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In this paper we consider the velocity with which an invading population 

spreads over space. 
After a brief discussion about diffusion models, on the basis of which some ter­

minology and intuition is developed, a much more general (linear) model, origi­

nally due to Diekmann and Thieme, is introduced. It will be seen that the 

asymptotic velocity of population expansion can be calculated if information is 

available on 
i. the net-reproduction, R0 ; i.e. the expected number of offspring produced by 

one individual throughout its life at infinitesimally small population density, 

and 
ii. the (normalized) reproduction-and-dispersal kernel, fJ(a,x-1;); i.e. the den­

sity of newborns produced per unit of time at position x by an individual of 

age a born at ~. 
In a brief discussion we conjecture that the asymptotic velocity of population 

expansion of the linear model equals that of its non-linear modifications in a 

wide variety of cases. By means of numerical examples we study the effect of 

the net-reproduction and the shape of the reproduction-and-dispersal kernel on 

the velocity of population expansion. The fact that the reproduction-and­

dispersal kernel is difficult to measure in full, leads us to derive approximation 

formulas in terms of easily measurable parameters. The relation between the 

velocity of population expansion as calculated from the general model and that 

from the, widely used, Fisher /Skellam model is discussed. As a final step we 

show that the model can quantitatively predict observed velocities of population 

expansion. 
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1. Introduction 

Once upon a time a rich Czech prince went muskrat hunting in 

Alaska. He liked this so much that he took five muskrats back 

home and released them at his country-seat near Prague. These 

introduced individuals and their offspring started to spread, and 

nowadays considerable muskrat populations are established all 

over Europe. 

This is just one of many well documented examples of biologi­

cal invasions. A biological invasion can loosely be defined as a 

(on an evolutionary time scale) sudden extension of a populations 

range. Often such invasions are induced by man, as in the muskrat 

example. Others are the result of natural extensions of range. An 

epidemic of an infectious disease can be viewed as the expansion 

of a population of disease organisms and therefore also falls in 

the category of invasions. 

Invading species often have an influence on the ecosystem 

and/or are economically important. This fact led the Scientific 

Committee on Problems of the Environment (SCOPE) to organize a 

programme on "The Ecology of Biological Invasions' {Anonymous, 

1985). This programme adresses several questions concerning 

invasions, ranging from the invadability of ecosystems to the 

development of management systems to prevent unwanted invasions. 

An invasion which starts at a certain place often does not 

have an immediate effect at an other, distant, place. The 

spatial component is, therefore, frequently of considerable 

importance. After the pioneering work of Fisher (1937), Skellam 

{1951 ), Kendall (1965) and Mollison (1972, 1977), Diekmann (1978, 

1979) and Thieme (1977ab, 1979ab} developed and studied a rather 

general model for the spatial spread of populations. Using some 

of their main results we show in this paper how the velocity with 

which an invading population spreads over space depends on the 

population dynamical attributes of the individuals making up that 

population. 

In order to develop some intuition, terminology and notation 

we starl in section 2 with a discussion about diffusion models. 

Skellam (1951) was the first to investigate the velocity of 

population expansion, using such a diffusion model originally 



derived by Fisher (1937) in a population genetic context.• After a 

brief summary of the results of several authors on diffusion 

equation}· 1 ,we boh:sider 1a1ffu-si0ri:- .and: c·O:nvection 'in; a linea-r ·model. 

(Th sectioh· 6. we' sha'il briefly retu:rn··to 'the::: Fisher:/Skellam model' 

to: -d:i'scus:s: it:s r6le -as ... an app.roxima t idn .:'. t6 imore cornpli'ca:ted 

cases.) 'Next : we' turn ' to: a -mo}e:.• general·<mode1. 1After an explana.:. 

tibh of 'the'f 1-inear•'tnbdel we discuss the crrtethod·'.to ··.calculate ·the 1 

velocity of population expansion (section 3). In· a brief 

disc:atsstori? ·we t:6rtj1ecture tha:t);.: in' -a. w'ide variety ·Of ca·ses I the 

veloci:ty: r bf;· population' 'expans:i.on•':.of: . th_e;..li.near model· and its 

n:~n-il'J.'nea::rtYrefi'hements··.'·are ,. e<lua:l · '(section 4·) •·· sbme' rtu:merical 

e}(!atrrpres show· .how; the·velbdity· of:: populat1onY'expahsion: •depends. on 

tne pa.vameters: ;C)f: submodel's;. desdl:'ibing0 the po"pulatiotf:': dynamical 1 

at~r:,ibutes :',<bf•· :the :.•·irtdiV'!i'duals "(·.section ;s,)' :~ Ih pra'ctice, 1 the;se 

attributes 1 :air·e .: ·a-fffiofrl t:•to '· ttfe'a·su:re in · 'fu·11. Th;ts leads us ih 

section 6 to search for approximation formulas i!n: tertn.s'.•of easily 

measurable :pa=rameters. Firial1y ·!i'.t :w-tll bef' ·; shown that ·the trtodel 

Cfa.iif :thcle~d' -h~' Used to predict-,' (JU:ahtitabiVlely:, 1ohserved -veloCi­

tfies:: iof :po-pulatilci>h expansion· (section: 7). 

•:;'.' 

·, · 'Fhis paper'd.s meant 1toj bridge•. part •of the :ga-p between ·some 

abstract. ·tn.E!:o,rem.s· a:bout 'the~· :velocity· of :ptipulatibh expahsidn in 

the. ·ma1themat:iicaili 1 r.an:d bi:o~mathemati•ca1 -literature and experimental 

bio:logidalY 1 ·p'racti.ce·~ Thei · ·paper '·is w·ritten· 1for mathematically 

inblin:ed· lbiolbgists· and!' mathemat;icians working on practical 

biolog·fdal problems·. Heur:istic a:r<juments and formal calculations 

a·bdund ·in "ehe .paper.· No prob~ S· are 1gi'ven. In order not to hamper 

the ·· progress:: bf. · t::He· sf:ory som:e· calculations are postponed to 

appendices.· 1Some· of :the ··results of heuristic arguments that ne·ed 

a:_: more·· thorough rriathema.'tical >inve.stig"'ation are formulated as 

a:bnjectureS:. 

The simplest diffusion equation model for the spatial spread 

of ·a pbpura tion 

2 
d n I (d n 
n=2S' 2 

a x1 

in two dimensions reads 

2 
+ .L_!!_) + f(n)n 

2 
ax2 

( 2 • 1 ) 
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where n(t,x) is the population density at position x = (x1 ,x2 ) at 

time t, s is the 'diffusion constant' indicating the rate of 

random movement and f {n) is the per capita 'population growth 

rate' as a function of local population density. For f (n) we 

assume that f' (n) ~ 0 for all n ~ O. 

First consider the linear equation obtained by putting f (n) = 
f(O), for all n. The solution of this equation for the initial 

condition 

n(O,x) = o(x) 

is given explicitly by 

n{t,x) 1 
( - _I~ f{O)t). = 2Tist exp 2st + 

It is easily seen that for any E (> 0) 

Jo if 1x1 > ( c0 + q t 
n ( t, x) _t_+_oo_l 

00 if 1 x l < < c0 - q t 

where 

c0 = I 2 s f < o ) • 

( 2. 2) 

( 2 • 3 } 

( 2 • 4 ) 

( 2 • 5 ) 

(2.4) states that if one travels in a straight line away from 

the origin with a velocity larger (smaller) than c0 , one will, in 

the long run, observe a population with density zero (infinity). 

In this sense c0 is the asymptotic velocity of population 

expansion. From (2.3) it is also seen that contours of egual 

population density rehave like 

of these circles increases as 

rate of population change, ~~, 

expanding circles. The radius 

c0 t for t + 00
• Contours of equal 

behave in the same way. 

The non-linear model (2.1) cannot be solved explicitly. In 

order to calculate the velocity of population expansion recourse 

is taken to the investigation of so-called travelling plane wave 

solutioHs of (2.1 ). Such a solution has the form 

n(t,x) = n (X•V - C t) ( 2 . 6 ) 
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where C (~ 0) 

giving the 

is the velocity of the wave and v is a unit vector 
direction of movement. Such a solution can be 

visualized as a function of x, which has, at a given time, a 
constant value on lines x•v = constant. This function of x is 
shifted with constant velocity, C, in the direction v without 
any change in shape. Substitution of (2.6) in {2.1) yields an 
ordinary differential equation for n. From this equation it can 
be shown (e.g. Fisher, 1937; Aronson and Weinberger, 1975; 
Hadeler and Rothe, 1975; Diekmann and Temme, 1976) that (2.1) has 
travelling plane wave solutions for every C ~ c0 , where c0 is 
defined by (2.5). The velocity c0 will therefore be called the 
minimal wave velocity. Note that, due to the rotational symmetry 
of the problem, the value of c0 does not depend on the direction 
v. 

From the work of Aronson and Weinberger (1975,1978), it can be 
concluded that, at least for initial conditions with a bounded 
spatial support, (2.4) still holds if we replace the ·~· at the 
right hand side by n, where n is the solution of f (n) = o. 
(Various more subtle aspects of the convergence of solutions of 
(2.1) to travelling wave solutions have been studied in the one­
dimensional case, e.g. Kolmogorov, Petrovsky and Piscounov 
(1937), and Bramson (1983).) Note that founder populations always 
have a bounded spatial support. So, c0 is again the asymptotic 
velocity of population expansion and the density dependence has 
not changed it. 

