I \backslash J} \neq \emptyset\right\} \mid b \in G\right\}$. Then (P, L) is a Lie incidence system of type $\Delta_{n, I} \backslash J$ associated with the building Γ of type Δ_{n}, where Γ is the geometry with $\Gamma_{i}=G / P_{I \backslash\{i\}}$ for $i \in I$ in which incidence between $a P_{J}$ and $b P_{K}$ for $a, b \in G$ and $J, K \subseteq I$ is defined by $a P_{J} \cap b P_{K} \neq \emptyset$. The importance of buildings stems from the fact that the converse is true for thick buildings: If Δ_{n} is a Dynkin diagram of rank at least 3, then for any thick building Γ of type Δ_{n} there is a group G of Lie type consisting of automorphisms of Γ admitting a B,N -pair such that the geometry derived from G as described in the preceding paragraph coincides with Γ. Tits' work [12] is mainly devoted to proving this result.
The results of Buekenhout-Shult [4], Veldkamp and Tits [12] together, yield that nondegenerate polar spaces of finite rank at least 3 whose lines are thick are Lie incidence systems of type $D_{n, 1}$ or $C_{n, 1}$. Here, $D_{n, 1}$ may be left out, as any building Γ of type $D_{n, 1}$ gives rise to a building $C_{n, 1}$ in such a way that an incidence system of type $D_{n, 1}$ associated with Γ is also a Lie incidence system of type $C_{n, 1}(n \geq 3)$. For, given a building Γ of type D_{n} define Γ^{\prime} as the union of $\Gamma_{j}^{\prime \prime}$ for $i=1,2, \ldots, n$, where $\Gamma_{i}^{\prime}=\Gamma_{i}$ for $i=1, \ldots, n-2$, Γ_{n-1}^{\prime} is the collection of flags of Γ of type $\{n-1, n\}$, and $\Gamma_{n}^{\prime}=\Gamma_{n-1} \cup \Gamma_{n}$. Let τ^{\prime} be the type map $\Gamma^{\prime} \rightarrow I_{n}$ corresponding to the given partition of Γ^{i} and let x, y be incident in Γ^{\prime} whenever $\tau^{\prime}(x) \neq \tau^{\prime}(y)$ and $x \perp \Gamma y$. Then Γ^{\prime} is a building of type C_{n} (which is not thick!) such that any incidence system of type $D_{n, 1}$ associated with Γ is an incidence system associated with Γ^{\prime} 。
1.5 Theorems characterizing Lie incidence systems appear in Buekenhout [3], Cameron [5], Cohen [6], Cooperstein [9] and Tallini [11]. The main goal of this paper is to extend this work by the following two theorems. To state the first theorem, however we need the notion of quotient for incidence systems.

DEFINITION. If G is a group of automorphisms of an incidence system (P, L) such that $L \notin x^{G}$ for any $x \in P$ and $L \in L$ then the incidence system $(P, L) / G=$ ($\mathrm{P} / \mathrm{G}, \mathrm{L} / \mathrm{G}$) whose points are the orbits of G in P and whose lines are the collections of orbits contained in $U_{g \in G} L^{g}$ for $L \in L$, is called the quotient of (P, L) by G.

THEOREM 1. Let $k \geq 2$ and let (P, L) be a parapolar space of finite singular rank s. Then (P, L) satisfies (P 3$)_{k}$ and (P4) if and only if one if one of the following statements holds:
(i) $k=s$ and (P, L) is a nondegenerate polar space of rank $k+1$ with thick Zines.
(iia) $k=2$, $s \geq 3$, there is a natural number $n(4 \leq n \leq 2 s-1)$ and a skew field k such that $(P, L) \cong A_{n, d}(K)$, where $d=n-s+1$.
(iib) $k=2, s \geq 5$ and there is an (infinite) skew field K such that $\left.(P, L) \cong A_{2 s-1, s}(K) /<\sigma\right\rangle$, where σ is an involutory automorphism of $A_{2 s-1, s}(K)$ induced by a polarity of the projective space $\operatorname{PG}(2 \mathrm{~s}-1, \mathrm{~K})$ of Witt-index $\leq s-5$.
(iii) $k=3, s \geq 4$, there is a field K and there are families S and D, respectively, of subspaces of (P, L) whose members are geodesically closed subspaces of (P, L) isomomphic to $\mathrm{D}_{4,1}(\mathrm{~K})$ and $\mathrm{D}_{5,5}(\mathrm{~K})$, respectively, such that any pair $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ with $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$ is contained in a unique member $\mathrm{S}(\mathrm{x}, \mathrm{y})$ of S and such that any triple $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{P}$ with $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$, $d(y, z)=1$ and $\{x, y, z\}^{\perp}$ a maximal clique in $\{x, y\}^{\perp}$, is contained in a unique member $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ of D. Moreover, for any $\mathrm{x} \in \mathrm{P}$, the incidence system $\left(L_{x}, L_{x}\left(V_{x}\right)\right)$ is isomorphic to $A_{s, 2}(K)$.
(iv) $k=4, s=5$, and there is a field K such that $(P, L) \cong E_{6,1}(K)$.
(v) $k=5, s=6$, and there is a field K such that $(P, L) \cong E_{7,1}(K)$.

Part of the above theorem has also been announced by Professor Shult. Special cases of Theorem 1 provide characterizations of Lie incidence systems of type $D_{5,5}$ and $D_{6,6}$, see Theorem 4 below. The only Lie incidence systems satisfying (iii) of Theorem 1 are those of type $D_{n, n}$. However, letting $K=\mathbb{R}$, there are quotients $D_{n, n}(\mathbb{R}) /\langle\sigma\rangle$ of $D_{n, n}(\mathbb{R})$ (for n even, ≥ 10) by involutory automorphisms σ induced by 'polarities' of Witt-index at most $n-10$ of the orthogenal $2 n$-dimensional linear space in which $D_{n}(\mathbb{R})$ can be embed-
ded (commuting with the defining polarity), that also satisfy (iii) but are not of Lie type. Cooperstein [10], has given additional 'global' axioms so as to provide acharacterization of Lie incidence systems of type $D_{n, n}$. It would be of interest to know whether any incidence system satisfying the axioms of the above theorem with $k=3$ is a quotient of a Lie incidence system of type $D_{n, n}$. THEOREM 2. Let $k \geq 3$ and suppose (P, L) is a parapolar space of finite singular rank s. Then (P, L) satisfies (F 3$)_{k}$ and (F4) if and only if there exists a field K such that one of the following statements holds:
(i) $k=s$ and (P, L) is a nondegenerate polar space of rank $k+1$ with thick Zines.
(ii) $k=3, s=4$, and $(P, L) \cong D_{5,5}(K)$ or $E_{6,4}(K)$.
(iii) $k=4, s=5,6$, and $(P, L) \cong E_{6,1}(K)$ or $E_{7,7}(K)$.
(iv) $k=6, s=7$, and $(P, L) \cong E_{8,1}(K)$.

The Lie incidence systems $F_{4,1}(K), E_{7,7}(K)$ and $E_{8,1}(K)$ for a field K can all be identified with the natural geometries whose points are the root subgroups (corresponding to roots of a single length) of the underlying Chevalley group. In [6] Lie incidence systems of type $F_{4,1}$ are characterized as parapolar spaces (P, L) in which (F3) and (F4) hold and in which there are no minimal 5 -circuits (i.e., if $x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \in P$ with $x_{i+1} \in x_{i}^{\perp} \backslash\left\{x_{i}\right\}$ for $i=1,2,3,4,5$, indices taken modulo 5 , then $x_{i}^{\perp} \cap x_{i+2} x_{i+3} \neq \emptyset$). In the Lie incidence systems of type $E_{6,4}, E_{7,7}, E_{8,1}$, minimal 5-circuits do exist (see [7]).

2. PRELIMINARY RESULTS

2.1. Let us first review the theory of parapolar spaces. See [2], [6], [9] for proofs and details.

PROPOSITION 1. Let (P, L) be a parapolar space. Then
(i) $L=\left\{\{x, y\}^{\perp \perp} \mid x \in P\right.$ and $\left.y \in x^{\perp} \backslash x\right\}$. In particular, (P, L) is a linear incidence system and completely determined by its collinearity graph.
(ii) For any $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ with $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$ and $\left|\{\mathrm{x}, \mathrm{y}\}^{\perp}\right|>1$, set $S(x, y)=\left\{z \in P \mid z^{\perp} \cap L \neq \emptyset\right.$ for any $\left.L \in L\left(x^{\perp} \cap y^{\perp}\right)\right\}$. Then $S(x, y)$ is a
geodesically closed subspace isomorphic to a nondegenerate polar space. In particular, $z^{\perp} \cap \mathrm{S}(\mathrm{x}, \mathrm{y})$ is a singular (posibly empty) subspace for any $z \in P \backslash S(x, y)$.Moreover, $S(x, y)=\left\langle\{x, y\} \cup\{x, y\}^{\perp}\right\rangle$.
(iii) If $\{\mathrm{x}, \mathrm{y}\}^{\perp}$ is a polar space of rank k , then $\mathrm{S}(\mathrm{x}, \mathrm{y})$ has rank $\mathrm{k}+1$ (as a polar space).
(iv) Each singular subspace of rank at most 2 is contained in $\mathrm{S}(\mathrm{x}, \mathrm{y})$ for suitable $\mathrm{x}, \mathrm{y} \in \mathrm{P}$. Hence it is empty, a point, a line or a projective plane.
(v) If M is a maximal singular subspace, then M is a projective space and contains a line properly.

Note that for any $x, y \in P$ as in (ii) and any $x, y_{1} \in S(x, y)$ with $x \notin y_{1}^{\perp}$, we have $S(x, y)=S\left(x, y_{1}\right)$ as a result of (ii). The family of $S(x, y)$ obtained as in (ii) for a parapolar space (P, L) will be denoted by S. Its members are called symplecta. The family of singular subspaces of rank i will be denoted by $V^{(i)}$. Thus $V^{(0)}$ is the collection of singletons of P (often sloppily referred to as 'point'), and $V^{(1)}=L$. Instead of $V^{(2)}$ we shall also write V. Its members are called planes. Finally, let M stand for the collection of maximal singular subspaces of (P, L) and put $M^{(i)}=M \cap V^{(i)}$.
The residue (of a parapolar space (P, L)) at point x of P is the incidence system $P^{x}=\left(L_{x}, L_{x}\left(V_{x}\right)\right)$. If A is an incidence system isomorphic to the residue of (P, L) at x, then (P, L) is said to be locally A at x. If (P, L) is 10 cally A at every x of P, then we say that (P, L) is locally A. Moreover if A is a collection of incidence systems, (P, L) is called locally A if for each point x of P there is a member A of A such that (P, L) is locally A at x. Thus 'locally polar' for (P, L) means that (P, L) is locally A where A stands for the collection of spaces.
2.2. The following lemma provides a means to recognize polar spaces locally among parapolar spaces. A first version is to be found in Cooperstein [9].

LEMMA 2. Let (P, L) be a parapolar space such that the residue at any point is connected. Then for each $\mathrm{x} \in \mathrm{P}$ the following statements are equivalent.
(i) (P, L) is a polar space.
(ii) (P, L) is locally polar.
(iii) (P, L) is locally polar at x .
(iv) There is exactly one symplecton on x .

PROOF. Obriously, (i) implies (ii) and (ii) implies (iii).
Suppose (iii) holds. By (iv) of Proposition 1 , thereis a symplecton S on x . Take $y \in S \backslash x^{\perp}$. Then $S=S(x, y)$, and $d(x, y)=2$. We shall prove that x^{\perp} is contained in S, thus establishing (iv). Thus let $z \in x^{\perp} \backslash\{x\}$. Since $\{x, y\}^{\perp}$ is a nondegenerate polar space of rank at least 2, there is a minimal 4-circuit $u_{1}, u_{2}, u_{3}, u_{4}$ (i.e. $u_{i} \neq u_{i+1}$ and $u_{i} \in u_{i+1}^{\perp} \backslash u_{i+2}^{\perp}$ for all i, indices modulo 4) of points contained in $\{x, y\}^{\perp}$. Write $V_{i}=\left\langle x, u_{i}, u_{i+1}\right\rangle$. Then $L\left(V_{i}\right)$ is a line in the residue of x, so there is $N_{i} \in L_{x}\left(V_{i}\right)$ with $L \subseteq N_{i}^{\perp}$ by (iii). Since V_{i} is a projective plane, there is $v_{i} \in V_{i}$ with $\left\{v_{i}\right\}=N_{i} \cap x_{i} x_{i+1}$. It results that $z \in\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. But $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$ is not a clique, so by (ii) of Proposition 1 , we get $z \in S$. Hence $x^{\perp} \subseteq S$, as wanted.

Finally, we show that (iv) implies (i). Assume (iv) holds and let S be the single symplecton on x. We first claim that x^{\perp} is contained in S. For suppose there is $z \in x^{\perp} \backslash S$. Then by connectedness of the residue at. x, there is a path of finite length from z to a point u of $x^{\perp} \cap S \backslash\{x\}$. Reasoning by induction, we may assume that z is actually collinear with u. Since $z^{\perp} \cap S$ is a singular subspace of S, there exists $y \in u^{\perp} \cap S \backslash z^{\perp}$. Now x and u are distinct points of $\{y, z\}^{\perp}$, so that $S(y, z)$ is well defined. Moreover, it is a symplecton containing x and hence $S(y, z)=S$. This yields $z \in S$, proving the claim. Next, let $y \in x^{\perp} \backslash\{x\}$. Then $y \in S$ as we have just seen. We claim that S is the only symplecton on y. Let L be a line on y. We shall establish by induction on the distance of $x y$ to L within $P^{Y}=\left(L_{y}, L_{y}\left(U_{y}\right)\right)$ that S is the only symplecton on L. In view of the connectedness'of the residue at y, this suffices for the proof of the claim.

