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We present a polynomial-time algorithm for the factorization of univariate polynomials 

over algebraic number fields. Our algorithm is a direct generalization of the polyno-

mial-time algorithm for the factorization of univariate polynomials over the rationals 

[7]. 

1. Introduction. 

In [7] a polynomial-time algorithm was given to factor polynomials in one variable with 

rational coefficients. In this paper we generalize this result to polynomials in one 

variable with coefficients in an algebraic number field. 

The existence of a polynomial-time algorithm for this problem is not surprising 

in view of [7]. Kronecker's idea of using norms reduced the problem to the factoriza-

tion of univariate polynomials with rational coefficients, and in [5] it is shown that 

this reduction is polynomial-time. Here we pursue a direct approach to the factoriza-

tion of polynomials over algebraic number fields. As suggested in [6: Section 5] we 

regard the irreducible factor we are 10oking for as an element of a certain integral 

lattice, and we prove that it is the 'smallest' element in this lattice. As we have 

seen in [7] this enables us to effectively compute this factor by means of a basis 

reduction algorithm for lattices. 

The practical importance of our algorithm should not be overstated. This is main-

ly due to the rather slow basis reduction algorithm. For practical purposes we recom-

mend the algorithm from [6], where the ideas of the lattice approach are combined with 

the well-known exponential-time factoring algorithm. In the algorithm from [6] the al-

gebraic numbers are represented by their residues modulo a certain prime-power 
k 

p • 

In the last step (trial divisions to determine the true factors}, the algebraic num-
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bers are restored in a unique way by means of a reduced basis of a certain integral 

lattice. Experiments have shown that this greatly reduces the running time (cf. [6]). 

This paper is organized as follows. Section 2 contains some notation and defini-

tions; furthermore we recall there some results from [7: Section 1]. Section 3 deals 

with the connection between factors and lattices; it generalizes the first part of 

[7: Section 2]. In Section 4 we give a global description of the factoring algorithm 

and we analyze its running time. 

For a polynomial f we denote by of the degree of f, by lc(f) the leading 

coefficient of f, and f is said to be monic if k(f) = 1. 

2. Preliminaries. 

Let the algebraic number field ~(a) be given as the field of rational numbers Ill 

extended by a root a of a prescribed monic irreducible polynomial F€ ZZ[T], i.e. 

Ill (a) = l!l[T]/ (F). This implies that the elements of Ql (a) can be represented as poly-

nomials in a over Ill of degree <oF. We may assume that the degree of the minimal 

polgnomial F is at least 2. 

Similarly, we define 2Z[a] =2Z[T]/ (F) as the ring of polynomials in a over 2Z 

of degree< oF, where multiplication is done 'modulo F'. 

Let f be a monic polynomial in l!l(a)[X]. In Section 4 we will describe how to 

choose a positive integer D such that 

(2.1) f and all monic factors of f in \l.l(a) [X] are in 1 
0 2Z[a][X]. 

The algorithm to determine the irreducible factors of f in ~(a)[X] that we will 

present, is very similar to the algorithm for factorization in :;z[x] as described in 

[7]: first determine the factorization of f over some finite field ( ZZ/p <Z in [7]), 

next extend this factorization to a factorization over a large enough ring ( 2Z/pk 'lZ 

in [7]), and finally use a lattice reduction algorithm to determine the factors over 

~(a). Therefore we first describe how to choose this finite field and this ring. 

Let p be a prime number such that 

(2. 2) p does not divide D, 

and let k 
i be a positive integer. For G=l:i ai T € zz[T]/ and some integer 2 we de-

note by 2 2 i £ or (G mod p ) the polynomial l:i (ai mod p ) T e: ( ZZ/p ZZ) [T]. In Section 
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4 we will see that we are able to determine p in such a way that we can compute a 

polynomial H i:Zi:[T] such that: 

(2. 3) H is monic, 

(2.4) 
k 

( Zi:/p :iZ) [T]' 

(2.5) 

(2.6) 

H 1 is irreducible in 

(H ) 2 does not divide 
1 

( 'lZ/p Zi:) [T]' 

F l in ( 7.Z/p zz;) [T]. 

