
Centrum voor Wiskunde en lnformatica 
Centre for Mathematics and Computer Science 

Computer Science/Department of Software Technology 

J.F. Groote, F.W. Vaandrager 

Structured operational semantics and 
bisimulation as a congruence 

Report CS-.R8845 November 

8fb~Jthf!ok 
(~c·z1tr'JrrPJO~Y ';"< ·r~~ 1 .4-·"'t: :2·-t1 lnf(){m~k~ca 

A,.,,.-.:.:1r..,..{1rn 



The Centre for Mathematics and Computer Science is a research institute of the Stichting 
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by 
the Dutch Government through the Netherlands Organization for the Advancement of Pure 
Research (Z.W.0.). 

Copyriglit © Stichting Mathematisch Centrum, Amsterdam 



Structured Operational Semantics and Bisimulation as a Congruence 

Jan Friso Groote 
Frits Vaandrager 

Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

In recent years a large number of (concurrent) languages have been provided with an operational seman­
tics using Plotkin's structural approach (SOS). In this paper the question is considered in which cases a 
transition system specification in Plotkin style has 'good' properties and deserves the predicate 'structured'. 
The discussion takes place in a setting of labelled transition systems. The states of the transition systems 
are terms generated by a single sorted signature and the transitions between states are defined by struc­
tural induction on abstract syntax. It is argued that in this setting it is natural to require that strong bisimula­
tion equivalence is a congruence on the states of the transition systems. A general format, called the 
tyftltyxt format, is presented for the inductive rules in a transition system specification, such that bisimula­
tion is always a congruence when all the rules fit into this format. With a series of examples it is demon­
strated that the tyft/tyxt format cannot be generalized in any obvious way. Another series of examples illus­
trates the usefulness of our congruence theorem. Briefly we touch upon the issue of modularity of transi­
tion system specifications. It is argued that certain pathological tyftl tyxt rules (the ones which are not 
pure) can be disqualified because they behave badly with respect to modularisation. Next we address the 
issue of full abstraction. We characterize the completed trace congruence induced by the operators in 
pure tyftltyxt format as 2-nested simulation equivalence. The pure tyft! tyxt format includes the format 
given by DE SIMONE [29, 30] but is incomparable to the GSOS format of BLOOM, ISTRAIL & MEYER [1 O]. How­
ever, it turns out that 2-nested simulation equivalence strictly refines the completed trace congruence 
induced by the GSOS format. 

Key Words and Phrases: Structured Operational Semantics (SOS), transition system specifications, compo­
sitionality, labelled transition systems, bisimulation, congruence, process algebra, tyftltyxt rules, modularity 
of transition system specifications, full abstraction, testing, nested simulations, Hennessy-Milner logic, 
GSOS rules. 
1985 Mathematical Subject Classification: 68005, 68055. 
1980 Mathematical Subject Classification: 68B10. 
1982CRCategories:D.3.1, F.1.1, F.3.2, F.4.3. 
Note: The research of the authors was supported by ESPRIT project no. 432, An Integrated Formal 
Approach to Industrial Software Development (METEOR), and by RACE project no. 1046, Specification and 
Programming Environment for Communication Software (SPECS). 

1. INTRODUCTION 

In [26, 27] PLoTKIN advocates a simple method for giving operational semantics to programming 
languages. The method, which is often referred to as SOS (for Structured Operational Semantics), is 
based on the notion of transition systems. The states of the transition systems are elements of some 
formal language that, in general, will extend the language for which one wants to give an operational 
semantics. The main idea of the method is that the transitions between states are defined by structural 
induction on abstract syntax. Plotkin did not give a formal definition of his method, i.e. a definition 
of the type of expressions which in general are allowed as states, a format for the inductive rules and 
a formal definition which says when a transition system specification is 'structured'. Probably, he 
didn't see any reason for giving such a definition because it always would have been either too 

Report CS-R8845 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



2 

restrictive, excluding some important applications, or too general, declaring certain specifications to 
be structured even though they do not deserve this predicate at all. 

In recent years a large number of (concurrent) languages have been provided with an operational 
semantics in terms of transition systems defined with structural induction on abstract syntax. We 
think that therefore it might be worthwhile to consider in more detail the questions how expressive 
different classes of transition system specifications are and in which cases transition system 
specifications have 'good' properties and can be called structured. 

Before one can investigate the question what types of transition system specifications have 'good' 
properties and can be called structured, one has to say what are the 'good' properties one is interested 
in. Most people will agree that the semantics generated by a structured transition system specification 
should be compositional in some sense. We want to consider the question whether compositionality 
(under the interpretation that the transitions associated to a phrase are to be a function of the transi­
tions associated to its immediate components) is a sufficient condition for calling a transition system 
specification structured. Does a compositional transition system specification have the nice properties 
one would like it to have? We think that in general this is not the case. 

In order to make our point, we restrict our attention to a specific type of transition systems: transi­
tions are labelled and as states we have ground terms generated by a single sorted signature. This is 
an important subcase: the operational semantics of languages like CCS [21], TCSP [24], ACP [13] and 
MEUE [11] has been described in essentially this way. However, there are also examples of transition 
system specifications where the set of states is not specified by a single sorted signature, for instance 
the semantics for CSP as presented in PLoTKIN [27] and the semantics for POOL of AMERICA, DE 
BAKKER, KoK & RUTIEN [2]. We hope that the insights derived from our analysis of a basic case will 
somehow generalize to more general settings. 

A fundamental equivalence on the states of a labelled transition system is the strong bisimulation 
equivalence of PARK [25]. Strong bisimulation equivalence seems to be the finest extensional 
behavioural equivalence one would want to impose, i.e. two states of a transition system which are 
bisimilar cannot be distinguished by external observation. This means that from an observational 
point of view, the transition systems generated by the SOS approach are too concrete as semantical 
objects. The objects that really interest us will be abstract transition systems where the states are 
bisimulation equivalence classes of terms, or maybe something even more abstract. If bisimulation is 
not a congruence then this means that the function that returns the transitions associated to a phrase 
when given the transitions associated to its immediate components, depends on properties of the tran­
sition system which are generally considered to be irrelevant, such as the specific names of states. 
Hence we think that a transition system specification which leads to transition systems for which 
bisimulation is not a congruence should not be called structured: possibly it is compositional on the 
level of (concrete) transition systems but it is not compositional on the more fundamental level of 
transition systems modulo bisimulation equivalence. 

This brings us to the first main question of this paper which is to find a format, as general as possi­
ble, for the inductive rules in a transition system specification, such that bisimulation is always a 
congruence when all the rules have this format. We proceed in a number of steps. 

In section 2 of the paper definitions are given of some basic notions like signature, term and substi­
tution. Section 3 contains a formal definition of the notion of a transition system specification (TSS). 
In section 4 it is described how a TSS determines a transition system. Moreover the fundamental 
notion of strong bisimulation is introduced. 

The real work starts in section 5, where we present a general format, called the tyft! tyxt format, for 
the inductive rules in a TSS and prove that bisimulation is always a congruence when all inductive 
rules have this format. With a series of examples it is demonstrated that this format cannot be gen­
eralized in any obvious way. 

Section 6 contains some applications of our congruence theorem. We think that our result will be 
useful in many situations because it allows one to see immediately that bisimulation is a congruence. 
Thus it generalizes and makes less ad hoe the congruence proofs in [5, 23], and elsewhere. If the rules 



3 

in a TSS do not fit in our format then there is a good chance that something will be wrong: either 
bisimulation is not a congruence right away or the congruence property will get lost if more operators 
and rules are added. 

A very natural and important operation on transition system specifications is to take their com­
ponentwise union. Given two specifications P 0 and P 1, let P 0 $P1 denote this union. A desirable 
property to have is that the outgoing transition of states in the transition system associated to P 0 are 
the same as the outgoing transitions of these states in the extended system P 0 E9P1• This means that 
P 0 E9P 1 is a 'conservative extension' of P 0 : any property which has been proved for the states in the 
old transition system remains valid (for the old states) in the enriched system. In section 7 we show 
that most of the tyftltyxt rules (the rules which are pure) behave fine under modularisation. Rules that 
are not pure behave badly under modularisation, but fortunately these rules are quite pathological 
and we have never seen an application in which they are used. Hence, they can be discarded without 
great pain. 

A central idea in the theory of concurrency is that processes which cannot be distinguished by 
observation, should be identified: the process semantics should be fully abstract with respect to some 
notion of testing (see [12]). Mostly one takes the position that the observations one can make on a 
process include its completed traces. A completed trace is a (finite) maximal sequence of actions which 
can be performed by a process. Two processes are completed trace congruent with respect to some for­
mat of rules if they yield the same completed traces in any context that can be built from operations 
defined in this format. The main result of section 8 of this paper is a characterization, valid for image 
finite transition systems, of the completed trace congruence induced by the pure tyftltyxt format as 
2-nested simulation equivalence. On the domain of image finite transition systems, 2-nested simulation 
coincides with the equivalence induced by the Hennessy-Milner logic formulas [17] with no [] in the 
scope of a <>. Consequently the following two trees, which are not bisimilar, cannot be distinguished 
by operators defined with pure tyftltyxt rules: 

a 

FIGURE 1. Pure tyftltyxt congruent but not bisimilar 

In section 9 we give an extensive comparison of our format, the format proposed by DE SIMONE 
[29, 30] and the GSOS format of BLOOM, lsTRAIL & MEYER [10]. Roughly speaking, the situation is as 
displayed in figure 2. The GSOS format and the pure tyftltyxt format both generalize the format of 
De Simone. The GSOS format and our format are incomparable since the GSOS format allows nega­
tions in the premises, whereas all our rules are positive. On the other hand we allow for rules that give 
operators a lookahead and this is not allowed by the GSOS format. A simple example in [ 1 O] shows 
that the combination of negation and lookahead is inconsistent. The point where the two formats 
diverge is characterized by the rules which fit into the GSOS format but which contain no negation. 
We call the corresponding format positive GSOS. 

BLOOM, ISTRAIL & MEYER [10] proved that the completed trace congruence induced by the GSOS 
format can be characterized by the class of Hennessy-Milner logic formulas in which only F may 



4 

pure tyft! tyxt GSOS 

~/ 
positive GSOS 

r 
DE SIMONE's format 

FIGURE 2 

occur in the scope of a []. LARSEN & SKOU [20] in turn showed that the equivalence induced by this 
class of logical formulas can be characterized as 213-bisimulation. From these results we can conclude 
quite directly that the tyft!tyxt format can make more distinctions between processes than the GSOS 
format: 2-nested simulation refines 2/3-bisimulation. Now, interestingly, it turns out that the com­
pleted trace congruence induced by the positive GSOS format is also 2/3-bisimulation equivalence. So 
although it may be the case that in the general GSOS format can be used to define certain operations 
which cannot be defined using positive rules only, the use of negations in the definition of operators 
does not introduce any new distinctions between processes! 

The notion of testing associated with the (positive) GSOS format allows one to observe traces of 
processes, to detect refusals and to make copies of processes at every moment. Our format allows one 
in addition to test whether some action is possible in the future: operators can have a lookahead. This 
can be seen as a weak form of global testing (cf. [ID. 

A notable difference between the GSOS format and our format is that the GSOS format always 
leads to a computably finitely branching transition relation whereas our format does not. We argue 
that the statement of BWOM, IsTRAIL & MEYER [10] that any 'reasonably structured' specification 
should induce a computably finitely branching transition relation, is too strong and discards a large 
number of interesting applications. 

ACKNOWLEDGEMENTS. We want to thank Bard Bloom for a very interesting and stimulating 
correspondence. Discussions with him had a pervasive influence on the contents of this paper. We 
also thank Rob van Glabbeek for many useful comments and inspiring discussions. 

2. SIGNATURES, TERMS AND SUBSTITUTIONS 
In this paper we will work with a very simple notion of a signature. Only one sort is allowed and 
there is no overloading. Throughout this paper we assume the presence of a countably infinite set V of 
variables with typical elements x,y,z ... 

2.1. DEFINITION. A (single sorted) signature is a structure ~=(F,r) where: 
Fis a set of function names disjoint with V, 
r:F-+N is a rank function which gives the arity of a function name; if feF and r(/)=O then/ is 
called a constant name. 



5 

2.2. DEFINITION. Let ~=(F,r) be a signature. Let Wk V be a set of variables. The set of ~-terms 
over W, notation T (~, W), is the least set satisfying: 

WkT(~,W), 

if fEF and t1,..,t,(f) ET(~, W), thenf(t1,..,t,<n)ET(~, W). 
T(~, 0) is abbreviated by T(~); elements from T(~)k T(~, V) are called closed or ground terms. 

Var (t) k Vis the set of variables in a term t ET(~, V). 

2.3. DEFINITION. Let ~=(F,r) be a signature. A substitution a is a mapping in V-+T(~, V). A sub­
stitution a is extended to a mapping a:T(~, V)-+T(~, V) in a standard way by the following 
definition: 

a(f(t1,..,t,<J))) = f(a(t1),..,a(t,<J») for fEF and t1,..,t,(f)ET(~, V). 
If a and p are substitutions, then the substitution a0 p is defined by: 

aop(x) = a(p(x)) for xEV. 

2.4. NOTE. Observe that we have the following identities: 

aop(t) = a(p(t)) t ET(~, V) 

a(t) = t fortET(~) 

3. TRANSITION SYSTEM SPECIFICATIONS 

In this section a formal definition is given of the notion of a transition system specification. Also the 
notion of a proof of a transition from such a specification is defined. 

3.1. DEFINITION. A transition system specification (TSS) is a 3-tuple (~,A,R) with~ a signature, A a 
set of labels and R a set of rules of the form: 

{ t; ..Ei.7 t;' I i El} 

t ...!!7t' 

where I is a finite index set, t;,t;',t,t'ET(~, V) and ai>aEA for iEJ. If r is a rule satisfying the above 
format, then the elements of { t; ..Ei.7 t;' I i EI} are called the premises of r and t 4 t' is called the con-

clusion of r. A rule of the form ~ , is called an axiom, which, if no confusion can arise, is also 
t t 

written as t...!!7t'. An expression of the form t...f!7t' with aEA and t,t'ET(~, V) is called a transition 

(labelled with a). The letters .p,l/J,x,.. will be used to range over transitions. The notions 'substitution', 
'Var' and 'closed' extend to transitions and rules as expected. 