If $L=x y$, the claim is clearly true. Suppose $L \neq x y$ and let $x_{0}, x_{1}, \ldots, x_{s}$ in $y^{\perp} \backslash\{y\}$ be such that $x_{0} y(=x y), x_{1} y, \ldots, x_{s} y(=L)$ is a minimal path in the residue at y from $x u$ to L. Then $s \geq 1$. Assume T is a symplecton on L distinct from S. If $i<s$, then $x_{i} \in S \backslash T$ by induction. Put $u=x_{s-1}$. Note that $r k\left(u^{\perp} \cap T\right) \geq 1$ as $L \subseteq u^{\perp} \cap T$. If rk $\left(u^{\perp} \cap T\right)=1$, take $z_{1}, z_{2} \in\left(u^{\perp} \cap T\right)^{\perp} \cap T$ with $z_{1} \notin z_{2}{ }^{\perp}$. Then $u^{\perp} \cap T \subseteq\left\{u, z_{i}\right\}^{\perp}$ for each i, so $S\left(u, z_{i}\right)$ exists and $S=S\left(u_{1} z_{i}\right)$ by induction. It follows that $z_{i} \in S$ and $T=S\left(z_{1}, z_{2}\right)=S$.
Suppose $r k\left(u^{\perp} \cap T\right) \geq 2$. Let $z \in T \backslash u^{\perp}$. Then $\{z, u\}^{\perp}$ contains $z^{\perp} \cap\left(u^{\perp} \cap T\right)$, a sub-
space of $u^{\perp} \cap T$ of rank at least 1 , since T is a polar space. Therefore $z \in S(u, z)=S$, proving $T \backslash u^{\perp} \subseteq S$. Since clearly $u^{\perp} \cap T \subseteq S$, we obtain $T \subseteq S$ whence $T=S$. This ends the proof of the claim. The connectedness of (P, L) now yields that for any $y \in P$ the subspace S is the only symplecton on y. Thus $P=S$ and (P, L) is a polar space, whence (i).
2.3. A bouquet of (para-) polar spaces in an incidence system (P, L) containing a point x such that $P \backslash\{x\}$ has more than one connected component and such that the union of any such component with $\{x\}$ forms a subspace which is a (para-) polar space. The requirement that the residue at each point is connected is necessary in the preceding lemma as a bouquet of polar spaces is a parapolar space satisfying (iv) for all but one point, but not (i). Bouquets of parapolar spaces do not satisfy axioms (P3), (F4) given in the introduction. This explains why these bouquets do not appear in Theorems 1 and 2. There is a useful reformulation of axioms (P4) and (F4) in terms of symplecta. Let J be a subset of $\{-1,0,1\}$ and consider the following axiom for a parapolar space (P, L).
(F4) Jor any symplecton S and point x of $P \backslash S$, the rank of the singular subspace $x^{\perp} \cap \mathrm{S}$ is either a member of J or the singular rank of S .

Now (F4) $\left\{_{\{-1,1\}}\right.$ is equivalent to (F4), whereas (F4) $\left\{_{\{-1,0\}}\right.$ is equivalent to (P4), so that we have indeed obtained reformulations of (P4) and (F4). The usefulness of these axioms is their behaviour under taking residues. This is explained in the lemma below. First, however, we introduce some more notation. If (P, L) is a Gamma space, $x \in P$ and X a subspace of P containing x , denote by X^{X} the subspace $L_{\mathrm{x}}(\mathrm{X})$ of P^{X} (cf.[9]). Note that this is consistent with the notation for P^{X} for $X=P$. If F is a family of subspaces of P, denote by F^{x} the family $L_{x}\left(F_{x}\right)=\left\{F^{x} \mid F \in F_{x}\right\}$ of subspaces of P^{x}.

Lemma 3. Let (P, L) be a parapolar space of singular rank s . As usual, let M, S respectively stand for the collection of maximal singular subspaces and the collection of symplecta in (P, L). Then the following holds for any $\mathrm{x} \in \mathrm{P}$.
(i) M^{x} is the collection of maximal singular subspaces of P^{x}. If $M \in M$ is isomorphic to $A_{n, 1}(K)$ for some $n \in \mathbb{N}$, and some field K, then M^{X} is isomorphic to $A_{n-1,1}(K)$. In particular, P^{X} has singular rank s-1.
(ii) If (P, L) satisfies (F 3$)_{\mathrm{I}}$ for $\mathrm{I}=\{\mathrm{k} \in \mathbb{N} \mid k \geq 3\}$, and P^{X} is connected, then P^{X} is a parapolar space satisfying (P3) whose collection of symplecta is S^{X} (which is in bijective correspondence with S_{x}).
(iii) If $\left(\mathrm{P}, \mathrm{L}\right.$) satisfies (P 4) and $(\mathrm{P} 3)_{k}$ for some $\mathrm{k} \geq 3$, and $\mathrm{x} \in \mathrm{P}$, then P^{x} satisfies $\left(^{F 4}\right)_{\{-1\}}$ and (P3) ${ }_{k-1}$ and has diameter 2.
(iv) If (P, L) satisfies (F 4) and (F 3$)_{\mathrm{k}}$ for some $\mathrm{k} \geq 3$, and $\mathrm{x} \in \mathrm{P}$, then P^{x} satisfies (F4) ${ }_{\{0\}}$ and has diameter 3 or 2 depending on whether there exist $\mathrm{S} \in \mathrm{S}_{\mathrm{x}}$ and $\mathrm{y} \in \mathrm{x}^{\perp} \backslash \mathrm{S}$ with $\mathrm{rk}\left(\mathrm{y}^{\perp} \cap \mathrm{S}\right)=1$ or not.

PROOF. Since the proof of most statements is straightforward, we shall only treat (ii). So let I be as in (ii) and assume P^{x} is connected. As (F1) clearly holds, we proceed to prove (F2). Let $L_{1}, L_{2} \in L_{x}$ with $L_{1} \subseteq L_{2}^{\perp}$. We need to show the existence of $\mathrm{L}_{3}, \mathrm{~L}_{4} \in \mathrm{~L}_{\mathrm{x}}$ with $\mathrm{L}_{3} \notin \mathrm{~L}_{4}^{\perp}$ and $\mathrm{L}_{\mathrm{i}} \subseteq \mathrm{L}_{\mathrm{j}}^{\perp}$ for all $i=1,2$ and $j=3,4$. Since $<L_{1} \cup L_{2}>$ is a singular subspace of (P, L) of rank at most 2, Proposition 1 (iv) yields the existence of a symplecton, S say containing both L_{1} and L_{2}, hence x. By familiar properties of nondegenerate polar spaces, there exist $\mathrm{L}_{3}, \mathrm{~L}_{4} \in \mathrm{~L}_{\mathrm{x}}(\mathrm{S})$ with $\mathrm{L}_{3} \nsubseteq \mathrm{~L}_{4}^{\perp}$ and $\mathrm{L}_{\mathrm{i}} \subseteq \mathrm{L}_{\mathrm{j}}^{\perp}$ for all $i=1,2$ and $j=3,4$. This establishes ($F 2$) for P^{x}. Next suppose $L_{1}, L_{2} \in L_{x}$ have distance 2 in P^{x}. Then there is $L \in L_{x}$ with $L \subseteq L_{1}^{\perp} \cap L_{2}^{\perp}$. Take $z_{i} \in L_{i} \backslash\{x\}$ for $i=1,2$. Now $\left\{z_{1}, z_{2}\right\}^{\perp}$ contains L, so z_{1}, z_{2} is a symplectic pair of P.
Let \perp_{x} denote collinearity in P^{x}. Now $L_{1}^{\perp_{x}} \cap L_{2}^{L_{x}}=L_{x}\left(L_{1}^{\perp} \cap L_{2}^{\perp}\right)=L_{x}\left(z_{1}^{\perp} \cap z_{2}^{\perp}\right)$ is the residue at x of the the nondegenerate polar space $z_{1}^{\perp} n z_{2}^{\perp}$ of rank ≥ 3. Therefore, $L_{1}^{\perp} \mathrm{x} \cap L_{2}^{\perp} \mathrm{x}$ is a nondegenerate polar space of rank ≥ 2. This proves (P3) for P^{x}. Since P^{x} is connected by assumption and lines of P^{x} have the same cardinality as the members of L, we conclude that P^{x} is a parapolar space satisfying (P3).
Finally, we assert that the subspace $S\left(L_{1}, L_{2}\right)$ of P^{x} (spanned by L_{1}, L_{2} and $\left.L_{1}^{+} \dot{x}_{n L}{ }_{2}^{{ }_{x}^{x}}\right)$ is the residue of the symplecton $S\left(z_{1}, z_{2}\right)$. Clearly, since $S\left(z_{1}, z_{2}\right)=$ $=\left\langle\left\{z_{1}, z_{2}\right\} \cup\left\{z_{1}, z_{2}\right\}^{\perp}\right\rangle$, the residue of $S\left(z_{1}, z_{2}\right)$ contains $S\left(L_{1}, L_{2}\right)$. On the other hand, let $L_{3} \in L_{x}\left(S\left(z_{1}, z_{2}\right)\right)$. Then there are $z_{3}, z_{4} \in S\left(z_{1}, z_{2}\right) \cap x^{\perp}$ with $z_{3} \notin z_{4}^{\perp}$, and $z_{i} \in z_{j}^{\perp}$ for all $i=1,2$ and $j=3,4$ such that $L_{3} \subseteq z_{3}^{\perp} \cap z_{4}^{\perp}$ due to the structure of the nondegenerate polar space $S\left(z_{1}, z_{2}\right)$ of rank ≥ 4. Thus

It follows from the geodesic closure of $S\left(L_{1}, L_{2}\right)$ that L_{3} is a member of $S\left(L_{1}, L_{2}\right)$. This proves the assertion.
The conclusion is that the map $S_{x} \rightarrow S^{X}$ given by $S \rightarrow S^{X}$ is a bijection from the set of symplecta on x onto the set of symplecta in P^{x}. This proves (ii).
2.4. The following lemma is of similar use as Lemma 2 for local recognition of the incidence system.

LEMMA 4. Let (P, L) be a parapolar space satisfying (P 3). Suppose X is a geodesically closed subspace of P . If $\mathrm{x} \in \mathrm{P}$ with $\mathrm{x}^{\perp} \subseteq \mathrm{X}$, then $\mathrm{X}=\mathrm{P}$.

PROOF. Let $y \in P$. We show that $y \in X$ by induction on $d(x, y)$. If $d(x, y) \leq 1$, then clearly $y \in X$. Suppose $d(x, y)>1$. Then there is a point z of x^{\perp} such that $d(x, z)=d(x, y)-1$. Thanks to induction, it suffices to show $z^{\perp} \subseteq X$. Suppose $u \in z^{\perp}$. Then $d(x, u) \leq 2$. If $u \in X^{\perp}$, then $u \in X$ as we have seen before. If $d(x, u)=2$, then due to (P3) we can find $v, w \in x^{\perp} \cap u^{\perp}$ with $v \notin w^{\perp}$. Now $u \in S(u, x)=S(v, w) \subseteq X$ since X is geodesically closed. This yields $z^{\perp} \subseteq \mathrm{X}$ as wanted.
2.5. The following lemma shows that under suitable assumptions on the parapolar space is question, there is a unique (skew) field K such that all singular subspaces are projective spaces over K.

LEMMA 5. Let $k \geq$ 3. Suppose (P, L) is a parapolar space of finite singular rank s satisfying either (P 3$)_{\mathrm{k}}$ and (P4), or (F3) k_{k} and (F4). If (P, L) is not a polar space, then the following statements hold.
(i) The relation \approx on M defined $b y M_{1} \approx M_{2}$ for $M_{1}, M_{2} \in M$ if and only if rk $\left(M_{1} \cap M_{2}\right)=k-2$ turns (M, \approx) into a graph having at most two connected components. Moreover $\mathrm{M}_{1} \approx \mathrm{M}_{2}$ implies that M_{1} and M_{2} are isomorphic subspaces.
(ii) There exists a field K and a number $t \geq k$ such that any $M \in M$ is isomorphic to $P G(m, k)$ for some $m \in\{s, t\}$ and such that any symplecton is isomorphic to $\mathrm{D}_{\mathrm{k}+1,1}(\mathrm{~K})$.
(iii) If $k=3$ thin there is a field K such that (P, L) is either Zocally
$A_{s, 2}(\mathrm{~K})$ or locally $\mathrm{A}_{5,3}(\mathrm{~K})$ according as (P4) holds or not.
PROOF. We use induction on k.
(i) Let N be a singular subspace of P of rank $k-1$. We first show that any $M \in M$ is connected within (M, \approx) to a member of M_{N}. Thanks to connectivity of (P, L) it suffices to show this holds for $M \in M$ with $M \cap N \neq \emptyset$. Suppose, therefore, $x \in M \cap N$ and consider M^{x}. Due to Lemma $3, M^{x}$ is a maximal singular subspace of the parapolar space P^{X} for which (P 3$)_{k-1}$ and $(F 4)_{\{0\}}$ holds.
If $k=2$, then P^{x} is a Lie incidence system of type $A_{5,3}$ or $A_{n, 2}$ or a quotient of such an incidence system by [8], so M^{X} is connected within P^{X} to a maximal singular subspace of P^{X} containing N^{X} 。 If $k=3$, it follows, again from [8], that the graph on M^{X} in which M_{1}, M_{2}^{X} are connected if and only if ${ }^{\prime} r k\left(M_{1}^{X} M_{2}^{X}\right)=0$ has at most two connected components and that adjacent members are isomorphic. In view of the first statement, this yields that (M, \approx) has at most two connected components. Also, it is immediate from thickness of lines that $M_{1} \approx M_{2}$ for $M_{1}, M_{2} \in M$ implies that M_{1} is isomorphic to M_{2}. For $k>3$, the same statements for the residue follow from induction, while the transition from the residue to (M, \approx) is identical. This ends the proof of (i).
(ii) Let $x \in P$. If $k=3$, then there is a skew field K and a number $t \geq 3$ such that any $M \in M_{x}$ satisfies $M^{X} \cong P G(m, K)$ for some $m \in\{s-1, t-1\}$, and such that any $S \in S_{S}$ satisfies $S^{x} \cong A_{3,2}(K)$. According to Lemma 3, this yields $M \cong P G(m+1, K)$ and $S \cong D_{4,1}(K)$, as $D_{4,1}(K)$ is the only nondegenerate polar space with thick lines containing a point at which the residue is isomorphic to $A_{3,2}(K)$. Moreover, this implies (cf. Tits [12], 6.12) that K is a field.

