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Abstract.

We present a polynomial-time algorithm for the factorization of univariate polynomials
over algebraic number fields. Our algorithm is a direct generalization of the polyno-

mial-time algorithm for the factorization of univariate polynomials over the rationals

[71.

1. Introduction.

In [7] a polynomial-time algorithm was given to factor polynomials in one variable with
rational coefficients. In this paper we generalize this result to polynomials in one
variable with coefficients in an algebraic number field.

The existence of a polynomial~time algorithm for this problem is not surprising
in view of [7]. Kronecker's idea of using norms reduced the problem to the factoriza-
tion of univariate polynomials with rational coefficients, and in [5] it is shown that
this reduction is polynomial-time. Here we pursue a direct approach to the factoriza-
tion of polynomials over algebraic number fields. As suggested in [6: Section 5] we
regard the irreducible factor we are looking for as an element of a certain intebral
lattice, and we prove that it is the 'smallest' element in this lattice. As we have
seen in [7] this enables us to effectively compute this factor by means of a basis
reduction algorithm for lattices.

The practical importance of our algorithm should not be overstated. This is main-
ly due to the rather slow basis reduction algorithm. For practical purposes we recom-
mend the algorithm from [6], where the ideas of the lattice approach are combined with
the well-known exponential-time factoring algorithm. In the algorithm from [6] the al-
gebraic numbers are represented by their residues modulo a certain prime-power pk.

In the last step (trial divisions to determine the true factors), the algebraic num-
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bers are restored in a unique way by means of a reduced basis of a certain integral
lattice. Experiments have shown that this greatly reduces the running time (cf. [61).

This paper is organized as follows. Section 2 contains some notation and defini-
tions; furthermore we recall there some results from [7: Section 1]. Section 3 deals
with the connection between factors and lattices; it generalizes the first part of
[7: section 2]. In Section 4 we give a global description of the factoring algorithm
and we analyze its running time.

For a polynomial £ we denote by 6&f the degree of £, by 2c(f) the leading

coefficient of £, and £ is said to be monic if Lc(f) =1.

2. Preliminaries.

Let the algebraic number field ®o(a) be given as the field of rational numbers @
extended by a root a of a prescribed monic irreducible polynomial Fe z[T], i.e.
@(a) =@[T]/(F). This implies that the elements of @(o) can be represented as poly-
nomials in o over @ of degree <8F. We may assume that the degree of the minimal
polynomial F 1is at least 2.

Similarly, we define z[al=z[T]/(F) as the ring of polynomials in o over Z
of degree <dF, where multiplication is done 'modulo F'.

Let f be a monic polynomial in @(a)[X]. In Section 4 we will describe how to
choose a positive integer D such that
(2.1) f and all monic factors of f in @(a)[X] are in %Z[a][x].
The algorithm to determine the irreducible factors of f in @(a)[X] that we will
present, is very similar to the algorithm for factorization in Z[X] as described in
[7]): first determine the factorization of £ over some finite field (Z/pZ in [7]),
next extend this factorization to a factorization over a large enough ring (Z/pkz
in [7]), and finally use a lattice reduction algorithm to determine the factors over
@(%) . Therefore we first describe how to choose this finite field and this ring.

Let p be a prime number such that
(2.2) p does not divide D,
and let k be a positive integer. For G=2i a; rte zZ[T]- and some integer £ we de-

note by G, or (G mod pl) the polynomial Zi(ai modpl)Tl € (Z/p'Q zZ)[T]. 1In Section
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4 we will see that we are able to determine p in such a way that we can compute a

polynomial HeZ[T] such that:

(2.3) H is monic,

(2.4) B, divides F, in (zz/pkzz)['r].

(2.5) H, is irreducible in (z/pz)[T],

(2.6) (Hl)2 does not divide F, in (zZ/pz)[7T].

It follows that H, divides F, in (z/pz)[T], and that O0<d8H<SF.

This polynomial H, together with the prime number p and the integer k, gives
us the possibility to construct the finite field and the ring we were looking for. We

. SH P - o
denote by ¢q the prime-power p and by ]12 the finite field containing g elements.