3.2. DEFINITION. Let P =(~,A,R) be a TSS. A proof of a transition If! from P is a finite, upwardly 
branching tree of which the nodes are labelled by transitions t4t' with t,t'ET(~, V) and a EA, such 
that: 

the root is labelled with If!, 
if x is the label of a node q and {XJ I i EI} is the set of labels of the nodes directly above q, then 

there is a rule {.P;j~e/} in Rand a substitution a:V-+T(~,V) such that x=o(.p) and XJ=a(</>;) 

for iel. 
If a proof of If! from P exists, we say that If! is provable from P, notation PI- If!. A proof is closed if it 
only contains closed transitions. 



6 

3.3. LEMMA. Let P =(I,A,R) be a TSS, let aEA and let t,t'ET(I) such that PI- t-5!.7t'. Then t-5!.7t' is 
provable by a closed proof 

PROOF. As Pi- t-5!.7t' there is a proof tree T for t-5!.7t'. Define the substitution o:V ~ T(I) by 
o(x)=t for all xEV. Applying o to all transitions in the proof T of t-5!.7t' yields a tree T' containing 
only closed transitions. Now one can easily check that T' is a proof of t-5!.7t'. 0 

TSS's have been used mainly as a tool to give operational semantics to (concurrent) programming 
languages. As a running example we therefore present below a TSS for a simple process language. 

3.4. ExAMPLE. Let Act={a,b,c, .. } be a given set of actions. We consider the signature I(BPAU 
(Basic Process Algebra with 8 and £) as introduced in [31]. I(BPA~) contains constants a for each 
a EAct, a constant 8 that stands for deadlock, comparable to NIL in CCS and STOP in TCSP, and a 
constant £ that denotes the empty process, a process that terminates immediately and successfully. It is 
comparable to SKIP in TCSP and CCS. Furthermore the signature contains binary operators + 
(alternative comp_osition) and · (sequential composition). As labels of transitions we take elements of 
Acty1=ActU{V}. Here V (pronounce 'tick') is a special symbol used to denote the action of success­
ful termination. At the end of a process this action indicates to the environment that execution has 
finished. 
Define the TSS P(BPAU as (I(BPA~),Act y1,R(BPArn where R(BPA~) is defined below in table 1. 
In the table a ranges over Act v, unless further restrictions are made. Infix notation is used for the 
binary function names. 

1. a-5!.7£ a=f=v 2. £48 

3. 
x-5!.7x' 4. ,r....!!7,!'.' 

x +y....!!.7x' x+y..l!.7y' 

5. x..l!.7x' a=f=v 6. x4x' ,r..l!.7{ 
X:Y ..l!.7x'y xy..l!.7y' 

TABLE 1 

One can easily check that the tree in figure 3 constitutes a proof of the transition (£·(a+b))·c....!!7£·c 
from P(BPA~). 

+ 
(£·(a+b))·c....!!.7£·c 

FIGURE 3 



7 

3. 4.1. REMARK. Even though (extensions of) the signature of BPA~ occur at a number of places, the 
rules of table 1 seem to be new. VRANCKEN [31] does not use inductive rules to give semantics to 
BPA~. Instead he defines the operations of BPA~ directly on process graphs. In BAETEN & VAN GLAB­
BEEK [5] there are no transitions labelled with v. Instead they use a unary termination predicate J,. 
The analogue of our rule 6 in their setting is: 

xJ,, y~y' 

X:Y~Y' 

Such a rule does not fit in our framework because we do not allow for this type of predicates in a 
transition system specification. We think however that our rules are simpler and have a number of 
advantages. For instance, Baeten & Van Glabbeek have to add an additional clause to the definition 
of bisimulation equivalence in order to deal with termination. In our approach this is not needed: 
when describing the intended semantics we can just work with strong bisimulation equivalence. 

3.5. ExAMPLE. Our next example shows that the range of applications of TSS's is not restricted to the 
area of operational semantics: every Term Rewriting System (TRS) can be viewed as a TSS. Unfor­
tunately, the class of TSS's which correspond to TRS's and the class of TSS's for which bisimulation 
is a congruence have an intersection which is almost empty. A Term Rewriting System (TRS) is 
defined as a pair (ZJ,Ro) with Zi a signature and R 0 a set of reduction- or rewrite rules of the form 
r:(t,s) with r the name of the rewrite rule and t,seT(ZJ,V). Here, t contains at least one function 
name and Var(s)~Var(t). 
A TRS can be viewed as a TSS (~,A,R). Take ~=~0 as the signature and define the alphabet A as 
the set of all names r of rules r:(t,s)eR0 • R contains for every r:(t,s)eR0 a rule: 

t...!.7s 

and for every function name fin ~ rules: 

x4y 
f (x1 , .. ,x, .. ,Xr<J>}4 J (x1 , .. ,y, .. ,Xr<J>} 

to allow reductions in contexts. One can easily prove that there is a one step rewrite t---7r s in the TRS 
(see [19] for a definition) iff the corresponding TSS proves t 4s. 

4. TRANSITION SYSTEMS AND STRONG BISIMULATION EQUIVALENCE 
An operational semantics makes use of some sort of (abstract) machine and describes how these 
machines behave. Often one takes as machines simply nondeterministic automata in the sense of clas­
sical automata theory, also called labelled transition systems [18]. 

4.1. DEFINITION. A (nondeterministic) automaton or labelled transition system (LTS) is a structure 
(S,A, ---7) where: 

S is a set of states, 
A is an alphabet, 
---7 ~ S XA X S is a transition relation. 

Elements (s,a,s')e---7 are called transitions and will be written as s ~s'. The intended interpretation 
is that from states the machine can do an action a and thereby get into states'. 

4.1.1. REMARK. Often transition systems are provided with an additional fourth component: the initial 
state. For our purpose it has some small technical advantages to work with transition systems that do 
not contain this ingredient. All considerations of this paper can trivially be extended to transition sys­
tems with initial state. 

The notion of strong bisimulation equivalence as defined below is from PARK [25]. 



8 

4.2. DEFINITION. Let ~=(S,A,-7) be a labelled transition system. A relation Rc;;,SXS is a (strong) 
bisimulation if it satisfies: 
1. whenever s Rt and s 4s' then, for some t' eS, also t 4t' and s' Rt', 
2. conversely, whenever s Rt and t4t' then, for some s'eS, also s....f!..7s' and s'R t'. 
Two states s,teS are bisimilar in~ notation ~:s ~ t, if there exists a bisimulation containing the pair 
(s,t). Note that bisimilarity is indeed an equivalence relation on states. 

4.3. DEFINITION (TSS's, transition systems and bisimulation). Let P =(I,A,R) be a TSS. The transi­
tion system TS(P) specified by P is given by: 

TS(P) = (T(I),A,-7p ). 

Here the relation -7P c;;,T(I)XA X T(I) is defined by: 

t....f!..7pt' ~ p~ t....f!..7t'. 

We say that two terms t,t'eT(I) are (P-)bisimilar, notation t~pt', if TS(P):t ~ t'. We write t ~ t' 
if it is clear from the context what P is. Note that ~P is also an equivalence relation. 

4.4. Ex.AMPLE. For the TSS P(BPAD of example 3.4 we can derive the identities (a)-(e) below. In (f) 
it is shown that the left distributivity of · over + does not hold in bisimulation semantics. Like in reg­
ular algebra we will often omit the · in a product xy and we take · to be more binding than +. 
Missing brackets in expressions xyz and x + y + z associate to the right. 

(a) ££ ~ £ (d) bf.~ b 
(b) b ~ b +b (e) Eb ~ b 
(c) (£a +£b)(cd8+8) ~ (a(c+8)d+bc(d+d))8 (f) abc+abd ~a(bc+bd) 

The parts of the automaton belonging to (a),(b),(c) and (f) are drawn in figure 4-6. A dotted line 
indicates that a pair of states is in the bisimulation relation. Furthermore, a state is always related to 
itself. In showing that two states are related, only the states that can be reached from these states are 
relevant and therefore only these states are drawn. 

b b+b 

(a) (b) 

FIGURE 4 

In figures 5/6 two separate automata are drawn instead of a combined one, to make the pictures 
clearer. 
In figure 6 the states a(bc + bd) and E(bc + bd) in the right transition system cannot be related to any 
of the states in the left transition system. 



9 

(£a +dJ)(cd8+8) .. 

a b 

£(cd8+8) .. •::::::::: ..... £c(d+d)a 

c c c 

.. , ::::::::: ............ . 

d 

.................... 

FIGURE 5 (example 4.4(c)) 

? ................... ·· a(bc+bd) 

a 
a 

b 

.. ~~- ... ::·.·.·.·.·.·.·.·.·.·.· ... ? .................. . b 

b 

dJc 

. . . . . . . . . . . . . . . . 
£C 

v 
.. 8 

FIGURE 6 (example 4.4(f)) 

5. COMPOSITIONAL TRANSITION SYSTEM SPECIFICATIONS 

TSS's do not always generate automata for which strong bisimulation is a congruence. A number of 
examples will follow in the sequel. But if the rules in TSS satisfy the format below (and an additional 
small technical requirement is met), strong bisimulation will turn out to be a congruence. 

5.1. DEFINITION. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. A rule in R is in tyft for­
mat if it has the following form: 

{t;~y; lie!} 
f(xi, .. ,Xrif))....f!.7t 

with I a finite index set, fa function name from F, x; (1 ~i ~r(f)) and y; (i e/) are all different vari­
ables from V, a;,aEA and t;,teT(~, V) for ie/. 

A rule in R is in tyxt format if it has the following form: 

{t;~y; lie!} 
x....!!7t 

with I a finite index set, x,y; (i e/) all different variables from V, a;,a EA and t;,t ET(~, V) for i el. P 
is in tyft!tyxt format if all the rules in Rare in tyft!tyxt format. A transition system is called tyft!tyxt 
specifiable if it can be specified by a TSS in tyft! tyxt format. 



10 

5.2. NOTE. Observe that there does not have to be any relation at all between the premises and the 
conclusions in a rule satisfying our format. In fact our format explicitly requires the absence of cer­
tain relations between occurrences of variables in the premises and in the conclusion. Note that not 
only the TSS P(BPAD of example 3.4 is in tyft!tyxt format, but also any TSS obtained from 
P(BPA~) by dropping some arbitrary rules. The transition system specifications related to term 
rewriting systems (see example 3.5) are in general not in tyft!tyxt format. 

5.3. ExAMPLE. Below we describe a TSS that models a simple typewriter that can be used to type 
strings and that has the option to delete the last character of the typed string using 'backspace'. The 
signature consists of the binary function name * denoting concatenation, constant names A (empty 
string) and a,,l, .. ,y,z. As alphabet we take A = {a,t, .. ,y,z,A }. Here, A stands for a backspace. Rules for 
the typewriter can be given as follows: 

x4x*a for aE{a,t, .. ,y,z} 

a~A for aE{a,t, .. ,y,z} 

X*a~x for aE{a,t, .. ,y,z} 

This description of the typewriter is not in tyft! tyxt format, because the lhs of the last axiom contains 
two function names. A TSS for the typewriter in tyft!tyxt format is more involved. We need an auxi­
liary label empty, which denotes that an expression consists of the empty string. We also need more 
rules: 

x~x' 
y*x l\)y*x' 

x4x' y~y' 
X*J4X' 

for aE{a,t, .. ,y,z} 

for aE{a,t, .. ,y,z} 

for ae{empty,A} 

We leave it as an exercise to the reader to show that the identities A*t ~ t*A ~ t and 
(t1 *t2)*t3 ~ t 1 *(t2*t3) with t,t 1,ti,t3 closed terms over the signature of the typewriter, hold for this 
TSS. 

5.4. Circularity. A TSS with the rule: 

f(x,y2)4y1 g(x',y1)-4y2 

x~x' 

can be in tyft!tyxt format. However, we have a sort of circular reference. The particular form of y 1 
will, in general, depend on/(x,y2) and thus ony2 whiley2 depends on g(x',yi) and thus ony 1. We 
will exclude this type of dependencies, as they give rise to complicated TSS's. For this purpose the 
notion of a dependency graph is introduced. 



11 

5.4.1. DEFINITION. Let P =('}:.,A,R) be a TSS. Let S={t;~t;' I iEI} be a set of transitions of P. 
The dependency graph of Sis a directed (unlabelled) graph with: 

Nodes: U Var(t; ~t;'), 
iel 

Edges: { <x,y >Ix E Var(t;), y E Var(t;') for some i El}. 
A set of transitions is called circular if its dependency graph contains a cycle. A rule is called circular 
if the set of its premises is circular. A set of rules is called circular if it contains a circular rule. 
Finally, a TSS is called circular if its set of rules is circular. 

5.4.2. ExAMPLE. The dependency graph of the set of premises of the rule in section 5.4 is given in 
figure 7. The rule is circular since the graph clearly contains a cycle. 

~ 
x ------Yi Y2------x' 

~ 
FIGURE 7 

5.5. DEFINITION. Two TSS's P and P' are equivalent if TS(P) = TS(P'). 

Hence, two TSS's are equivalent if they have the same signature, the same set of labels and if the sets 
of rules determine the same transition relation. The particular form of the rules is not important. In 
example 3.4 for instance, we can replace rule 6 of table 1 by the rule: 

x46 y~y' 
xy~y' 

The resulting TSS P'(BPAU is equivalent to P(BPA~). The reason for this is that whenever P(BPAU 
proves a transition of the form t4t', t' will be syntactically equal to 6. Observe that P'(BPAU is 
not in tyft!tyxt format. We will come back to this in section 5.13. 

When dealing with closed terms, only the tyft format is necessary and the tyxt format is not needed. 
This is what the following lemma says. 

5.6. LEMMA. Let P =(~,A,R) be a (non circular) TSS in tyft!tyxt format. Then there is an equivalent 
(non circular) TSS P'=~,A,R') in tyftformat. 

PROOF. Let ~=(F,r0). Define R' by: 
every tyft rule of R is in R', 
for every tyxt rule rER and for every function name /EF, r1 is in R', where r1 is obtained by 
substituting/(xi, .. ,x70(f» for x in r with {xi. .. ,X70(f)} ~ V- Var(r). 

If the old tyxt rules were non circular, then the new rules will be non circular too and in tyft format. 
Suppose that t~t' is transition in TS(P). Then, by definition of TS(P) and lemma 3.3, there is a 
closed proof from P of this transition. Now one can easily see that this is also a proof for t~t' 
from P'. A similar argument gives that every transition of TS(P') is also a transition of TS(P). D 



12 

5.7. DEFINITION. Let P =(~,A,R) be a TSS and let r be a rule in R. A variable in Var(r) is called 
free if it does not occur in the left hand side of the conclusion or in the right hand side of a premise. 