Now let $M_{1} \in M$ and $S_{1} \in S$, and take $y \in S_{1}$. According to (i) we have $M_{1} \cong P G(m, k)$ for some $m \in\{s, t\}$. Thus members of M are defined over K. Furthermore, reasoning for y as for x above, we obtain a field K_{1}, such that $S \cong D_{k+1,1}\left(K_{1}\right)$. But the maximal singular subspaces of S are subspaces of members of M, hence defined over K. The conclusion is that K_{1} coincides with K.
For $k>3$, the induction hypothesis yields a field K and a number
$t \geq k$ such that any $M \in M_{x}$ and $S \in S_{x}$ satisfy $M^{x} \cong P G(m-1, K)$ and $S^{X} \cong D_{k, 1}(K)$ for some $m \in\{s-1, t-1\}$. Now statement (ii) follows as for $\mathrm{k}=3$.
(iii) Let $k=3$, and pick $x \in P$. According to Lemma 3, P^{x} is a parapolar space satisfying $(\mathrm{P} 3)_{2}$ and either $(\mathrm{F} 4)_{\{-1\}}$ of (F4) $\left\{_{\{0\}}\right.$. But the latter two axioms are easily seen to be equivalent to (Q4) and (R4) of [8] respectively. Therefore by the applications of [8] and Lemma 3, there is a skew field K such that either $s \geq 4$ and $P^{X} \cong A_{s, 2}(K)$ or $s=3$ and $P^{x} \cong A_{5,3}(K)$. Due to (ii) and the fact that for each value of s the residue on x is uniquely determined up to isomorphism, we obtain that K is a field and that (P, L) is locally $A_{s, 2}(K)$ or locally $A_{5,3}(K)$. This finishes the proof of the lemma.
2.6. The part of Theorem 1 concerning $A_{n, d}(K)$ has been dealt with in [8], [10]. The idea of the proof of Theorem 1 is to establish by induction on k what (P, L) is locally isomorphic to, and use these local data to recover all subspaces of P that will occur as verties of the geometry (of type the prevailing Coxeter diagram) to be associated to (P, L). In order to conclude that this geometry is a building we shall make use of the following result of Tits ([13], Proposition 9).
Let Γ be a geometry of type $\Delta_{n}=D_{n}(n \geq 4), E_{n}(n=6,7,8)$ and consider the following assertions for $2 \leq i \leq n-1$.
(LL) If $\gamma_{2}, \gamma_{2}^{\prime} \in \Gamma_{2}$ are both incident to $\gamma_{1}, \gamma_{1}^{\prime} \in \Gamma_{1}$ and $\gamma_{1} \neq \gamma_{1}^{\prime}$, then $\gamma_{2}=\gamma_{2}^{\prime}$.
(LH) If $\gamma_{2} \in \Gamma_{2}$ and $\gamma_{n} \in \Gamma_{n}$ are both incident to two distinct vertices of Γ_{1}, then $\gamma_{2} * \gamma_{n}$.
(HH) If two distinct vertices of Γ_{n} are both incident to two distinct verties $\gamma_{1}, \gamma_{1}^{\prime} \in \Gamma_{1}$, then there is $\gamma_{2} \in \Gamma_{2}$ such that $\gamma_{1} * \gamma_{2}$ and $\gamma_{1}^{\prime} * \gamma_{2}$ 。
(0) If $_{i} \gamma_{i}, \gamma_{i}^{\prime} \in \Gamma_{i}$ have the same shadow on $\Gamma_{1}\left(\right.$ i.e., $\left.\operatorname{Sh}{ }_{1}\left(\gamma_{1}^{\prime}\right)=\operatorname{Sh}\left(\gamma_{i}\right)\right)$, then $\gamma_{i}=\gamma_{i}^{\prime}$.

THEOREM 3 (Tits). Let Γ be a geometry of type Δ_{n}.
(i) If $\Delta_{n}=D_{n}$, then Γ is a building if and only if it satisfies (0) for
$\mathrm{i}=2,3, \ldots, \mathrm{n}-2$ and (LL).
(ii) If $\Delta_{n}=E_{6}$, then Γ is a building if and only if it satisfies (0) ${ }_{i}$ for $\mathrm{i}=2,3$ and (LL).
(iii) If $\Delta_{\mathrm{n}}=\mathrm{E}_{7}$, then Γ is a building if and only if it satisfies (0) i_{i} for $\mathrm{i}=2,3,4$, (LL) and (LH).
(iv) If $\Delta_{\mathrm{n}}=\mathrm{E}_{8}$, then Γ is a building if and only if it satisfies (0) ${ }_{i}$ for $i=2,3,4,5$, (LL), (LH) and (HH).
3. PROPERTIES OF SOME LIE INCIDENCE SYSTEMS

As most of the properties given are easily checked, we shall virtually give no proofs.
3.1. The next proposition deals with the 'only if' part of Theorem 1 and 2. PROPOSITION 2. (i) Let $\mathrm{n} \geq 4$ and let $2 \leq \mathrm{i} \leq \frac{\mathrm{n}+1}{2}$.
(i) If K is a skew, fiezd; then $\mathrm{A}_{\mathrm{n}, \mathrm{i}}(\mathrm{K})$ is a parapolar space of diameter i and of singular rank $n-i+1$, satisfying (P3) 2 and (F4). Axiom (F4) ${ }_{\{-1\}}$ holds for $A_{n, i}(K)$ if and only if $i=2$; and axiom (F4) $\{0\}$ holds if and only if $(\mathrm{n}, \mathrm{i})=(5,3),(4,2)$.
(ii) Assume $\mathrm{n} \geq 5$ and let K be a field. Then $\mathrm{D}_{\mathrm{n}, \mathrm{n}}(\mathrm{K})$ is a parapolar space of diameter $\left[\frac{\mathrm{n}}{2}\right]$ and of singular rank $\mathrm{n}-1$ satisfying (P3) 3 and (F4). Axiom (F4) \emptyset holds if and only if $\mathrm{n}=5$, and axiom (F4) ${ }_{\{-1\}}$ hotds if and only if $\mathrm{n}=5$ or 6 .
(iii) Let K be a field. $\mathrm{E}_{6,1}(\mathrm{~K}), \mathrm{E}_{6,4}(\mathrm{~K}), \mathrm{E}_{7,1}(\mathrm{~K}), \mathrm{E}_{7,7}(\mathrm{~K}), \mathrm{E}_{8,1}(\mathrm{~K})$ are parapolar spaces having the properties indicated in the table below.

PROOF. (i) and (ii) are easily established by use of the "classical model" for the associated buildings (compare [10]). (iii) can be proved by means of a reduction (using the B, N-pair) to the analogous statement for the corresponding Weyl group in which case the verification is straightforward.

TABLE 2

$\Delta_{n, i}$	axioms	diameter	singular rank	isomorphism type of Symplecta
$\mathrm{E}_{6,1}$ (K)	${ }^{(P 3)}{ }_{4},{ }^{(F 4)}{ }_{\{-1\}}$	2	5	$\mathrm{D}_{5,1}$ (K)
$\mathrm{E}_{6,4}$ (K)	(F3) $3^{\text {, }}$ (F4)	3	4	$\mathrm{D}_{4,1}$ (K)
$\mathrm{E}_{7,1}$ (K)	(P3) ${ }_{5}, \quad(\mathrm{~F} 4)_{\{0\}}$	3	6	$\mathrm{D}_{6,1}(\mathrm{~K})$
$\mathrm{E}_{7,7}(\mathrm{~K})$	(F3) ${ }_{4}$, (F4)	3	6	$\mathrm{D}_{5,1}(\mathrm{~K})$
$\mathrm{E}_{8,1}(\mathrm{~K})$	(F3) 6_{6}, (F4)	3	7	$\mathrm{D}_{7,1}$ (K)

3.2. PROPERTIES OF SOME GRASSMANNIANS

PROPOSITION 3. Let $(P, L)=A_{s, 2}(K)$ for some $s \geq 4$ and some skew field K. Then
(i) Diameter $(P, L)=2$.
(ii) (P, L) satisfies $(\mathrm{P} 3)_{2}$ and $(F 4)_{\{-1\}^{\circ}}$
(iii) (F4) \emptyset holds fror (P, L) if and only if $s=4$, and $(F 4)_{\{-1\}}$ holds if and only if $s \leq 5$.
(iv) If $\mathrm{S}, \mathrm{T} \in \mathrm{S}$ and $\mathrm{S} \neq \mathrm{T}$, then $\mathrm{rk}(\mathrm{S} \cap \mathrm{T})=-1,0,2$. Moreover, if $\mathrm{rk}(\mathrm{S} \cap \mathrm{T})=2$, then <SuT> is a geodesically closed subspace isomorphic to $A_{4,2}(K)$.
(v) We have $\operatorname{rk}(\mathrm{S} \cap \mathrm{T})=0,2$ for all $\mathrm{S}, \mathrm{T} \in \mathrm{S}$ with $\mathrm{S} \neq \mathrm{T}$ if and only if $\mathrm{n} \leq 5$.
(vi) If $\mathrm{L} \in \mathrm{L}, \mathrm{V} \in \mathrm{V}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \in \mathrm{~S}_{\mathrm{V}}$ are such that $\mathrm{S}_{\mathrm{i}} \cap \mathrm{L}(\mathrm{i}=1,2,3)$ are three distinct points of L , then $\left\langle\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}\right\rangle=\left\langle\mathrm{S}_{1} \cup \mathrm{~S}_{2}\right\rangle \cong \mathrm{A}_{4,2}(\mathrm{~K})$.
(vii) If $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3} \in \mathrm{~S}$ satisfy $\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}} \in V$ and $\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}} \neq \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{k}}$ whenever $\{i, j, k\}=\{1,2,3\}$, then $\left\langle S_{1} \cup S_{2} \cup S_{3}\right\rangle=\left\langle S_{1} \cup S_{2}>\cong A_{4,2}(K)\right.$.
(viii) If D is a subspace of (P, L) isomorphic to $A_{4,2}(K)$ there is no $z \in P$ such that $z^{\perp} \cap S \in V^{(2)}$ for all $S \in S(D)$.

(i) If $\mathrm{S}, \mathrm{T} \in \mathrm{S}$ with $\mathrm{S} \neq \mathrm{T}$, then $\mathrm{rk}(\mathrm{S} \cap \mathrm{T})=2$.
(ii) Let $\mathrm{V} \in \mathrm{V}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2} \in \mathrm{~S}_{\mathrm{V}}$. For any two distinct $\mathrm{x}, \mathrm{z} \in \mathrm{V}$ there are distinct collinear $\mathrm{u}_{1} \in \mathrm{x}^{\perp} \cap \mathrm{S}_{1}$ and $\mathrm{u}_{2} \in \mathrm{x}^{\perp} \cap \mathrm{S}_{2}$ such that $\mathrm{z} \in \mathrm{u}_{1} \mathrm{u}_{2}$.
(iii) For any $\mathrm{S} \in \mathrm{S}$ and $\mathrm{x} \in \mathrm{P} \backslash \mathrm{S}$, we have $\mathrm{P}=\langle\mathrm{x}, \mathrm{S}\rangle$.

PROPOSITION 5. Let $(P, L)=A_{5,3}(K)$ for some skew field K. Then
(i) diameter $(P, L)=3$.
(ii) (P, L) satisfies $(\mathrm{P} 3)_{2}$ and (F4) $\{0\}$.
(iii) If $\mathrm{S}, \mathrm{T} \in S$ with $\mathrm{S} \neq \mathrm{T}$, then $\mathrm{rk}(\mathrm{S} \cap \mathrm{T})=-1,1,2$. If $\mathrm{rk}(\mathrm{S} \cap \mathrm{T})=2$, then <SUT> is a geodesically closed subspace isomorphic to $\mathrm{A}_{4,2}(\mathrm{~K})$. Moreover, any subspace isomorphic to $A_{4,2}(K)$ can be obtained in this way.
(iv) If $\mathrm{V} \in \mathrm{V}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}$ are three distinct symplecta containing V , then $<S_{1} \cup S_{2} \cup S_{3}>=<S_{1} \cup S_{2}>\cong_{4,2}(K)$.
(v) If $\mathrm{V} \in V, \mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{P}$ and $\mathrm{S}_{1}, \mathrm{~S}_{2} \in \mathrm{~S}_{\mathrm{V}}$ satisfy $\mathrm{a}_{1} \notin \mathrm{a}_{2}^{\perp}, \mathrm{a}_{1} \in \mathrm{~S}_{1} \backslash \mathrm{~S}_{2}$ and $\mathrm{a}_{2} \in \mathrm{~S}_{2} \backslash \mathrm{~S}_{1}$ then for any $\mathrm{c} \in \mathrm{a}_{1}^{\perp} \cap \mathrm{a}_{2}^{\perp} \backslash\left(\mathrm{S}_{1} \mathrm{US}_{2}\right)$ we have $\mathrm{rk}\left(\mathrm{c}^{\perp} \cap \mathrm{S}_{\mathrm{i}}\right)=3$ for both $\mathbf{i}=1,2$.
(vi) If $S_{1}, S_{2}, S_{3} \in S$ satisfy $S_{i} \cap S_{j} \in V$ and $S_{i} \cap_{j} S_{j} \neq S_{i} \cap S_{k}$ whenever $\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}=\{1,2,3\}$, then $\left\langle\mathrm{S}_{1} \cup \mathrm{~S}_{2} \cup \mathrm{~S}_{3}>=\left\langle\mathrm{S}_{1} \cup \mathrm{~S}_{2}>\cong \mathrm{A}_{4,2}(\mathrm{~K})\right.\right.$.
(vii) If $\mathrm{D}_{1}, \mathrm{D}_{2}$ are distinct subspaces isomorphic to $\mathrm{A}_{4,2}(\mathrm{~K})$, then either $D_{1} \cap D_{2} \in S$ or $D_{1} \cap D_{2}$ is a singular subspace of rank -1 or 3 .
(viii) If $S_{1}, S_{2} \in S, S_{1} \neq S_{2}$ and $x \in S_{1} \cap S_{2}, z_{i} \in S_{i} \backslash x^{\perp}$ for each $i=1,2$ with $\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=1$, then $\operatorname{rk}\left(\mathrm{S}_{1} \cap \mathrm{~S}_{2}\right)=2$.
(ix) If $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ are distinct subspaces isomorphic to $\mathrm{A}_{4,2}$ (K) such that $D_{1} \cap D_{2}, D_{2} \cap D_{3} \in M^{(3)}$ then $D_{1} \cap D_{3} \in M^{(3)}$ and $\operatorname{rk}\left(D_{1} \cap D_{2} \cap D_{3}\right)=0,3$.
(x) If $\mathrm{D}_{,} \mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ are distinct subspaces isomorphic to $\mathrm{A}_{4,2}(\mathrm{~K})$ such that $D_{1} \cap D_{2} \cap D_{3} \in M^{(3)}$ and $D \cap D_{i} \in M^{(3)}$ for $i=1,2$, then $D \cap D_{3} \in M^{(3)}$.
(xi) If $\mathrm{D}_{1}, \mathrm{D}_{2}$ are distinct subspaces isomorphic to $\mathrm{A}_{4,2}(\mathrm{~K})$ and $\mathrm{M}_{\mathrm{i}} \in M(\mathrm{D})$ $(i=1,2)$ with $r k\left(D_{1} \cap D_{2}\right)=3$ and $r k\left(M_{1} \cap M_{2}\right) \geq 0$, then there $i s$ a sub- ${ }^{i}$ space D isomorphic to $A_{4,2}(\mathrm{~K})$ such that D contains $M_{1} \cup M_{2}$.
3.3. PROPERTIES OF $D_{n, n}(K) F O R n=5,6$.