{ZSH-I a, or: a,e

From (2.5) we derive that ]Fq= (Z/p z2) [T]/(Hl)' Remark that ]Fq= im0 31 % 5

Z/p Z} where o, = (T mod (Hl)) is a zerxo of Hl' This enables us to represent the

elements of llg as polynomials in a over Z/pZ of degree <8H. The finite field

1
]Fq corresponds to Z/pZ in [7]; we now define the ring that will play the role of

z/pk z in [7]. Let W (Fq) =( Z/pk z) [T]/(Hk) be a ring containing qk elements.

k
We have that W (F ) = {}Z(SH_1 a ai- a,e Z/nkZZ} where o, = (Tmod (H, )) is a zero of
kg i=0 i k° i ’ k k

over Z/pk /4

Hk‘ So elements of wk(]F(‘:) can be represented as polynomials in o

of degree < $8H, and Wk(]Fq) can be mapped onto IF":J by reducing the coefficients of
these polynomials modulo p. For aewk(IE(';)[X] we denote by (amodp) e]F(‘;[X] the re-
sult of applying this mapping coefficient-wise to a. Remark that wl(Fq )=]Fq.

We now show how we map polynomials in %Z[u][x] to polynomials in ]E‘q[X] and
Wk(IIFq Y[X] respectively. Clearly, the canonical mapping from z[T]/(F) to

(Z/p'q' 74 [T]/(Hz) defines a mapping from Z[o] to W (]Fq ), for 2=1,k. (Informally,

)

this mapping works by reducing the polynomial in o modulo pg' and Hz(a) .) For ace
2Z[al we denote by (amod (pz,Hz)) €w£(Fq) the result of this mapping. Finally, for

as
g=Zi Fl X e%m[a][x] we denote by (gmod (pZ,HZ)) the polynomial

1

}Zi(((D'—1 modpg')ai) mod (pk,Hl) YX' ew (Fq)[x]. Notice that D modpg' exists due to (2.2).

2

We conclude this section with a result from [7: Section 1] that we will need here.
z
Let bl’ b2, ceey bn € (—E)n be linearly independent; we restrict ourselves to the case
that the nXn matrix having bl' b2, ey bn as columns is upper~triangular. The

i-dimensional lattice LiC (%—)l with basis b1'b2' ...,bi is defined as Li=
i i

¥, . Zb, ={I; . r.b.: r.ez}; we put L=1L_.

=175 3=173 737 5 P n
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(2.7) Proposition. (cf. [7: (1.11), (1.26), (1.37)]) Let B ez, be such that IDbjlsz
for 1<j<n, where || denotes the ordinary Euclidean length. There is an algorithm
that determines a vector BelL such that B belongs to a basis for L, and such that

2

n~-1
x| for every xelL, x=#0; this algorithm takes O(n4 logB) elementary

1512 <2

operations on integers having binary length O(n logB). Furthermore, during the first
4 ~

0(i” logB) operations (on integers having binary length O(i logB)), vectors bi’ be-~

2, 2

longing to a basis for L,, are determined such that ISiI < Zl_llxil for every

x, €L, x, %20 for 1<is<n.
i it i ! n. O

Informally, (2.7) states that we can find a reasonable approximation of the shortest
vector in L in polynomial-time. Furthermore, during this computation, we find approx-

imations of the shortest vectors of the lattices Li without any time loss.

3. Factors and lattices.

This section is similar to the first part of [7: Section 2]. We formulate the general-
izations of [7: (2.5), (2.6), (2.7), (2.13)] to polynomials over algebraic number fields.
et £, D, p, k, F, and H be as in Section 1. We put n=03f; we may assume that n>0.

Suppose that we are given a polynomial h ezZl[allX] such that

(3.1) h 1is monic,
k . k .
(3.2) (h mod (p 'Hk)) divides (fmod (p ,Hk)) in Wk(IE‘q)[X],
(3.3) (h mod (P'Hl)) is irreducible in ]F(':[X],
(3.4) (h mod (p,Hl))2 does not divide (fmod (p,Hl)) in Fq[x].

We put & =8h; so 0<2<n. In Section 4 we will see which extra conditions have to
be imposed on p so that h can be determined.

Let h, e%z[a][x] be the unigue monic irreducible factor of £ for which
(h mod (p,Hl)) divides (h0 mod (p,Hl)) in IE‘q[X] (or equivalently (h mod (pk,Hk))

divides (h, mod (pk,Hk)) in Wk(:IFq)[X], cf. [7: (2.9 .