It follows that H1 divides F l in (:<Z/p 2Z) [T], and that 0 < oH S oF. 

This polynomial H, together with the prime number p and the integer k, gives 

us the possibility to construct the finite field and the ring we were looking for. We 

oH 
denote by q the prime-power p and by JF'q the finite field containing q elements. 

oH-1 i 
From (2.5) we derive that JF'q"' ( 'lZ/p l'Z) [T]/(H 1J. Remark that lF' "' {I:. 0 a. cx 1 : a.<: 

q i= l. l. 

2Z/p l'Z} where cx 1 = (T mod (H 1 l) is a zero of H1 • This enables us to represent the 

elements of lFq as polynomials in a 1 over l'Z/p 2Z of degree< oH. The finite field 

JF'q corresponds to 2Z/p lZ in [7]; we now define the ring that will play the role of 

'lZ/pk '1Z in [7]. Let Wk(JF'q J = ( l'Z/pk :ZZ) [T]/(Hk) be a ring containing qk elements. 

oH-1 i k 
We have that Wk(JF'q J = {I:i=O ai ak: ai E l'Z/p :zz} where cxk = (T mod(~) J is a zero of 

So elements of can be represented as polynomials in 

of degree< oH, and can be mapped onto lF'q by reducing the coefficients of 

these polynomials modulo p. For a€ Wk(lF'g l [X] we denote by (amodp) i:lF'[X] the re. q 

sult of applying this mapping coefficient-wise to a. 

We now show how we map polynomials in fi:zz[a][X] 

Remark that w1(JF' l"' lF' · 
q q 

to polynomials in JF [X] and • g 

Wk(JF ) [X] 
q 

respectively. Clearly, the canonical mapping from 2Z[T]/CF) to 

( '/Z./pi 2Z) [T]/ (H.e,l defines a mapping from 2Z[ a] to for .e.= 1, k. (Informally, 

this mapping works by reducing the polynomial in 
9., 

a modulo p and H.e, (al.) For a<: 

9., 
lZ[a] we denote by (a mod (p ,H.e,) J <: Wi(lFq J the result of this mapping. Finally, for 

ai i 1 .e. 
g = !:i 0 X <: D 2Z[a][X] we denote by (g mod (p ,H1) J the polynomial 

-1 9., .e. i 1 .e. r. (((D modp Ja.) mod (p ,H,))X i:W,(JF' )[X]. Notice that D- modp exists due to (2.2). 
l. l. ~ ~ q 

We conclude this section with a result from [7: Section 1] that we will need here. 

Let b 1 ,b2 , ••• ,bn <: (~)n be linearly independent; we restrict ourselves to the case 

that the nxn matrix having b 1 ,b2 , •.. ,bn 

i-dimensional lattice Li c ( ~}i with basis 

we put L= L 
n 

as columns is upper-triangular. The 

is defined as L. = 
l. 
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(2. 7) Proposition. (cf. [7: (1.11), (1.26), (1.37) ]) Let B E:1Z?: 2 be such that I Db. 12 s B 
J 

for 1 :5 j :5 n, where I I denotes the ordinary Euclidean length. There is an algorithm 

that determines a vector :5 € L such that b belongs to a basis for L, and such that 

lb-12 <_ 2n-1 lxl2 f or every x" L, x"' O; this algorithm takes O(n4 logB) elementary 

operations on integers having binary length O(n logB). Furthermore, during the first 

O(i4 logB) operations (on integers having binary length O(i logB)), vectors bi, be-

longing to a basis for L are determined such that I b. 12 :5 2i-l Ix. 12 for every i' 1 . 1 

Informally, (2.7) states that we can find a reasonable approximation of the shortest 

vector in L in polynomial-time. Furthermore, during this computation, we find approx-

imations of the shortest vectors of the lattices Li without any time loss. 