PROPOSITION 6. Let $(P, L)=D_{5,5}(K)$ for some field K. Then
(i) diameter $(P, L)=2$.
(ii) (P, L) satisfies $(\mathrm{P} 3)_{3}$ and (F4) ${ }_{\emptyset}$.
(iii) $\mathrm{S}, \mathrm{T} \in \mathrm{S}, \mathrm{S} \neq \mathrm{T} \Rightarrow \mathrm{rk}(\mathrm{S} \cap \mathrm{T})=-1,3$ and $\langle\mathrm{S}, \mathrm{T}\rangle=\mathrm{P}$.
(iv) $\mathrm{S} \in \mathrm{S} \Rightarrow \mathrm{S} \cong \mathrm{D}_{4,1}$ (K).
(v) $M=M^{(3)} \cup M^{(4)}$.
(vi) $x \in P, M \in M^{(4)}, x \notin M \Rightarrow r k\left(x^{\perp} \cap M\right)=-1,2$.
(vii) $x \in P, M \in M^{(3)}, x \notin M \Rightarrow \operatorname{rk}\left(x^{\perp} \cap M\right)=0,2$.
(viii) $M_{1}, M_{2} \in M^{(3)} \Rightarrow \operatorname{rk}\left(M_{1} \cap M_{2}\right)=-1,0,1,3$.
(ix) $M_{1}, M_{2} \in M^{(4)} \Rightarrow \operatorname{rk}\left(M_{1} \cap M_{2}\right)=-1,1,4$.
(x) $\quad M_{1} \in M^{(3)}, M_{2} \in M^{(4)} \Rightarrow \operatorname{rk}\left(M_{1} \cap M_{2}\right)=-1,0,2$.
(xi) If $M_{1}, M_{2} \in M^{(3)}$ and $M_{1} \cap M_{2}=\emptyset$, then $r k\left(x^{\perp} \cap M_{2}\right)=2$ for all $x \in M_{1}$.
(xii) If M is a singular subspace such that $\mathrm{M} \cap \mathrm{T} \neq \emptyset$ for any symplecton T of S, then $r k(M)=4$.
(xiii) If $M_{1}, M_{2} \in M^{(4)}$ and $M_{1} \cap M_{2}=\emptyset$, then $r k\left(x^{\perp} \cap M_{2}\right)=-1$, 2 for all $\mathrm{x} \in \mathrm{M}_{1}$. Moreover $\left\{z_{\in} M_{1} \mid z^{\perp} \cap M_{2} \neq \emptyset\right\}$ is a singular subspace of rank 3.

PROPOSITION 7. Let $(P, L)=D_{6,6}(K)$ for some field K. Then
(i) diameter $(P, L)=3$.
(ii) (P, L) satisfies $(\mathrm{P} 3)_{3}$ and $\left(\mathrm{F}^{(1)}{ }_{\{0\}}\right.$, but $(\mathrm{F} 4)_{\emptyset}$ does not hold.
(iii) $\mathrm{S}, \mathrm{T} \in S, S \neq \mathrm{T} \Rightarrow \mathrm{rk}(\mathrm{S} \cap \mathrm{T})=-1,1,3$.
(iv) $S \in S \Rightarrow S \cong D_{4,1}(K)$.
(v) $\quad M=M^{(3)} \cup M^{(5)}$.
(vi) $M \in M^{(5)}, x \in P \backslash M \Rightarrow \operatorname{rk}\left(x^{\perp} \cap M\right)=-1,2$.
(vii) $M \in M^{(3)}, x \in P \backslash M \Rightarrow \operatorname{rk}\left(x^{\perp} \cap M\right)=-1,0,2$.
(viii) $M_{1}, M_{2} \in M^{(3)} \Rightarrow \operatorname{rk}\left(M_{1} \cap M_{2}\right)=-1,0,1,3$.
(ix) $M_{1}, M_{2} \in M^{(5)} \Rightarrow \operatorname{rk}\left(M_{1} \cap M_{2}\right)=-1,1,5$.
(x) $\quad M_{1} \in M^{(5)}, M_{2} \in M^{(3)} \Rightarrow \operatorname{rk}\left(M_{1} \cap M_{2}\right)=-1,0,2$.
(xi) If $\mathrm{S}_{1}, \mathrm{~S}_{2} \in \mathrm{~S}, \mathrm{~S}_{1} \neq \mathrm{S}_{2}$ and $\mathrm{x} \in \mathrm{S}_{1} \cap \mathrm{~S}_{2}, \mathrm{z}_{\mathrm{i}} \in \mathrm{S}_{\mathrm{i}} \backslash \mathrm{x}^{\perp}(\mathrm{i}=1,2)$ such that $\mathrm{d}\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=1$, then $\mathrm{rk}\left(\mathrm{S}_{1} \cap \mathrm{~S}_{2}\right)=3$
(xii) If $\mathrm{S}_{1}, \mathrm{~S}_{2} \in \mathrm{~S}, \mathrm{~S}_{1} \neq \mathrm{S}_{2}$ with $\mathrm{rk}\left(\mathrm{S}_{1} \mathrm{nS}_{2}\right)=3$, then $\left\langle\mathrm{S}_{1}, \mathrm{~S}_{2}>\cong \mathrm{D}_{5,5}(\mathrm{~K})\right.$.
4. PROOF OF THE MAIN RESULTS
4.1. A CHARACTERIZATION OF $\mathrm{D}_{5,5}(\mathrm{~K})$.

LEMMA 6. Let (P, L) be a parapolar space of finite singular rank satisfying (P3) ${ }_{3}$ and (F4) ${ }_{\{-1\}}$. Then one of the following holds
(i) (P, L) is a polar space of rank 4.
(ii) $(P, L) \cong D_{5,5}(K)$ for some field K.

PROOF. Let $\mathrm{x} \in \mathrm{P}$. Then P^{X} satisfies (P3) 2 and (F 4) \emptyset and has finite singular rank (cf. Lemma 3). According to [8], this implies that P^{X} is either a polar space or of type $A_{4,2}$. If P^{x} is a polar space then (P, L) is a polar space of rank 4 in view of Proposition 1. Therefore, we may assume that (P, L) is 1ocally of type $A_{4,2}$. In particular, by Lemma 5, there is a field K such that maximal singular subspaces of (P, L) are isomorphic to $A_{m, 1}(K)=P G(m, K)$ for $m=3,4$ and symplecta are isomorphic to $D_{4,1}(K)$.

Consider the 5-partite looped graph (Γ,*) with type map $\tau: \Gamma \rightarrow I_{5}$ given by $\Gamma_{i}=\tau^{-1}(i)$, where $\Gamma_{1}=S, \Gamma_{2}=M^{(3)}, \Gamma_{3}=L, \Gamma_{4}=M^{(4)}, \Gamma_{5}=P$, and in which incidence $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}, \gamma_{j} \in \Gamma_{j}$ is given by $\gamma_{i} \subseteq \gamma_{j}$ or $\gamma_{j} \subseteq \gamma_{i}$ for $\{i, j\} \neq\{1,4\},\{2,4\}$ and by $\operatorname{rk}\left(\gamma_{i} \cap \gamma_{j}\right)=|i-j|$ otherwise. Then it is readily verified that Γ is a geometry of type D_{5}. Furthermore, Γ satisfies (LL) and (0) ${ }_{i}$ for $\mathbf{i}=2,3$.

For, (LL) states that two distinct members of $M^{(3)}$ determine at most one symplecton, a well known fact due to Proposition 1. Furthermore (0) 2 (resp (0) $)_{3}$) states that for any two distinct $M_{1}, M_{2} \in M^{(3)}$ (respectively for any two distinct $L_{1}, L_{2} \in L$) there exists $S \in S$ with $M_{i} \subseteq S$ and $M_{j} \notin S$ (respectively, with $L_{i} \subseteq S$ and $L_{j} £ S$, where $\{i, j\}=\{1,2\}$. If $M_{1} \cap M_{2} \neq \emptyset$ (respectively $L_{1}^{\perp} \cap L_{2}^{\perp} \neq \emptyset$), this clearly follows from consideration of the residue at a point of $M_{1} \cap M_{2}$ (respectively $L_{1}^{\perp} \cap L_{2}^{\perp}$). If $M_{1} \cap M_{2}=\emptyset$, then
there are $x_{i} \in M_{i}$ for $i=1,2$ with $d\left(x_{1}, x_{2}\right)=2$. Thus if $T \in S$ contains $M_{1} \cup M_{2}$ then $T=S\left(x_{1}, x_{2}\right)$. Since there is more than one symplecton containing M_{1} (by consideration of $P^{x_{1}}$), there is $S \in S$ with $M_{1} \subseteq S$ and $M_{2} \nsubseteq S$, proving (0) 2°

As to (0) ${ }_{3}$, if $L_{1}^{\perp} \cap L_{2}^{\perp}=\emptyset$ then there is at most one symplecton containing $L_{1} \cup L_{2}$, whereas there are at least two symplecta containing L_{1}, so that (0) $)_{3}$ results.

Application of Theorem 3 yields that Γ is a weak building of type D_{5}. But since (P, L) is locally $A_{4,2}(K)$, the building is thick and defined over K, i.e. $\Gamma \cong D_{5}(K)$ (cf. [12], p.131). It follows that (P, L) $\cong D_{5,5}(K)$. This proves Lemma 6.
4.2. A CHARACTERIZATION OF $D_{5,5}(\mathrm{~K})$ AND $\mathrm{D}_{6,6}(\mathrm{~K})$

Part cf the following proposition can be found in [10]. For ease of reference however the proof given below is self-contained.

PROPOSITION 8. Let $s \in \mathbb{N}, \mathrm{~s} \geq 4$, let K be a field and suppose that (P, L) is a parapolar space but not a polar space, which is either locally $A_{s, 2}$ (K) or locally $A_{5,3}(K)$. Then there is a collection D of geodesically closed subspaces of (P, L) isomorphic to $D_{5,5}(K)$ such that for any pair x, X consisting of a point $\mathrm{x} \in \mathrm{P}$ and a subspace X of P with $\mathrm{x} \in \mathrm{X} \subseteq \mathrm{X}^{\perp}$ and $\mathrm{X}^{\mathrm{X}} \cong \mathrm{A}_{4,2}(\mathrm{~K})$, there is unique member $D(X)$ of D containing X.

PROOF. Note that in view of Lemma $3(P, L)$ satisfies (P3) ${ }_{3}$ and (P4) if it is locally $A_{s, 2}(K)$ and that (P, L) satisfies (F3) 3_{3} and (F4) if it is locally $A_{5,3}(K)$. Therefore, Lemma 5 applies. Thus any symplecton is isomorphic to $D_{4,1}(\mathrm{~K})$.

For a point x in P and a subspace X with $x \in X \subseteq X^{\perp}$ such that X^{X} is a subspace of P^{X} isomorphic to $\mathrm{A}_{4,2}(\mathrm{~K})$, we introduce the following subsets of S and P respectively

$$
\begin{aligned}
& S[X]=\left\{S(y, z) \mid y \in X \backslash\{x\}, z \in X \backslash y^{\perp}\right\} \\
& D(X)=\underset{S \in S[X]}{U} S
\end{aligned}
$$

Note that $S[X]$ is well defined as indeed any pair $y, z \in X$ with $d(y, z)=2$ is a symplectic pair. We shall establish that $D(X)$ is a geodesically closed subspace of (P, L) with $D(X)^{z} \cong A_{4,2}(K)$ for any $z \in D(X)$.

First of all, observe that

$$
x^{\perp} \cap D(X)=X
$$

as X^{X} is geodesically closed, and that for $y \in X \backslash\{x\}$:

$$
y^{\perp} \cap D(X)=\underset{z \in X \backslash y^{\perp}}{U} y^{\perp} \cap S(y, z)=\underset{z \in X \backslash y^{\perp}}{U} y^{\perp} \cap z^{\perp}
$$

as $(F 4) \emptyset_{\emptyset}$ holds for X^{X} (cf. Proposition 3).
We proceed in three steps.
(1) $D(X)$ is a subspace of (P, L).

Let $\mathrm{a}_{1}, \mathrm{a}_{2}$ be distinct collinear points of $D(X)$, and take $b \in a_{1} a_{2} \backslash\left\{a_{1}, a_{2}\right\}$. If both a_{1} and a_{2} belong to a symplecton contained in $S[X]$, there is nothing to prove. Thus we may, and shal1, restrict to the case where $a_{1} a_{2} \cap x^{\perp}=\emptyset$. Choose $S_{i} \in S[X]$ such that $a_{i} \in S_{i}(i=1,2)$, and set $M=S_{1} \cap S_{2}$. Then M is a singular subspace of rank 3 on x as any two distinct symplecta of X^{X} (isomorphic to $A_{4,2}(K)$) meet in a singular subspace of rank 2(cfo Proposition $4(i)$).

On the other hand $a_{i}^{\perp} \cap S_{i+1}$ contains the singular space $<a_{i+1}, a_{i}^{\perp} \cap M>$ of rank 3 (indices taken modulo 2), so that $a_{1}^{\perp} \cap M=a_{2}^{\perp} \cap M$. Thus $b^{\perp} \cap M=a_{1}^{\perp} \cap M$ is a singular subspace of $b^{\perp} \cap x^{\perp}$ and $M \subseteq S(b, x)$. Set $S=S(b, x)$, take $y \in b^{\perp} \cap M$ and consider P^{y}. Each of the three symplecta $S_{1}^{y}, S_{2}^{y}, S^{y}$ of P^{y} contains the p lane M^{y} and meets the line $<a_{1}, a_{2}, y>{ }^{y}$ of P^{y} disjoint from M^{y} in a point. Since $P^{Y} \cong A_{S, 2}(K)$ or $A_{5,3}(K)$ this yields by Proposition 3 (vi) and 5 (iv) that $\left\langle S_{1}^{y}, S_{2}^{y}, S^{y_{y}^{y}}\right\rangle=\left\langle S_{1}^{y}, S_{2}^{y_{r}}\right\rangle \cong A_{4,2}$ (K).

Next, take $z \in(x y)^{\perp} \cap S$. Since $y z \in\left\langle S_{1}^{y}, S_{2}^{y}\right\rangle \cong A_{4,2}(K)$, we get from Proposition 4 (ii) that there are distinct coplanar lines $L_{i} \in L\left(S_{i}\right)_{y}$ contained in $x^{\perp}(i=1,2)$ such that the line $L_{1} L_{2}$ of $\left\langle S_{1}^{y}, S_{2}^{y}\right\rangle$ contains $y z$. Thus, we can find $u_{i} \in L_{i} \backslash\{y\}$ such that $z \in u_{1} u_{2}$. Since $u_{i} \in S_{i}$ and X is a subspace, we obtain that $z \in X$. Therefore, $(x y)^{\perp} \cap S \subseteq X$. But ($\left.x y\right)^{\perp} \cap S$ contains a symplectic pair, whence $S \subseteq D(X)$. This yields that $b \in D(X)$, proving that $D(X)$ is a subspace.
(2) $D(X)$ is geodesically closed, satisfies $(P 3)_{3}$ and has diameter 2.

Let a_{1}, a_{2} be noncollinear points of $D(X)$. We show that a_{1}, a_{2} is a sym-
plectic pair and that $a_{1}^{\perp} \cap a_{2}^{\perp}$ is contained in $D(X)$. This clearly suffices for the proof of (2).

The case where a symplecton $S \in S[X]$ contains both a_{1} and a_{2} is obvious. Therefore, we assume that there is no such symplecton. Choose $S_{i} \in S[X]$ such that $a_{i} \in S_{i}(i=1,2)$ and set $M=S_{1} \cap S_{2}$. Then, as before, M is a singular subspace of:rank 3 on x, and $a_{i}^{\perp} \cap S_{i+1}$ are singular subspaces containing $a_{i}^{\perp} \cap M$ for $a 11 i\left(i=1,2\right.$; indices modulo 2). But $r k\left(a_{i}^{\perp} \cap M\right)=2$, so $r k\left(a_{i}^{\perp} \cap S_{i+1}\right)=3$ in view of axiom (P4) or (F4) (whichever prevails), whence $\operatorname{rk}\left(a_{i}^{\perp} \cap a_{i+1}^{\perp} \cap S_{i+1}\right)=2$. In particular, a_{1}, a_{2} is a symplectic pair.