5.8. DEFINITION. Let P =~,A,R) be a TSS. A rule rER is called pure if it is non circular and con­
tains no free variables. The TSS P is pure if all its rules are pure. 

5.9. LEMMA. Let P =(~,A,R) be a non circular TSS in tyft!tyxt format. Then there is an equivalent 
pure TSS P'=(~,A,R') in tyftformat. 

PROOF. By the previous lemma we can assume that P is in tyft format. Replace every rule with free 
variables by a set of new rules. The new rules are obtained by applying every possible substitution of 
closed terms for the free variables in the old rule. If the old rules were non circular and in tyft format 
then the new rules will be pure and in tyft format. Now, every closed proof T for a transition 
t 1 -1!.7 t 2 from P is also a proof for t 1 -1!.7 t 2 from P' and vice versa. D 

We now come to the first main theorem of this paper. It says that strong bisimulation is a congruence 
for all operators defined using a non circular TSS in tyft!tyxt format. 

5.10. THEOREM. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. If P is non circular and in 
tyft!tyxt format then "d'p is a congruence for all function names in F, i.e. for all function names fin F 
and all closed terms u;,V;ET(~) (I~i~r(f)): 

'Vi U; "d'p V; ~ f (ui, .. ,Ur(f)) tip f (vi, .. ,Vrif)). 

5.11. COUNTEREXAMPLES. Before we commence with the proof of this theorem, we present a number 
of examples which show that the condition in the theorem that the TSS is in tyft!tyxt format cannot 
be weakened in any obvious way. At present, we have no example to show that the condition that the 
TSS is non circular cannot be missed: we just have not been able to prove the theorem without it. 
However, circular TSS's are so exotic that we doubt whether they will ever be used. We can at least 
not think of an application. In section 7 it will be shown that circular rules are ill-behaved with 
respect to modularisation. 

5.11.1. ExAMPLE. The first example shows that in general the variables in the left side of the arrow in 
the conclusion must all be different. The crucial part of the example is a rule that one could call a 
syntactical tester. In case of the alternative composition, it tests whether the left and right argument 
of the + are syntactically identical. The TSS which we have in mind, is obtained by adding to 
P(BPA~) the axiom: x +x~8. We then have a e aE, but a+a ~a+aE as a and aE are not syn­
tactically equal. 

5.11.2. ExAMPLE. In general there may not appear more than one function name at the left of the 
transition predicate in the conclusion. Take the TSS P(BPAD extended with the axiom ab~8. As 
in example 4.4(b) b <Id' b + b, but in the new situation we do not have any more that ab <Id' a(b + b) as 
a(b + b) cannot do an initial ok-transition. Another example illustrating this point is obtained by 
adding the axiom x+(y+z)~8 to P(BPA~). Again we have be b +b, but now it is not the case 
that b +(b +b) <Id' b +b. As a last example of this kind we mention the typewriter of section 5.3. The 
first specification is not in tyft!tyxt format, because it contains the axiom x*a~x with* and a func­
tion names. Now A*a ea but a*(A*a) ~a*a. This problem does not arise in the tyft!tyxt version of 
the typewriter. 



13 

5.11.3. ExAMPLE. Our next example shows that in the premises the right hand side of a transition 
may contain no function names. We can add prefixing operators a:(.) to P(BPA~) for each a EAct and 
define the operational meaning of these operators with rules: 

If we now add moreover the rule: 

a:x ..l!.7x. 

x..i!.7£ 
x~8 

we have problems because a:f. ";fra:(f.·f.) even though f. ti f."f. (see example 4.4(a)). 

5.11.4. ExAMPLE. The variables at the right hand side of the arrows in the premises may in general 
not coincide. This is shown by adding the rule: 

x..i!.7y x'..i!.7y - - a=t=v 
x·x'~8 

to P(BPA~). Now a ti af., but aa ";fr(af.)a. 

5.11.5. ExAMPLE. If variables in the left hand side of the conclusion and the right hand side of the 
premises coincide, problems can arise too. Add the rule: 

x..i!.7y 
x+y~8 

to P(BPA~) and observe that f.f. ti f., but a+f.f. ";fra+f.. 

5.12. We now will prove theorem 5.10. 

PROOF. Let ~=(F,r) be a signature and let P=(};,A,R0) be a non circular TSS in tyft!tyxt format. 
We have to prove that tip is a congruence. Let R {;;;; T(};)X T(~) be the least relation satisfying: 

tip{;;;R, 
for all function names fin F and terms u;,V; in T(~) (for 1 :;;;;;,i :;;;;;,r(/)): 

(Vi u;Rv;) ~ f(ui. .. ,Ur<J>}Rf(vi. .. ,vr(f>)· 

It is enough to show that R ktip because from that it immediately follows that tip is a congruence 
for all fin F. In order to prove that R {;;;;tip it is enough to show that R is a bisimulation. For rea­
sons of symmetry it is even enough to show only one half of the transfer property: if u R v and 
u..l!.7p u' then there is a v' such that v..l!.7p v' and u'R v'. If u R v then by definition of Reither u tip v 
or, for some function name/in F: u f(ui. .. ,Ur<J» and v f(vi. . .,Vr<J>} with u;Rv; for all i. As tip 
trivially satisfies the transfer property, only the second option needs to be checked. Summarizing, we 
have to prove the following statement: 

Whenever P .. j(ui, .. ,u,.<J»4u' and u;Rv; for }:;;;;;,i:;;;;;,r(f) then there is a v' such that 
P .. f(vi, .. ,Vr<J»..l!.7v' and u'R v'. 

Lemma 3.3 says that there is a proof for f(ui, .. ,Ur<J))..l!.7u' that only contains closed transitions. We 
will prove the statement with induction on the structure of this proof. Lemma 5.9 allows us to assume 
throughout the proof that the rules in Ro are pure and in tyft format. 

Basis. Transition f (u 1, •• ,Ur<J))..l!.7u' has a proof tree consisting of a single node. Hence, there is an 
axiom r in R0 and a substitution o:V~T(};) such that o(r)=f(ui, .. ,Ur<J))..l!.7u'. This means that r is 
of the form f(xi. .. ,Xr(f))..l!.7t with X;EV for l:;;;;;,i:;;;;;,r(f) and !ET(~. V) such that o(x;)=U; and 
o(t)=u'. Now define a substitution o':V~T(}:.) by: 



14 

o'(x) = {~(x) 
if x=x; for l:S;,.i:S;,.r(j) 

otherwise 

Note that this definition is correct as all x; are different. Take v'=a'(t). The tree with a single node 
labelled f (v 1, .. , Vrif»-1!.7v' is a proof as O"(r)= f(v 1, .. , Vrif»-1!.7v'. We claim that u' R v'. By assump­
tion Var(t)~{xi. .. ,Xrif)} and a(x;)Ra'(x;) for l:S;,.i:S;,.r(j). Now the claim follows directly from the 
following fact. 

FACT. Let tET(~.V) and let a,a':V~T(~) be substitutions such that for all x in Var(t): a(x)Ro'(x). 
Then a(t)R a'(t). 

PROOF. Straightforward induction on the structure oft using the definition of R. D 

Induction. Assume that bf (ui. .. ,Ur<J»-1!.7u' with a proof of depth n > 1. Let r be the last rule used 
in the proof. Assume that r is equal to: 

{ t; -EL7 Yd i EI} 
f(xi. .. ,Xr(j'))-1!.7t 

It follows that: 1) f f 
2) a(x;)=u; for l:S;,.i:S;,.r(j) 
3) a(t)=u' 

Our aim is to use the ruler again in the proof of f(vi. .. ,Vr<J»4v' for some v' by finding a proper 
substitution o'. Define: 

o'(x;)=v; 

a'(x;)=a(x) 

for l:S;,.i:S;,.r(j) 

for x~XUY 

Here X={x; j l:S;,.i:S;,.r(j)} and Y={y; Ii EI}. Stepwise we will extend the definition of o' to elements 
of Y in such a way that for all variables x in V: o'(x) is defined ~ a(x) R o'(x ). Consider the depen­
dency graph G of the premises of r. Call a node of G coloured if a' is defined for this node (cq. vari­
able). So initially we are in a state where all nodes are coloured except for the ones in Y. We will 
colour these nodes one by one. In the process the invariant will be preserved that whenever a node is 
coloured, all its predecessors are coloured too. 
A term or transition is called coloured if all the variables contained in it are coloured. Hence, initially 
none of the transitions in {t; -!!i.7y; Ii EI} is coloured. In the process of colouring variables we also 
preserve the invariant that whenever a transition t/JE { t; -!!i.7yd i EI} is coloured, i.e. a' is defined for 
all variables of t/J, there exists a proof from P of a'(t/J). 
Now we first observe that with a complete colouring that satisfies the invariant properties, the induc­
tion step can easily be finished. Due to the last invariant properties there is a proof for o'(X;) for all 
premises Xi of r. Now construct a new proof with as root a'(j(xi. .. ,Xr<J»4t) and as direct sub­
graphs the proofs of the o'(X;). Define v'=a'(t). Oearly, we have a proof for f(vi. .. ,Vr<J>}4v'. We 
may also conclude that for all xE Var(t): o(x)R a'(x). By an application of the previously proved fact 
it follows that a(t)R o'(t) or equivalently u' R v'. This completes the induction step except for the 
proof that a complete colouring exists. 
In order to do this, it is sufficient to show that whenever we have a colouring which satisfies the 
invariant properties and in which only some nodes in Y are not coloured, we can extend this colour­
ing with one element, while preserving the invariant. Let X' be such a colouring. We claim that there 
is some i El such that t; is coloured but y; not. In order to see that this is true, assume that there is no 
such i. It cannot be that for some j El, Jj is coloured, but tj is not coloured, because that would con­
tradict with the assumption that all predecessors of a coloured node are coloured, too. Hence, we can 
partition I in two sets. le= U I tj and Jj are coloured} and Inc= U I tj and Jj are not coloured}. By 
assumption Inc is non-empty. In the dependency graph Geach element in Inc has an incoming edge 



15 

from some element in Inc· Hence, G contains a cycle and we have a contradiction. So let i el with ti 
coloured but Yi not coloured. We have that P proves the transition a(ti)....!!l.7a(yi) with a proof of depth 
less than n and furthermore a(ti)Ra'(ti) because for all variables xeVar(ti) o'(x)Ra'(x) (use the pre­
viously proved fact). By definition of R we can distinguish between two cases: 
1) a(ti) 'rlp a'(ti). In this case there is a weT(};) such that Pr a'(ti)...!!L.7w and a(yi)R w. This of 

course means that we can extend the definition of a' to Yi by taking a'(yi)=w. One can easily 
check that the invariant properties of the colouring are preserved. 

2) There is a function name gin F and there are terms wj, w/ for 1 ~j ~r(g) such that: 

a(tj)= g(w1 , .. , Wr(g»• 

a'(tj)=g(w1', .. ,Wr(g)') and 

wjR w/ for I~j~r(g). 

But now we can apply the induction hypothesis which gives that there is a w such that 
Pi- g(w1', .. ,Wr(g)')....!!l.7w and a(yi)R w. Again we can extend the definition of a' to Yi by taking 
a'(yi)=w and it is easy to check that the invariant properties of the colouring are preserved. 

This completes the proof of the induction step. D 

5.13. The implication in theorem 5.10 cannot be reversed. The TSS P'(BPA~) described in section 5.5 
is not in tyft!tyxt format. But, as observed in that section, it is equivalent to the TSS P(BPAO which 
is in tyft!tyxt format. Hence, bisimulation equivalence is clearly a congruence. However, if one adds 
new operators and rules to P(BPAU, then the congruence property can get lost, even if the rules for 
the new operators satisfy our tyft!tyxt format. In order to see this, consider the TSS obtained by 
adding to P'(BPA~) encapsulation or restriction operators aH for H c;:Act and the tyft rules: 

x-4x' 
OH(x)-4oH(X') 

We then obtain a 'rl a{b}(a), but a·b 't/2 a{b}(a)-b. 

aff.H 

5.14. A different type of counterexample is given by a TSS P with constant names a,b and 8, a binary 
function name f, labels a,b and c and rules: 

a-48 

b-48 

b-48 

f(a)...E..78 

The last rule is not in tyft!tyxt format, but it is not hard to see that 'rlp is a congruence. It is also not 
possible to write the above system as a TSS in tyft!tyxt format. If it were possible we would at least 
need a rule: 

f(x)...E..78 

But then we risk that f(b)48. We have to distinguish between a and band we can only use the 
premises. But this attempt also fails as b can pedorm every action that can be pedormed by a. Again 
we have that adding tyft!tyxt rules may destroy the congruence property (take the axiom a-48 or 
c-48). Note that the example becomes less trivial if we add an extra constant name c and axioms 
c...!!.78 andf(c)...E..78. Again, this constitutes a counterexample. 



16 

5.15. REMARK. The examples of sections 5.13 and 5.14 show that there is another reason for using 
TSS's in tyft!tyxt, namely their extensibility, without endangering congruence properties. It seems 
that, whenever a TSS contains a non tyft!tyxt rule, we can extend this TSS (except for some trivial 
cases) with a number of tyft!tyxt rules in such a way that for the resulting TSS bisimulation is not a 
congruence. 

6. SOME APPLICATIONS 
In this section we give some examples of TSS's and applications of the congruence theorem. 

6.1. The silent move. In process algebra it is current practice to have a constant T representing an 
internal machine step that cannot be observed. In order to describe the 'invisible' nature of T, the 
notions of observational congruence [21] and rooted-T-bisimulation [7] have been introduced. As 
observed by VAN GLABBEEK [13] it is not necessary to introduce a new notion of bisimulation if one 
uses TSS's. Below the signature ~(BPAD is enlarged with a constant name T and rules are given that 
capture the notion of hidden, internal machine steps. 
P(BPA:a)=(~(BPA:a),Act,.y ,R(BPMa)) with Act,.y =Act v U { T }. R(BPA:8) consists of the combina­
tion of the rules in table I (but now a ranges over Act,.y) and table 2 (where a also ranges over 
Act,.y). 