3. Factors and lattices. 

This section is similar to the first part of [7: Section 2]. We formulate the general-

izations of [7: (2.5), (2.6), (2. 7), (2.13)] to polynomials over algebraic number fields. 

Let f, D, p, k, F, and H be as in Section 1. We put n =of; we may assume that n > O. 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Suppose that we are given a polynomial h E:IZ[CL][x] such that 

h is monic, 

k 
(h mod (p ,Hk)) divides 

is irreducibie in F [X], 
q 

2 (hmod (p,H 1)) does not divide in JF [X]. 
q 

We put R. = oh; so O < R. s n. In Section 4 we will see which extra conditions have to 

be imposed on p so that h can be determined. 

1 Let h 0 € 0 :iz[c:t][x] be the unique monic irreducible factor of 

(h mod (p,H1l l divides 

divides 

in JF [X] (or equivalently 
q 

cf. [7: (2.5) ]) • 

f for which 

(3.5) In the remainder of this section we fix an integer m with R. :5m < n. We define 

L as the collection of polynomials such that: 

(i) ag:5 m, 

(ii) if ag=m, then R,c(g)E :IZ, 

(iii) (h mod <l ,Hkl) divides 
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We identify such a polynomial 
m-1 OF-1 j i m . 

g=L L, a .. Ci.X +a 0x w1ththe 
i=O J=O 1J m 

(m oF + 11-dimen-

sional vector (a00 , a01 , ... , a0 liF-l' ... , am-l oF-l' arnO) . Using this identification 

it is not difficult to see that L is a lattice in (~)moF+l. From the fact that 

H and h are monic ((2.3) and (3.1)) it follows that an upper-triangular basis for 

L is given by: 

1 k j i f 0 P a x , o s j < oH, o s i < .e.} u 

{l_aj-oHH(a) Xi: oH s; j < aF, 0 Si< R,} 
D 

{% aj h xi-R.: o s j < oF, Ji s i < m} u 

{h xm-.!.}. 

u 

We define the length lgl of g as the ordinary Euclidean length of the vector iden-

tified with g; the height of g is defined as max{laijl }. Similarly we 

define the length and the height of polynomials in :?Z[T]. 

(3.6) Proposition. Let b EL satisfy 

(3. 7) ltaH/aF>(of ((n+lloF(l+F laF-l>'i)m(Db ({m+l)oF(l+F )aF-li~)n 
max max max max 

Then b is divisible by h 0 in \Il(a)[X] and in particular gcd(f,b) ;tl. 

~· The proof is similar to the proof of [ 7: (2. 7)]; we therefore omit the details. 

Put g = gcd ( f, b) , and e =Ilg. Identify the polynomials 

(3.8) 

with (oF(n+ob-e))-dimensional vectors. The projections of these vectors on 

1..,, Xe 1 2Z oF-1 e 1 :?ZXe+1 1 :?Z oF-1 n+ob-e-1 
D' "'a + · · · + D' a x + D' + · · · + o a x form a basis for a 

(oF(n+ob-2e))-dimensional lattice M'. Using induction on one proves that 

so that, for OSj<oF and OSi<lib-e, 

lajXifl Sf ((n+l)oF)~(l+F )j. 
max max 

With Hadamard' s inequality, and a similar bound on ! ajXib I we get 

d(M') s ((f ((n+1l.5F(1+F ,oF-1)~)m(b ((m+1loF(1+F loF-l)~)n\oF' 
max max max malt / 

where d(M'l. denotes the determinant of M'. With. (3. 7). this gives 
kR,OH 

(3.9) d(M') < ~ + )oF 
D nm. 

It is easy to prove that b 0 divides g in ll!(al_[x] if a.nd only if (h.mod (p,a 1J) 

divides (gmod (p,H 1ll in lFiX] (cf. [7: (2.S)_}J. So assUllle that the latter is not 
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the case; we will derive a contradiction from this. 