A physical analogue makes the fact that the minimal wave 
velocity is also the asymptotic velocity intuitively clear. 
Imagine that we align a large number of fire-pots so that they 
can kindle each other. Furthermore, attach to each pot a piece of 
slowmatch that can set fire to that particular pot separately. We 
can now create (the illusion of) a travelling wave by (at t=O) 
simultaneously setting fire to the pieces of slowmatch at 
distances from the firepot which increase linearly with the 
serial number of the pots. By changing the steepness of this 
linear relation we can create waves with different velocities. 
However, if we try to make the velocity too small the cross 
kindl~ng takes over. Consequently the velocity produced by cross 
kindling necessarily corresponds to the lowest possible wave 
velocity. If we set fire to only a small number of slowmatches at 
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one end of the line of firepots (the analog of a founder 

population with bounded support) this will always produce a wave 

of burning firepots with the minimal velocity. 

Sometimes the dispersion of individuals is not isotropic 

(rotationally symmetric), as is assumed in (2.1 ). Diffusion 

rates may be different in the various directions or there may be 

a systematic movement of individuals in a certain direction, for 

example due to a prevailing wind direction. In the rotationally 

symmetric (linear) case the circularity of contours of equal 

population density makes that the (minimal) velocity of a travel­

ling plane wave solution is equal to the asymptotic velocity of 

population expansion along any straight line from the origin. In 

the non-rotationally symmetric case contours of equal population 

density are not circular and the two velocities differ (Figure 

I). As a simple example we consider the linear diffusion model: 

an l: Cln .1 L a 2n f (O)n ( 2. 7) at = m. Clx. + 2 s .. Clx.Clx. + 
i 1 ij 1) 

1 1 J 
i,j=1 ,2 and s12=s21 • 

With initial condition 

n ( 0, x1 ,x2 ) = 0 ( x), 

the solution of ( 2 • 7 ) is 

exp [f ( 0) t 1 (X-Mt)T -1 (X-Mt)] - 2t s 
n(t,x1 ,x2 ) = (2.8) 

2 1T t I detS 

where x T T s ( s .. ) and detS is the = (x1 ,x2) , M = (m1 ,m2 } , = 
1J 

determinant of the matrix s. Contours of equal population 

density are for t + 00 given by 

(X-Mt)T s-1 (X-Mt) = 2 f(O) t 2 • ( 2 • 9 ) 

These are expanding ellipses with their centre at Mt, and axes 

in the direction of the eigenvectors of s. The length of the 

axes is given by Ai 12f (0) t, where the Ai are the corresponding 
,, 

eigenvalues (figure 1). From this, the asymptotic velocity, V(p), 

of population expansion along a straight line from the origin 

making an angle p with the x1 -axis is 
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figure 1: Contours of equal population density for a (linear) 

diffusion model with convection (equation (2.7)). The 

contours are expanding ellipses, with centre and the, 

orientation and length of the axis as given in section 

2. The figure also illustrates the difference between 

the velocity of a plane population, c0 1w), and the 

velocity of population expansion on a straight line 

from the origin, V(p), 

figure 2: 

a 

0 
~ 
y 

ln(n)+ b 

Co(rr)<O 

Co(O)>O 

0 
~ 
y 

The solution of a linear diffusion model with convec-

tion (equation (2.11 )}. Horizontal: distance y, 

vertical: number of individuals, n (log scale). In 

figure a the convection velocity, m, is small compared 

to the diffusion coefficient and the population growth 

rate. The velocities of population expansion in both 

the positive and the negative y direction are therefore 

positive. In figure b convection is much larger, 

resulting in a negative velocicy in the negative y 

direction. 
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v ( p) = 
(2.10} 

where 

2 2 . . 2 ) -(s 22 cos p - s 12 cos p sin p + s 11 sin p 

The collection of vectors V(p} gives the shape of the contour of 

equal population density and is presented as the ellipse in 

figure 1 with t=1. 

On the other hand, the asymptotic velocity of a plane wave 

front moving in the direction x 1 = (y cos~), x 2 = (y sin w) can 

be calculated from the following one dimensional version of (2.7} 

(see appendix I): 

an an 
~ = - m ~ + ~ s at ay (2.11) 

with coefficients 

rn = (cos w, sin i.IJ} M ; s = (cos Q, sin W) S(c~s w). 
sin w (2.12) 

The solution of (2.11) 

condition is given by (2.3) 

This gives 

where 

corresponding to a Dirac mass initial 

if we substitute ly-mtl for lxl. 

(2.13) 

The solution of {2.11) can be visualized as a (moving) function 

of y which has the shape of a Gaussian density the area of which 

increases exponentially and which shifts with velocity m in the 

positive direction (figure 2). It is obvious that when m is large 

enough, compared to sand f(O), the population does not build up 
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in the negative direction. The asymptotic 
direction is then negative. For instance, 
(2.13); when m1 > / 2f(O) ~(~) there is a 

velocity 

consider 

(large) 

(small} 

(W=TI). 

in that 

equation 

positive 

negative 

This is 

c0 (~) if one looks in the 0=0 direction and a 
c0 (~} if one looks in the opposite direction 
illustrated in figure 2b. Similarly, when Mis large enough, the 
ellipse (2.9) does not enclose the origin. 

Diffusion equations, such as (2.1 ), are often applied in studies 
on the spatial spread of populations (Okubo, 1986; Williamson and 
Brown, 1986; Lubina and Levin, 1988; Kallen, Arcuri and Murray, 
1985; Caughley, 1970; Watt, 1968; Noble, 1974}. Although much 
valuable insight has been gained from these studies, there is an 
inherent draw-back to the use of the diffusion equation formula­
tion. These equations make very specific assumptions about the 
processes at the individual level, to wit: (i) every individual 
moves at random throughout its life, (ii) the reproduction- and 
death-rate of the individuals only depend on their local 
environment (be it constant, f(O), or dependent on population 
density, f(n)). The life history of species generally is more 
complicated. For example, reproduction- and death-rates may 
depend on age, or an individual may settle down permanently on a 
breeding ground at the end of its juvenile period. It is 
interesting to know how the velocity of population expansion is 
related to the life history of the individuals comprising the 
population. 

In practical applications it are quantities like the probabi­
lity to survive to a certain age and the settlement pattern of 
juveniles that can be derived experimentally. The question then 
is how we can calculate the velocity of population expansion from 
such experimentally observed quantities. 

In the following section we shall present a modelling 
framework which allows us to answer these questions. 
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3. The linear model 

3.1. The integral equation for the birth rate. 

In the linear model we assume the environment to be constant. 

This entails a fixed relation between age and the average 

population dynamical behaviour {rate of giving birth, probability 

of dying, etc.) of an individual (provided 'individuals are born 

equal'). Therefore we can write down an age structured model 

(compare Metz & Diekmann, 1986, chapter IV). Before deriving the 

birth rate equation we first discuss in some detail the appropri­

ate description of the average behaviour of an individual. 

Although the model is of a general nature we will use a 

terminology proper to animal species in the main text. In some 

examples we use a different, but compatible, terminology proper 

to the species under consideration. For species with two sexes we 

consider females only. 

Individual behaviour: A model intended to describe the spatial 

spread of a wide variety of species should incorporate as few 

assumptions as possible about reproduction and dispersal at the 

individual level. We define the function B(a,x,~) to be the 

density of newborns produced per unit of time at position x by an 

individual of age a born at ~ , ( x, ~ E lR 2 ). B will be called 

the reproduction-and-dispersal kernel. 

Example 1 . For mammals and birds B incorporates both the demo­

graphic and the dispersal characteristics of an individual. The 

demographic characteristics are the two basic life-table 

statistics; (i) the probability that an individual is still alive 

at age a, L(a), usually called the age specific survivorship and 

(ii) the rate of offspring production of an individual at age a, 

m(a). The dispersal characteristic is the conditional dispersal 

* density, D (a,x,~ I alive), which is defined as the probability 

that an individual born at t;; is living at x when it has age a, 

given that it is still alive. The reproduction-and-dispersal 

kernel is given by 

- * B(a,x, t;;) = L(a) m(a) D (a,x,t;; I alive). 
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Example 2 • For infectious diseases the definition of 
'individual' requires sone care. For so8e diseases one pathogen 
individual is equivalent to one individual in our model. Such is, 
for instance, the case in a fun0al disease causing lesions on a 
plant leaf. In other cases a complete population of pathogen 
individuals localized in one host is equivalent to one 'individu­
al' in our model. For instance, one fox is one 'individual' if we 
consider rabies, while a rabid fox contains millions of rabies 
viruses. For any particular disease, 'individual' has to be 
chosen such that we can assume that, once infected, the course of 
the 'individual's' infectivity is an autonomous process. Now 
define the infectivity I(a}, to be the number of new infections 
caused per unit of time by an individual which has been infected 
time a ago. I(a) includes the probability that the individual is 
still al-i_ve. 

The precise biological interpretation of the dispersal 
*· density, 

pathogen 

physical 

D {a,x,~lalive) depends on the transfer mechanism of the 

species. When the disease is transmitted through 
* contacts between animals, D is the probability that a 

host individual having its centre of activity at ~ infects, at 
age of illness a, a host having its centre of activity at x. When 
the infection is transmitted through air-borne spores, as in many 
fungi on plants, Dis the probability that a spore released at~, 
infects a plant at x. 

* By definition, B(a,x, ~ = I(a) D (a,x,~talive). 

Throughout this paper we assume B to be translationally 
invariant (homogeneity of the habitat). So, 

B ( a , x , ~) = B ( a , x - ~) • 

When B is rotationally symmetric it is a function of the distance 

jx-~ I only. 