0

(3.5) In the remainder of this section we fix an integer m with 2=<m<n. We define
L as the collection of polynomials ge%z[a][x] such that:

(i) §g<m,

(ii) if S8g=m, then &Lc(gle Z,

s k . k R
(iii) (hmod (p ,Hk)) divides (gmod (p ,Hk)) in Wk(]F(‘:J)[X].
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: . . m-1 6F-1 Jei m i
We identify such a polynomial g:Zi=O Zj=0 aija X +amox with the (m6F+ 1)~-dimen
sional vector (a

00" a01, ey ao Sp-1’ 7 am_1 SF-1" amo) . Using this identification

it is not difficult to see that L is a lattice in (D@)m(SF-l»l. From the fact that

H and h are monic ((2.3) and (3.1)) it follows that an upper-triangular basis for

L is given by:

{—]l)-pkajxl: 0<j<6H, 0<i<t} u
{%aj_GHH(Q)Xl: SH<J<8F, 0<i<g} u

{%ajhxl"": 0<j<8éF, fL<i<m} u

™4

We define the length |g| of g as the ordinary Euclidean length of the vector iden-

tified with g; the height Inax of g is defined as max{laijl}. Similarly we

define the length and the height of polynomials in Z[T].

(3.6) Proposition. Let beL satisfy

k28H/8
(3.7) o 28H/6F .

m n
> (Df ({n+1) 8F (1+F )‘5"‘1);’) )5F'1>1’) .
max m

(Db ((mt+1) SF(1+F
ax / max mi

Then b is divisible by hy in 0(a)[X] and in particular gcd(f,b) =1.

Proof. The proof is similar to the proof of [7: (2.7)]; we therefore omit the details.
Put g=gcd(f, b), and e=8g. Identify the polynomials
(3.8) {odx'f: 0<j<6F, 0<i<Sb-e} v {a'Xb: 0<j<6F, 0<i<n-e}

with (8F(n+8b-e))~dimensional wvectors. The projections of these vectors on —é—zzxe +

1 §F-1 e 1 e+l lZaﬁF—lxnﬂSb-e-l

1 e .
- R e - +oo.. F
DZaX + +DZ0L X +DZX 5 form a basis for a

(8F(n+8b-2e))-dimensional lattice M'. Using induction on j one proves that

3
<

(alx ) = (a7f) < £ (1+F ,
max hust max ma.

X

so that, for 0<j<8F and 0<1ic<db-e,

y .
).

la?x £l < £ ((a+D)SEY (1 +F_ )
ma. max

>4

With Hadamard's inequality, and a similar bound on Iajxlbl we get

SF
, §F-1. % m SF-1% n)
dam') < ((fmax((n+1),<5F(1+Fmax) /) (bmax((m+1)’5F(1+Fmax) )9 )
where d(M') denotes the determinant of M'. With (3.7) this gives
ka?,tSH
(3-9) am’) <D(n+m).6F )

It is easy to prove that ho divides g in @(a)[X] if and only if (hmod (p,Hl))

divides (gmod (p,Hl)) in :IFq[X] (cf. [7: (2.5)]). So assume that the latter is not
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the case; we will derive a contradiction from this.

Let ve—]sz[a][x] be some integral linear combination of the polynomials in (3.8)
such that &8v<e+f. It follows from our assumption that (v mod (pk,Hk)) =0 in
Wk(IFq)[X] (cf£. [7: (2.7)]). Therefore, if we regard fc(v) as a polynomial in o,

we have
(3.10)  fc(fc(v)) =0 modulo p° if &%c(v) < BH.

Now choose a basis s b for M' such

be0’ Pe1” = *7 P sr-1"Pet10’ * " " Prtsb-e-1 6F-1

that Gbij=i and tSJZ.c(bij) =j for e<i<n+éb-e and 0<j<d8F, where !Lc(bij) is
regarded as a polynomial in «a. From (3.10) we derive that 2c(fc (bij)) =0 mod pk

k
for 0<j<8H and e<i<e+l. Since Ec(lc(bij))e%, we obtain Ilc(lc(bij))lz%-

for 0<j<6H and e<i<e+? and llc(nc(bij))lz—;- for SH<j<8F or e+f<i<n+db-e.

The determinant of M' equals the product of |fc(Rc (bi.))ll so that
K280 K AH J

a(M') 2— =
b (n+8b-2e) §F b (n+m) §F

Combined with (3.9) this is the desired contradiction. [

(3.11) Proposition. (cf. [7: (2.13)]) Suppose that

(n+1)n+m(m+1)n(2m)n6F4n+m n(8F-1)

m

(3.12)

pkldH/(SF N <2n (m6F+1) (6F=1)

(1+F
m

ax

3
) (n+m) (6F-1) ldiser (F) l-—n) . (Df )nﬂan| 2n (§F-1) ,
max

where discr(F) denotes the discriminant of F. Then we have Gho <m if and only if

(3.7) is satisfied with b replaced by b, where B results from applying (2.7) to L.