7. a4T a=t=-v 

8. x4l ,!'.-4Z 
x4z 

9. x-4,!'. ,!'.4z 
x4z 

TABLE 2 

An intuition one can have about a transition 4 (a=/=-T) is that one can see that a happens within a 
certain positive time interval. Then -4 means that no visible action can be observed during such an 
interval. Rule 8 and 9 fit naturally in this intuition. Rule 8 expresses that if one can observe a during 
a first time interval, and nothing in a subsequent second interval, then one observes a during the 
whole interval. For rule 9 one can have a same sort of intuition. For an action one can have the 
intuition that the execution of a process a takes a certain positive amount of time, but that observa­
tion of this process takes place at a particular moment, for instance at the beginning. Rule 7 then 
says that when we observe that a happens, it is still possible that some internal activity takes place 
before it terminates. The TSS P(BPA:8) is in tyft!tyxt format and (strong) bisimulation is a 
congruence. The theory BPA;8, given in table 3 with a ranging over elements from Act.,., is a sound 
and complete axiomatisation of the semantics generated by the TSS P(BPA:8) modulo strong (!) 
bisimulation. 
In figure 8-10 we give three examples corresponding to the T-laws of MILNER [21]. In figure 8 two 
separate transition systems are drawn. In figure 8 and 10 a may not equal T. In figure 9 the relevant 
states of T+f: and Tare drawn, as the equation T+f:=T is equivalent to the axiom T2. It is left to the 
reader to check that the expressions are strongly bisimilar. 



BPN°a x+y=y+x Al 
x +(y +z) = (x +y)+z A2 
x+x = x A3 
(x +y)z = xz +yz A4 
(xy)z = x(yz) AS 
x+6 = x A6 
Bx= 6 A7 
a= x A8 
Xf: = x A9 

TABLE 3 

aT = a 
TX +x = TX 
a(TX +y) = a(TX +y)+ax 

TI 
T2 
T3 

17 

6.2. Recursion. There are many ways to deal with recursion in process algebra. One approach is to 
introduce a set E: of process names. Elements of E: are added to the signature of the TSS as constants 
names. The recursive definitions of the process names are given by a set E = { X <==tx I X EE:} of 
declarations. Here the tx are ground terms over the signature of the TSS (hence, they may contain 
process names in E:). If X <==tx is a declaration, then this means that the behaviour of process X is 
given by its body tx. Formally this is expressed by adding to the TSS rules: 

tx~Y 
X~y 

for every declaration X<==tx. Now observe that these rules fit in the tyft format. Hence it follows that 
if one adds recursion to a TSS in tyft!tyxt format as described above, bisimulation remains a 
congruence. 

A slightly different way of dealing with recursion is followed in [16,24]. Here axioms X...!.7tx 
appear saying that by some internal activity, a process name can expand to its body. Also this type of 
rules satisfy our format. 

6.3. Consider the TSS P(BPA;8) of example 6.1. In this system Ta <rjZa as one can easily see by 
remarking that a cannot perform an initial T-transition. The inequality is generally defended by a 
congruence argument: 'If Ta tt a then by congruence one would expect that b +Ta tt b +a, but this 
is intuitively not the case as only the left side can deadlock if action a is blocked but b not'. By 
adding the rule x ...!.7x' to P(BPA;8), it follows that indeed Ta tt a. By the congruence theorem it fol­
lows immediately that b +Ta t:t b +a. 

6.4. The state operator. In many cases where operational semantics of a language is defined using Plot­
kin style rules, values play a role (see for instance [2, 27]). Here, states of the transition system are 
generally configurations, i.e. pairs <t, a> of a process expression t and a valuation a. In this section 
we argue that it is often possible to give inductive rules for these languages in a single sorted setting 
using the extended state operator A,, of ACP [3]. 
We will define the state operator in the setting of BPA~ as given in section 6.1. Assume that Sis a 
set of states. An expression A,,(t) with aES and tan expression in which state operators may occur, 
represents the process that transforms the state a during successive transitions of t using a function 
effect :S XAct.,. XAct.,.-»S while influencing the actual labels of the transitions of t as specified by a 
function action :Act.,. X S-»2'4-ct,. action (a,a) defines the set of actions that may be done in state a by 
A,,(t) if t can perform a. effect(a,a,b) defines the resulting state if A,,(t) actually transforms under b 
while t performs a. Note that the extra argument b is necessary as the action function defines a set of 
possible actions that can be performed by A,,(t). The environment can determine which action from 
this set actually happens. The functions effect and action are inert for T, i.e. action(T,a)={T} and 
effect(a,T,a)=a for every a eAct.,.. The inductive rules for the state operator are (aeS; a,b eAct.,.): 



'18 

a 

T T 

( 

v 
T 

l) 

FIGURE 8 (a = a-r) 

T+! T 

a(-rx+y)+ax 

T 

FIGURE 10 (a(-rx+y) = a(-rx+y)+ax) 

A,,(x)~Aejfect(a,a,b)(x') 
x~x' 

A,,(x) ;; ) A,,(x') 

beaction(a,a), a=f=.V 

QT 

v 

l) 
v 

As a typical example we consider a small subset of CSP. Actions in Act are of the form: g!e, g?v or 
[v: =e] with v from a set of variables er and e a natural number expression which may contain vari­
ables from er and natural numbers with their usual operations such as +, - , X. g !e means 'write the 
value of expression e to channel g, g ?v means 'read a value from channel g and assign this value to 
variable v' and [v:=e] means: 'assign the value of expression e to v'. We assume that we have an 
interpretation function [ ·] that, given a valuation a of the variables, yields for each expression a 



19 

natural number. We take as state space S all valuations o:'V---,)JN. Let o[n/v] be the valuation o 
except for the fact that variable vis mapped on n. Now we can define the function action and effect as 
follows: 

action(o,g!e) = {g![e]a} 
action(o,g?v) = {g?n lnEJN} 
action(o, [v :=e ])= { T} 

effect(o,g!e,g!n) = o 
effect(o,g?v,g?n) = o[nlv] 
effect(o, [v :=e], T) = o[[e]a Iv] 

The function effect is inert in the remaining cases. Now consider a process that is capable of reading a 
value from channel g 1 and sending its square to channel g 2 : 

A,,(g1 ?v·[w: =vXv]·g2!w) 

A particular sequence of transitions that can be performed by this process is: 

A,,(g1 ?v·[w: =v Xv ]·g2!w)~A,,c31v1(E·[w: =v Xv]·g2!w)-!7 

A,,c31v, 9/wj(E·g2 !w) ~ A,,c31v, 9/wj(E)-4 Aae3tv, 9/wj(8) 

It is not hard to see that BPA;11 with the state operator can be extended with a parallel combinator, 
for instance the parallel operator from ACP. Then, communication can be defined such that we have 
value passing between several processes. We will not give a detailed elaboration of this as it is beyond 
the scope of this article. However, we would like to stress that some sense the extended state operator 
is more powerful than the approach with a global state using configurations. The extended state 
operator can in a very natural way be used to model that certain data are local to some processes. 

7. MODULAR PROPERTIES OF TRANSITION SYSTEM SPECIFICATIONS 

A very natural operation on TSS's is to take their componentwise union. Given two TSS's Po and P 1 
we use the notation P 0 E0P 1 to denote the resulting system. A nice property to have in such a situa­
tion is that the outgoing transitions in TS(P0 ) of terms in the signature of P0 are the same as the 
outgoing transitions of these terms in TS(P0 E0P 1). This means that P 0 E0P1 is a conservative exten­
sion of P 0 : any property which has been proved for the states in the old transition system remains 
valid (for the old states) in the enriched system. 
In this section we study the question what restrictions we have to impose on P 0 and P 1 in order to 
obtain conservativity. First we give the basic definitions. 

7.1. DEFINITION. Let ~;=(F;,r;) (i =O, 1) be two signatures such that /EFo nF1 ===? r 0(/)=r1(/). The 
sum of ~ and ~1 • notation ~ E0 ~1 • is the signature: 

~0€0~1 =("2--0U~i.'Afif fEFo then ro(/) else r1(/)). 

7.2. DEFINITION. Let P;=(~;,A;,R;) (i =0, 1) be two TSS's with ~€0~1 defined. The sum of Po and 
P., notation P 0 E0Pi. is the TSS: 

PoE0P1 =(~E0~i.Ao UA i,Ro UR1). 

7.3. DEFINITION. Let P;=(~;,A;,R;) (i=O,l) be two TSS's with P=P0 E0P 1 defined. Let 
P =(~,A,R). We say that Pisa conservative extension of P 0 and that P 1 can be added conservatively 
to P0 if for all sET(~0), aEA and tET(~): 

Pr s...!!7t <=> P 0r s...f!7t. 

Note that the implication Pr s ...9..7 t <= P 0 r s ...9..7 t holds trivially. The following example illustrates 



20 

the use of conservativity: 

7.4. ExAMPLE. Let P;=(~;,A;,R;) (i =0,1) be two TSS's with P=P0 $P 1 a conservative extension of 
P0 • Then P is also a conservative extension of P0 up to bisimulation, i.e. for s,tET(~0): 

7.5. COUNTEREXAMPLES. We want to study the question in which cases a TSS P 1 can be added con­
servatively to a TSS P 0 • However, we will restrict ourselves to the case where both Po and P 1 are in 
tyft!tyxt format. Below, 5 examples are presented that illustrate situations where we do not have con­
servativity. 

7.5.1. ExAMPLE. If P 1 has a rule with a function name that already occurred in ~o in the 1hs of the 
conclusion, then problems arise quite soon. If P 0 =P(BPA~) and P 1 contains a single rule: 

x+y~8 

7.5.2. ExAMPLE. Conservativity can get lost if free variables occur in a premise of a rule in P0 • In 
order to see this consider the TSS P0 with unary function name a:, constants b, c, a label a and rules: 

a:x..l!7x 

b..l!7b 

x..l!7y 
c4y 

It is not hard to see that b ~ c. However, if we add a constant name d, a label d and rule d ~d it 
follows that b <ft c. 

7.5.3. ExAMPLE. Conservativity can get lost also if free variables occur in the conclusion of a rule in 
P 0 • Suppose the signature of P 0 consists of a constant symbol a and a unary function name f The set 
of labels consists of a and there are two axioms: 

a4a 

f (x)4y 

It is not hard to see that a~p0 f(a). However, if we add a TSS P 1 which contains an axiom b-4b, 
then a <f!p

0
$P, f (a). 

7.5.4. ExAMPLE. Conservativity can be violated if we add tyxt rules to a given TSS Po as it allows us 
to add new transitions to states in the transition system TS(P0 ). It even threatens conservativity up 
to bisimulation if we add tyxt rules with labels in the conclusion that already occurred in A 0 • Let Po 
consist of P(BPA~) together with the rule: 

x~x' 
x+y~x' 

In P0 we have E ~ E+E. This is no longer true if we add a TSS which contains a single axiom 
x~x. 
Another example of this kind is given by the rules 8 and 9 in table 2. Consider P (BPAU to which 
rule 7 has been added. None of the T-laws hold in this system. If rule 8 and 9 are added they do. 
Hence, these rules do not preserve conservativity up to bisimulation. 



21 

7.5.5. Ex.AMPLE. Our last example shows that circularities in P0 can disturb conservativity. Suppose 
P 0 consists of P(BPA~) and a circular rule: 

x1+y1~Y2 x2+y2~Y1 
X1 +x2~Y1 +y2 

It is not hard to see that £ttp
0 
£+£.However, adding a TSS P 1 with a single axiom ok~ok makes 

that f.~p.ff>p, £+£. 

The next theorem shows that the examples above give a complete overview of the situations in which 
we do not have conservativity. 

7.6. THEOREM. Let P0 =(~o,Ao,Ro) be a TSS in pure tyft!tyxtformat and let P 1 =(~i.Ai.Ri) be a 
TSS in tyft format such that there is no rule in R 1 that contains a function name from ~o in the left hand 
side of its conclusion. Let P = P 0 $P1 be defined. Then P 1 can be added conservatively to P 0• 

PROOF. Let P=(~,A,R). Let sET(~0 ), aEA and s'ET(~) with P'r- s~s'. Let T be a proof of 
s~s' from P. With induction on the size of T we prove that T is also a proof of s~s' from P0 • 

Let r be the last rule which is used in T. Because sET(~) and all rules of P 1 are in tyft format and 
contain no function names from ~o in the left hand side of their conclusions, r must be a rule in P 0 • 

Suppose r is in pure tyft format (the case that r is in pure tyxt format is completely analogous and 
omitted). Suppose in particular that r is equal to: 

{t; ..i!L7y; Ii EI} 
f (xi, .. ,Xr(f»~t 

Let a be the substitution that relates ruler to the last step in proof T and let {s; ..!!t.7s;' Ii El} be the 
set of labels of nodes directly above the root of T. We then have: 

a(t;)=s;, 

a(Y;)=s;', 

a(f(x 1'··,Xr(f))=s, 

a(t)=s'. 

Now we use the same type of strategy as in the proof of theorem 5.10. Call a variable x in Var(r) 
coloured as soon as it is shown that a(x) is in T(~0). Because sET(~o) and a(j(xi, .. ,Xrif))=s, all 
variables xi. .. ,xn are coloured. Now if r does not have a premise containing a variable that is not 
coloured, we are ready: by induction the proofs of transitions s; ..-f!i.7s;' are proofs from Po and since t 
contains no free variables a(t)=s' is in T(~). Hence T is a proof from P 0 • If r contains a premise 
with a variable that is not coloured, then, due to the fact that r is non circular and contains no free 
variables, there must be a premise t; ..-f!i.7 y; with all variables in t; coloured but y; not coloured. But in 
that case we can apply induction: since s;=a(t;)ET(~0), s;'=a(Y;)ET(~o) too, because P'r-s;..-f!i.7s;' 
with a proof smaller than T. Thus we have a coloured y;. This argument can be iterated until all vari­
ables in Var(r) are coloured. D 

7. 7. In our view the counterexamples which show that the original system has to be pure and no rule 
from the added system may contain a function symbol from the original system in the 1hs of its con­
clusion are quite strong. It will be very difficult to strengthen theorem 7 .6 by weakening these con­
straints, perhaps with exception of the constraints about circularity. Because modularity is an impor­
tant and desirable property and because TSS's which are not pure are ill-behaved with respect to 
modularisation, one might decide, for this reason, to call such TSS's unstructured. 
The main reason we had for including theorem 7.6 in this paper is that we need it in the next section. 



22 

It is clear that a lot more can be said about modular properties of TSS's than we have done here. 
Especially, if one is satisfied with conservativity up to bisimulation, it seems possible to include 
(under certain conditions) tyxt rules in the extending TSS. However, we want to leave this as a topic 
for future research. 