The function B can be normalized by defining 

-1 
S(a,x-t:J = R0 B(a,x-~) 

where 

00 

R0 =ff 2 B(a,x) dx da 
0 JR 
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is the expected total number of offspring produced by one 

individual throughout its whole life. This quantity is known as 

the net-reproduction. We assume that B is such that this integral 

exists and is finite. It is obvious that a necessary and 

sufficient condition for a population to grow if it is infiniti­

semally small is R0 >1. Throughout this paper we restrict our 

attention to this situation. Note that S can be interpreted as a 

probability density. f3 will be called the normalized reproduc­

tion-and-dispersal kernel. 

Note: It should be pointed out that, in the ecological literature 
1 R0

1 and the term 'net-reproduction' are sometimes used also for 

the density dependent case. Density dependence can be considered 

as the result of a feedback through the environment of the 

individuals (Metz and Diekmann, 1986}. Let E(t,x) denote the 

condition of the environment at time t at position x as experien­

ced by the individuals. If E(t,x) = E we can define R(E) to be 

the total expected lifetime off spring number under environmental 

condition E. If E0 denotes the condition of the virgin environ­

ment, assumed to be constant, then R0 = R(E0 ). Throughout this 

paper we will use R0 in this sense. 

The marginal density 

rP < a ) = J 2 0 ( a , x > ax , ( 3 • 2 ) 

JR 
is the probability density of a random variable called 'the age-

at-child-bearing'. A biological interpretation of 0° can be 

found in Metz and Diekmann (1986, page 153). s0 (a) will be called 

the reproduction kernel. The marginal density 
00 

D ( x ) = J 13 ( a , x ) da , ( 3 • 3 ) 
0 

is called the dispersal density. It is the probability density of 

the place of birth of an average off spring from an individual 

born at O. 
We shall frequently assume that reproduction and dispersal 

are statistically independent, i.e.: 

S(a,x) = BO(a) • D(x) • (3.4) 

Note the difference between statistical independence and the 

mechanistic independence incorporated in, for example, the 
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diffusion models. Although dispersal rates in such models are 
independent of age the resulting dispersal density is a function 
of age and (3.4) does not apply. 

Example 1, continued: When individuals of a species first 
disperse and then settle down permanently on their breeding­
ground at the end of the juvenile period, <3.4) applies. 
Example 2, continued: When the relative frequency with which 
places within its homerange are visited hy an individual does not 
change during the course of its illness, such as seems to be more 
or less the case for rabid foxes, (3.4) applies. When the 
dispersal of fungal spores takes place at a much shorter time 
scale than the time scale of spore production we can again use 
(3.4). 

The birth rate equation: Denote by b{t,x} the number of births 
per unit of area and per unit of time at position x at time t. 
This quantity equals the sum of all current births at x from 
parents of all possible ages born at all possible places. The 
current births due to parents of age a born at s is equal to the 
number (actually the density) of parents born time a ago at s, 
b(t-a,s), times their per capita rate of offspring production at 
x, R0 S(a,x-~). The population equation therefore takes the form: 

00 

b(t,x) = R0 f J2 b(t-a, s} B (a,x-s) ds da • 
0 JR 

( 3 • 5 ) 

Note that this equation is a spatial variant of the renewal 
equation, originally due to Lotka, which is used in demography. 
Remark I: Actually the time integral only extends backwards till 
the time the population was founded and we also have to describe 
the influence of the founder population. However, in this paper 
we are only interested in the asymptotic behaviour of the model 
and we can therefore restrict our attention to (3.5). 
Remark II: The total number of individuals at position x at time 
t, n(t,x), can be calculated from 

00 _, 

n(t,x) = f J2 b(t-a,s) [ (a,x-~) dt,: da (3.6) 
~ 0 JR 

J 
where ~(a,x-s) is the probability that an individual of age a 
born at s is alive and living at x. Since no individual lives 
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forever it is reasonable to assume that ~ is such that this 

integral exists and is finite. 

3.2. The velocity of population expansion. 

Plane wave solutions: Travelling plane wave solutions of (3.5) 

have the form 

-
b(t,x) = b(Ct-x•v) 

where -..; = (cos W, sin W) T for some W E [ 0, 21T). Substitution of 

the trial solution 

,.., 
b(Ct-x•v) = ~exp (A(Ct-x.v)), ( 3 • 7 ) 

leads to the characteristic equation 

L(C,A) = 1 ( 3 • 8 ) 

where 

oo - A ( Ca - .; • v ~ 
L ( C , A) = R 0 f J 2 e f3 ( a , .; ) d .; da • 

0 R 

Applying the transformation (t,;' 1 
.;' 2 = - .;1 sin w + .; 2 cos w) and 

again yields (see appendix II) 

= .; 1 cos W + .; 2 sin ~ ; 

immediately dropping the primes 

00 00 

J e - A(Ca- t,;) -
L( c, A) = R

0 
J 

0 

where 

00 

f3(a,t,;1) = J 
- 00 

-Note that f3 is 

x•v=O. When A 

- 00 

fj(a,.;, ) d.;, da 

S<a;.; 1 cos w ~; --,, 2 sin l!J, .; 1 sin w+.; 2 cos 

the marginal-distribution of s over 

and c are chosen such that (3.8} has a 

w) d.; 2 . 
(3.9b) 

the line 

solution, 

there exists a travelling wave solution of the form (3.7) for the 

population equation (3.5). First note that a solution of (3.8) 

for which A < 0, ( ~ ,C) say, corresponds to a solution with - - -positive A; (-A,-C) if one substitutes .;1 = -.;1 ' in the kernel S 

in (3.9). This can be visualized as follows: Consider an observer 
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looking in a certain direction and seeing a travelling wave - -(A,C). Next the observer turns around TI rad. and looks in the 
opposite direction. He will now see the same travelling wave but - -it now has (-A,-C) as its parameters. We conclude that, without 
loss of generality, we can restrict our attention to A ~ 0. 

For rotationally symmetric S the existence of solutions of 
(3.8) was studied by Diekmann (1978). He noted that: (i) Lis 
defined in a (right hand) neighbourhood of A = 0; (ii) for fixed 
C, L is a convex function of A, (iii) for every A > O, L is a 
decreasing function of C and (iv) 3LI < (=) 0 for C > (=) ~-

aA A=O 
In the non-rotationally symmetric case (iv) becomes 

3L ( 0) RO <~, - c a) (3.10) n = 

where 

00 .• 00 

F,;1 = f f F,;1 (3(a,F,;1) dF,;1 da 
0 -00 

and 

00 00 

a = f f a (3(a,F,;1) d~1 da . 
0 _oo 

Furthermore Diekmann restricted attention to C > 0, which is 
reasonable in the rotationally symmetric case. In the non­
rotationally symmetric case there can be solutions with 
C ~ O, as we saw in the diffusion equation model in chapter 2. -Such solutions are possible when (3 is very skewed. In this 
situation the number of offspring that an individual produces in 
a certain direction is so small that the population does not 
build up in that direction. The result is a retracting population 
wave. (In section 5 an example is given where we find negative 
velocities). In addition to (iii), we note that Lis defined for 
C E ( c 1 ,c2 ), where c 1 ~ 0, c 2 > c 1 and c 1 ,c2 E :IR. Furthermore, 
if C + c 1 , L + 00, and (iii) holds for every C E ( c 1 ,c2 ). 
Now, under our assumption R0 > 1 and following the same reasoning 
as in Diekmann (1978) it can be concluded that there is a c0 E:IR 

such that there exist travelling wave solutions of (3.5) for 
every c ~ c0 • This c0 can be calculated from 
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(3.11) 

The asymptotic velocity of population expansion: For rotationally 

symmetric$. the n-dimensional version of equation {3.S) is a 

special case of the model studied by Diekmann (1978, 1979) and 

Thieme (1977, 1979). They proved that, at least if one makes the 

biologically reasonable assumption that the founder population 

has bounded support, c0 is the asymptotic velocity of population 

expansion in the sense of equation (2.4). In an n-dimensional 

discrete time model originally derived in a population genetic 

context, Weinberger (1978, 1982) showed that the minimal wave 

velocity of plane fronts suffices to describe the asymptotic 

velocity of spread also in the non-rotationally symmetric case. 

(For related work of Lui we refer to Creegan and Lui (1984) and 

the references given there.} Although a proof for the continuous 

version of the non-rotationally symmetric case is still lacking, 

we are convinced that one can safely assume that the minimal wave 

velocity of plane fronts, c0 , determines (in a manner described 

below) the asymptotic velocity of population expansion for the 

population model (3.5). 

Contours of egual birth rate. As discussed in section 2 there is 

a difference between the minimal velocity, c0 ($}, of a plane wave 

travelling in a direction which makes an angle$ with the x 1 -

axis, and the asymptotic velocity, V(p) of population expansion 

along a straight line from the origin making an angle p with the 

x 1-axis (figure 1 ). We may now pose the following problem: given 

c0 ($), how can we calculate V(p)? In appendix III we derive that, 

under the biologically reasonable assumption that V is a smooth 

function of p, V and c0 are related by 

V(p) cos ($-p) = C0 ($) 

-V(p) sin ($-p) = c0 '($) 
{3.12} 

In concrete calculations we may vary $ from 0 to 2n and solve 

(3.12) for V and p. The collection of pairs (p,V) so obtained 

yields the 'graph' of V. The 'graph' of V is directly related to 

the contours of equal birth rate. Looking at the population from 
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high up in the air we will see that for sufficiently large t 

these contours are approximately given by 

{ ( V ( p) cos ( p} t , V ( P) sin { p ) t ) I p E [ 0 , 2 TI) } • 

(In appendix III we indicate in which sense the phrase 11 are 

approximately given" should be interpreted.) 

Remark: In his paper on a discrete time model for the spatial 

spread of genes, Weinberger (1983) also considers the relation 

between c0 (~) and V(P). In appendix III we show how Weinbergers' 

results are related to {3.12}. 