Proof. In [8] we show that the method sketched in [10] combined with resmlts from [9]
gives the following upper bound for the length of a monic factor of degree <sm of £
in Zzlallx]:
3 §F-1 2m, . % 2(8Fr-1), .. =%
fmax(Z(n+1)6F (8F-1) (m)) |F| |discx(F)| “.

With (3.6) the proof follows immediately. [

4. Description of the algorithm.

We describe how the results from the previous sections can be used to formulate a poly-
nomial-time algorithm to factor fe @(a)[xXx]. First we present an algorithm that deter-

mines hO' given D, p, H and h. Let 4@ be such that fe%—Z[a][X].
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(4.1) suppose that a positive integer D, a prime number p, and polynomials H ez[T]
and heZl[al[X] are given such that (2.1), (2.2), (2.3), (2.5), (2.6), (3,1), (3.3)
and (3.4), and (2.4) and (3.2) with k replaced by 1, are satisfied. We describe

an algorithm that determines ho, the monic irreducible factor of £ for which

(hmod (p,H,)) divides (h,mwod (p,H,)) in 15;1[)(].

Put & =06h; we may assume that £ <n. We calculate the least positive integer

k for which (3.12) holds with m replaced by n-1:

PRAG/SF (2n( (n-1)8F+1) 2n-1 0 2(n~1) ng 5n-1

) n(SF-1)
n-1

(4.2) n+1) (8F-1)

ior @D l—n)%. (b, 201 jp 20 (65D

Next we modify H in such a way that (2.4) holds for the value of k just calculated.
The factor B = (H mod pk) of (Fmod pk) gives us the possibility to compute in Wk(IFq) .
Therefore we now modify h, without changing (hmod (p,Hl)), in such a way that (3.2)
holds for the above value of k. The computations of the new H and h can both be
done by means of Hensel's lemma [4: exercise 4.6.22; 11]; notice that Hensel's lemma
can be applied because of (2.6) and (3.4).

Now apply Proposition (2.7) to the (mSF + 1)-dimensional lattice L as defined
in (3.5), for each of the values of m=4, %+1, ..., n-1 in successicn; but we stop as
soon as for one of these values of m we find a vector b in L such that (3.7) is

satisfied with b replaced by b. If such a vector is found for a certain value m0

of m, then we know from (3.11) that Ghosmo. Since we try the values m=%, 2+1, ...,

n-1 1in succession we also know that 6h0>m0—1, so 6h0=m0. By (3.6) ho divides

b in ®©(a)[X] which implies, together with GBSmO, that 65=m0. From (3.5) (ii)

and from the fact that h is monic we find that B=ch

0 tor some constant ceZ.

o’
Using that hoe L and that b belongs to a basis for L, we conclude that c=#1,

so that b= £h .

If on the other hand we did not find such a vector b in any of the lattices,

then we know from (3.11) that 6h0>n—1. This implies that h_ = £f. This finishes the

Q
description of Algorithm (4.1).

(4.3) Proposition. Denote by m, = éh, the degree of the irreducible factor h, of

0
f that is found by Algorithm (4.1). Then the number of arithmetic operations needed

0

3. .4
by Algorithm (4.1) is O(mo(n56F6+n4cSF6log(6FlF|) +n46Fslog(Dfmax) +n"6F logp)) and
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the integers on which these operations are performed each have binary length

o (n36F3 + n26F31og(<SFIF] ) + nzéleog(Dfmax) +néFlogp) .

Proof. Let m, be the larcest value of m for which Proposition (2.7) is applied;

1

so m1=mO or m1=m0—1. From (2.7) it follows that during the application of (2.7)
to the (m1 8F + 1)-dimensional lattice, also approximations of shortest vectors were
obtained for the (mdF + 1)-dimensional lattices, for 2$m<m1. Therefore the number

of arithmetic operations needed for the applications of (2.7) for &= mSm1 is equal

to the number of operations needed for m=m only.

1
To analyze the latter we derive a bound B for the length of the vectors in the
initial basis for L (cf. (3.5)). Assuming that the coordinates of the initial basis

are reduced modulo pk, we derive from (4.2), ldiscr(F)|=z1, 68H=21 and 221 that

logB= O(n265‘2 + nSleog(éFlFl) + néFlog(Dfmax) +logp). Combined with m

1= O(rno) and

(2.7) this yields the estimates given in (4.3).
It is straightforward to verify that the same estimates are valid for both appli-~

cations of Hensel's lemma and for the computation of discx(F) (cf.[2],[11]). D0

(4.4) We now describe how to choose D, p, H and h in such a way that Algorithm (4.1)
can be applied. The algorithm to factor £ into its monic irreducible factors in
D(a)[X] then easily follows.