Let 
1 v E 0 ?L:[a] [x] be some integral linear combination of the polynomials in (3.8) 

such that ov < e + L It follows from our assumption that 
k 

(vmod (p ,Hk)) = 0 in 

Wk(lFq)[X] {cf. [7: (2.7)]). Therefore, if we regard R.c(v) as a polynomial in a, 

we have 

(3.10) R.c {R.c (v)) a 0 modulo pk if oR.c (v) < llH. 

Now choose a basis beO'bel' ••. ,beoF-l'be+lO' •.• ,bn+ob-e-lcSF-l for M' such 

that ob .. =i and OR.c (bij) = j for e s i < n+lib-e and 0 S j < liF, where R.c(bijl is 
l.J 

regarded as a polynomial in Cl. From {3.10) we derive that R.c ( R.c (b .. ) ) = 0 mod pk 
l.J 

k 
for 0 S j < oH and e Si< e+L Since 

2Z we obtain I R.c CR.c Cbij l ll :<:: ~ R.c(R.c(bijl) c. 0 , 

0 S j < oH 
1 

liH S j < oF e+R. s i < n+lib-e. for and e Si< e+R. and I R.c c R.c Cb i . l l I :i: - for or 

The determinant of M' equals 
kR.llH 

d(M') :;:: D (n~ob-2e) liF :;:: 

the product 
kR.oH 

p 

0 Cn+m)oF • 

. J D 

of IR.c{R.c(b .. ))I, 
J.J 

Combined with (3.9) this is the desired contradiction. 0 

(3.11) Proposition. (cf. [7: (2.13)]) Suppose that 

so that 

(3.12) PkR.OH/oF > ~n(moF+l) (n+l)n+m(m+l)n(~)noF4n+m(liF-l)n(oF-1) 

l:i 
(1+F ) (n+m) (oF-1) ldiscr(F) 1-n) • (Df ln-tmlFl2n(oF-1), 

max max 

where discr (F) denotes the discriminant of F. Then we have oh0 s m if and only if 

(3.7) is satisfied with b replaced by b, where b results from applying (2.7) to L. 

Proof. In [8] we show that the method sketched in [10] combined with results from [9] 

gives the following upper bound for the length of a manic factor of degree s m of f 

1 
in 0 ?L:[a] [X]: 

f (2(n+l)oF3 (oF-1)°F-lC2mlll:ilFi 2 (oF-l) ldiscr(F) ,-1:1_ 
max m 

With (3.6) the proof follows immediately. D 

4. Description of the algorithm. 

We describe how the results from the previous sections can be used to formulate a poly-

nomial-time algorithm to factor f E IQ (a)[x]. First we present an algorithm that deter-

mines h 0 , given D, p, H and h. Let .d be such that 
1 

f E d:ZZ[a][X]. 
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(4.1) Suppose that a positive integer D, a prime number p, and polynomials H E::IZ[T] 

and h E:IZfcx][X] are given such that (2.1), (2.2), (2.3), (2.5), (2.6), (3,1), (3.3) 

and (3.4), and (2.4) and (3.2) with k replaced by 1, are satisfied. We describe 

an algorithm that determines h 0 , the manic irreducible factor of f for which 

divides in JF [x]. 
q 

Put R. =oh; we may assume that R. < n. We calculate the least positive integer 

k for which (3.12) holds with m replaced by n-1: 

(4 _2) PkR.llH/cSF > (l< (n-1)oF+l) (n+1)2n-1nn(2~~~1))noF5n-1(1lF-l)n(oF-1) 

(l+F ) (2n-1) (oF-1) \discr(F) 1 -n)~. (Df )2n-1\F\2n(oF-1). 
max max 

Next we modify H in such a way that (2.4) holds for the value of k just calculated. 