8. COMPLETED TRACE CONGRUENCE 
In this section we study the completed trace congruence induced by the pure tyft! tyxt format. Intui­
tively, two processes s and t are completed trace congruent if for any context C[] which can be 
defined using the pure tyft!tyxt format, the completed traces of C[s] and C[t] are the same. It seems 
reasonable to require that, whenever new function names and rules are added to a TSS in order to 
build a context which can distinguish between terms, these new ingredients may not change the origi­
nal transition system: the extension should be conservative. If it would be allowed to introduce new 
transitions in the original transition system, then we could add rules like: 

x~x',y~y' 
x+y l'm(s+t»x'+y' 

and make that syntactically different terms always have outgoing transitions with different labels. As a 
result completed trace congruence would just be syntactic equality between terms. 
The results of the previous section show that for a TSS in tyft!tyxt format it is in general rather 
difficult to determine a class of TSS's which can be added to it conservatively. Consequently it is also 
difficult to characterize the completed trace congruence induced by this format. However, for TSS's in 
pure tyft!tyxt format such a class exists: by theorem 7.6 every TSS in tyft format can be added con­
servatively to a TSS in pure tyft!tyxt format. For this reason we decided to work on a characterization 
of the completed trace congruence induced by the pure tyft!tyxt format and leave the general tyft!tyxt 
format for what it is. We think that this is not a serious restriction because: 

We have never seen an application of a TSS with circular rules or rules with free variables. 
Absence of circularities is used anyhow in the proof of theorem 5.10. The proof of lemma 5.9 
shows that for every non circular TSS in tyft! tyxt format there exists an equivalent TSS in pure 
tyft! tyxt format. 
TSS's in tyft!tyxt format that are not pure, are ill-behaved with respect to modularisation and 
therefore not much effort should be spent in proving theorems about them. 

8.1. DEFINITION. Let <'.e=(S,A,-7) be a LTS and let sES. sis a termination node, notation s-/-7, if 
there are no t ES and a EA with s 4 t. A sequence o EA* is a completed trace of s if there are actions 
ai,a2, .. ,anEA with o=a1*a2* .. *an and states si.s2, .. ,SnES such that s~s1 ....f!.i..7 .• ...f!.7sn-l-7· CT(s) 
is the set of all completed traces of s. Two states s,tES are completed trace equivalent if 
CT(s)=CT(t). This is denoted as s=.cTI. 

8.2. DEFINITION. Let <F be some format of TSS rules. Let P =(~,A,R) be a TSS in <F format. Two 
terms s,tET(~) are completed trace congruent with respect to <Frules, notation s-<fft, if for every TSS 
P'=(~',A',R') in <Fformat which can be added conservatively to P and for every ~$~'-context C[]: 
C[s] =cT C[t ]. s and t are completed trace congruent within P, notation s -pt, if for every ~-context 
C[]: C[s]=.cTC[t]. 

8.3. NOTE. In the sequel we will define a number of equivalence relations on the states of transition 
systems. If P =(~,A,R) is a TSS and s,t are terms in T(~) then, whenever we say that s and tare 
equivalent according to a certain equivalence relation, what we mean is that the states s and t of the 
transition system TS (P) are equivalent according to this relation. 



23 

8.4. ABRAMSKY [l] and BLOOM, ISTRAIL & MEYER [10] give Plotkin style rules to define operators 
with which one can distinguish between any pair of non-bisimilar processes. We cannot obtain this 
result with pure tyft!tyxt rules, but we will show that the notion of completed trace congruence with 
respect to pure tyft!tyxt rules exactly coincides with 2-nested simulation equivalence for all image finite 
processes. What we in fact will prove is best illustrated by figure 11. 

=pure tyft I tyxt 3 (IF) 4 

Figure 11 

The arrows indicate set inclusion. 'IF' stands for Image Finite and indicates that we need image finite­
ness of processes for the proofs of inclusions 3,5 and 6. ~m ism-nested simulation equivalence. -i;. 

is the equivalence induced by the set fni of Hennessy-Milner formulas in which no negation symbol-, 
occurs nested m times or more. In the right comer of figure 11 we have an auxiliary equivalence 
notion 1vf". In the rest of this section these notions are made precise and the inclusions are proved. It 
immediately follows that both triangles collapse for image finite transitions systems. In particular we 
have the following theorem. 

8.4.1. DEFINITION. Let &=(S,A,--7) be a LTS. &is called image.finite if for all SES and aEA the set 
{ t I s ...!!..7 t} is finite. 

8.4.2. THEOREM. Let P =(~,A,R) be a TSS in pure tyft!tyxt format such that TS(P) is image finite. 
Let s,tET(I). Then: 

s ~ure tyft!tyxt t tj s~2 t tj s ....,e. t. 

8.4.3. Bloom, Istrail & Meyer have studied the completed trace congruence induced by 'tree rules'. 
Tree rules differ from pure tyft!tyxt rules in that they may only have variables in the premises and 
there may not be a single variable in the left hand side of a conclusion. Hence, one could also call this 
type of rules 'pure xyft rules'. They proved the following theorem [9]: 

8.4.4. THEOREM (BLOOM, IsTRAIL & MEYER). Let P =(~,A,R) be a TSS in tree rule format such that 
TS(P) is image.finite. Let s,tET(~). Then: 

S =tree rules t tj S "'e. t. 

This result, which is close to our characterization theorem, has not been published. A sketch of the 
proof is included at the end of this section. We were aware of the result of Bloom, Istrail & Meyer 
before we proved the characterization theorem for the pure tyft!tyxt format. However, all proofs in 
this section are entirely our own. 



24 

8.5. Here definitions are given of m-nested simulation equivalence (~m). Further inclusion 1 is proved. 

8.5.1. DEFINITION. Let Ci=(S,A,--7) be a LTS. A relation R CS XS is called a simulation if it 
satisfies: 

whenever s Rt and s~s' then, for some t'ES, also t~t' and s'R t'. 
s can be simulated by t, notation s St, if there is a simulation containing the pair (s,t). s and t are 
simulation equivalent, notation s~t, ifs St and t s;.s. 

8.5.2. DEFINITION. Let Ci=(S,A,--7) be a LTS. We define a sequence of relations sm (m;;a.O) as fol­
lows: 
i) s0 =SXS, 
ii) A relation R C S X S is an m + I-nested simulation if it is a simulation contained in ( S m)- 1• 

State s can be simulated m + I-nested by state t, notation s Sm + 1 t, if there exists an m + I-nested 
simulation containing the pair (s,t). . 

Two states s and t are m-nested simulation equivalent, notation s ~m t if s Sm t and t Sm s. 

Observe that I-nested simulation equivalence is the same as simulation equivalence. 

8.5.3. LEMMA. For m;;a.O, ~m+l c;; s;_m+l c;;~m. 
PROOF. Straightforward using the definitions. D 

8.5.4. ExAMPLE. For every m;;a.O we can find processes that are m-nested similar, but not m + 1-
nested similar. Consider the TSS P(BPA~). Let the processes sm,tm be defined for each m;;a.O as fol­
lows: 

so =c8 to =c8+M 

Sm+l =atm lm+I =asm+atm 

Below in figure I2 a part of the transition system is displayed (some £'s are dropped): 