It remains to show that $a_{1}^{\perp} \cap a_{2}^{\perp}$ is contained in $D(X)$. Suppose $c \in a_{1}^{\perp} \cap a_{2}^{\perp}$. By the assumption that there is no symplecton in $S[X]$ containing both a_{1} and a_{2}, we have that at least one of a_{1}, a_{2}, say a_{1}, is not co1linear with x. Thus $S_{1}=S\left(a_{1}, x\right)$. Of course, we may (and shall) restrict attention to the case where $c \notin S_{1} \cap S_{2}$. In particular, we have $c \notin x^{\perp}$ (for else $c \in a_{1}^{\perp} \cap x^{\perp} \subseteq S$, which has just been excluded). Now consider $c^{\perp} \cap S_{i}$ for $i=1,2$. Since $\operatorname{rk}\left(a_{1}^{\perp} \cap a_{2}^{\perp} \cap M\right) \geq 1$ we derive that $\operatorname{rk}\left(\left\{c, a_{1}, a_{2}\right\}^{\perp} \cap M\right) \geq 0$ from the polar space axiom applied to $a_{1}^{\perp} \cap a_{2}^{\perp}$. Take $y \in\left\{c, a_{1}, a_{2}\right\}^{\perp} \cap$ M. Now ya ${ }_{i}$ is a line of $c^{\perp} \cap S_{i}(i=1,2)$. If (P4) holds, this implies $r k\left(c^{\perp} \cap S_{i}\right)=3$.
 $5(v)$. Hence $x^{\perp} \cap c^{\perp} \cap S_{i}$ is a singular subspace of rank 2 for $i=1,2$. It is immediate that c, x is a symplectic pair. Setting $S=S(x, c)$, we have $S \cap S_{i} \supseteq\left\langle x, x^{\perp} \cap c^{\perp} \cap S_{i}\right\rangle$, so that $r k\left(S \cap S_{i}\right)=3$.

If $M \subseteq S$, then $c^{\perp} \cap S_{i}=\left\langle c^{\perp} \cap M, a_{i}\right\rangle$ and $c^{\perp} \cap M=a_{i} \cap M(i=1,2)$ by Proposition 1 (ii) and consideration of ranks, so that $a_{1}^{\perp} \cap a_{2}^{\perp}$ would contain $<c, c^{\perp} \cap M>$, a singular subspace of rank 3, which is absurd. Thus $S \cap S_{i} \neq M$ for each $i(i=1,2)$. Now, consider P^{Y}. Since $S^{y}, S_{1}^{Y}, S_{2}^{Y}$ are three symplecta, mutually intersecting in distinct planes, we have $\left\langle\mathrm{S}^{\mathrm{y}}, \mathrm{S}_{1}^{\mathrm{y}}, \mathrm{S}_{2}^{\mathrm{y}}\right\rangle=$ $<S_{1}^{y}, S_{2}^{y}>A_{4,2}(K)$ by use of Proposition 3 (vii) and 5 (vi) applied to P^{y}. From this we can derive by the same argument as in step (1) that S is contained in $D(X)$. Hence $c \in D(X)$.

This shows that $a_{1}^{\perp} \cap a_{2}^{\perp}$ is contained in $D(X)$, as wanted.
(3) $D(X) \cong D_{5,5}(K)$.

For $u \in D(X)$, set $X_{u}=u^{\perp} \cap D(X)$. This is a subspace since $D(X)$ is a subspace (see (1)).

Suppose $y \in X \backslash\{x\}$. There are distinct $S_{1}, S_{2} \in S(D(X))_{x y}$ with
$\operatorname{rk}\left(S_{1} \cap S_{2}\right)=3$ (by consideration of X^{x}). Due to Proposition 3 (iv) and 5 (iii) applied to P^{Y}, the two symplecta S_{1}^{Y}, S_{2}^{y} of P^{Y} generate a subspace of P^{y} isomorphic to $A_{4,2}(K)$. On the other hand, they are contained in $D(X){ }^{Y}$. Since $\left.(X)^{y}\right)^{y}=D(X)^{y}$ is a geodesically closed subspace of P^{y} of singular rank 3 (recall that maximal singular spaces in $D(X)$ on $x y$ have rank 2 and 3), this implies $\left(X_{y}\right)^{y} \cong A_{4,2}(K)$ and $\left(X_{y}\right)^{y}=\left\langle S_{1}^{y}, S_{2}^{y}\right\rangle$. It follows from the geodesic closure of $D(X)$ that

But

$$
D\left(X_{y}\right)=\underset{S \in S\left[X_{y}\right]}{U} S \subseteq D(X)
$$

$$
\left(\left(X_{y}\right)_{x}\right)^{x} \cong\left(X_{y}\right)^{y} \cong A_{4,2}(K)
$$

and

$$
\left(X_{y}\right)_{x}=x^{\perp} \cap D\left(X_{y}\right) \subseteq x^{\perp} \cap D\left(X_{1}\right)=x
$$

so that $\left(X_{y}\right)_{x}=X$, and $D(X)=D\left(\left(X_{y}\right)_{x}\right) \subseteq D\left(X_{y}\right)$.
Hence $D(X)=D\left(X_{y}\right)$. Since $D(X)$ is connected, we obtain that $\left(X_{z}\right)^{z}=D(X)^{z} \cong$ $\cong A_{4,2}(K)$ for all $z \in D(X)$. Thus, $D(X)$ is a parapolar space which is locally $A_{4,2}(\mathrm{~K})$. Hence, it satisfies $(F 4) \emptyset^{\circ}$. From the previous lemma, the conclusion is that $D(X) \cong D_{5,5}(K)$.

THEOREM 4. Let (P, L) be a parapolar space of finite singular rank satisfying $\left.{ }^{(P 3)}\right)_{3}$ and (F4) $\left\{_{\{-1,0\}}\right.$. Then one of the following holds for some field K.
(i) (P, L) is a polar space of rank 4 .
(ii) $\quad(P, L) \cong D_{5,5}(K)$
(iii) $(P, L) \cong D_{6,6}(K)$.

PROOF. Let $x \in P$. In view of Lemma $3, P^{x}$ satisfies (P3) ${ }_{2}$ and (F4) ${ }_{\{-1\}}$ and has diameter 2. Thus by' $[\dot{8}]$, and finiteness of its singular rank, P^{X} is either a polar space or of type $A_{s, 2}$ for some $s \in \mathbb{N}, s \geq 3$. If P^{x} is a polar space, then (P, L) is a polar space of rank 4 according to Lemma 2 . Thus we may assume that P^{X} is of type $A_{n, 2}$ for some $n \geq 4$. In light of Lemma 5 there is a field K such that $S \cong D_{4,1}(K)$ for any symplecton S of (P, L) and such that $P^{Y} \cong A_{s, 2}(K)$ for any $y \in P$. Applying the above proposition, we obtain a family D of geodesically closed subspaces of (P, L) isomorphic to
$D_{5,5}(\mathrm{~K})$ such that for any pair x, X of a point x and a subspace X with $x \in X \subseteq x^{\perp}$ and $X^{X} \cong A_{4,2}(K)$ there is a unique member $D(X)$ of D containing X. Let $D \in D$. If $D=P$, then (P, L) is of type $D_{5,5}$, and assertion (ii) holds. We therefore remain with the case where $D \neq P$ and, hence, $s \geq 5$. Take $z \in P \backslash D$ 。

First of all, we claim that $(F 4){ }_{\emptyset}$ does not hold. For otherwise $\operatorname{rk}\left(z^{\perp} \cap S\right)=3$ for each symplecton $S \in S(D)$, implying that $r k\left(\left(x^{y}\right)^{\perp} \cap S^{y}\right)=2$ for each $y \in D$ and each symplecton $S \in S(D)_{y}$, which is absurd in view of $D^{y} \cong A_{4,2}(K)$ and $P^{Y} \cong A_{s, 2}(K)$ (cf. Proposition 3(viii)).

Thus, with regard to $(F 4)_{\{0\}}$, there is a point x in D and a symplecton $S \in S(D)_{x}$ such that $z^{\perp} \cap S=\{x\}$. Note that $z^{\perp} \cap D$ is a clique as D is geodesically closed. In view of (F4) $\{0\}$ applied to z we see that $z^{\perp} \cap D \cap T \neq \emptyset$ for any $T \in S(D)$. By the structure of $D\left(\cong_{5,5}(K)\right)$ we therefore have $r k\left(z^{\perp} \cap D\right)=4$ (cf. Proposition $\left.6(x i i i)\right)$. Now consider P^{x}. For any $y \in x^{\perp} \backslash D$ the singular subspace $\left(x^{y}\right)^{\perp} \cap D^{y}$ of P^{y} has rank 3 . But $P^{x} \cong A_{s, 2}(K)$ and $D^{x} \cong A_{4,2}(K)$, so $s=5$. In particular, maximal cliques have rank 3 and 5 .

We construct a geometry of type D_{6} as follows. Set $\Gamma_{1}=D, \Gamma_{2}=S$, $\Gamma_{3}=M^{(3)}, \Gamma_{4}=L, \Gamma_{5}=M^{(5)}, \Gamma_{6}=P$ and $\Gamma=\bigcup_{1 \leq i \leq 6} \Gamma_{i}$. Define incidence * on Γ by $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}, \gamma_{j} \in \Gamma_{j}(1 \leq i, j \leq 6)$ to be symmetrized containment (i.e., $\gamma_{i} \subseteq \gamma_{j}$ or $\gamma_{j} \subseteq \gamma_{i}$) whenever $\{i, j\} \neq\{1,5\},\{2,5\},\{3,5\}$ and $\operatorname{rk}\left(\gamma_{i} \cap \gamma_{j}\right)=|j-i|$ otherwise. Then $(\Gamma, *)$ is a 6-partite looped graph which is easily seen to be a geometry of type D_{6}. Similar to the proof of Lemma 6, the axioms (LL) and (0) of Section 2.6 are easily verified. From Theorem 3, it now follows that Γ is a building of type D_{6}, and in fact (cf. [12]) the unique thick building $D_{6}(K)$ up to isomorphy, so that $(P, L) \cong D_{6,6}(K)$.
4.3. PROOF OF THEOREM 1. Recall that the 'only if' part is dealt with by Proposition 2.
(i) Let $k \geq 2$ and suppose (P, L) is a parapolar space of finite singular rank s. If (P, L) is a polar space, it has rank $s+1$ by Lemma 3. Assume from now on that (P, L) is not a polar space.
(ii) If $k=2$, then (P, L) is as described in statement (ii) due to [8].
(iii) Let $k=3$. Then by Lemma 3 and Proposition 8 there is a field K such that (P, L) is locally $A_{s, 2}(K)$, while $s \geq 4$, and there is a collection
D of geodesically closed subspaces of (P, L) isomorphic to $\mathrm{D}_{5,5}(\mathrm{~K})$ such that for any pair x, X of a point x of P and a subspace X of P with $x \in X \subseteq x^{\perp}$ and $X^{X} \cong A_{4,2}(K)$. There is a unique member $D(X)$ of D cont.aining X. Let $x, y, z \in P$ with $d(x, y)=2, d(y, z)=1$ and $\{x, y, z\}^{\perp}$ a maximal clique in $\{x, y\}^{\perp}$. Then from $P^{y} \cong A_{S, 2}(K)$ and $\operatorname{rk}\left(z^{\perp} \cap S(x, y)\right)=3$ it follows that $S(x, y)^{y}$ and $(y z)^{y}$ generate a subspace, say Y, of P^{y} isomorphic to $A_{4,2}(K)$. Thus, if X is a subspace of P such that $y \in X \subseteq y^{\perp}$ and $X^{Y}=Y$, we have $x, y, z \in D(X) \in \mathcal{D}$. On the other hand, any member of $D_{\{x, y, z\}}$, must contain X such that $D(X)$ is the unique member of $\mathcal{D}_{\{x, y, z\}}$. This shows that (iii) holds if $k=3$.
(iv) Let $k=4$. Take $x \in P$ and consider P^{X}. By Lemma 3 it is a parapolar space of diameter 2 and of finite singular rank satisfying (P3) 3 and (F4) $\left\{_{\{-1\}}\right.$, which is not a polar space. Application of Lemma 6 yields that $P^{X} \cong D_{5,5}(K)$ for some field K. Due to Lemma 5 any maximal singular subspace is isomorphic to either $A_{5,1}(K)$ or $A_{4,1}(K)$ and any symplecton is isomorphic to $D_{5,1}(K)$. Now consider the 6-partite looped graph $(\Gamma, *)$ on $\Gamma=\underset{1 \leq i \leq 6}{U} \Gamma_{i}$, where $\Gamma_{1}=P, \Gamma_{2}=L, \Gamma_{3}=V, \Gamma_{4}=M^{(5)}$, $\Gamma_{5}=M^{(4)}$ and $\Gamma_{6}=S$, in which incidence $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}, \gamma_{j} \in \Gamma_{j}$ is defined by symmetrized containment if $\{i, j\} \neq\{4,5\},\{4,6\}$ and by $r k\left(\gamma_{i} \cap \gamma_{j}\right)=2+|i-j|$ otherwise. Then Γ is a geometry of type E_{6}. Moreover, (LL) holds as (P, L) is a linear space, and (0) for $i=2,3$ is trivially satisfied by the construction of Γ. From Theorem 3 we obtain that Γ is a building of type E_{6}. If readily follows that Γ is the thick building $E_{6}(K)$, up to isomorphism, so that $(P, L) \cong E_{6,1}(K)$.
(v) $\quad k=5$. Take $x \in P$. According to Lemma $3, P^{x}$ is a parapolar space of diameter 2 of finite singular rank satisfying (P3) ${ }_{4}$ and (F4) ${ }_{\{-1\}}$, but not a polar space. Thus by the previous case, there is a field K such that $P^{x} \cong E_{6,1}(K)$. Let $(\Gamma, *)$ be the 7-partite looped graph on $\Gamma=\underset{1 \leq i \leq 7}{U} \Gamma_{i}$, where $\Gamma_{1}=P, \Gamma_{2}=L, \Gamma_{3}=V, \Gamma_{4}=V^{(3)}, \Gamma_{5}=M^{(6)}, \Gamma_{6}=M^{(5)}, \Gamma_{7}^{1 \leq i \leq 7}{ }^{\prime} \mathbf{i}^{\prime}$, in which $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}, \gamma_{j} \in \Gamma_{j}$ is defined by symmetrized containment if $\{\mathbf{i}, \mathbf{j}\} \neq\{5,6\},\{5,7\}$ and by $\operatorname{rk}\left(\gamma_{i} \cap \gamma_{j}\right)=3+|i-j|$ otherwise. Then Γ is a geometry of type E_{7} (note that symplecta are isomorphic to $D_{6,1}(K)$ and maximal singular subspaces have rank either 5 or 6 according to Lemma 5). Now (LL) and (0) for $i \doteq 2,3,4$ are verified
similarly to the previous case, while (LH) follows as symplecta are subspaces. Thus, we derive in the same manner as above, that $\Gamma \cong E_{7}(K)$ and $(P, L) \cong E_{7,1}(K)$.
(vi) $k \geq 6$. Let $k=6$. Reasoning as before, we obtain that the residue of any point is a parapolar space of finite singular rank satisfying $(\mathrm{P} 3)_{5}$ and $(\mathrm{F} 4)_{\{-1\}}$ and of diameter 2 , but not a polar space. Thus its residue must be isomorphic to $E_{7,1}(K)$ for some field K, an incidence system of diameter 3 (cf. Proposition 2). This absurdity shows that each parapolar space satisfying $(P 3)_{k}$ for $k=6$ and $(F 4)_{\{-1,0\}}$ must be a polar space. By induction on k, we obtain the same result for all $k \geq 6$. This ends the proof of Theorem 1 .
4.4. PROPOSITION 9. Suppose K is a field and (P, L) is a parapolar space which is locally $\mathrm{D}_{6,6}(\mathrm{~K})$. Then there is a collection E of geodesically closed subspaces isomorphic to $\mathrm{E}_{6,1}(\mathrm{~K})$ such that for any pair x, X of a point x and a subspace X of P with $\mathrm{x} \in \mathrm{X} \subseteq \mathrm{X}^{\perp}$ and $\mathrm{X}^{\mathrm{X}} \cong \mathrm{D}_{5,5}(\mathrm{~K})$, there is a unique member $E(X)$ of E containing X.