First we choose a positive integer D such that (2.1) holds, i.e. £ and all
monic factors of £ in @(a)[X] are in %Z[u][x]. From [10] it follows that we can
take D=4dc, where d is such that fe%ﬂ[a][x], and c¢ is the largest integer
such that c2 divides discr(F). This integer ¢ however might be difficult to com-
pute; therefore we take D=d|discr(F)| as denominator, which clearly also suffices.

We may assume that the resultant R(f,f') e®(a) of £ and its derivative f£'
is unequal to zero, i.e. f has no multiple factors in @(a)[X]. We determine p
as the smallest prime number not dividing D-discx(F)- R(f,£f'); so (2.2) is satisfied.

Using Berlekamp's algorithm [4: Section 4.6.2] we compute the irreducible factor-

t

ization (Fmodp) = ﬂi_1

(G, modp) of (Fmodp) in (zZ/pz)[T]. This factorization
does not contain multiple factors because discr(F) #0 mod p. Combined with R(£f,f")
# 0 mod p this implies that there exists an integer ioe {1,2, ..., t} such that

(R(E,£') mod (p, (Gio modp))) #0; let H be such a polyncmial GiO' We may assume
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that H is monic, so that (2.3), (2.5), (2.6) and (2.4) with k replaced by 1 are

satisfied.

Next we determine the irreducible factorization of (f mod (p,Hl)) in ]EC‘I(X] by

means of Berlekamp's algorithm [1: Section 5], where q=de and E = (Z/p Z)[T]/(Hl) .

(Notice that we use a modified version of Berlekamp's algorithm here, one that is poly-

nomial-time in p and G&H rather than polynomial-time in the number of elements of

the finite field.)

Since f is monic the resultant R(f,f') is, up to sign, equal to the discrim-

inant of £, so that it follows from the construction of H that the discriminant of

f is unequal to zero in :l]g. Therefore (3.4) holds for all irreducible factors
(h mod (p,Hl)) of (fmod (P’Hl)) in ]I;[X]; we may assume that these factors are monic.

The algorithm to factor £ now follows by repeated application of Algorithm (4.1).

(4.5) Theorem. The algorithm sketched above computes the irreducible factorization of

any monic polynomial fe-cliz[a][:x] of degree n>0. The number of arithmetic opera-

tions needed by the algorithm is O(n66F6+n56F6log(6F{F|) +n55FSlog(dfmax)) , and the

integers on which these operations are performed each have binary length

0(n’67> +n’6r’log (67| F|) +n’6F log(ar__ ).

Proof. It follows from [2] that the calculations of R(f,f') and discr(F) satisfy
. . . . §F,_, 26F-1
the above estimates. From Hadamard's inequality we obtain |discr(F)| <SF  |F| ;
it follows that
log D=0(logd + §Flog(SF|F[)) .

In order to give an upper bound for the height of R(f,f'), we use the result from [3].

F- 2 .
Let A be a matrix having entries Aij =Zi=01 aij QT e z[T], for 1<i,j<m, and

some positive integer m. The determinant d(A) of A is a polynomial of degree

< m(6F-1) in Z[T]. According to [3] the length, and therefore the height, of d(a)

is bounded from above by

m m §F-1 2.0 %
(Mimy Tim1 Fpmp 125301707

Jsing this bound it is easily proved that the height of d(A) moduloF is bounded by

[)2)%(1+Fm ) (m-1) (8F-1) .

m m SF-1 |
ax

M1 Tim1Fpm0 Payge

[t follows that
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(/agEns )" (14p_ ) (2072 (BF-1)
max max

(R(E,£1)__ < (\/n+1<SFfmax)n'1

where R(f,f') is regarded as a polynomial in o. We £ind from the definition of D
and p that

< i at’
ﬂq prime, q<p q < dldiscr(F) | (R(AF, ))max

and this yields in a similar way as in [7] that

p=0(logd +néFlog(SF|F|) +nlogn+n 1og(dfmax) ) -
This implies that the computation of the prime number p, and the computation of the
factorizations of (Fmodp) in (Z/pz)[T] and (fmod (p,Hl)) in qu[X] satisfy the
estimates in (4.5). Theorem (4.5) now easily follows from the bounds on logD and
p, and from the observation that a monic factor g of f in @(a)[X] satisfies

log(gmax)==O(6Flog(6FlFl) +n-+log(fmax)) (this follows from a bound similar to the

one given in the proof of (3.11)). [
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