~
s 

a a c 
a a 
~~~8 

2 11 0 b 

FIGURE I2 

One can easily prove that: Sm ~m tm and Sm ¥f' + 1 Im for each m ;;;;.o. 

8.5.5. ExAMPLE. It is well known that simulation equivalence does not respect completed trace 
congruence. Take for instance the processes s 1 and t 1 of the previous example. Now put them in the 
context a{c}([]) where a{c} is the encapsulation operator as defined in section 5.13. The completed 
traces of these processes clearly differ: CT(a{c}(a(c8+M)))={a*b} and CT(a{c}(ac8+a(c8+M))) = 
{a,a*b}. In fact simulation equivalence doesn't even refine completed trace equivalence. Take for 
example the simulation equivalent processes a and a8+a. The maximal trace sets are {a*V} and 
{ a,a* v'}, respectively. However, it is not hard to see that for m ;;;;.2, m-nested simulation equivalence 
refines completed trace equivalence. 



25 

8.5.6. LEMMA. Let ~=(F,r) be a signature and let P =(~,A,R) be a TSS. If P is non circular and in 
tyftltyxt format, then 't:::f' (m ;;;;i:O) is a congruence for all function names in F. 
PROOF. Completely analogous to the proof of theorem 5.10 and left to the reader. D 

The next theorem states the validity of inclusion l. 

8.5.7. THEOREM (inclusion 1). Let P=(~,A,R) be a TSS that is in pure tyftltyxtformat. Then: 

t::l- k =pure tyftltyxt• 

PROOF. Let s,tET(~) with s'bj.2 t. Let P'=(~',A',R') be a TSS in pure tyft!tyxt format that can be 
added conservatively to P and let C(] be a ~$~'-context. Since P©P' is a conservative extension of 
P, s'bj.2 tin TS(P$P'). Now we use that t::l- is a congruence for operators in pure tyftltyxt format 
(lemma 8.5.6) and get C[s ]t=l- C(t ]. Since 'bj.2 refines completed trace congruence: C[s] =er C[t ]. 
Because P' and C[] were chosen arbitrarily this gives us: s--pure tyftltyxt t. D 

8.6. Hennessy-Milner logic. Next we give the definitions of Hennessy-Milner logic (HML) and prove 
the second inclusion in figure 11. Most definitions are standard and can also be found in [17]. The 
notion of HML-formulas of alternation depth m seems to be new, although the set of HML-formulas 
of alternation depth l (the formulas without negation) is exactly the set '!)itof [17]. 

8.6.1. DEFINITION. The set e of Hennessy-Milner logic (HML) formulas (over a given alphabet 
A = { a,b,. .. }) is given by the following grammar: 

'f>:: = T I q,/\q, I ..,q, I <a>'f>. 

Let ~=(S,A,-7) be a LTS. The satisfaction relation 1= k sxeis the least relation such that: 
s 1= T for all sES, 
s 1=q,/\1f! i1f s 1=q, and s 1=1/J, 
s 1= ,q, i1f not s 1= q,, 
s 1= <a><P i1f for some t ES: s ..E..7t and t 1=q,. 

We adopt the following notations: 
F stands for ,T, 
q, V If! stands for ,(-,q,/\,lf! ), 
[a ]4' stands for -,<a>.'f>. 

It is not difficult to see that any HML formula is logically equivalent to a formula in the language e' 
which is generated by the following grammar: 

q,::=T IF I q,/\q, I q,Vq, I <a>'/> I [a]</>. 

8.6.2. DEFINITION. Let ~=(S,A,-7) be a LTS and let :IC be a set of HML formulas. With "'X we 
denote the equivalence relation on S induced by ~ 

S "'X t ** ('it'f>E~ S l='f> ** t l='f>). 

We will call this relation :IC formula equivalence. 

We recall a fundamental result of [17]: 



26 

8.6.3. THEOREM (HENNESSY & MILNER). Let ct=(S,A,--7) be an image finite LTS. Then for all s,tES: 

S ~I <=* S,...,e,t. 

8.6.4. DEFINITION. Form EN we define the set ~ of HML-formulas by: 
~is empty, 
~ + 1 is given by the following grammar: 

<P:: =-.1/l(for o/E~) I T I <P/\<P I <a><P. 

We leave it as an exercise to the reader to check that the equivalence induced by ~ formulas is the 
same as the equivalences induced by the sets ~ and ~ which are given by: 

X8=5QJ=0. 
~ + l is defined by: 

~ + 1 is defined by: 

q,::=t/J(for o/E~) I TI FI <P/\<P I <PV<P I [a]<P. 

8.6.5. ExAMPLE. Consider example 8.5.4. Define for m;;;a.I the formula CJ>m E~ by: cp1 =<b>T /\<c>T 
and CJ>m + l =<a hCJ>m. It is easily checked that for i ;;;a.Q: s; 11 cp; + 1 and t; I= cp; + 1• 

8.6.6. THEOREM (Testing ~formulas). Let Po =(~o,Ao,Ro) be a TSS in pure tyftltyxt format. Then 
there is a TSS P l = (~1,A l ,R l) in pure tyft format, which can be added conservatively to P 0, such that 
completed trace congruence within Po$ P l is included in ~formula equivalence. 

PROOF. P 1 is constructed in the following way. The set A 1 consists of A 0 together with 5 new 
labels: 

Al =Ao U { ok,left,right,syn,skip }. 

Signature ~1 contains a constant 8, unary function names a: for each a EA 1, and binary function 
names + and Sat. Remark that the signature is finite if the alphabet A 0 is finite. For 8 and + we 
have just the same rules as in BPA~ and a: denotes prefixing like in example 5.11.3. The most 
interesting operator is the operator Sat. Its first argument is intended to be a coding of some ~ for­
mula. The Sat operator tests whether its second argument satisfies the ~ formula which is represented 
by its first argument. The rules of the Sat operator are given in table 4. In the table a ranges over A 1• 

Because P1 is in tyft format, ~o n~1 = 0 and Po is pure tyftltyxt, it follows with theorem 7.6 that P 1 
is a conservative extension of P0 • 

Every formula is encoded using the following rules: 

CT=skip:8, 

C.pA1f=left:C.p +right:Ci/I, 

C-,.p=skip:C.p, 

C<a>.p=syn:a:C.p. 

We claim that for <PE~, Sat(C.p,t) has a completed trace ok iff t l=<f>. With this claim we can finish the 
proof: whenever for some s,tET(~0 $~1 ) with s 1-e, t, then there is an~ formula c/J() such that s l=c/1() 

and t Ii c/J() (or vice versa). Using the claim this means that Sat(C<1>o,s)::i=cT Sat(C<1>o,t). 
Now we give some intuition about how Sat(C.p,t) tests the formula <Pont. If we take <P=T, testing is 
straightforward: CT=skip:8 and skip indicates to Sat that it can do an ok step (rule 1). Hence, 



x~x' 
Sat(x,y) ~ Sat(x',y) 

x~x1, Sat(x1,y)~y1 
X~Xn Sat(XnY)~Yr 

Sat(x,y)~y1 +y, 

x ...!l!!7x', x' --5!7x" 
y--5!7y', Sat(x",y')~y" 

Sat(x,y)~y" 

TABLE 4 

2 

3 

Sat(skip:8,t)~Sat(8,t) and it is not hard to check that Sat(IJ,t) cannot do a next step. 

27 

Testing of A and <a> is almost as straightforward as testing the formula T and resembles the 
definition of 1=. The intuitive meaning of the constant names left:, right: and syn: is respectively: 
transform to the left/right part of a formula and synchronize the next action of the coded formula 
and the tested process. Testing -, contains a little trick. First, the positive part of a formula is tested, 
which possibly yields a first ok and then the negative parts are tested. This can give rise to another ok. 

For instance the test Sat(C....,q,,t) performs an initial ok step as its positive part is empty and then tests 
for the fi formula cf> whether t I= cf>. If there is no negative part that holds, the test does not yield 
another ok action and there is a completed trace ok. If a negative part is true, the test will yield 
another ok step and the ok trace is extended to the trace ok*ok, which is not ok because now 
ok~MT(Sat(C+,t)). Next we will give, in two lemmas, a formal proof of the claim. 

8.6.6.1. LEMMA. Let teT(~0 ED~1 ) and let f[>efi. Then: 
i) tt=cf> => CT(Sat(C+,t))={ok}, 
ii) t I' c/> => CT(Sat(C+,t))= 0. 

PROOF. Induction on the structure of cf>. 
a) cf> is T. Then tl=cf>. The only move of Sat(C+,t) is Sat(C+,t)~Sat(IJ,t)-1-7. Both implications 

hold. 
b) cf> is q,1A<f>2. If tl=cf> then tl=c/>1 and tl=<f>i. By induction CT(Sat(C+,,t))={ok} and 

CT(Sat(C+.,t))={ok}. Since all outgoing transitions of Sat(C+,t) are proved using rule 2 in 

table 4, one can easily see that CT(Sat(C+,t))={ok}. If on the other hand t I' cf> then either t I' cp1 

or tl'<f>i. Hence by induction either CT(Sat(C+,,t))=0 or CT(Sat(C+,,t))=0, thus Sat(C+,t) 

can have no outgoing transitions and CT(Sat(C+,t))= 0. 
c) cf> is <a>cf>'. If tl=cf> then there is at' such that t--5!7t' and t't=cf>'. By induction 

CT(Sat( C 4>', t')) = { ok}. Outgoing transitions of Sat( C+,t) can only be proved using rule 3 and 
inspection of this rule allows us to conclude that CT(Sat(C+,t))={ok}. If tl' cf> then for all t' 
with t--5!7t', t'I' cf>'. Hence by induction CT(Sat(C.,.,,t'))= 0. But this implies CT(Sat(C+,t))= 0 
since rule 3 cannot be applied. 0 

8.6.6.2. LEMMA. Let teT(~0 ED~i) and let q,eei_. Then: 

tt=cf> ~ okeCT(Sat(C+,t)). 

PROOF. =>)Induction on the structure of cf> 
a) cf> is -,1/J, o/efi. We have tl'ifl. By lemma 8.6.6.l CT(Sat(C"',t))=0. By rule 1: 



28 

Sat(Cq,,t)~Sat(C-4i,t). Hence okECT(Sat(Cq,,t)). 
b) cp is T. Rule 1 gives Sat(CT,t)~Sat(8,t)--f7. Hence okECT(Sat(Cq,,t)). 
c) cp is cp1 /\eh. Since t I= cp we also have II= cp1 and II= eh. By induction ok E CT (Sat( C q,, , t)) and 

okECT(Sat(Cq,,,t)). Since all outgoing transitions of Sat(Cq,,t) are proved using rule 2, one can 
easily see that okECT(Sat(Cq,,t)). 

d) cj>=<a>cj>'. Since tt=<a>cp', there is at' such that t-5!7t' and t't=<fl. Induction gives that 
okECT(Sat(Cq,•,t')). Hence there is a termination node t" such that Sat(Cq,•,t')~t". Now an 
application of rule 3 gives that okECT(Sat(Cq,,t)). 

<==) Induction on the st.--ucture of cp. 
a) cp is -,if!, apE!;. If Sat(Cq,,t) does a move, then the last rule applied in the proof must have been 

rule 1 and the transition must be Sat(Cq,,t)~Sat(C-4i,t). Because okECT(Sat(Cq,,t)), 
Sat(C-4i,t) can have no outgoing transitions. Since o/Efi., lemma 8.6.6.1 allows us to conclude that 
t Jo! if!. Hence t 1=cp. 

b) cp is T. Since t 1= T the implication holds. 
c) cp is cp1 /\<Pi. If Sat(Cq,,t) does a move then the last rule applied in the proof of this transition 

must have been rule 2. Since okECT(Sat(Cq,,t)), it must be that okECT(Sat(Cq,,,t)) and 
okECT(Sat(Cq,,,t)). But this means that we can apply the induction hypothesis to obtain tt=cp1 

and t t=<h. Hence t 1=cp. 
d) cp is <a>cj>'. If Sat(Cq,,t) does a move then the last rule applied in the proof must have been rule 3 .. 

So, because okECT(Sat(Cq,,t)), there are t',t" with t-5!7t', Sat(C4,t')~t" and t" a termina­
tion node. This implies that okECT(Sat(Cq,•,t')). By induction t't=cp'. Hence t 1=cp. 0 

Now the second inclusion follows directly: 

8.6. 7. COROLLARY (inclusion 2). Let P be a TSS in pure tyft!tyxt format. Then: 

=pure tyft I tyxt C "'"'f. · 

8. 7. In this section it will be shown that the inclusions 4,5 and 6 hold. As an immediate corollary it 
follows that inclusion 3 holds. 

8.7.1. THEOREM (inclusion 4). Let <!e=(S,A, --7) be a LTS. Then for all s,tES and mEN: 

sf:::(" t ~ s ""'t;., t. 

PROOF. Suppose that s <;;,. m t and s I= cp for some cj>E fin. We prove that t I= cp with induction on m. The 
case m =O is trivially ok. So suppose m >0. We prove t 1=cp with induction on the structure of cp. 
a) cp is -.if!, apE fin- I· By definition of s <;;,. m t we have t <;;,. m -1 s. Application of the induction 

hypothesis gives t Jo! if! and hence t 1= cp. 
b) cp is T. In this case t 1= cp trivially holds. 
c) cp is cp1 /\<Pi. From s 1=cp it follows that s 1=cp1 and s t=ch. By induction t 1=cp1 and t 1=cp. Hence, t 1=cp. 
d) cp is <a>cj>'. There exists ans' such that s-5!7s' and s't=cp'. Since s <;,.mt, there exists an m-nested 

simulation R containing (s,t). Hence, for some t'ES, t-5!7t' and s'R t'. Sos' <;,.m t'. By induction 
t' 1= cp' and thus t 1= cp. 0 

We define ~ and ~ as auxiliary notions. Roughly speaking, s ~ t means that s and t are m­
nested simulation equivalent to depth n. 1';:;.m is the intersection of 1v:;. W for all n. 



8.7.2. DEFINITION. Let te=(S,A,-7) be a LTS. Define relations £W k SXS by: 
s £6' t always, 
s s;g t always, 
s £::' 11

1 t iff t £::' + 1 s and whenever s ...!!.7s' then there is a t' such that t -5!7 t' and s' £::' + l t'. 
We write ~ t ifs £::' t and t £::' s, s 1v4" t if for all n: s ~ t, and s s;m t if for all n: s £::' t. 

8. 7.3. LEMMA. For all m,n ';;;!:0: £::' + l k £W and~+ l k ~. 
PROOF. Straightforward simultaneous induction on m and n. 

29 

D 

8.7.4. THEOREM (inclusion 5). Let &=(S,A,-7) be a LTS which is image.finite. Then for all s,tES and 
mEN: 

S "'f.. t ~ S ~m t. 

PROOF. Suppose that s gm t. We show that there is a f[>Ef,,, such that s 1=q, butt )I q, by induction on 
m. It cannot be that m =O. So take m >0. Since s gm t, there must be an n such that s g': t. With 
induction on n we show that there exists a q, such that s 1= q, but not t 1= q,. 
It cannot be that n =O. Taken >0. One reason whys gm t is that tg1J:- 1s. If this is the case then we 
can find by induction a lf.iEfm- 1 such that t t=lf.i and s )11/J. Hence s l=-,1/; (the formula -,1/; is in f,,,) and 
t Ii -,1/;. If t £W - 1 s, then it must be that for some a EA and s' ES with s ..!!.7s' we have that for all t' 
with t-5!.7t': s'g1J:_ 1 t'. Now a first possibility is that there is not' such that t-5!.7t'. In this situation 
s 1= <a> T, t Ii <a> T and we are done. The other possibility is that there is a nonzero, but due to the 
image finiteness, finite number of states ti, .. ,tp that can be reached from t by an a-transition. Since 
s' g1J:_ 1 t; for l.s;;;;i<.p, we have by induction that there are f[>;Ef,,, such that s't=<P; and t; Ii f[>;. Consider 
the f,,,-formula q,=q,11\..1\f[>p. Since s't=<P and t; Ii q,, s t=<a><P and tli <a><P. D 

8.7.5. THEOREM (inclusion 6). Let &=(S,A,-7) be a LTS which is image.finite. Then for all s,tES and 
mEN: 

PROOF. Suppose that s s;m t. With induction on m we prove that s <;;;. m t. The case m =O is trivial. So 
suppose m >0. We prove that s;m is an m-nested simulation relation. Whenever v s;m w then for all n, 
v £::' w. Hence by definition of s;m, w £W -1 v for all n. Thus w s;m -1 v and by induction w r;;. m -1 v. So 
the relation s;m is contained in the relation ( <;;;. m - l )- 1• It remains to be shown that s;m is a simulation 
relation. Suppose v s;m w and v 4v'. Since for all n >0, v £W w there is for each n a wn such that 
w4wn and v'£W- 1 Wn. Due to the image finiteness there must be a w* that occurs infinitely often in 
the sequence w 1, w2, ...• Because for all n £W- 1 ;d £::' by lemma 8.7.3, we have that for all n >0, 
v £W-1 w• and therefore v s;mw•. This concludes the proof that s;m is an m-nested simulation. D 

8. 7.6. COROLLARY. Let &=(S,A,-7) be a LTS which is image finite. Then for all s,t ES and m EN: 

s~m t $:> s~m t $:> s "'e.. t. 

8.8. Trace congruence. Using the above results, we can easily characterize the 'trace congruence' 
induced by pure tyft!tyxt rules as simulation equivalence or Et formula equivalence (for image finite 
LTS's). We just do the argumentation above over again for trace congruence instead of completed 
trace congruence. First the notion of trace congruence is defined. 



30 

8.8.1. DEFINITION. Let &=(S,A,~) be a LTS. A sequence aEA* is a trace of s if there are actions 
ai.a2, .. ,anEA with a=a1*a2* .. *an and states si.s2, .. ,snES such that s~s1 ~ .. ..l!a.7sn. T(s) is the 
set of all traces of s. Two states s,tES are trace equivalent if T(s)=T(t). This is denoted as s=Tt. 

8.8.2. DEFINITION. Let §'be some format of TSS rules. Let P =(2.,A,R) be a TSS in §'format. Two 
terms s,tET('2.) are trace congruent with respect to §'rules if for every TSS P'=('2.',A',R') in §'format 
which can be added conservatively to P and for every '2.$'2.'-context C[]: C[sl=TC[t]. 

In fact most of the work is already done. This can easily be seen if we look at figure 11, but instead 
of 2-nested simulation equivalence we now have (I-nested) simulation equivalence and instead of~­
equivalence ~ - equivalence. Inclusion 3 is already proved as the right triangle of figure 11 is proved 