PROOF. Since $S^{x} \cong D_{4,1}(K)$ for any $x \in P$ and $S \in S_{x}$, we get that any symplecton is of type $D_{5,1}$. Thus (P, L) satisfies (F 3$)_{4}$ and (F4) ${ }_{\{-1,1\}}$ (cf. Proposition 7). Analogously to the proof of Proposition 8, the following notions are introduced for a point x and a subspace X of P with $x \in X \subseteq x^{\perp}$ and $X^{x} \cong D_{5,5}(K):$

$$
\begin{aligned}
& S[X]=\left\{S(y, z) \mid y \in X \backslash\{x\}, z \in X \backslash y^{\perp}\right\} . \\
& E(X)=\underset{S \in S[X]}{U} S .
\end{aligned}
$$

Again, $S[X]$ is well defined as any noncollinear pair of points in $D_{5,5}(\mathrm{~K})$ is symplectic. Clearly, $\mathrm{X}^{\perp} \cap \mathrm{E}(\mathrm{X})=\mathrm{X}$. For any $u \in E(X)$, set $X_{u}=u^{\perp} \cap E(X)$.

Suppose $y \in X \backslash\{x\}$. Then $y^{\perp} \cap z^{\perp} \subseteq y^{\perp} \cap E(X)$ for any $z \in X \backslash y^{\perp}$. On the other hand, if $u \in y^{\perp} \cap S$ for some $S \in S[X]$, then either $y \in S$ or $y^{\perp} \cap S$ is a maximal singular subspace of S. In both cases there is $z \in u^{\perp} \cap S \backslash y^{\perp}$ with $u \in y^{\perp} \cap z^{\perp}$. We have shown,

$$
\begin{equation*}
X_{y}=\underset{z \in X \backslash y^{\perp}}{U} S(x, y)=\underset{z \in X \backslash y^{\perp}}{U} x^{\perp} \cap y^{\perp} \tag{*}
\end{equation*}
$$

Again, we proceed in three steps.
(1) $E(X)$ is a subspace of (P, L).

Let a_{1}, a_{2} be distinct collinear points of $E(X)$, and take $b \in a_{1} a_{2} \backslash\left\{a_{1}, a_{2}\right\}$. If a symplecton from $S[x]$ contains both a_{1} and a_{2}, there is nothing to prove. Thus we may, and shall, restrict to the case where $a_{1} a_{2} \cap x^{\perp}=\emptyset$. Choose $S_{i} \in S[x]$ such that $a_{i} \in S_{i}(i=1,2)$ and set $M=S_{1} \cap S_{2}$. Then M is either a singular subspace of rank 4 on x or $\dot{M}=\{x\}$ by consideration of the residue $X^{x} \cong D_{5,5}(K)$ on x (cf. Proposition 6 (iii)). But $a_{2} \in a_{1}^{\perp} \cap S_{2}$, so $a_{1}^{\perp} \cap S_{2}$ contains a line L on a_{2} in view of axiom (F4) $\{-1,1\}^{\circ}$ As x, L are both in S_{2}, there is a point $z \in x^{\perp} \cap$ L. Now $z \in x^{\perp} \cap a_{1}^{\perp} \cap a_{2}^{\perp} \subseteq S_{1} \cap S_{2} \backslash\{x\}$, so that M has rank 4. Since $a_{i}^{\perp} \cap S_{j}$ is a clique containing a_{j} when $\{i, j\}=\{1,2\}$ we have $a_{1}^{\perp} \cap S_{1} \cap S_{2}=$ $=a_{1}^{\perp} \cap a_{2}^{\perp} \cap S_{1}^{\perp} \cap S_{2}=a_{2}^{\perp} \cap S_{1} \cap S_{2}$ so that $a_{1}^{\perp} \cap M=a_{2}^{\perp} \cap M$, a singular subspace of rank 3 .

Let $b \in a_{1} a_{2}$. Then $x^{\perp} \cap b^{\perp}$ contains $b^{\perp} \cap M=a_{1}^{\perp} \cap M$, sn x, b is a symplectic pair. Set $S=S(x, b)$. Observe that $M=\left\langle b^{\perp} n M, x\right\rangle \subseteq S$, so that $\mathrm{M}=\mathrm{S} \cap \mathrm{S}_{1} \cap \mathrm{~S}_{2}$. Let Y be a line of $\mathrm{a}_{1}^{\perp} \cap \mathrm{M}$. Reasoning as in the proof of Proposition 8, we obtain that the residue of S at Y (i.e. the residue of S^{y} at Y within the residue P^{y} at a point y of Y) is contained in the subspace of the residue at Y generated by the residues of S_{1}, S_{2} at Y. Continuing in the analogue of the proof of Proposition 8 (but with Y substituted for y), we obtain $\langle\mathrm{X}, \mathrm{Y}\rangle^{\perp} \cap \mathrm{S} \subseteq \mathrm{X}$, and $\mathrm{S} \subseteq \mathrm{E}(\mathrm{X})$. Thus $\mathrm{b} \in \mathrm{E}(\mathrm{X})$, proving (1).
(2) $\mathrm{E}(\mathrm{X})$ is geodesically closed, satisfies (P 3$)_{4}$ and has diameter 2 .

Let a_{1}, a_{2} be points of $E(X)$ with $a_{1} \notin a_{2}^{\perp}$. We show that a_{1}, a_{2} is a symplectic pair and that $a_{1}^{\perp} \cap a_{2}^{\perp} \subseteq E(X)$. This clearly suffices for the proof of (2). The case where a symplecton from $S[x]$ contains both a_{1} and a_{2} being obvious, we may and shall assume that there is no such symplecton.

For $i=1,2$, choose $S_{i} \in S[X]$ such that $a_{i} \in S_{i}(i=1,2)$. Since S_{1}^{x}, S_{2}^{x} are symplecta in $\mathrm{X}^{\mathrm{x}} \cong \mathrm{D}_{6,6}(\mathrm{~K})$, we have either $\mathrm{rk}\left(\mathrm{S}_{1} \cap \mathrm{~S}_{2}\right)=4$ or $\mathrm{S}_{1} \cap \mathrm{~S}_{2}=\{\mathrm{x}\}$ (cf. Proposition 6 (iii)). Note that a_{1}, a_{2} are not both in X, for otherwise $S\left(a_{1}, a_{2}\right)$ would be a symplecton in $S[X]$ containing a_{1}, a_{2}. Without loss of
generality, we have $a_{1} \notin \mathrm{x}^{\perp}$ 。
First, suppose $r k\left(S_{1} \cap S_{2}\right)=4$. Then $a_{1}^{\perp} \cap a_{2}^{\perp} \cap S_{1} \cap S_{2}$ is a singular subspace of $a_{1}^{\perp} \cap a_{2}^{\perp}$ of rank ≥ 2. It follows that a_{1}, a_{2} is a symplectic pair. Let $c \in a_{1}^{\perp} \cap a_{2}^{\perp}$. Note that $c^{\perp} \cap a_{1}^{\perp} \cap a_{2}^{\perp} \cap S_{1} \cap S_{2}$ contains a line, say, L (since both c and $a_{1}^{\perp} \cap a_{2}^{\perp} \cap S_{1} \cap S_{2}$ are in the polar space $a_{1}^{\perp} \cap a_{2}^{\perp}$). If $c \in S_{1} \cup S_{2}$, there is nothing to prove. Assume, therfore, that $c \notin S_{1} \cup S_{2}$ 。 Then, in particular $c \notin x^{\perp}$ (for else $c \in a_{1}^{\perp} \cap x_{1}^{\perp} \subseteq S\left(a_{1}, x\right)=S_{1}$). But $L \subseteq x^{\perp} \cap c^{\perp}$ so x, c is a symplectic pair. Set $S=S(x, c)$. Taking the residue at L and using the same arguments as in step (2) of the proof of Proposition 8, we obtain that S is contained in $E(X)$, whence $c \in E(X)$.

Now, suppose $S_{1} \cap S_{2}=\{x\}$. If $a_{2} \in X$, then $a_{2}^{\perp} \cap S_{1}$ contains x, and hence by axiom (F4) $\{-1,1\}$, a line U. Taking $w \in S_{1} \cap U^{\perp} \backslash a_{2}^{\perp}$, we obtain that w, a_{2} is a symplectic pair and $S_{1} \cap S\left(w, a_{2}\right) \geq U$. Since both S_{1} and $S\left(w, a_{2}\right)$ are members of $S[X]$, this yields that $S_{1} \cap S\left(w, a_{2}\right)$ is a singular subspace of rank 4. Replacing S_{2} by $S\left(w, a_{2}\right)$, we have $\operatorname{rk}\left(S_{1} \cap S_{2}\right)=4$ again.

Therefore, it remains to consider the case where $a_{2} \notin \mathrm{X}$. We first show that a_{1}, a_{2} is a symplectic pair. Take $y_{1} \in x^{\perp} \cap a_{1}^{\perp}$ and consider $y_{1}^{\perp} \cap S_{2}$. In view of $x^{x} \cong D_{5,5}(K)$ and Proposition 6, it follows from $y_{1} \in X$ and $S_{2} \in S[x]$ that $\mathrm{rk}\left(\mathrm{y}_{1}^{\perp} \mathrm{nS}_{2}\right)=4$. Thus $\mathrm{rk}\left(\mathrm{a}_{2}^{\perp} \cap \mathrm{y}_{1}^{\perp} \mathrm{nS} \mathrm{S}_{2}\right) \geq 3$, and in fact equality holds, as $\mathrm{x} \in \mathrm{y}_{1}^{\perp} \cap \mathrm{S}_{2} \backslash \mathrm{a}_{2}^{\perp}$. In particular, $\mathrm{y}_{1}, \mathrm{a}_{2}$ is a symplectic pair. But $\mathrm{a}_{1}^{\perp} \cap \mathrm{S}\left(\mathrm{y}_{1}, \mathrm{a}_{2}\right)$ contains y_{1} and hence a line, due to ($\left.F 4\right)_{\{-1,1\}}$. Consequently, we can find $z_{1} \in a_{2}^{\perp} \cap a_{1}^{\perp} \cap S\left(y_{1}, a_{2}\right)=a_{1}^{\perp} \cap a_{2}^{\perp} \cap y_{1}^{\perp}$. In particular, $d\left(a_{1}, a_{2}\right)=2$. The same argument, but now with indices 1 and 2 interchanged, leads to a point $z_{2} \in a_{1}^{\perp} \cap a_{2}^{\perp} \cap y_{2}^{\perp}$ for any $y_{2} \in x^{\perp} \cap a_{1}^{\perp}$. Suppose that a_{1}, a_{2} is a special pair, i.e., $a_{1}^{\perp} \cap a_{2}^{\perp}=\{z\}$ for some $z \in P$.
Then $z=z_{1}=z_{2} \in S\left(y_{1}, a_{2}\right) \cap S\left(y_{2}, a{ }_{1}\right) \subseteq y_{1}^{\perp} \cap y_{2}^{\perp}$, so $z \in y_{1}^{\perp} \cap y_{2}^{\perp}$. Moreover, for any $y \in x^{\perp} \cap a_{1}^{\perp}$, we have $z \in y^{\perp}$ by the above argument for y_{1} instead of y. Obviously this means $z \in S_{1}$. Similarly, we have $z \in S_{2}$, so that $z \in S_{1} \cap S_{2}=\{x\}$, or $z=x$, which is absurd as $x \notin a_{1}^{\perp} \cap a_{2}^{\perp}$. We conclude that a_{1}, a_{2} is a symplectic pair.

Next let $c \in a_{1}^{\perp} \cap a_{2}^{\perp}$. If $c \in S_{1} \cup S_{2}$, then $c \in E(X)$. Suppose $c \notin S_{1} \cup S_{2}$. Let $i=1,2$. In view of axiom ($F 4)_{\{-1,1\}}$, we get from $a_{i} \in c^{\perp} \cap S_{i}$ that $c^{\perp} \cap S_{i}$ contains a line on a_{i}. Let u_{i} be the unique point on this line collinear with x. Since $S_{1} \cap S_{2}=\{x\}$ and $x \notin a_{i}^{\perp}$, we have $u_{1} \neq u_{2}$. But $u_{1}, u_{2} \in c^{\perp} \cap x^{\perp}$, so c, x is a symplectic pair set $S=S(x, c)$. Note that
$S \neq S_{i}$ since $c \notin S_{1} \cup_{u_{2}} S_{2}$. Now. in the residue $P^{u_{2}} \cong D_{6,6}(K)$ at u_{2}, the two distinct symplecta $S{ }^{u_{2}}$ and $S_{2}^{u_{2}}$ have the point xu_{2} in commen, whereas $L_{u_{2}}\left(\left\langle u_{2}, a_{2}, c>\right)\right.$ is a line of $P{ }^{u_{2}}$ having points $\mathrm{cu}_{2}{ }_{u_{2}}$ and $\mathrm{a}_{2} \mathrm{u}_{2}$ with distance 2 to xu_{2}. By Proposition 7 this yields that $\mathrm{rk}\left(\mathrm{S}^{\mathrm{u}_{2}} \mathrm{nS}_{\mathrm{i}}{ }^{2}\right)=3$ so that
$\operatorname{rk}\left({\mathrm{S} \cap \mathrm{S}_{\mathrm{i}}}\right)=4$. Consequently, $\mathrm{rk}\left(\mathrm{c}^{\perp} \cap \mathrm{S} \cap \mathrm{S}_{\mathrm{i}}\right)=3$, so that $\mathrm{rk}\left(\mathrm{c}^{\perp} \cap \mathrm{S}_{\mathrm{i}}\right)=4$ according to axiom $(F 4)_{\{-1,1\}}$. Moreover, $x \notin c^{\perp}$, as $c \in x^{\perp}$ would imply.
$c \in a_{1}^{\perp} \cap a_{2}^{\perp} \cap x^{\perp} \subseteq S_{1} \cap S_{2}$. Therefore, we have $r k\left(x^{\perp} \cap c^{\perp} \cap S_{i}\right)=3$. We assert that there are $w_{i} \in x^{\perp} \cap c^{\perp} \cap S_{i}(i=1,2)$ such that $w_{1} \notin w_{2}^{\perp}$. For otherwise $x^{\perp} \cap c^{\perp} \cap\left(S_{1} \cup S_{2}\right)$ would be a clique consisting of two disjoint singular subspaces of rank 3 , so that $\left\langle x^{\perp} \cap c^{\perp} \cap\left(S_{1} u S_{2}\right)\right\rangle$ would be a singular subspace of rank 7, contradicting the fact that the rank of a maximal singular subspace is either 4 or 6 .