4. Non-linear models how robust are the linear results? 

So far we only considered density independent population 

growth. Of course, populations will not grow beyond every bound. 

At the higher densities the population will, through its 

influence on its environment which in its turn influences the 

birth-and-dispersal kerP81, change its own dynamical properties. 

Is the velocity of population expansion in the non-linear case 

equal to the one in the linear case? 

Diekmann (1978, 1979) and Thieme (1977ab, 1979ab) investi­

gated, for rotationally symmetric dispersal, a special type of 

non-linearity. In his discrete time model Weinberger (1982) 

investigated a similar type of non-linearity, and he included 

non-rotationally symmetric dispersal. Both Diekmann & Thieme and 

Weinberger showed that the minimal velocity of population 

expansion of the corresponding linear model is still the 

asymptotic velocity of population expansion of the full non­

linear variant. The particular types of density dependence 

considered by these authors have clear biological relevance (at 

least for the spatial spread of infectious diseases, Diekmann and 

Thieme, and for the spatial spread of genes, Weinberger) and the 

results give much insight. One would, however, like to have 

results on non-linear models where the density dependent feedback 

is of a more general nature. 

Wh@n a wide variety of density dependent feedbacks is allowed, 

the possibility of population oscillations or the eventual 

extinction of the species in the case of non-renewable resources 
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has to be taken into account. This can cause problems with our 

definition of asymptotic velocity from section 2, so a slight 

readjustment will be necessary. A possible way to define the 

asymptotic velocity, V 1 p), is by requiring it to satisfy 

i) For any E > 0 and every p E [0,2n) 

lim sup b (t,V{p)(c<?s pp' (1+E}T} = 0. 
t+oo T>t sin 

ii) There is an > 0 such that for any E > 0 and every p E [0,2n) 

lim inf sup b (t,V(p) (c<?s P) {1-E )TI > n . 
t+oo T> t sin p 

In words i) again means that if one travels in a straight line 

away from the origin at a velocity larger than V one will 

'outrun' the birth wave. For the interpretation of ii) consider 

the expanding closed contour of places where the birth rate 

reaches a certain ~mall quantity for the first time. Now ii) 

states that if one travels with a velocity smaller than V one 

will in the long run end up inside this expanding contour. 

According to the physiologically structured population creed, 

any density dependence should be considered as being the result 

of a feedback through the environment of the individual (Metz and 

Diekmann, 1 986). 

Example I: A size-structured herbivore-plant system. 

Assume that a particular herbivore individual can be character­

ized by its weight, w, and assume that it moves at random through 

space. Let E(t,x) denote the plant density at time t at position 

x (the choice of the letter E indicates that we think of this 

plant density as the relevant indicator of the environmental 

condition) and let n(t,x,w) denote the weight distribution of the 

herbivore population at time t at position x. The evolution of 

this distribution is governed by 

()n{t,x,w) _ 
at -

()g(w,E(t,x})n{t,x,w) r E{t }) a 2n 
aw + s.w, ,x ax2 

- µ(w,E(t,x)}n(t,x,w} 
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where g is the individual growth rate, which is assumed to be a 

non-decreasing function of E, and u is the per capita death rate, 

assumed to be non-increasing with E. Moreover, g, s and u are 

assumed to be sufficiently smooth. The boundary condition has the 

form 

g(w0 ,E{t,x))n(t,x,w0 ) = b(t,x) 

where w0 is the weight at birth and 

b(t,x) = f m(w,E(t,x))n(t,x,w)dw 

where m is the expected number of young produced per unit of time 

by an herbivore individual; m is assumed to be sufficiently 

smooth and to be decreasing in E and non-decreasing in w. This 

completes the specification of the herbivore population model. 

First assume E{t,x) to be given. Consider the probability, 

P(t,x,wlt0 ,'x0 ,E), that an individual born at t 0 at position x 0 is 

at time t, at position x and has size w. This probability 

satisfies equation {4.2a) with 

and boundary condition 

We shall moreover set P = 0 for t < t 0 • If we know P we can 

calculate the population birth rate b at x from 

b(t,x) = ff B(a,x It-a, ~,E)b(t-a, ~)dad~ 
with 

~(a,xjt 0 ,~,E) = f m(w,E(t0 +a,x))P(t0 +a,x,wlt0 ,~,E)dw . 
..... 

Note that B depends only on the environmental condition E 

prevailing between t 0 and t 0+a. Also note that individuals of the 

same age can have different weights due to the different 

environments they experienced. The weight distribution of the 

population can be calculated from 
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n(t,x,w) = ff b(t-a,~}P~t,x,wlt-a,~,E)dad~. <4.4} 

In reality the dynamics of the plant population is coupled to 

that of the herbivore population according to 

~~(t,x) = h(Eft,x)) - f f(w,E(t,x))n(t,w,xldw (4.5) 

where h describes the internal dynamics of the plant population 

and f is the feeding rate of a herbivore of weight w at plant 

density E. 

Now assume that E(t,x) = Ea is the (onlyl stable steady state 

of (4.5) in the absence of herhivores. Set 

( 4 • 6 ) 

-Ba is the reproduction-and-dispersal kernel as introduced in the 

derivation 'of the linear model (section 3). When the diffusion 

coefficient s is independent of w and E we necessarily have 

( 4 . 7 ) 

Furthermore the dispersal mechanism incorporated in (4.2a) is 

* * such that the influence of the environment on place x , E(t,x ), 
~ 

on the contribution of some individuals to B becomes negligible 

when the distance between the place of birth of that individual 

* and place x becomes large. This implies that an individual born 

sufficiently far into the tail of the expanding population 

experiences an environment near to Ea during the whole course of 

its life. So, let E(t,x) + Ea for x + oo and all time. Then for 

all pairs (x,~) such that lx-~I < oo 

lim B{t0 +a,xlta,~,E) + Ba(a,x,~}. 
x,~+oo 

Example II: A plant-pathogen system. 

{ 4 • 8 ) 

For an infectious plant disease the environmental variable of 

concern is the density of susceptible hosts, H{t,x). The density 

of susceptibles does not influence the infectivity nor the 

dispersal of the pathogen, only the probability that an infecti­

ous unit will actually cause a new infection. This probability is 
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linearly proportional to the fraction of hosts still uninfected. 

Therefore we immediately have 

E ( t , x ) = !T f t , x \ , 

B(a,xlt0 ,F,;,E) 
_ H!t

0
+a,xl 

= B (a, x, F,; \ no ( 4. 9 \ 

where n0 = E0 . Using (4.9~, t4.3a) holds again. The rate of 

change in the number of suscepts is equal to minus the birth rate 

of the pathogen, therefore 

()H 
at = - b~t,x). 

This completes the specification of the plant pathogen system. 

This is the model investigated by Diekmann (1978). From (4.9) it 

is clear that (4.7) and f 4.8) also hold for this example. 

Using the relations (4.7) and ~4.8) we now consider (4.1 }. 

Consider equation (4.3a). Relation (4.71 implies that 
* * b(t,x) < b (t,x), where b is the solution of the linear equation 

(i.e. {4.3a) where E0 is substituted for E(.,.)). From this one 

expects that the asymptotic velocity of population expansion of a 

non-linear model can never be larger than the asymptotic velocity 

of the linear model. Then (4.1a) holds with V(p) the minimal 

velocity of the linear model. Furthermore (4.8) suggests that the 

population dynamical behaviour of the outer part of the tail of 

an expanding population approaches the behaviour of the linear 

equation. This leads us to expect that {4.1b) holds with Vlp) the 

minimal velocity of the linear model. 

Generalizing from the examples and the discussion about (4.1) 

leads us to formulate the following conjecture: 

For any non-linear model for the autonomous spatial spread of a 

structured population for which {4.3a), <4.7) and an appropriate 

uniform version of {4.8) hold, the asymptotic velocity of 

population expansion is equal to the asymptotic velocity of the 

associated linear model obtained by setting E(t,x) = E0 . 
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5. Some numerical examples 

The general linear model can be adapted to a particular 

species by an appropriate choice of ${a,x}. As an example we 

calculate c0 for the combination of two mechanistic models for 

two-dimensional rotationally symmetric dispersal densities with 

two descriptive models for the reproduction kernel under the 

assumption of statistical independence of reproduction and 

dispersal. Furthermore, we calculate contours of equal population 

density for a particular non-rotationally symmetric dispersal 

density. 

5.1. Rotationally symmetric dispersal 

Models for the dispersal density: In our examples we use two 

well-known probability densities: 

i. The Gaussian density. This density arises, for example, when 

juveniles of a species move at random till a certain age and then 

settle down on a permanent breeding ground. This is the case in 

many sessile aquatic organisms which have swimming larvae. This 

dispersal density also often arises in the case of infectious 

diseases amongst animals, which are transmitted through physical 

contacts. The relative frequency with which places within a home­

range of an animal are visited can often be described by a 

Gaussian density. Now, let an individual have the centre of its 

home-range at 0 and an other individual at x. The probability of 

encounter per unit of time then is proportional to 

2 _ l~-xl 

1 e 

2 
201 

d~ = := D(x) (5.1} 

where 0 1
2 is the variance of the Gaussian density describing the 

2 2 
relative visiting frequency within the home range, and o 2 = 201 
is the variance of the Gaussian density describing the contact 

rate with neighbouring individuals. 