The factor 
k 

Hk = (H modp ) of gives us the possibility to compute in 

Therefore we now modify h, without changing (hmod (p,H 1)), in such a way that (3.2) 

holds for the above value of k. The computations of the new H and h can both be 

done by means of Hensel's lemma [4: exercise 4.6.22; 11]; notice that Hensel's lemma 

can be applied because of (2.6) and (3.4). 

Now apply Proposition (2. 7) to the (m OF+ 1)-dimensional lattice L as defined 

in (3.5), for each of the values of m= !I., ll.+1, ... , n-1 in succession; but we stop as 

soon as for one of these values of m we find a vector b in L such that (3.7) is 

satisfied with b replaced by :5. If such a vector is found for a certain value 

of m, then we know from ( 3 .11) that oh0 s m0 . Since we try the values m = 9., R.+1, ..• , 

n-1 insuccessionwealsoknowthat oh0 >m0-1, so oh0 =m0 . By(3.6) h 0 divides 

b in l]l(cx)[X] which implies, together with ob:>m0 , that oo=m0 . From (3.5) (ii) 

and from the fact that h 0 is manic we find that o= ch0 , tor some constant c E:2Z. 

Using that ho E L and that :6 belongs to a basis for L, we conclude that c = :1:1, 

so that :5 = :1:h0 . 

If on the other hand we did not find such a vector :6 in any of the lattices, 

then we know from ( 3. 11) that ah0 > n-1. This illl,1?l:ies that h0 = f. This finishes the 

description of Algorithm (4.1). 

(4. 3) Proposition. Denote by m0 = oh0 the degree of the irreducible factor h 0 of 

f that is found by Algorithm (4.1). Then the number of arithmetic operations needed 

by Algorithm (4.1) is ocm0 cn5 aF6 +n4oF6log(liF\F\) +n4 oF5log(Dfmax) +n3oF4logp)) and 
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the integers on which these operations are performed each have binary length 

3 3 2 3 2 2 
O(n oF +n oF log(cSF!F!l +n oF log(Dfmax) +noFlogp). 

Proof. Let be the larqest value of m for which Proposition (2.7) is applied; 

so From (2.7) it follows that during the application of (2.7) 

to the (m1 oF+1)-dimensional lattice, also approximations of' shortest vectors were 

obtained for the (moF+ 1)-dimensional lattices, for l~m<m1 . Therefore the number 

of arithmetic operations needed for the applications of (2. 7) for t :5 m :5 m1 is equal 

to the number of operations needed for m = m1 only. 

To analyze the latter we derive a bound B for the length of the vectors in the 

initial basis for L (cf. (3.5)). Assuming that the coordinates of the initial basis 

are reduced modulo k 
p ' we derive from (4.2), I dis er (F) I :?: 1, OH:?: 1 and that 

log B = o (n2oF2 + noF2log(oF !FI) + noFlog(Dfmaxl +log p). Combined with m1 = o Cm0 l and 

(2.7) this yields the estimates given in (4.3). 

It is straightforward to verify that the same estimates are valid for both appli-

cations of Hensel's lemma and for the computation of discr(F) (cf. [2], [11JJ. D 

(4.4) We now describe how to choose D, p, H and h in such a way that Algorithm (4.1) 

can be applied. The algorithm to factor f into its monic irreducible factors in 

11.!(a)[X] then easily follows. 

First we choose a positive integer D such that (2.1) holds, i.e. f and all 

11.!(a) [X] 1 manic factors of f in are in D:zi;[a][X]. From [10] it follows that we can 

take D= de, where d is such that 1 
f € d :tZ[ a][X], and c is the largest integer 

such that 2 
c divides discr(F). This integer c however might be difficult to com-

pute; therefore we take D = d I dis er (F) I as denominator, which clearly also suffices. 