Finally, taking $w_{i} \in x^{\perp} \cap c^{\perp} \cap S_{i}(i=1,2)$ with $w_{1} \notin w_{2}^{\perp}$, we obtain that $\mathrm{w}_{1}, \mathrm{w}_{2}$ is a symplectic pair in X , so that $\mathrm{c} \in \mathrm{S}\left(\mathrm{w}_{1}, \mathrm{w}_{2}\right) \subseteq \mathrm{E}(\mathrm{X})$. We conclude that $a_{1}^{\perp} \cap a_{2}^{\perp} \subseteq E(X)$. This establishes (2).
(3) $\quad \mathrm{E}(\mathrm{X}) \cong \mathrm{E}_{6,1}(\mathrm{~K})$

Let $y \in X \backslash\{x\}$ and observe that $X_{y}=y^{\perp} \cap E(X)$ since both y^{\perp} and $E(X)$ are subspaces. We claim that the residue $\left(X_{y}\right)^{y}$ of $X y$ at y is isomorphic to $D_{5,5}(\mathrm{~K})$. For, there are distinct $S_{1}, S_{2} \in S(E(X)){ }_{x y}$ with rk $\left(S_{1} \cap S_{2}\right)=4$ (recall that $X^{x} \cong D_{5,5}(K)$). Since $P^{y} \cong D_{6,6}(K)$, the subspace $<S_{1}^{y}, S_{2}^{y}>$ of P^{y} is a geodesically closed subspace of $E(X)^{y}$ isomorphic to $D_{5,5}(K)$, (cf. Proposition 6). Since any subspace of $D_{6,6}(\mathrm{~K})$ isomorphic to $\mathrm{D}_{5,5}(\mathrm{~K})$ is a maximal geodesically closed subspace, this yields that either $E(X){ }^{\mathrm{y}} \cong \mathrm{D}_{5,5}(\mathrm{~K})$ or $E(X)^{y}=P^{Y}$. However in the latter case we would have $x^{\perp} \cap y^{\perp}=x^{\perp} \cap y^{\perp} \cap E(X)$ $\subseteq X^{\perp} \cap E(X)=X$, so that $x y$ would be a point of X^{x} with residue entirely contained in X^{x}. By Lemma 4, this would imply that $X^{x}=P^{x}$, which is absurd.

So far, we have that $E(X)^{y} \cong D_{5,5}(K) \cong E(X)^{x}=X^{x}$. On the other hand, from (2) we obtain.

$$
E\left(X_{y}\right)=\underset{S \in S\left[X_{y}\right]}{U} S \subseteq E(X)
$$

By an argument completely analogous to the one in step (3) of the proof of Proposition 8, the converse inclusion, and hence $E(X)=E(X)$ can be
derived. Since $E(X)$ is connected, it follows that $\left(X_{z}\right)^{z}=E(X)^{z} \cong D_{5,5}(K)$ for all $z \in E(X)$. Thus $E(X)$ is a parapolar space of singular rank 5 which is locally $\mathrm{D}_{5,5}(\mathrm{~K})$. Hence it satisfies $(\mathrm{F} 4)_{\{-1\}}$. From Theorem 1 we conclude that $E(X) \cong E_{6,1}(K)$.
4.5. PROOF OF THEOREM 2. In view of Proposition 2 we need only deal with the 'if' part.
(i) If for any $x \in P$ the residue P^{x} is a polar space, then we are in case (i) by Proposition 1. Hence we may and shall, assume that the residue of no point of (P, L) is a polar space. Note that the residue P^{x} of $x \in P$ satisfies $(F 3)_{k-1}$ and (F4) $\left\{_{\{0\}^{*}}\right.$
(ii) Let $k=3$. By Lemma 5 (iii) and Proposition 3 (iii) there is a field K such that (P, L) is either locally $A_{4,2}(K)$ or locally $A_{5,3}(K)$. In the first case, $(F 4)_{\{-1\}}$ holds, so we get from Theorem 1 and Proposition 7 (iii) that $(P, L) \approx D_{5,5}(K)$ for some field K. Thus we remain with the case where (P, L) is locally $A_{5,}(K)$. There is a collection D of geodesically closed subspaces isomorphic to $\mathrm{D}_{5,5}(\mathrm{~K})$ as described in Proposition 6. Moreover any symplecton is isomorphic to $D_{4,1}(K)$.
Let \approx be the rełation on D defined by $D_{1} \approx D_{2}$ if and only if $D_{1} \cap D_{2} \in M^{(4)}$ for $D_{1}, D_{2} \in D$. It is our intention to show that the graph (D, \approx) has precisely two connected components. For $D_{1}, D_{2} \in D$, let $d_{\approx}\left(D_{1}, D_{2}\right)$ denote the distance between D_{1} and D_{2} within this graph, and set $D_{1}^{\top}=\left\{D \in D \mid d_{\approx}\left(D_{1}, D\right) \leq 1\right\}$.
(1) If $\mathrm{x} \in \mathrm{P}$ and $\mathrm{D}_{1}, \mathrm{D}_{2} \in \mathrm{D}_{\mathrm{x}}$, then either $\mathrm{D}_{1} \in \mathrm{D}_{2}^{\top}$ or $\mathrm{D}_{1} \cap \mathrm{D}_{2} \in \mathrm{~S}$ or $D_{1} \cap D_{2}=\{x\}$ 。

PROOF. Recall that $D_{i}^{x} \cong A_{4,2}(K)$ while $P^{x} \cong A_{5,3}(K)$. Thus in the residue P^{x} we have either $D_{1}^{x}=D_{2}^{x}$ or $D_{1}^{x} \cap D_{2}^{x} \in\left(M^{(4)}\right)^{x} \cup S^{x}$ or $D_{1}^{x} \cap D_{2}^{x}=\emptyset$ (cf. Proposition 5 (vii)). Since D_{1}, D_{2} are connected and geodesically closed, so is $D_{1} \cap D_{2}$. As a symplecton is a maximal geodesically closed subspace of a member of \mathcal{D} (cf. Proposition 3 (iv)), and a maximal singular subspace is a maximal geodesically closed subspace of a symplecton, it follows that if $D_{1} \neq D_{2}$ we have either $D_{1} \cap D_{2} \in M^{(4)}$ u S or $D_{1} \cap D_{2}=\{x\}$ 。
(2) Suppose D_{1}, D_{2}, D_{3} are distinct members of D satisfying $D_{1} \approx D_{2} \approx D_{3}$. Then
the following three statements are equivalent:
(a) $\mathrm{D}_{1} \cap \mathrm{D}_{3} \neq \emptyset$.
(b) $\mathrm{D}_{1} \cap \mathrm{D}_{2} \cap \mathrm{D}_{3} \neq \emptyset$.
(c) $\mathrm{D}_{1} \approx \mathrm{D}_{3}$.

Moreover, if these statements hold, then $D_{1} \cap D_{2} \cap D_{3} \in M \cup L$.
PROOF. The implication " $(\mathrm{c}) \Rightarrow(\mathrm{a})$ " being trivial, we shall only treat $"(a) \Rightarrow(b) "$ and $"(b) \Rightarrow(c) "$. Set $M_{i}=D_{i} \cap D_{i+1}$ for $i=1,2,3$ (indices modu1o 3).
$"(a) \Rightarrow(b) "$. Suppose that $M_{3} \neq \emptyset$ and $D_{1} \cap D_{2} \cap D_{3}=\emptyset$. Fix x $\in M_{3}$. From the structure of $D_{i} \cong D_{5,5}(K)$ we have $\operatorname{rk}\left(x^{\perp} \cap M_{i}\right)=-1,0,2$ for each $i=1,2$.

First of all, suppose that, $r k\left(x^{\perp} \cap M_{1}\right)=r k\left(x^{\perp} \cap M_{2}\right)=2$. Note that $M_{1} \cap M_{2}=\emptyset$ as $D_{1} \cap D_{2} \cap D_{3}=\emptyset$. If $x^{\perp} \cap\left(M_{1} \cup M_{2}\right)$ were a clique then $r k<x^{\perp}{ }^{\perp} M_{1}, x^{\perp} \cap M_{2}>\geq 5$, which conflicts with the singular rank of D_{2}. Hence there are $x_{i} \in x^{\perp} \cap M_{i}(i=1,2)$ with $x_{1} \notin x_{2}^{\perp}$, so that $x \in x_{1}^{\perp} \cap x_{2}^{\perp} \subseteq D_{2}$ by geodesic closure of D_{2}. But then $x \in D_{1} \cap D_{2} \cap D_{3}$, contradiction. Thus rk $\left(x^{\perp} \cap M_{i}\right) \leq 0$ for at least one $i \in\{1,2\}$, say $i=2$.

Suppose $\operatorname{rk}\left(\mathrm{x}^{\perp} \mathrm{nM}_{1}\right)=2$. Since $\left\{z \in \mathrm{M}_{1} \mid \mathrm{z}^{\perp} \cap \mathrm{M}_{2} \neq \emptyset\right\}$ is subspace of M_{1} of rank 3, it follows from Proposition 6, that there is $z \in x^{\perp} \cap M_{1}$ with $z^{\perp} \cap M_{2} \neq \emptyset$. Now $r k\left(z^{\perp} \cap M_{2}\right)=2$ (cf. Proposition 6), so there exists $y \in z^{\perp} \cap M_{2} \backslash x^{\perp}$. Then $x, y \in D_{3}$ so x, y is a symplectic pair and $z \in x^{\perp} \cap y^{\perp} \subseteq S(x, y) \subseteq D_{3}$. Hence $z \in D_{1} \cap D_{2} \cap D_{3}$, which is absurd. Thus $r k\left(x^{\perp} \cap M_{i}\right) \leq 0$ for both $i=1,2$. Take $y_{i} \in M_{i}(i=1,2)$ with $y_{2} \in y_{1}^{\perp} \backslash x^{\perp}$ (refer to Proposition 6 to ensure existence). Now x, y_{2} is a symplectic pair as $x, y_{2} \in D_{3}$. Observe that $y_{1} \notin S\left(y_{2}, x\right)$ as $D_{1} \cap D_{2} \cap D_{3}=\varnothing$. But $y_{2} \in y_{1}^{\perp} \cap S\left(y_{2}, x\right)$, so by axiom (F4) $\{-1,1\}$ there is a line on y_{2} in $y_{1}^{\perp} \cap S\left(y_{2}, x\right)$. Let u be the point on this line collinear to x. The $u \in x^{\perp} \cap y_{1}^{\perp} \cap y_{2}^{\perp} \subseteq D_{1} \cap D_{3}$ and $y_{i} \in u^{\perp} \cap M_{i}$, ($\left.i=1,2\right)$. Thus $u \in D_{1} \cap D_{3}$ and $r k\left(u^{\perp} \cap M_{i}\right)=2$ for each $i=1,2$ (see Proposition 6 and use $D_{1} \cap D_{3} \in M^{3(4)}$). Since this possibility has been excluded above, we have the final contradiction, proving that $D_{1} \cap D_{2} \neq \emptyset$ implies $D_{1} \cap D_{2} \cap D_{3} \neq \emptyset$.
"(b) \Rightarrow (c)". Assume $x \in D_{1} \cap D_{2} \cap D_{3}$, and consider the residue at x. Since $D_{i}^{x} \cong A_{4,2}(K), M_{1}^{x}, M_{2}^{X} \cong A_{3,1}(K)$ and $P^{x} \cong A_{5,3}(K)$, we see from the structure of $A_{5,3}(K)$ (see Proposition $5(x)$) that $M_{3}{ }^{X}$ is a singular subspace of P^{x} of rank 3. Thus M_{3} contains a member of $M^{(4)}$. In particular M_{3} cannot be a
symplecton, and $M_{3} \in M$. This proves $D_{1} \approx D_{3}$.
It remains to show the last statement of step (2). Suppose that
$D_{1} \cap D_{3} \neq \emptyset$. Then as we have seen above, $D_{1} \cap D_{2} \cap D_{3}$ contains a point. Take $x \in D_{1} \cap D_{2} \cap D_{3}$. In the residue at x, we have $D_{i}^{x} \cong A_{4,2}(K)$ and $M_{i}^{x} \cong A_{3,1}(K)$ for $i=1,2,3$. This yields (see Proposition 5 (ix)) that $r k\left(\left(D_{1} \cap D_{2} \cap D_{3}\right)\right.$) is either 3 or 0 . Consequently, $r k\left(D_{1} \cap D_{2} \cap D_{3}\right)$ is either 4 or 1 , which is the desired statement.
(3) Let $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}$ be distinct members of D with $\mathrm{D}_{1} \cap \mathrm{D}_{2} \cap \mathrm{D}_{3} \in \mathrm{M}$. If $\mathrm{D} \in D$ satisfies $D \approx D_{1}, D \approx D_{2}$ then $D \approx D_{3}$.

PROOF. Observe that $D \cap D_{1} \cap D_{2} \neq \emptyset$ in view of (2). But $D_{1} \cap D_{2} \cap D_{3}=D_{1} \cap D_{2}$. In particular, $D_{1} \cap D_{2}=D_{1} \cap D_{3}$ and hence $D \cap D_{1} \cap D_{3} \neq \emptyset$. Now use (2) again.
(4) Let D_{1}, D be in the same connected component of (\mathcal{D}, \approx). Then $d_{\approx}\left(D_{1}, D\right) \leq 2$.