for all m. Inclusion I follows by lemma 8.5.6 and the observation that simulation equivalence refines 
trace equivalence. Inclusion 2 can be proved using the same test system as in the proof of theorem 
8.6.6. 

8.9. Characterization theorem for tree rules. The characterization theorem 8.4.4 for tree rules of Bloom, 
Istrail & Meyer follows from theorem 8.5.7, corollary 8.7.6 and the following theorem 8.9.1. In fact 
this combination gives a result which is even stronger than the result of Bloom, Istrail & Meyer as we 
allow more general rules in the original system and our test system is finite if the alphabet of the old 
system is finite (they did not look at finite test systems for ~ formulas). The next theorem also 
strengthens theorem 8.6.6 because now only tree rules are used. But, as the proof of this theorem is 
rather tricky, we liked to give the simpler variant first. 

8.9.1. THEOREM. Let Po =('2.o,Ao,Ro) be a TSS in pure tyftltyxt format. Then there is a TSS 
P 1 =('2.1,Ai.Ri) in tree rule format, which can be added conservatively to Po, such that completed trace 
congruence within P 0 $P1 is included in~ formula equivalence. Moreover, if alphabet A 0 is finite, then 
the components of P 1 are finite too. 

PRooF (sketch). The alphabet A 1 consists of Ao together with 8 new labels: 

A 1 =Ao U { ok,ko, left,right,size,neg, <>,i }. 

'2.1 contains 8, + and prefix-operators a: for every a EA 1• In R 1 we find the usual rules for these 
operators. Furthermore '2.1 contains binary operators llH which model parallel composition with syn­
chronisation of actions in a set H <;;;;,A 1• For these operators R 1 contains rules (a EA 1): 

x4x' 
x11Hy4x'llHY 

x4x', Y4Y' 
xllHy4x'llHy' 

Y4Y' a<1.H 

a EH 

Next '2.1 contains a binary operator Sat which tests whether its second argument satisfies the ~ for­
mula which is encoded using the rules below. Further it contains the auxiliary operators Context, 
skip -i and ok-to-ko. The rules in R 1 for these operators are displayed in table 5 (where a EA 1 ). 

Clearly, if A 0 is finite then A i. '2.1 and R 1 are finite too. Let the mappings:~ ~N be given by: 

s(T)=O 

s(tj>/\if;)= 1 +s(tj>)+s(o/) 

s(<a>tj>)= 1 +s(tj>) 

and let the '2-1 terms Sn (n ;;;;;.Q) be given by: 



Sat(x,y)~8 

x ~x' ....f!..7x", y ....f!..7y' 
Sat (x,y) 4 Sat (x" ,y') 

X size)x', x~x" 

x4x' 
Context(x,y )4Context(x',skip-i (y)) 

Context (x,y) ~ok -to -ko (y) 

x4x'....f!..7x" 
skip -i (x )4 x" 

x~x' 
Sat(x,y)4Context(x',Sat(x",y)) ok-to-ko(x)~8 

So=ok:8 

Sn+l =i:Sn 

l3i formulas are coded as follows: 

CT=ok:8 

C</>At/J =left:C</> +right:C+ 

C--.</> =size:Ss<<t>> +neg:C<t> 

C<a></> =o:a:C</> 

TABLE 5 

31 

We will now briefly explain the way in which the above construction works. We have the following 
claim: 

8.9.1.1. CLAIM. Let <f>El3i and tET(ZJE0~1 ). Then t l=<f> if! Sat(C</>,t) has a completed trace with an ok 
action but without a ko action. 0 

It is not hard to see that the above claim is correct in case <f>eei. This is a direct consequence of the 
next claim which can be proved easily by means of induction on the structure of <[>: 

8.9.1.2. CLAIM. Let <f>eei with s(<f>)=n and let teT(ZJE0~i). Then: 
tl=<f> ==:? {in*ok}!::CT(Sat(C</>,t))l::{in*ok}U{im I l~m~n}, 
tli <f> ==:? CT(Sat(C<t>,t))C{im I l~m~n}. 

The problem is what to do with negations. The key idea of our solution is that if one applies the 
skip-i operator s(<f>) times on Sat(C</>,t), the trace set of the resulting process consists of ok if t l=<f> and 
will be empty otherwise. So what we have to do is to place s ( <f>) times a skip -i operator around 
Sat(C</>,t) in a structured way and next apply a renaming of ok into ko. This is of course done using 
the binary operator Context. The first argument of this operator gives instruction to build a context 
around the second argument. In case a formula -,<f> has to be tested, our construction works in such a 
way that (after some i-steps) always an ok step will be generated, whereas a subsequent ko action is 
generated only when the tested process satisfies <[>. Hence we claim that: 



32 

8.9.1.3. CLAIM. Let </>Eei with s(<f>)=n and let tET(~:0 E9~1 ). Then: 
t I=</>=> CT(Context(Sn,Sat(Cq.,t)))= {in*ok*ko }, 
t Ii</>=> CT(Context(SmSat(Cq,,t)))= {in*ok }. 

Using claim 8.9.1.3, claim 8.9.1.1 can be proved with straightforward induction on the structure of <f>. 

9. COMPARISON WITH OTHER FORMATS 
In this section we will give an extensive comparison of our format with the formats proposed by DE 
SIMONE [29, 30] and BLOOM, ISTRAIL & MEYER [10]. First both formats will be described. 

9.1. DEFINITION (cf. [29]). Let ~=(F,r) be a signature and let A be a set of labels. A dS rule (over~ 
and A) takes the form: 

where: 

{ X; ....!!9y; Ii EI} 
f(xi. .. ,Xn)...f!.7t 

f EF and r(j)=n, 
/k{l, .. ,n}, 
xi. .. ,XmYi (i EI) are distinct variables, 

Let for I:o;;;;;i:o;;;;;n x;'=y; if iEI and x;'=x; otherwise. 
t is a term in T(~,{x 1 ', •• ,xn'}) in which each x/ occurs at most once. 

Oearly the dS format as presented above is included in our tyft!tyxt format. One should note how­
ever that De Simone assumes in addition that the set of labels is an (infinite) commutative monoid. 
Moreover he includes (unguarded) recursion in the language together with the standard fixed point 
rules. 

9.2. DEFINITION (cf. [10]). Let ~=(F,r) be a signature and let A be a set of labels. A GSOS rule 
(over~ and A) takes the form: 

{x;....!!u-7Yiill:o;;;;;i:o;;;;;l, I:os=;;j:os=;;m;}U{x;~ll:os:;;i:os:;;l, I:os=;;j:os=;;n;} 

f(xi. .. ,x1)...f!.7t 

where the variables are all distinct, fEF, l=r(j), m;,n;;;:.O, a;j,bijeA and t is a term in 
T(~,{x;,J;j j I:os=;;i:o;;;;;l, I:os=;;j:os=;;m;}). 

A GSOS rule system is a 3-tuple (~,A,R) with ~ a signature, A a set of labels and R a set of GSOS 
rules over ~ and A. 

We should mention here that the above definition is simplified in order to make comparison possible 
and only gives an approximation of the notion of a GSOS rule system as it is defined in [10]. There a 
GSOS rule system contains some additional ingredients for dealing with guarded recursion and there 
are a number of finiteness constraints. The feature which distinguishes GSOS rules from the other 
rules in this paper is the possibility of negative premises. This makes that it is not immediately clear 
how (and if) a GSOS rule system determines a transition relation. 

9.2.1. DEFINITION. Let (~,A,R) be a GSOS rule system. A transition relation -7 kT(~)XA XT(~) 
agrees with the rules in R if: 

Whenever an instantiation by a substitution a of the premises of a rule is true of the relation, 
then the instantiation of the conclusion by a is true as well. 
Whenever t ...f!.7 t' is true, then there is a rule r and an instantiation a such that t ...f!.7 t' is the 
instantiation of the conclusion of r by a, and the instantiations of the premises of r by a are true. 



33 

It is not hard to show that for any GSOS rule system, there is a unique transition relation which 
agrees with the rules. If a GSOS rule system only contains positive rules then it is a TSS according to 
our definition. Moreover in this case the unique transition relation which agrees with the rules accord­
ing to the definition above is just the same relation as the one defined in definition 3.2 using the 
notion of proof trees of transitions. 
The following example from [10] shows that the GSOS format cannot be combined consistently with 
the tyft!tyxt format. There are 4 operators in the signature: f, g, c and d. We have an action a and the 
following rules: 

x..i!.7y y..i!.7z 
f(x)...!!.7d 

x-5!./-7 
g(x)..i!.7d 

c..i!.7g(f(c)) 

There is no transition relation which agrees with these rules. In particular, f (c) can move iff it can­
not move. 

9.3. ExAMPLEs. Below we list some applications that illustrate the differences between the formats. 

9.3.1. Global closure properties. Rules in tyxt format neither fit into the dS format nor in the GSOS 
format. One could say that tyxt rules, like for instance the T rules of table 2, express certain 'global 
closure properties', a form of operational behaviour which is in general independent of the particular 
function symbol at the head of a term. An operator that can be defined using closure properties is 
the 'atomic version' operator that was introduced by DE BAKKER & KoK [6] for giving semantics to 
concurrent Prolog. We cannot exactly model this operator as we would then need an infinite number 
of premises in our rules. Therefore, we will give here our own variant using our own notation. Take as 
starting point the signature of BPA~. But as labels of transitions we now don't take elements of Act...;, 
but elements of the set of finite sequences over Act...;. We write a for the sequence consisting of the 
single symbol a EAct...;. With oo' we denote the concatenation of the sequences a and o'. The set of 
rules of the TSS contains the rules of R(BPAD (but now the labels should be interpreted as 
sequences!) and moreover the following rules: 

x~y r--4z 
x~z 

x~y 
[x]~y 

The first rule expresses that sequences from Act...; are allowed. The last rule expresses that only suc­
cessful sequences, this are the sequences ending on V, can happen in the scope of an atomic version 
operator. These rules are in tyft!tyxt format. Hence, strong bisimulation is a congruence in this set­
ting. 

9.3.2. Contexts. Often it is very useful to have function symbols in the left hand side of a premise. 
However, this is not allowed by the dS and GSOS format. In section 6.2 we saw that these rules can 
be used to model recursion. Also in the system of table 4 for testing ~ formulas, this type of rules 
play an important role. In BAETEN & VAN GLABBEEK [5], operators EK are described that erase all 
actions from a set K<.:Act. We can add these operators to P(BPAD together with the following rules 
from [5]: 



34 

t:K(X)~t:K(y) 

x~y t:K(y)-4z 

t:K(x)-4z 

af/.K 

aEK 

The same type of trick can also be used to describe the atomic version operator of the previous sec­
tion without tyxt rules: 

x~y 
[x] 'l)y 

x~y [y]-4z 
[x]~z 

9.3.3. Lookahead. All operators defined with the dS or GSOS format have a lookahead of at most 1. 
Hence the following operator, which can be viewed as the inverse of the split operator of (15], cannot 
be defined: 

+ -
x~y~z 

combine (x) ~combine (z) 

Other examples of operators with a large lookahead are the t:K and the atomic version operator as 
described above. As a last example we mention the abstraction or hiding operator from ACP,. (13] 
(here I {;;;Act): 

x~x' 
T1(x)-..!7-r1(x') 

x~x' 
T1(x)~T1(x') 

a El 

If we add these rules to the system P(BPA~8) as described in section 6.1, then we can derive: 

T{i}(i·a)~T{i}(t:). 

9.3.4. Non-linearity. In contrast to the dS format, the GSOS format and also our format can describe 
operators which copy their arguments. Below we present an example where such an operator occurs 
naturally. It describes an operational semantics of the natural numbers which is based on the idea of 
counting: the process associated to an integer expression performs as many actions as the value which 
is denoted by this expression under the standard interpretation. We consider the signature containing 
a constant name 0, a unary function name succ and binary operators + and X. There is only one 
transition label, namely 1. The operational semantics of the operators is described by the following 
rules: 

succ(x)---4x 

x---4x' y---4y' 
x+y---4x'+y x+y---4x+y' 

x---4x' y---4y' 
x Xy---4(x'Xy')+(x' +y') 

Observe that two expressions denote the same value under the standard interpretation iff they are 
bisimilar. 



35 

9.3.5. Catalysis. We can add to P(BPAn the following rule which fits in the GSOS format and in the 

tyft format: 

x~x', y....f!.7y' 
Cat(x,y)....f!.7Cat(x,y') 

Here we have a situation, not allowed by De Simone, where a potential ok-action of the first com­

ponent makes it possible for the second component to proceed. But when it proceeds the first com­

ponent remains unchanged. Hence, one can view the first component as a 'catalyst' of the second 

component. 

9.3.6. Priorities. In BAETEN, BERGSTRA & Kl.OP [4] an operator is introduced to describe priorities in 

ACP, whereby some actions have priorities over others in a non-deterministic choice. The operator 

turns out to be quite interesting and has been used in a number of applications. In [4] the operator is 

defined using equations, but if one uses Plotkin-style rules then it seems inevitable (and also very 

natural) to use negative hypotheses. 
Consider the GSOS rule system P (BP An and assume that the set Act v of labels is finite. Assume 

furthermore that a partial order > is given on Act v such that V is not in the ordering. Now we can 

add a unary operator 0 to the rule system, with for each a EA v a rule: 

x....!!.7x', 'tfb>a: x..l!..f..7 
O(x)....!!70(x') 

The rule expresses that in the scope of a 0-operator an a action can occur unless an action with a 

higher priority is possible. Another example of an operator that is defined using rules with negative 

premises is the broadcast operator as described by PNuEu [28]. 

9.4. Completed trace congruences. The differences between the formats presented thus far can be 

understood also if we look at the completed trace congruences which they induce. In section 8 we saw 

that the trace congruence induced by (variants) of the pure tyftltyxt format coincides with~ formula 

equivalence. 
The main theorem which De Simone proved about his format is that all operators defined using his 

type of inductive rules can also be defined by MEDE-SCCS 'architectural' expressions. Similar results 

have not yet been proved for the GSOS and the tyftltyxt format. Now it is a standard result that the 

completed trace congruence induced by languages like MEDE-SCCS, ACP, CSP, etc., coincides with 

failure equivalence ( F) (see for instance [8]). Hence the completed trace congruence induced by the 

dS format is failure equivalence. 
BLOOM, ISTRAIL & MEYER [10] characterized the completed trace congruence induced by their format 

in terms of the equivalence corresponding to the following set of formulas1 : 

9.4.1. DEFINITION. The set 6j) of denial (HML) formulas (over a given alphabet A ={a,b,. .. }) is given 

by the following grammar: 

<J>::=T I <J>/\f/> I [a]F I <a><J>. 

' 
I. The formulas as defined in [10] were called limited modal formulas and may also contain F and V. However, it is easily 

proved that this addition does not increase the distinguishing power. 



36 

9.4.2. THEOREM (BLOOM, ISTRAIL & MEYER). Let p =(~,A,R) be a GSOS rule system such that the 
associated transition system is image finite. Then: =Gsos = -6D· 

Some additional insight is provided by the following characterization of denial equivalence which is 
due to LARSEN & SKOU [20]. 

9.4.3. DEFINITION. Let lt=(S,A,~) be a LTS. A relation R<;;;,SXS is a 213-bisimulation if it 
satisfies: 
1. whenever s Rt and s-f!7s' then, for some t'eS, also t-1!7t' and s'R t', 
2. whenever s Rt and t-1!7t' then, for some s'eS, also s-f!7s'. 
Two states s,t eS are 213-bisimilar in £t if there exists a 2/3-bisimulation containing the pair (s,t) and 
a 2/3-bisimulation containing the pair (t,s). 

9.4.4. THEOREM (LARSEN & SKou). Let lt=(S,A,~) be a LTS. Then two states are 213-bisimilar just 
in case they satisfy exactly the same denial formulas. 

It is a trivial exercise to show that: 

~2 <;;;, ~213 <;;;, F <;;;, =er 

The following examples show that these inclusions are strict: 

a 

b c 

FIGURE 13. Completed trace equivalent but not dS congruent 