The marginal distribution is 
2 

02 • 

also Gaussian, with variance 

ii. The Bessel density. Assume that juveniles of a species move 

at random with diffusion constant s, and that they settle down at 
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a constant rate ~· In a slightly rlifferent context Williams 
(1961) ano Broadbent & Kendall {19531 showed that these assump­
tions lead to a distribution of settled individuals 

D ( x) = 1 f l exp [ --r - I x I 
2 

] eh 
4nO 2 0 T 40 2-r 

1 1 

varia.nce of the position of settled 
individuals on a line transect through the. source and K

0 
is the 

modified Bessel function of the secon<l kind of order zero. 
The marginal density is the double-exponential density 

,~ 1 ~ 1 I 11 D ( X ) = 2v 2 O exp [ -V 2 - X • 
2 °2 

{ 5 • 3 ) 

the relation between o
1 

en o
2 

is 

20 2 = 0 2 
1 2 ( 5 • 4 ) 

This is also an appropriate model for the dispersal of airborne 
spores or seeds. 

Models for the reproduction kernel 

i. The block-density 

13°(a) r -1 = a2 

0 

for 0 < a < a
1 

f < < or a 1 = a = a 1 +a 2 

for a > a 1 +a
2 

( 5 • 5 ) 

where a 1 is the duration of the juvenile period, and a 2 is the 
duration of the reproductive period. The mean, µ , of this 
d 't . { \ 12 't . 2 . 2 112 ensi y is . a 1 +a 2 ,.,. , i s variance, v , is a

2 
, • 

ii. The gamma-density 

r-1 
0 0 { ) _ q ( qa) exp ( -qa) 
µ a - r< q) • 

The mean, µ , of 
2 r/q . 

this density is r/q and its 

( 5. 6} 

2 variance, v , is 

Results: In figure 3 the asymptotic wave velocity is plotted for 
the four special cases. In order to facilitate comparisons in 
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figure 3: Contour lines of the scaled wave velocity, Co =Ccµ/cr, as a function of the net-reproduction, R0 , and the 
2 2 

coefficient of variation, v/µ, of the reproduction kernel, cr is the variance of the dispersal density, v 

and µ are the mean and variance of the reproduction kernel. a: Block-function normalized reproduction kernel 

(5.5), and Gaussian dispersal density, (5.1). b: Gamma-density normalized reproduction kernel, (5.6), and 

Gaussian dispersal density, (5.1). c: Block-function normalized reproduction kernel, (5.5), and Bessel 

contact distribution, (5.3). d: Gamma-density normalized reproduction kernel, (5.6), and Bessel contact 

distribution, (5.3). 

N 
-..J 
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each case the coefficient of variation of the age-at-child 

bearing, v/µ, is placed on the ordinate. 

From these figures it can he seen that the wave velocity 

increases with increasing R0 as is to he expected. In the example 

with the Bessel dispersal density (fig. 3cd) the wave velocity 

increases approximately logarithmically with R0 (except for R0 
near unity; see section 6}. In the examples with a Gaussian 

dispersal density (fig. 3ab), however, the distance between lines 

of equal velocity decreases with increasing ln R0 • This depen­

dence can be understood by the following heuristic argument. 

Consider an infinitely long straight line of individuals of age 

zero. Their contribution to the local population density of the 

next generation at a distance x, is roughly proportional to -R
0 

D(x), where D is the marginal-density of D. Define 'the 

eff~ctive distance', Xeff' to be the distance beyond which 

R0 D~x) de~reases below a certain number, 

dispersal density 

say n. For the Bessel 

( 5 • 7 ' 

which leads us to expect a logarithmic dependence of c0 on R0 . In 

the case of a Gaussian dispersal density, however, 

I RO 1.ff 
xe_ff = o 2 /2 ln [ ~ ~ ] 

n o2/7T 
( 5 • 8 ) 

explaining the observed decrease in distance hetween the lines of 

equal c0 for increasing R0 • 

An other feature, which is associated with Xeff' is that the 

wave velocities for the Bessel dispersal density are larger than 

for the Gaussian dispersal density. The wave is dragged forward 

by the tail of the dispersal density. The tail of the Bessel 

density is thicker than the tail of the Gaussian density, or in 

other words if n + 0, Xeff-Bessel > Xeff-Gauss. 
When the coefficient of variation of the reproduction kernel 

is increased, the offspring production will start at a lower age 

(in the block-function case) or increase faster after a=O (in the 

gamma-density case). Since earlier produced offspring is longer 

'put•on interest' the wave velocity becomes larger with increa­

sing coefficient of variation. 
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From the four examples it appears that the shape of the 

dispersal density is more critical to the wave velocity than the 

shape of the reproduction kernel. We will return to this point in 

section 6. 

5.5. Non-rotationally symmetric dispersal 

The dispersal density: As discussed the Bessel density is a 

mechanistic model describing the dispersal of spores or seeds 

under the influence of turbulent diffusion. Often there will also 

be an average displacement due to 

Assume that the wind is blowing in 

holds in this situation if we put 

Ix I = I ( x1 , x2 - mT rl 

a prevailing wind direction. 

the x 2-direction. (5.2a) still 

( 5. 9) 

under the integral sign where m is the average wind velocity, 

m*, divided by Q>. The marginal density (3.6b) now has the form 

(appendix IV) 

- 1 
D(x) I 2 2 

1202¥1+(72%:) sin 
2 

where o2 is given by (5.4). 

The reproduction kernel. In this 

reproduction kernel a a-function at a=u. 

(3°(a) = o(µ} • 

A m 2 2 '} lx1 I 1+(1202) sin W 
(5.10) 

example we use for the 

(5.11) 

The results can be compared with the results of the rotationally 

symmetric Bessel-density for both reproduction kernels with v 2=0. 

Results: In figure 4 contours of equal birth rate are plotted 

for some values of the net-reproduction and wind velocity. From 

this figure we see that for small R0 and large m no velocity of 

population expansion is calculated in the direction opposite to 

the wind direction. Too few births occur in this direction to 

build up a population wave and we thus have V<O. The contours of 

equal population density appear to be ellipse shaped. We return 

to this point in section 6. 
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R0 =10.0 

figure 4: Contours of equal birth-rate for the non-rotationally 

symmetric dispersal density, (5.10), and a a-function 

reproduction kernel, (5.11 ), for various values of the 

net-reproduction, R0 , and wind velocities, m. 

6. Various approximations 

For every normalized reproduction-and-dispersal kernel $(a,x) 

the associated wave velocity can be calculated numerically, as 

long as the transform integral (3.9) does exist. We can thus gain 

insight into the dependence of the wave velocity on the para­

meters of this specific normalized reproduction-and-dispersal 

kernel. It would, however, be useful to have general, preferably 

explicit, approximations for c0 in terms of global characteris­

tics of the normalized reproduction-and-dispersal kernel. Such 

approximations may provide useful rules of thumb. Moreover, in 

practice, measurements of the birth kernel have a limited 

accuracy. This also leads us to search for methods, based on 

easily measurable global characteristics, from which the 

asymptotic wave velocity can he calculated at least to a first 

approximation. Finally, comparing such approximations with 

numerical results for specific normalized reproduction-and­

dispersal kernel show to what extent c0 depends on the details of 

the reproduction and dispersal process. 
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6.1. Rotationally symmetric dispersal 

i. Small R0 
Let l{C,A) := ln L(C,A). Formula (3.9' then transforms into 

00 00 

l(C,A) = ln R
0 

+ ln J J e-A{~+Ca) S(a,~) d~ da . 
0 -00 

( 6. 1 } 

The second part of the right-hand side is the so-called curnulant 

generating function of B evaluated at A and AC. We shall denote 

the bivariate curnulants as 

and the second to a. 

K .. where the first index refers to ~ 
l.J 

By definition the cumulants are the 

coefficients in the Taylor expansion of the curnulant generating 

function. Then {6.1} can be written as 

oo n 
l(C,A} = ln R0 + I I 

n=1 i=1 

In particular 

( 6 • 2 ) 

lJ : = 
00 00 

J J a 
2 B< a, ~) d ~ da , the mean age-at-child-

0 -oo bearing, 

2 = \) : = 
00 00 

J J a
2 S(a,~) d~ da - µ

2 , 
0 -oo 

2 00 00 2 
o := J J ~ f3(a,~) d~ da, 

0 -OC> 

the variance of the 
age-at-child-bearing, 

the variance of the (marginal density of the) places where an 

average female gives birth throughout its life relative to its 

place of birth, 

K·. = 0 for i odd, due to symmetry. 
l.J 

Further relations between moments and cumulants may be found in 

Kendall & Stuart (1958). The first terms of system (3.11) 

become:" 
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...... , 
( 6 • 3 \ 

-µC + (o
2

+v
2c2 )A - ~ 

1 
+ 6 

:\low define 

as 

co = a 1 E 

Ao = 81 E 

substitution 

leads to 

co = 0 /2 
µ 

where 

a. = ( ~) 2 
µ 

and 

1 /2 AO = 0 

where 

B (~) 2 = µ 

2 
E = ln R0 , and assume that c0 and AO can be written 

2 3 
+ a 2 E + <X3E + ... I 

B2E 
2 

B3E 
3 

+ + + ... 
in ( 6 • 3 ) and solving for subsequent a. 's and B. 's 

1 1 

ln R0 [ 1 + a ln R01 

2 1 
K40/ 0 

4 
K21I0 µ + IT 

ln RO [ 1 - B ln R0 
] ( 6 . 5 ) 

I 2 1 4 - 2 K 21r0 µ + 4 K 40/0 

Note that K40 already occurs in a 3 while K03 only occurs in a 5 . 

This is consistent with the observation in section 4 that the 

wave velocity is more sensitive to the shape of the dispersal 

density than to that of the probability density of the age-at­

child-bearing. In statistics K40 /o 4 is called the kurtosis. 

The wave velocity predicted by approximation formula (6.4} 

was compared with the values of the four examples from section 4. 