PROOF. Obviously it suffices to show the following. If $D_{i} \in \mathcal{D}$ for $\mathbf{i}=1,2,3,4$ such that $D_{1} \approx D_{2} \approx D_{3} \approx D_{4}$, then $\mathrm{d}_{\approx}\left(\mathrm{D}_{1}, \mathrm{D}_{4}\right) \leq 2$. Thus, 1et $D_{i} \in \mathcal{D}$ for $i=1,2,3,4$ satisfy $D_{1} \approx D_{2} \approx D_{3} \approx D_{4}$. If $D_{3} \in D_{1}^{\top}$ or $D_{4} \in D_{2}^{\top}$, there is nothing to prove. Thus, by (2), we may assume $D_{1} \cap D_{3}=\emptyset$ and $D_{2} \cap D_{4}=\emptyset$. Since $\left\{z \in D_{2} \cap D_{3} \mid z^{\perp} \cap D_{1} \cap D_{2} \neq \emptyset\right\}$ and $\left\{z \in D_{2} \cap D_{3} \mid z^{\perp} \cap D_{3} \cap D_{4} \neq \emptyset\right\}$ are singular subspaces of $D_{2} \cap D_{3}$ with rank 3 by Proposition 6, there is a plane V in $D_{2} \cap D_{3}$ such that for any point $z \in V$, we have $r k\left(z^{\perp} \cap D_{1} \cap D_{2}\right)=$ $=\operatorname{rk}\left(z^{\perp} \cap D_{3} \cap D_{4}\right)=2$. Let z_{1}, z_{2} be distinct points of V. Then $z_{i}^{\perp} \cap D_{1} \cap D_{2}$ are planes in the singular subspace $\left\{z \in D_{1} \cap D_{2} \mid z^{\perp} \cap D_{2} \cap D_{3} \neq \emptyset\right\}$ of rank 3. This yields that $z_{1}^{\perp} \cap z_{2}^{\perp} \cap D_{1} \cap D_{2}$ has rank at least 1 , so that there is a line $L_{1} \in L\left(D_{1} \cap D_{2}\right)$ with $L_{1} \subseteq L_{2}^{\perp}$, where $L_{2}=z_{1} z_{2}$. Similary, we can find $L_{3} \in L\left(D_{3} \cap D_{4}\right)$ with $L_{3} \subseteq L_{2}^{\perp}$. Set $M_{2}=L_{1}^{\perp} \cap L_{2}^{\perp}$ and $M_{3}=L_{2}^{\perp} \cap L_{3}^{\perp}$. Then M_{2} is the unique maximal singular subspace in D_{2} intersecting the two maximal singular subspaces $D_{1} \cap D_{2}$ and $D_{2} \cap D_{3}$ in the lines L_{1} and L_{2} respectively. In particular, $M_{2} \subseteq D_{2}$. Similarly, $M_{3} \subseteq D_{3}$.

Take $x \in L_{2}$ and consider the residue at x. Now D_{2}^{x}, D_{3}^{x} are subspaces of P^{X} isomorphic to $A_{4,2}(K)$ and $\left(D_{2} \cap D_{3}\right)^{x}, M_{2}^{X}, M_{3}^{X}$ are subspaces isomorphic to $A_{3,1}(K)$, while $M_{i}^{X} \subseteq D_{i}^{x}$ for $i=2,3$ and $r k\left(M_{2}^{X} \cap M_{3}^{x}\right) \geq 0$. Due to the structure of $P^{X} \cong A_{5,3}(K)$, this yields the existence of a subspace of P^{x} isomorphic to $A_{4,2}(K)$ containing M_{2}^{X} and M_{3}^{X} (cf. Proposition 5 (xi)). Therefore, there
is a subspace X of P with $x \in X \subseteq X^{\perp}$ and $X^{X} \cong A_{4,2}(K)$ such that $M_{2} \cup M_{3} \subseteq X$. But then $D=D(X)$, as defined in Proposition 8, is a member of D containing $M_{2} \cup M_{3}$. Thus $D \cap D_{i} \supseteq M_{i}$ for $i=2$, 3 , so that $D_{2} \approx D \approx D_{3}$. But also $D_{1} \cap D_{2} \cap D \supseteq D_{1} \cap M_{2} \supseteq L_{1}$, whence $D_{1} \approx D$ in view of (2). Similarly, $\mathrm{D}_{4} \approx \mathrm{D}$ as $\mathrm{D}_{3} \cap \mathrm{D}_{4} \cap \mathrm{D} \supseteq \mathrm{D}_{4} \cap \mathrm{M}_{3} \supseteq \mathrm{~L}_{2}$. It follows that $\mathrm{D}_{1} \approx \mathrm{D} \approx \mathrm{D}_{4}$, so that $\mathrm{d}_{\approx}\left(\mathrm{D}_{1}, \mathrm{D}_{4}\right) \leq 2$. This settles (4).
Fix $\mathrm{D}_{1}, \mathrm{D}_{2} \in \mathrm{D}$ with $\mathrm{D}_{1} \cap \mathrm{D}_{2} \in S$ and Let D^{i} for $\mathrm{i}=1,2$ be the connected component of D_{i} in (D, \approx).

By (2) and (4), we have that D^{1}, D^{2} are disjoint connected conponents of (D, \approx).
(5) $D=D^{1}$ ú D^{2}.

PROOF. Take $x \in D_{1} \cap D_{2}$, and let $D \in D$. If $x \in D$, then $D \in D^{1} \cup D^{2}$ follows from consideration of the residue at x . For $\mathrm{x} \notin \mathrm{D}$, apply induction with respect to $d(x, D)$. Let $y \in D$ and $z \in y^{\perp}$ be such that $d(x, z)=d(x, D)-1$. Then, as in the first step, D is connected within (D, \approx) to a member, say E, of D on $y z$. But by induction, $E \in D^{1} \cup D^{2}$, and therefore $D \in D^{1} \cup D^{2}$.

We now construct a geometry ($\Gamma, *$) of type E_{6} as follows. Put $\Gamma_{1}=D^{1}$, $\Gamma_{2}=\underset{D \in \mathcal{D}^{1}}{U} M(D), \Gamma_{3}=L, \Gamma_{4}=P, \Gamma_{5}=\underset{D \in D^{2}}{U} M(\mathcal{D}), \Gamma_{6}=D^{2}$. From (5), it is immediate that $M=\Gamma_{2} \cup \Gamma_{5}$. Set $\Gamma=\underset{1 \leq i \leq 6}{U} \Gamma_{i}$ and define $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}$ and $\gamma_{j} \in \Gamma_{j}$ by symmetrized containment for $\{i, j\} \neq\{1,6\},\{2,6\}$, $\{1,5\},\{2,5\}$ and as follows for the other cases

$$
\begin{aligned}
& \gamma_{1} * \gamma_{6} \Leftrightarrow \gamma_{1} \cap \gamma_{6} \in S \\
& \gamma_{1} * \gamma_{5} \Leftrightarrow \gamma_{1} \cap \gamma_{5} \in V^{(3)} \\
& \gamma_{2} * \gamma_{6} \Leftrightarrow \gamma_{2} \cap \gamma_{6} \in V^{(3)} \\
& \gamma_{2} * \gamma_{5} \Leftrightarrow \gamma_{2} \cap \gamma_{5} \in V .
\end{aligned}
$$

It is straightforward to verify that Γ is a geometry of type E_{6}. We next verify that Γ is a building of type E_{6}. According to Theorem 3, it suffices to check axioms (LL) and (0) ${ }_{i}$ for $\mathbf{i}=2,3$.

Now, (LL) states that any two maximal singular subspaces contained in two distinct members of D^{1} coincide. But this is obvious from the definition of D^{1} and (1).

In order to establish (0) 2 and (0) 3 it suffices to show, that for any $M \in \Gamma_{2}$ and $L \in \Gamma_{3}$, there exists $D \in D^{1}$ with $M \subseteq D$ and $L \notin D$. Let $M \in \Gamma_{2}$ and $L \in \Gamma_{3}$. Considering the residue at a point of $M \cap L$ if $M \cap L \neq \emptyset$, we can easily reduce the argument to the case where $M \cap L=\emptyset$. There is at most one member of D^{1} containing $M \cup L$. On the other hand, it is obvious from consideration of the residue at a point of M, that there is more than one member of D^{1} on M. This leads to $D \in D^{1}$ as desired.

Similarly one can show that (0$)_{3}$ holds for the geometry Γ. We conclude that Γ is a building of type E_{6}. However, (P, L) is locally isomorphic to $A_{5,3}(K)$, so Γ is the thick building $E_{6}(K)$. As a consequence, $(P, L) \cong E_{6,4}(K)$.
(iii) Let $k=4$. By Theorem 4, we have for $x \in P$ that its residue P^{x} is isomorphic to either $D_{5,5}(\mathrm{~K})$ or $\mathrm{D}_{6,6}(\mathrm{~K})$ for some field K. Due to an argument involving the ranks of maximal singular subspaces, this yields the existence of a field K such that (P, L) is either locally $D_{5,5}(K)$ or locally $D_{6,6}(K)$. In the former case, (P, L) actually satisfies $(\mathrm{F} 4)_{\{-1\}}$, so that $(\mathrm{P}, L) \cong \mathrm{E}_{6,1}(\mathrm{~K})$ according to Theorem 1. Thus, we may assume $P^{x} \cong D_{6,6}(K)$ for all $x \in P$.
Now, maximal singular subspaces are isomorphic to $A_{6,1}(K)$ or $A_{4,1}(K)$, symplecta are isomorphic to $D_{5,1}(K)$, and by Proposition 9 there is a nonempty collection E of geodesically closed subspaces isomorphic to $E_{6,1}(K)$. Thus we can construct a geometry ($\Gamma, *$) of type E_{7} as follows. Put $\Gamma_{1}=E$, $\Gamma_{2}=S, \Gamma_{3}=M^{(4)}, \Gamma_{4}=U^{(2)}, \Gamma_{5}=-M_{-}^{(6)}, \Gamma_{6}=L, \Gamma_{7}=P$. Set $\Gamma=\underset{1 \leq i \leq 7}{U} \Gamma_{i}$, and define incidence $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}, \gamma_{j} \in \Gamma_{j}$ by symmetrized containment if $\{i, j\} \neq\{1,5\},\{2,5\},\{3,5\}$ and by $\operatorname{rk}\left(\gamma_{i} \cap \gamma_{j}\right)=|j-i|+1$ otherwise. Again it is straightforward to verify that Γ is a geometry of type E_{7}. We next check the axioms (LL), (LH) and (0) for $\mathbf{i}=2,3,4$ of Section $2.6 \ldots$
(LL) states that any two symplecta contained in two distinct members of E must coincide. This is clearly true as symplecta are maximal geodesically closed of members of E.

As for $(0)_{2},(0)_{3},(0)_{4}$, it suffices to show that for any symplecton S and any plane V there is a member E of E with $S \subseteq E$ and $V \notin E$. But this follows easily by an argument similar to that for (0) 2 and (0) 3 in (ii).

Finally, (LH) is trivialy satisfied since two members $E, E^{1} \in E$ proper1y containing a symplecton must coincide (as we have seen before). By Theorem

3, this settles that Γ is a building of type E_{7}. It follows that Γ is actually isomorphic to $E_{7}(K)$, so that $(P, L) \cong E_{7,7}(K)$.
(iv) If $k=5$, then by Theorem $1,(P, L)$ is locally $E_{6,1}(K)$, so that in fact (P, L) satisfies $(F 4)_{\{-1\}}$. But then (P, L) is of type $E_{7,1}$ by Theorem 1 , which is absurd since (${ }^{(4)}{ }_{\{-1,1\}}$ does not hold for such spaces.
It follows that $k \neq 5$. If $k=6$, then again by Theorem 1 , for any $x \in P$. There is a field K such that $P^{x} \cong E_{7,1}(K)$. Hence, the residue at any point is isomorphic to $E_{7,1}(K)$. Thus $M=M^{(7)} \cup M^{(6)}$ and symplecta are isomorphic to $D_{7,1}(K)$. We construct $(\Gamma, *)$ as follows. Put $\Gamma_{1}=P, \Gamma_{2}=L, \Gamma_{3}=V^{(2)}, \Gamma_{4}=V^{(3)}$, $\Gamma_{5}=U^{(6)}, \Gamma_{6}=M^{(7)}, \Gamma_{7}=M^{(6)}, \Gamma_{8}=S$. Set $\Gamma={ }_{1 \leq i \leq 8}^{U} \Gamma_{i}$, and define incidence $\gamma_{i} * \gamma_{j}$ for $\gamma_{i} \in \Gamma_{i}, \gamma_{j} \in \Gamma_{j}$ by containment if $\{i, j\} \neq\{6,7\},\{6,8\}$ and by $r k\left(\gamma_{i} \cap \gamma_{j}\right)=4+|i-j|$ otherwise. Then $(\Gamma, *)$ is easily seen to be a geometry of type E_{8}. According to Theorem 3 and by thickness, Γ is isomorphic to a building provided axioms (LL), (LH), (HH) and (0) hold for $i=2,3,4,5$.

Now, (0) $i_{i}(i=2,3,4,5$) is satisfied by construction, (LL) reflects that (P, L) is a linear incidence system, (LH) is equivalent to saying that symplecta are subspaces, and (HH) holds because of Proposition 1. The conclusion is that $\Gamma \cong E_{8}(K)$ and that $(P, L) \cong E_{8,1}(K)$.
(v) By Theorem 1, the residue at a point x of P must be a polar space if $k \geq 7$. Thus (P, L) is a polar space whenever $k \geq 7$. This ends the proof of Theorem 2.

Acknow1edgement
Professors W.M. Kanter and E.E. Shult have been deeply involved in setting up this paper. We are very grateful for their enthousiastic support.

REFERENCES
[1] BUEKENHOUT, F., Diagrams for Geometries and Groups, JCT (A) 27 (1979), 121-151.
[2] BUEKENHOUT, F., Cooperstein's Theory, to appear in Simon Stevin.
[3] BUEKENHOUT, F., An approach of building geometries based on points, lines and convexity, Europ. J. Combinatorics 3(1982), 103-118.
[4] BUEKENHOUT, F., and E.E. SHULT, On the foundations of polar geometry.
[5] CAMERON, P., Dual polar spaces, Geometriae Dedicata 12 (1982) 75-85.
[6] COHEN, A.M., An axiom system for metasymplectic spaces, Geometriae Dedicata, 12 (1982) 417-433.
[7] COHEN, A.M., On the points and lines of metasymplectic spaces, to appear in Proc. of Convegno Internazionale Geometrie Combinatorie e lore applicazioni, Rome, 1981.
[8] COHEN, A.M., On a Theorem of Cooperstein, Submitted to Europ. J. Combinatorics.
[9] COOPERSTEIN, B.N., A characterization of some Lie incidence structures, Geometriae Dedicata 6 (1977), 205-258.
[10] COOPERSTEIN, B.N., A characterization of a geometry related to $\Omega_{2 n}^{+}(K)$, Submitted.
[11] TALLINI, G., On a characterization of the Grassmann manifold representing the lines in a projective space, pp. 354-358 in 'Finite Geometries and Designs', ed. Cameron, Hirschfeld, Hughes, Proceedings of the 2nd Isle of Thorns Conference 1980, LMS Lecture v Note 49, Cambridge University Press 1981.
[12] TITS, J., Buildings of spherical type and finite BN-pairs, Springer LNM 386, Berlin, 1974.
[13] TITS, J., A local approach to buildings, in The Geometric Vein, The Coxeter Festschrift (ed. Ch. Davis, et. a1.), pp 519-547, Springer, 1981.
[14] TITs, J., Buildings and Buekenhout Geometries, pp. 309-320 in Finite Simple Groups II, ed. M.J. Collins, Academic Press, 1980.

[^0]: *) This report will be submitted for publication elsewhere.