a 

b b 

c d c d 

FIGURE 14. dS congruent but not GSOS congruent 



37 

a 

c d c d c 

FIGURE 15. GSOS congruent but not pure tyft!tyxt congruent 

9.4.5. Testing denial formulas. The question arises whether all features of the GSOS format are really 
needed in order to test denial formulas. In particular it is interesting to know whether the negative 
premises add anything to the discriminating power of the format. Surprisingly, as was first observed 
by ROB VAN GLABBEEK [14], this is not the case: GSOS congruence coincides with positive GSOS 
congruence. Below we present a system in positive GSOS format for testing denial formulas. The sys­
tem is simpler than the original system of Rob van Glabbeek. Moreover our system has the advantage 
of being finite in case the alphabet of the old system is finite. 

9.4.6. THEOREM. Suppose we have a TSS Po=(~o,Ao,Ro) in GSOS format. Then there exists a TSS 
P 1 =(~i.Ai.R 1 ) in GSOS format with all premises positive and non-branching, which can be added con­
servatively to P 0, such that completed trace congruence within P 0 $ P 1 is included in denial equivalence. 
Moreover, if alphabet A 0 is finite, then the components of P 1 are finite too. 

PROOF. The set A 1 consists of Ao together with 6 new labels: 

A 1 =Ao U {ok,ko,left,right,[],<> }. 

Signature ~1 contains a constant 8, unary function names a: for each a EA 1, and binary function 
names +, II, Sat, Satn, Sat 0 and Satnght· The 8, a:, + are as usual. II is just arbitrary interleaving. 
The Sat operator tests whether its second argument satisfies the denial formula which is represented 
by its first argument. The rules for the II-operator and the various Sat-operators are given in table 6. 
In the table a ranges over A 1• Check that P 1 can be added conservatively to P 0• 

x~x' 
Sat(x,y)~Satu(x',y) 

Sat{x,y )--27 Sat 0 (x',y) 

x~x' 
Sat(x,y)~Sat(x',y)llSat,;ght(x,y) 

x ...!!..)x' 
x l[y ...!!..)x'l[y 

TABLE 6 
Denial formulas are encoded using the following rules: 

x ...!!..)x' y ...!!..)y' 
Satu(x,y)~8 

x...!!.7x' y...!!..)y' 
Sat 0 (x,y) ~Sat (x',y') 

x~x' 
Sat,;gh1(x,y)~Sat(x',y) 

y...!!..)y' 
xl[y...!!..)xl[y' 



38 

cT=a 
C.pf\i/J =left:Cq. +right:C"' 

CcaJF=[]:a:a 

C <a><t> = o:a:Cq. 

CLAIM. Let tET(~0 $~1 ) and let«[> be a denial formula. Then tl=«f> if! Sat(Cq.,t) has a completed trace 
with as many ok's as«[> has <a>'s, and no ko. 

PROOF. Rather straightforward induction on the structure of«[>. D 

9.4. 7. Comparison of testing abilities. The notion of testing which underlies CCS/CSP I ACP, and 
hence De Simone's format, is well-known (see for instance [8, 12]): these languages allow one to 
observe traces and to detect refusals indirectly: one concludes that a certain action is refused because 
some completed trace is not there. The construction in the proof of theorem 9.4.6 clearly shows 
which notion of testing underlies the (positive) GSOS format: the format allows one to observe traces 
of processes, to detect refusals and to make copies of processes at every moment. In the general GSOS 
format refusals can be observed directly: one can define a context which performs an ok step if its 
argument cannot do a certain action. In the positive GSOS format refusals can also be observed, but 
only indirectly. The key feature which distinguishes the positive GSOS format from De Simone's for­
mat is the capacity to make copies of processes at every moment. Observe that the only rule in table 6 
that does not fit in De Simone's format is the rule dealing with the left action. In this rule the x and y 
are copied. In many situations copying is a natural operation which can be realised physically by for 
instance a core dump procedure. 

The construction in the proof of theorem 8.9.1 shows that the additional testing power needed to 
bring one from denial equivalence to fz formula equivalence only consists of the ability to see whether 
some action is possible in the future: there should be operations with a lookahead (in fact the proof of 
theorem 8.9.1 shows that a lookahead of 2 is already enough). Using operators with a lookahead one 
can investigate all branches of a process for positive information and one can see whether a certain 
tree is possible. In particular one can see whether there exists a branch in which a certain action is 
present. In the same way as one can observe in the dS format that a certain action is refused because 
some completed trace is not there, one can conclude in the tyft!tyxt format from the absence of some 
completed trace that a tree is refused. The ability to see in the future of a process can be considered 
as a weak form of global testing. Global testing is the same as what MILNER [22] calls controlling the 
weather conditions. ABRAMSKY [I] describes global testing as: "the ability to enumerate all (of finitely 
many) possible 'operating environments' at each stage of the test, so as to guarantee that all nondeter­
ministic branches will be pursued by various copies of the subject process". Because an operator with 
lookahead is not capable to see negative information (like the absence of some action) directly, and 
because it is also not able to force that all nondeterministic branches are pursued by some number of 
copies, lookahead does not give one the full testing power of global testing. Since global testing is 
needed in order to distinguish between processes which are not bisimilar, this explains why the fully 
abstract semantics induced by our format is still below bisimulation equivalence. Global testing in 
the above sense seems very unrealistic as a testing ability and in direct conflict with the observational 
viewpoint of concurrent systems. Recently however, LARSEN & SKOU [20] have pointed out that if 
one assumes that every transition in a transition system has a certain minimum probability of being 
taken, an observer can - due to the probabilistic nature of transitions - with arbitrary high degree of 
confidence, assume that all transitions have been examined, simply by repeating an experiment many 
times (using the copying facility). This idea gives some plausibility to the notion of global testing. In 
fact Larsen & Skou deviced some testing algorithms which allow them, with a probability arbitrary 
close to 1, to distinguish between processes that are not bisimilar. 



39 

Unless one believes in fortune telling as a technique which has some practical relevance for com­
puter science, lookahead as a testing notion is not very realistic. Still, this lookahead pops up natur­
ally if one looks at the maximal format of rules for which bisimulation is a congruence and we 
showed that rules with a lookahead are often useful. Therefore we think that, just like bisimulation 
equivalence, £i formula equivalence is an interesting equivalence that is worth studying, even though 
it does not correspond to a very natural notion of testing. 

9.4.8. Finiteness and decidability. In their paper 'Bisimulation can't be traced', BLOOM, ISTRAIL & 
MEYER [ 10] argue that bisimulation cannot be reduced to completed trace congruence with respect to 
any reasonably structured system of process constructing operations. They present the GSOS format, 
which they believe to be the most general format leading to reasonably structured systems, and then 
show that the congruence induced by this format is denial formula equivalence. Although the pure 
tyftl tyxt format cannot trace bisimulation equivalence, it can trace more of it than the GSOS format. 
This implies that not all pure tyft!tyxt rules are structured according to the definition of Bloom, Istrail 
& Meyer. And indeed what's wrong in their opinion with our rules is that they might lead to transi­
tion systems with a transition relation which is infinitely branching or not computable. The various 
finiteness constraints which are present in the definition of the GSOS format in (10], are motivated by 
the requirement that the transition relation should be computably finitely branching. We think that, 
although it is certainly pleasant to have finiteness and decidability, it is much too strong to call any 
TSS leading to a transition relation which does not have these properties 'not reasonably structured' 
(this is what Bloom, Meyer & Istrail seem to do in their paper). Since our format gives us the expres­
siveness to describe the invisible nature of T (see section 6.1) it is to be expected that, in general, we 
also have the infinite branching and undecidability of the models of CCS/ ACP.,. based on observa­
tional congruence. If one disqualifies infinitary and undecidable TSS's right from the start, then one 
misses a large number of interesting applications. Of course the question what type of TSS's do lead 
to computably finitely branching transition systems is a very interesting one. It seems that if one gen­
eralises the positive GSOS format in the direction of the tyft!tyxt format, infinite branching arises 
quite soon. The following example for instance, which is due to Bard Bloom, illustrates that function 
symbols in the premises are 'dangerous'. 

1 
"' ----f ... l) 

11 
1 :/) 

f 1 
1: 1 :l) 

11 
1:1:1:/) 

11 

FIGURE 15 

In the example we have prefixing and l) as usual and moreover a constant "' with rules: 

(A)~X 
"'~l:x 



40 

The part of the transition system which is displayed in figure 15 shows that w has an infinite number 
of outgoing transitions. Another example illustrating the same point is obtained by adding recursion 
to P(BP A~) in the style of section 6.2 with the 'unguarded' recursive definition X ~xa +a. It is easy 
to give examples of tyxt rules or tree rules which lead to infinite branching or undecidability. It is an 
open question to find a format in between positive GSOS and tyft! tyxt which always leads to comput­
ably finitely branching transition relations. 
In our view one reason why rules with a lookahead are important is that they make it possible to have 
different levels of granularity of actions and to express that an action at one level can be composed of 
several smaller actions at a lower level. The system of table 6 for testing denial equivalence is an 
excellent example of a situation where the GSOS format forces one to do in two steps what one 
would like to do in only one. 

REFERENCES 
[l] S. ABRAMSKY (1987): Observation equivalence as a testing equivalence. Theoretical Computer Sci­

ence 53, pp. 225-241. 
[2] P. AMERICA, J.W. DE BAKKER, J.N. KOK & J.J.M.M. RUTIEN (1986): Operational semantics of a 

parallel object-oriented language. In: Conference Record of the 13th ACM Symposium on Princi­
ples of Programming Languages, St. Petersburg, Florida, pp. 194-208. 

[3] J.C.M. BAETEN & J.A. BERGSTRA (1988): Global Renaming Operators in Concrete Process Algebra. 
I&C 78(3), pp. 205-245. 

[4] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP (1986): Syntax and Defining Equa.tions for an Inter­
rupt Mechanism in Process Algebra. Fund. Inf. IX(2), pp. 127-168. 

[5] J.C.M. BAETEN & R.J. VAN GLABBEEK (1987): Merge and termination in process algebra. In: 
Proceedings 7th Conference on Foundations of Software Technology & Theoretical Computer 
Science, Pune, India (K.V. Nori, ed.), LNCS 287, Springer-Verlag, pp. 153-172. 

[6] J.W. DE BAKKER & J.N. KoK (1988): Uniform Abstraction, Atomicity and Contractions in the Com­
parative Semantics of Concurrent Prolog. Report CS-R8834, Centrum voor Wiskunde en Infor­
matica, Amsterdam, to appear in: Proceedings Fifth Generation Computer Systems 1988 
(FGCS'88), December 1988, Tokyo, Japan. 

[7] J.A. BERGSTRA & J.W. KLoP (1988): A Complete Inference System for Regular Processes with 
silent moves. In: Proceedings Logic Colloquium 1986 (P.R. Drake & J.K. Truss, eds.), North 
Holland, Hull, pp. 21-81, also appeared as: Report CS-R8420, Centrum voor Wiskunde en 
Informatica, Amsterdam 1984. 

[8] J.A. BERGSTRA, J.W. KLOP & E.-R. 0LDEROG (1987): Readies and Failures in the Algebra of Com­
municating Processes (revised version). Report CS-R8748, Centrum voor Wiskunde en Informa­
tica, Amsterdam, to appear in: SIAM Journal of Computing. This paper is a revised version of 
CWI Report CS-R8523, Amsterdam 1985. 

[9] B. BLOOM (November 1988): Personal communication. 
[10] B. BLOOM, S. IsTRAIL & A.R. MEYER (1988): Bisimulation Can't Be Traced: Preliminary Report. 

In: Proceedings of the Fifteenth POPL, San Diego, California, pp. 229-239. 
[11] G. BoUDOL (1985): Notes on Algebraic Calculi of Processes. In: Logics and Models of Con­

current Systems (K. Apt, ed.), NATO ASI Series Fl3, Springer-Verlag, pp. 261-303. 
[12] R. DE NICOLA & M. HENNESSY (1984): Testing equivalences for processes. Theoretical Computer 

Science 34, pp. 83-134. 
[13] R.J. VAN GLABBEEK (1987): Bounded Nondeterminism and the Approximation Induction Principle 

in Process Algebra. In: Proceedings STACS 87 (F.J. Brandenburg, G. Vidal-Naquet & M. Wirs­
ing, eds.), LNCS 247, Springer-Verlag, pp. 336-347. 

[14] R.J. VAN GLABBEEK (November 1988): Personal communication. 
[15] R.J. VAN GLABBEEK & F.W. VAANDRAGER (1987): Petri net models for algebraic theories of con­

cu"ency. In: Proceedings PARLE conference, Eindhoven, Vol. II (Parallel Languages) (J.W. de 
Bakker, A.J. Nijman & P.C. Treleaven, eds.), LNCS 259, Springer-Verlag, pp. 224-242. 



41 

[16] M. HENNESSY (1988): Algebraic Theory of Processes, MIT Press, Cambridge, Massachusetts. 
[17] M. HENNESSY & R. MILNER (1985): Algebraic laws for nondeterminism and concurrency. JACM 

32(1), pp. 137-161. 
[18] R.M. KELLER (1976): Formal verification of parallel programs. Communications of the ACM 

19(7), pp. 371-384. 
[19] J.W. KLoP (1987): Term Rewriting Systems: A Tutorial. Bulletin of the EATCS 32, pp. 143-182. 
[20] K.G. LARSEN & A. SKOU (1988): Bisimulation through probabilistic testing. R 88-29, Institut for 

Elektroniske Systemer, Afdeling for Matematik og Datalogi, Aalborg Universitetscenter. 
[21] R. MILNER (1980): A Calculus of Communicating Systems, LNCS 92, Springer-Verlag. 
[22] R. MILNER (1981): Modal characterisation of observable machine behaviour. In: Proceedings 

CAAP 81 (G. Astesiano & C. Bohm, eds.), LNCS 112; Springer-Verlag, pp. 25-34. 
[23] R. MILNER (1983): Calculi for synchrony and asynchrony. Theoretical Computer Science 25, pp. 

267-310. 
[24] E.-R. 0LDEROG & C.A.R. HOARE (1986): Specification-Oriented Semantics for Communicating 

Processes. Acta Informatica 23, pp. 9-66. 
[25] D.M.R. PARK (1981): Concurrency and automata on infinite sequences. In: Proceedings 5th GI 

Conference (P. Deussen, ed.), LNCS 104, Springer-Verlag, pp. 167-183. 
[26] G.D. PLOTKIN (1981): A Structural approach to operational semantics. Technical Report DAIMI 

FN-19, Computer Science Department, Aarhus University. 
[27] G.D. PLOTKIN (1983): An operational semantics for CSP. In: Proceedings IFIP TC2 Working 

Conference on Formal Description of Programming Concepts - II, Garmisch, 1982 (D. Bj0mer, 
ed.}, North-Holland, Amsterdam, pp. 199-225. 

[28] A. PNuEu (1985): Linear and Branching Structures in the Semantics and Logics of Reactive Sys­
tems. In: Proceedings 12th ICALP, Nafplion (W. Brauer, ed.), LNCS 194, Springer-Verlag, pp. 
15-32. 

[29] R. DE SIMONE (1984): Calculabilite et expressivite dans /'algebra de processus paralleles Meije. 
These de 3e cycle, Univ. Paris 7. 

[30] R. DE SIMONE (1985): Higher-level synchronising devices in MEUE-SCCS. Theoretical Computer 
Science 37, pp. 245-267. 

[31] J.L.M. VRANCKEN (1986): The Algebra of Communicating Processes with Empty Process. Report 
FYI 86-01, Dept. of Computer Science, University of Amsterdam. 