Figure 5 depicts the regions where the inaccuracy of the 

approximation is lower than 10% for the expansion up to order E 

(i.e. a=O) and up to order s 3 (the complete formula (6.4)). It 

can be seen that in the case of a Gaussian contact distribution 

the formula i~ adequate even when R0 is large, provided the 

coefficient of variation of the probability density of the age-
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at-child-bearing is small. This is due to the fact that expanding 

up to the second cumulant amounts to replacing the dispersal 

density by a Gaussian density. As expected, the parameter area 

where the approximation formula is accurate is larger for the 

3 
expansion up to E • 
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figure 5: Parameter region where the inaccuracy of the approxima­

tion formula (6.4) is less than 10%. 

a: formula (6.4) with set equal to zero compared to 

the numerical examples of figure 3a and 3b. 

b: formula (6.4) with set equal to zero compared to 

the numerical examples of figure 3c and 3d. 

c: formula (6.4) compared to the numerical examples 

of figure 3a and 3b. 

d: formula (6.4) compared to the numerical examples 

of figure 3c and 3d. 

ii. Concentrated reproduction kernels 

The previous expansions were based on the presupposition that 

c0 or e~uivalently R0-1 is small. An other possibility is to 

consider reproduction kernels which are very concentrated. 

Assume, for the sake of simplicity, that S(a,x) = a0 (a) D(~), and 
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write 

with 

00 

f ah(a) da = 0 • 
0 

~t 
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',, 
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figure 6: Parameter region where the inaccuracy of approximation 
formula (6.6) is less than 10% compared to the 
numerical examples of figure 3a and 3b. 

Let Kj denote the jth cumulant of h. Then KOj 

for both j ~ 0 and i ~ O. Breaking off the 

after terms with E
2 yields for Gaussian D 

I 2 ln RO 
co 

a = 
1-2(~) 2 µ ln RO µ 

Ao co 
µ 

= 
02 (VC0)2 + 

= E j K . and K . . = 0 
J 1J 

expansion of l(C,A) 

( 6. 6) 

(6.7) 

In figure 6 the predicted velocity is compared with the numerical 
examples with a Gaussian dispersal density. The parameter area 
where the inaccuracy of the approximation is lower than 10% is 
slightly larger than the area for the perturbation expansion up 
to order E. 
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When the dispersal density is not Gaussian, the expansion of 

l(C,A) in general contains infinitely many terms of order one, 

and we are not able to get a simple explicit expression for c0 . 

Yet it may be a good idea, in situations where one has a 

mechanistic mo<lel for the dispersal density, to a~rive an 

approximation for c0 which is based only on the mean and variance 

of the reproduction kernel. We shall not elaborate this any 

further here. 

6.2. Non-rotationally symmetric dispersal 

The starting point for 

equation ( 6. 2}. 

the perturbation expansion is again 

Note that now the 

direction of movement and 

taking into account first 

K •• lJ depend on w, the angle between the 

the x 1 -axis. Proceeding as 

order terms only, we find: 

2 
K 01 

The various cumulants now are: 

00 

( i} K 01 = f f 2 a B (a,~} da d~ : = u, 
0 JR 

the mean age at child bearing. 

OOJ I 2 \)2 (ii) K02 = 2 a $(a,~) d~ da := , 
0 JR 

the variance of the age at child bearing. 

00 

(iii} 

where 

00 00 00 

y. = I ~. I I B!a,~} d~. dad~. 
l ,0 l J l 

-00 0 -00 

(i,j=1,2 

before, but 

( 6. 8) 

{6.9) 

and i:#j ) 

the mean displacement in the xi-direction of the birthplace of a 

child relative to that of its mother. 
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(iv) 

where 

2 a .. 
lJ 

00 

00 

i3 (a, t;: } da dt;: 2 2 = a 11 cos w + 

2 2 ,i. , I 2 . 2,i. a 12 cos~ sinw + a 22 sin ~ 

( t;:. -Y. ) ft;:. -Y. } 8 I a, t;:} dt;: da 
l l ' J J 

is the covariance of the components of the displacement in the x. 
l 

direction 
00 

{ v) 

where 
00 

~. = J J (t;:
1
.-y

1
. )(a-µ) S(a,t;:) dt;: da 

l 0 lR 
( i=1 , 2) 

is the covariance of the age at childbearing and the component 
of the displacement in the x.-direction. Substitution into (6.8) 

l 

and rearranging yields 

c
0 (\JJ} 

Y1 
w 

Y2 
sin \JJ) !2 ln R0 . p ( i.IJ} = (- cos + + 'µ µ µ 

with 

p { i.IJ) 2 = { q11 cos lJJ + 2q 12cosw sini.IJ + q22sin2i.IJ) µ 

and 

2 2 2 2 
q11 = (µ 0 11 + v Y 1 

This completes the derivation of the approximation formula for 
the velocity of plane wave solutions. 

Concerning the contours of equal birth rate and the asymptotic 
velocity of population expansion in a certain direction from the 
origin, V~p), we observe that equation (6.10) has the same form 
as equation 

f ormu.;ta ( 6. 1 0 ) 

(2.13). Combining the 

we conclude that, up 

results of 

to the 

section 2 and 

first order in 
E =I ln R0 , V{p) is given by equation (2.10) if we replace m1 , 

m2' f(O), 8 11' 8 12' 8 22 by Y1/µ, Y2/µ, (ln Ro)/µ, q11' q12' q22 
respectively. In cartesian coordinates the locus of vectors 
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(V(p) cos p, Vfpl sin p), p E [ 0,2n), is given hy equation (2.9, 

with the same substitution. 

6.3. Connections with the Fisher/Skellam velocity 

As was discussed in section 2, diffusion models are often used 

in the study of invasions. The Bost influential {rotationally 

symmetric) rnodPl is that of Fisher (1937} and Skellam (1951 l. In 

this section we investigate under which con<litions the asymptotic 

wave velocity calculated from such diffusion models is a valid 

approximation to the asymptotic wave velocity of the general 

model. In the process we also find mechanistic interpretations of 

the phenonenological parameters in these diffusion models. We 

will im~ediately consider the non-rotationally symmetric case, of 

which the 'Fisher-Skellam velocity' is a special case. 

Randomly moving individuals: One of the basic assumptions of 

diffusion models is that an individual shows, apart from a 

systematic movement in a certain direction, random movement. The 

probability iper unit area) that an individual is at a position x 

* when it is still alive at age a, D (a,x !alive), is then given by 

equation t2.8) with f(O)=O and t replaced by a. The reproduction-
* and-dispersal kernel is obtained by multiplying D with the 

reproduction kernel s0 {a) defined in section 3.1. Substitution of 

the resulting kernel in (3.11) yields 
00 

JRo ~exp {-a (P{W) A
2 

+ AC*)} s0
(a) da = 1 

l - * 
00 

- 2 * 0 RO [ 2P(W)A-C] f exp {-a~P(W)A +AC \} s· (a} da = 0 
0 

where 

* C = C - m1 cos W - ~2 sin W 

and 

- 2 
P(W) = s 11 cos w 2 '" . ,,, . 2 '" + s 12 cos ~ sin ~ + s 22 sin ~-

~6.11) 

It is known from mathematical demography that the intrinsic rate 

of natural increase, r, can be calculated from the so-called 

Euler-equation {Keyfitz, 1968~ Roughgarden, 1979): 
00 

1 = R0 f exp (-ra) s0 (a) da • 
0 

(6.12) 
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Rewriting (6.12) as an expression for R0 and substitution in 

(6.11) finally yields equation (2.13) and 

C ,i. • I 
0 - m1 cos ~ - m2 sin w 

Ao(iJJ} = 2 P~\JJ} 

From this, we can conclude that if we identify the intrinsic 

rate of natural increase with f (0) the wave velocity of the 

general model and the 

the shape of s0 (ai. 

diffusion monel are equal irrespective of 

This justifies the procedure used by, for 

instance, Lubina & Levin (1988) and Okubo (1986). 

Slow growinq populations: It is well known that the individuals 
of most species do not move at-random throughout their lives. 
~·Jhen is the velocity from the diffusion model an approximation to 
the velocity of population expansion for such species? With the 

identification 

f (O) = 
.ln R0 

(equation 2.13 and 6.10b), 

Yi 
m. = 

l J.1 
i=1 I 2 I 

equation (2.13) is equal to the first term in the perturhation 
expansion for c0 (equation (6.10)). For the rotationally 

symmetric case figure 5 shows that the ~iffusion model velocity 
is a valid approximation when R0 is small, say R0 ~ 1 .5, i.e. for 
slow growing populations. This identification also relates the 

phenomenological parameters f(O), mi and Sij with the mechanistic 
2 parameters R0 , 1.1 1 v , y., o .. and $ .. 

l lJ l 

Remark I: The Euler-equation can he expanded in the same way as 
was done for the characteristic equation (3.9\ in the previous 
section (see Metz & Diekmann, 1986, p.153-154). The lowest order 
term in this perturbation expansion reads r = ln R0 I u which is 
equal to the identification of f(O) chosen. 

Remark II: On basis of the preceding discussion one might expect 
that any model for the spatial spread of a population can be 
approximated by the diffusion model provided that R0 - 1 << 1, 
such fhat the population grows slowly, and we look at correspon­
dingly large time and space scales. A more rigorous phrasing of 
this conjecture is given in appendix V • 



39 

7. Applications 

In this section we show th~t the theory developed in the 

preceaing sections does give quantitative pre~ictions of the 

velocity of population expansion that are in goo~ agreement with 

the ones observed in the field. All exaBples have a rotationally 

symmetric dispersal density. The first four examples are 

discussed in detail elsewhere. Only a short summary is given 

l-iere. T~•Je ref er to the original papPrs for hiological and 

technical details. The example of rahies is treated in some 

detail as it has not been publishe0 elsewhere. Pre<Ucted and 

ohserved velocities of population expansion are summarized in 

table 1 . 