We may assume that the resultant R(f,f') €@(a) of f and its derivative f' 

is unequal to zero, i.e. f has no multiple factors in 11.!(a)[X]. We determine p 

as the smallest prime number not dividing D•discr(F) •R(f,f'); so (2.2) is satisfied. 

Using Berlekamp's algorithm [4: Section 4.6.2] we compute the irreducible factor-

ization t 
(F mod p) = ni=l (Gi mod p) of (F modp) in ( ?l/p ?l) [T]. This factorization 

does not contain multiple factors because discr(F) iii 0 mod p. Combined with R(f,f') 

~ 0 mod p this implies that there exists an integer i 0 € { 1, 2, ••• , t} such that 

(R (r, f') mod (p, (Gia mod p)) l ;< O; let H be such a polynomial Gio. We may assume 
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that H is manic, so that (2.3), (2.5), (2.6) and (2.4) with k replaced by are 

satisfied. 

in lF [X] by 
q 

Next we determine the irreducible factorization of (f mod (p,H 1)) 

aH means of Berlekamp 's algorithm [ 1: Section 5], where q = p and lF "' 
q 

( Zl/p zz;) [T]/ (H 1). 

(Notice that we use a modified version of Berlekamp's algorithm here, one that is poly-

nomial-time in p and oH rather than polynomial-time in the number of elements of 

the finite field.) 

Since f is monic the resultant R(f,f') is, up to sign, equal to the discrim-

inant of f, so that it follows from the construction of H that the discriminant of 

f is unequal to zero in :Il"q. Therefore ( 3. 4) holds for all irreducible factors 

in lF [X]; we may assume that these factors are monic. 
q 

The algorithm to factor f now follows by repeated application of Algorithm (4.1). 

(4.5) Theorem. The algorithm sketched above computes the irreducible factorization of 

any monic polynomial 
1 

f E dZZ[cr][X] of degree n > 0. The number of arithmetic opera-

tions needed by the algorithm is 
6 6 5 6 5 5 

O(n OF +n oF log(aFIFll +n oF log(dfmax}), and the 

integers on which these operations are performed each have binary length 

Proof. It follows from [2] that the calculations of R(f,f') and discr(F) satisfy 

the above estimates. From Hadamard's inequality we obtain ldiscr(F) I,;; oF°F!Fi 2°F-l; 

it follows that 

log D = 0 (log d + oFlog (OF IF I)) • 

In order to give an upper bound for the height of R(f,f'), we use the result from [3]. 

Let A be a matrix having entries for 15i,j!>m, and 

some positive integer m. The determinant d(A) of A is a polynomial of degree 

s m(oF-1) in zz;[T]. According to [3] the length, and therefore the height, of d(A) 

is bounded from above by 

m m oF-1 2 Ji 
cnj=lY-i=lo::Q.=O laijtll). 

Jsing this bound it is easily proved that the height of d(A) moduloF is bounded by 

flm ri:' (LoF-lla .. ll2)li(l+F ) (m-1) (cF-1). 
( j=l i=l Q.=0 J.JQ, max 

[t follows that 
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(R(f,f')) :$; (;n+ioFf )n-l(ln'oFnf )n(l+F ) <2n-2 ) (oF-l), 
max max max max 

where R(f,f') is regarded as a polynomial in a. We find from the definition of D 

and p that 

TI q S di discr (F) ! (R(df,df')) 
q prime, q < p max 

and this yields in a similar way as in [7] that 

p=O(logd +noFlog(oFIFJ) +nlogn+nlog(dfma)). 

This implies that the computation of the prime number p, and the computation of the 

factorizations of (Fmodp) in ( 7Z/p7Z)[T] and (fmod (p,H 1)) in JF [X] satisfy the 
q 

estimates in (4.5). Theorem (4.5) now easily follows from the bounds on logD and 

p, and from the observation that a manic factor g of f in ~(a)[X] satisfies 

log ( gmax) = 0 ( 8Flog ( oF IF I) + n + log ( fmax) ) 

one given in the proof of (3.11)). D 
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