Table 1. The observed and predicted 

expansion, c0 , for various 

mildew the representation mean 

given. l 

velocity 

species. 

standard 

of population 

(For rust and 

deviation is 

species c 0-observed c 0-predicted units % deviation 

The muskrat 1900-1925 

1930-1960 

The collared dove 

Yellow rust 

Downy mildew 

Rabies 

5. 1 

10.9 

43.7 

9. 4 ±o. 8 

2. 3 ±o. 2 

30-60 

3.4 

6.5 

56.3 

s.0±1.5 

3. 0 ±2. 4 

30-40 

7.1. The muskrat ~Ondatra zibethicus): 

As discussed in the introduction, 

km year 1 -33 

km -1 -40 year 

km year -1 +29 

cm.day 01 -16 

day -1 +33 cm 

km 
-1 year 

the muskrat started its 

invasion into Europe in 1905. In a recent paper Van den Bosch et 

al. (1988) investigate this case. They found that the velocity 

of population expansion before 1930 to be much larger than after 
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1930. This rlifference is probahly ~ue to t~e large scale trapping 
programs starte~ around 1q25130. 

All availahle literatur~ <lata on t~e life history charac­
teristics of the muskrat are from the perio~ after 1930. On the 
basis of literature ~ata on the age specific survivorship, Lfa\, 
ana the rate of offspring prorluction of a female of age a, mfal, 

h t _:i t ' R d th d ' 2 f t. e ne -repro11uc ion, , 0 , an. _ e mean, µ, an variance, v , o 
the normalized reproduction-kernel were calculated. From 
puhlished capture-mark-recapture nata on the dispersal of 
muskrats it appears that juveniles as well as a<lults disperse 
hetween two hreeding seasons. Ko significant difference was found 
for the dispersal <'listance between two hreeding-seasons for 
juveniles and adults. Using these <1ispersal data the variance, 

0
2 , and kurtosis of the marginal dispersal oensity were calcula­

tea. Luckily, the values of the parameters appeared to be in the 
range of applicability of approximation formula (6.4}. 

From t~e capture-mark-recapture stucty the mortality rate 
induced hy the trapping program, a standar<l program in Europe, 
was calculated. Using this estimate the age specific survivorship 
for the period before 1930 was reconstructen and through this 
all other parameters recalculated. Again formula {6.4} was used 
to calculate the 'predicted velocity of population expansion'. 

7.2. The collared <love IStreptopelia decaocto) 

In the same paper Van den Bosch et al. 11988) also treat the 
invasion of the collared dove into Europe. Using literature data 
and additional data fro~ the EURING data-hank on the recovery of 
ringed fledglings the age specific survivorship, L(al, was 
constructed. Combined with literature data on the age specific 
reproduction rate this allowed the calculation of, the net­
reproduction, R0 , and the mean, µ , ano variance, J of the 
normalized reproduction kernel. 

Juveniles of the collared dove <1isperse and settle down 
definitively on a permanent breeding ground. Using the ring-
recovery c'lata mentioned gave some impression about the dispersal ,, 
distance of the juveniles. The data set turned out to be too 
small for an estimate of the kurtosis of the marginal dispersal 
density to he possible. Since, however, the net-reproduction is 
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small (R 0 = 1 ,33) the approximation formula <6.4) was used with 

~=0, which corresponds to using the Fisher-S~ella~ velocity. 

7.3. Yellow rust (Puccinia striiformis). 

Van den Bosch et al. <.1988ahc, · t' t th t· 1 , inves iga e _e spa ia 

development of disease foci in plant-pathogen systems. Yellow 

rust is a fungus living on wheat (Triticum aestivum). For this 

pathosystem the approximation formulae cannot he used and, in 

order to estimate c0 , system (3.11 ~ was solved numerically on the 

basis of an appropriate sub-model for the reproduction-and­

dispersal kernel. 

Yellow rust is transferred between hosts by means of airborne 

spores. Inside the canopy layer spores move under the influence 

of turbulence and are trapped hy infected and susceptible hosts 

alike. Moreover, the mean time before a spore is trapped is short 

relative to the time span of the infection. This implies that 

equation (3.4) applies. The transfer mechanism satisfies the 

assumptions underlying the Bessel-density {5.2). Artificial point 

infections where established in otherwise uninfected fields. 

Between 2 and 2.5 latency period after inoculation the disease 

severity was determined at various distances from the inoculation 

point. The Bessel-density was found to fit these data well. 

The spore production, as a function of time since infection, 

of a group of lesions was measured in a growth chamber. The 

relative spore production as a function of the 'age-of-illness', 

s0 (a), turned out to be well described by a gamma-density f5.6) 

that is shifted to account for the latency period. The latency 

period was obtained from the literature, and the parameters of 

the gamma density werA estimated from the growth chamber data. 

To estimate R0 artificial infections were established in a 

number of small wheat plots. The numher of infected leaves were 

counted at weekly intervals. During a certain time interval the 

number of infected leaves increased exponentially. The rate of 

exponential growth, r, should satisfy f6.12). The net-reproduc­

tion, R0 , was estimated using (6.12) the estimated shifted gamma­

density ~nd the estimated r. 
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To test the theory artificial DOint infections were est~­

blished in wheat fielrts, anrl the rlevelopment of the foci was 

followed at wee~ly intervals. 

7.4. Downy mildew fPeronospora farinosa'. 

As a second example Van den Bosch et al. 1 1988c) investigated 

the ~evelopment of downy mildew foci on spinach (Spinachia 

aleracea'. The same proceaure was followed as in the yellow rust 

example with one exception. Since the latency period of <lowny 

mildew lesions is approxiFlately equal to the sporulation period 

of a lesion, the first few generations of an epidemic have little 

overlap. Therefore, the net-repro<luction was estimated directly 

as the numher of sporulating lesions of the first generation, 

divided by the numher of sporulating zeroth generation lesions. 

7.5. Rabies 1 Lyssavinus spp.) 

Rabies has been endemic in large parts of the world since 

historical times. Europe hRs been free from rabies during the 

last centuries. Since 1940, however, a rabies epidemic, origina­

ting from Poland, is expanding over Europe. The velocity of 
-1 expansion ranges from 30 to GO km year 

Rabies is characterized by a long latency period with highly 

variable <luration and a short infective period. The infectivity 

during the infective period is approximately constant lSikes, 

1962). The average duration of the latency and infectious periods 

is approximately 35 and 5 nays respectively. (Berger, 1976~ 

MacDonald & Bacon, 1982; Bacon, 1985\. If for the time being we 

consider 8°(a) to be a fdeterrninistic) block-function then u 
equals approximately 0.1 year. This value of u is given by many 

authors (Anderson, 1982; Smith, 1985; Kallen et al., 1985). 

Although there seems to be consensus ahout the averages, very 

little information is available about the variability of the 

latency and the infective period. For the use in his stochastic 

simulation model, Berger (1976) constructed probability densities 

for tKe latency and infectious period on basis of a small number 

of experiments. Although these densities might still be far from 

realistic they at least give some insight. Now consider s0 (a) to 
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be a ~lock function with a stochastic 12tency period, ! , drd a 

stochastic infectious period, l • In appenaix VI it is shown how 

µ and v, can be calculated for such n stochastic hlock function. 

For Berger's data 

ll = 33. 44 r1ays 

V = 4. 94 rfays 

Since the coefficient of variation an~ ~O are both small this 

term is negligihle in !6.4'. So, our first conclusion is that 

detailed information about the prohahility aensity of 1 ana l is 

not necessary as long as µ is accurately aeterminGd. In the rest 

of our discussion we leave the coefficient of variation term out 

of consi0eration. 

Andral et al. (1982' reporte~ that three radio-tracke<l foxes 

userl the same home-range before and during the period in which 

they were rahid. The only behavioural change appeared to be that 

the proportion of time spent active increasen (thereby increasing 

the contact rate with other foxes). Therefore 'dispersal' and 

infectivity production are statistically independent (equation 

(3.4}). Consequently S equals zero in (6.4). 

The frequency with which places in the home range are visited 

is well described by a two-dimensional Gaussian density (e.g. 

Ball, 1981 ). The kurtosis of a Gaussian <lensity is zero. We are 

thus in a situation, where a=O in (6.4). This implies that (6.4) 

effectively gives the Fisher/Skellam velocity. Nhen space is 

completely 'filled-up' with fox home-ranges 

= w -1 
F ( 7. 1 ) 

where o 2 is the variance of the Gaussian density, F the fox 

population density and w a constant. Lambinet et al. ~1978) give 

0=2.3km 
-2 

at a population density of one fox km • So, 

w :;: 5.3 . 

Using {5.1) we find that the standard deviation, o, of the 

marginal dispersal density is given by 

a = 10.6 F-1 

Finally, we need information about the net-reproduction, R0
• 

It is o6vious that R0 depends on population density. We make the 

assumption that 
( 7. 2) 
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The threshold population density, FT, helow which no rabies 
epidemic is possible is reported to he in the range 0.25 to 1 .O 
fox km- 2 (Lloyd, 1976; Andral & To~a, 1977). The most recent, an~ 

-2 therefore hopefully most accurate, estimate of FT is 0.4 fox km 
(Steck & wanaeler, 1980}. At this threshold R0 =1, so 

2 -1 ::: = 2.5 km fox 

Substitution of ( 7. 1 ) and ( 7. 2' in ( 6. 4 ~ yiel<'ls 

C - rw 
0 - JJ 

ln ( :'.::F} 
F { 7 . 3 ) 

The resulting relation hetween c0 and F is depicte<l in figure 7. 

t 40 ,.... 
'i .... 

30 t1S 
Q) 
>. 

E 20 
~ ......, 

0 10 
() 

0 
0 2 4 6 

fox density (individuals.km-2>-

figure 7: The velocity of expansion of a rabies epidemic as a 
function of fox population density. 

A striking feature is that intermediate velocities only occur for 
extremely small ranges of fox density. There is either an 
epidemic travelling at a, more or less, constant velocity, or 
there is no epidemic at all. This corresponds to observations in 
the field (e.g. Bogel & r-1oegle, 1980). An other remarkable thing 
is that 

expansion 

for somewhat larger densities the velocity of rabies 
slightly decreases with increasing fox population 

do not know of any data confirming or falsificating density. We 

this. 

Ka·11en et al. ( 1985) also investigate the spatial spread of 
rabie~. They use a diffusion type model and derive a velocity 
equation which is basically the same as the Fisher/Skellam 
velocity. The (major} difference between their and our approach 
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is in the deter~ination of the parameters. In our terminology 

Kallen et al. use 

ff0) = EF-1 
. ' 11 

which is for small F approximately equal to ln 'EF)/µ used in 

f7.3'. In order to estimate the diffusion coefficients K~llen et 

al. assume that when rabies viruses 'enter the limbic system 

foxes lose their sense of direction ano territorial hehaviour and 

start to wander around in a more or less random way'. ThiB is in 

contradiction to the observations of Annral et al. (1982\. Using 

this assumption s is estimatea from S=KA where A is the average 

territory area and 1/K is the average time after infection until 

a fox leaves its territory. A mechanistic basis for this estima­

tion is not given. Although Kallen et al. ~1985' certainly gain 

valuable insight into the mechanisms steering the spatial spread 

of rabies .and into control measures useful to prevent this 

spread, we think that in the determination of s, the problem of 

estimating and interpreting such phenomenological parameters 

hecomes apparent. Due to the absence of an influence of fox 

density on territory size, the velocity of rabies spread as given 

by Kallen et al. increases with population density while equation 

(7.3) predicts a slightly decreasing c0 at the somewhat larger 

population densities. It is worthwhile to confront these two 

opposite predictions with field data. 

8. Discussion 

We have shown how the velocity of population expansion can he 

calculated from ~nowledge of the population dynamical attributes 

at the individual level. Our purpose was, on the one hand, to 

operationalize existing theory and, on the other hand, to extend 

the theory into a biologically relevant direction. The indicated 

extensions have so~e open ends waiting for a mathematical 

analysis. Two of such open ends are presented as conjectures 

{section 4, appendix V'. 
The asymptotic result from section 3 gives us the velocity .. 

with which a population will eventually expand. It does not tell 

how quickly this asymptote is approached. Simulation models of 
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invasions usually s~o~ ~ r~pi1, convcrgenc~ to the 'final' veloci­
ty 1. Za.cl.ol:s 8: Kai:i.1:)meyer, 1 077; ~~oh0 l, 1')74 ~ ;\:nmer 1nan & Caval i-
7.forza, 1984: Luhina ,?, T_,eviri, 10,8R· " Zawoiek, pers. comm.). 
Furthermore ~any real life 0xa~pl0s alsn show convergence to a 
constant velocity within the ti~e s~2n of the 
in prep.; Okuho, in prep. ~ Van den Posch, 
prep.I. Although it woula he useful to have 

inv::i.sion 'Hengeveld 

19~P.c, in press; in 

estinates on the 
speed of convergence, we have a gut fp0ling that at least the 
front of invading populations approaches the asymptotic velocity 
within an 'experimentally' reasona~le timG span an~ that the 
asymptotic result of section 3 can be used in ~any situations. 

The advantage of the present approach, hased on the work of 
Diekmann and Thieme, is that, contrary to diffusion models, 
hardly any assumptions are made ahout reproauction, survival and 
dispersal of indivi~uals. Ahout the only assumptions made are (i) 

the absenc~ of Allee like effects ana 'ii\ the presence of a 
sufficiently large range of population densities between the very 
low densities where demograyhic stochasticity becomes apparent~ 
and the large densities where nonlinear effects raise there heaa. 
!See ~ollison (1985,1986' for a discussion of the consequences of 
this last assumption heing flouted.) This general approach yields 
a correspondingly general result about the velocity of population 
expansion. The real-life examples discussed in section 7 further­
more show that we have been able to catch the essentials of the 
processes underlying population expansion for a wide variety of 
species. Consequently, the way to analyzing the velocity aspect 
of invasions is open. Such sturlies are expected to give insight 
into the important ecological pheno~enon of population expansion. 
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Derivation of < 2. 11 } anr1 ( 2. 1 2' f ror1 1 2. 7 \ 

Let 

A = [cos W 
sin W 

sin :J. -cos 

47 

and note 
-1 

that <letA = -1, A = A. Let x = Ay. To transform '2.7~ 

to the new coordinates ry1 ,y?' recourse is taken to t~e interpre-
~ rp 

tation of the coefficients. Vi= 'm1 ,m 2 )~ can he interpreted as 

the vector of infinitesimal means of the novement of the 

individuals, and S = {sij) as the infinitesimal covariance 

matrix. Letting primes indicate the correspon0ing quantities in 

the y-coordinates, using the usual rules for the transformations 

of means and covariances gives 

AM .. , S' = ASAT 

Now consider solutions which are constant in the (sin \jJ,-cos \jJ) 

direction, i.e. orthogonal to the (cos w,sin \jJ)direction, so that 

an'/ay
2 

= O. Removing all zero terms and dropping the primes and 

the spurious index 1 gives !2.11) and (2.12'. 

Appendix II. 

Transformation of {3.8) into '3.9\ 

The transformation 

~ 2 = ~ 1 ' sinW + ~ 2 • cosw 

kernel in {3.9b). Since 

and 

equals ~ 1 = ~ 1 ' cosW - ~ 2 ' sinW ; 

• Substitution in S(a,~ 1 ,~ 2 ) yields the 

the Jacobean of such a rotation equals 1 

~·v = ~ 1 cos W + ~ 2 sin W = 

~ 1 ' cos 2w - ~ 2 'sin W cos W + ~ 1 ' sin
2w + ~ 2 • sin W cos W = 

= ~1 I 

" 

we arrive 
a at (3.9 ). 
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Appendix III. 

The relation between V~P) and c0 ~W' 

Let V{P) be the asymptotic velocity of population expansion in 

the P direction, i.e. 

lim bf t,ty) 
t-+oo 

where 

for all y outside A 

for all y inside A 

A = { V ! p ) ( C?S p ) : p E [ 0 , 27T ~J 
sin P 

1 III.1) 

(III.2) 

Let c0 !w) be the minimal wave speed in the direction w. We expect 

that asymptotically the expansion is governed by plane waves in 

all directions and that, therefore, a consistency relation 

between V(P) and c0 (W) must hold. We first present a formal, 

local and geometrical derivation of this condition. Next we turn 

to a result of Weinberger (1983l about the relation between V(p) 

and c0 (w) in his discrete time model. 

Assume that Vfp} is a smooth function of p. Now, consider 

figure 8. Translate the intersection point (x,y) to the origin 

and rotate the figure over ~7T-w. The contour can, due to our 

smoothness assumption, locally be approximated by 

2 2 y = -ax + o(x } 

Now let 8(x) be the angle with the x-axis of the normal to the 

contour at point x (figure 8b}. Then 

8 = ~7T + arctan {-2ax) = ~7T - 2ax + O(x3 ) 

In a small timestep 6 the contour is at most 0(6) translated, so 

we can restrict to x's of this order. In the timestep 6 the point 

(x,y) on the contour is translated to: 

(x,y) = ~x+C(w+8- ¥) cos(8)6; y+C(w+e- ~) sin(8)6) 

~ (x+Cf$-2ax)2ax6; y+C{$-2ax)6) 



Yt 

a b 

figure 8: see the text. 

C(ljl)t. ------

c 

' ' ' ' ' ' ' l 
I 
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So, the translated contour is up to second order terms given by 

y = -ax2 + C{$-2ax)6 ~ -ax2 - C1 ($) 2ax6 + C($)6 

(see figure 8c), and the new top of the parabola is now 

( x 'y) = ( -C I { $) 6 ; c ( $) 6 

which finally leads to 

1JJ - p = arctan (- C' (W) 
C( $} 

V(p) = /(C(tlJ)) 2 + (C'($)) 2 

or equivalently equation (3.12). 

Weinberger (1983} has derived the characterization 

A~ {x : x 1 cosw + x 2 sint!J ~ c 0 ( tlJ) for all w E [0,27T)} (III.3) 



so 

in the context of a ~iscrete time mo~el. Comhining {III.2) and 

{III.3) we find 

V'.P) 
c (•Ii) 
o·~ 

~ cos{W-P} := FJ\IJ), for all \jJ E [0,2n). {III.4) 

If x is a point of the boundary separating the 'inside' from the 

'outside' of the set it necessarily satisfies 

V(P) = min FP{W) 
w 

or similarly 

which, in its turn, equals (3.12). 

{III.5) 

(III.6) 

Inequality (III.4) is more restrictive than (III.5). What then 

is the difference between (3.12) and the Weinberger result? To 

answer this question consider the function Fp(\IJ). Note that for 

(W-P) + ~n, FP(w)+ 00 • Using the first equation of (III.6) we 

possibly find, besides the absolute minimum, one or more local 

minima and maxima. If such a local mininum exist it can if we 

gradually change p :(a) disappear because the local minimum and 

maximum fuse, (b) become the absolute minimum leaving the former 

absolute minimum as local minimum, or (c~ a combination of these 

two. Combining this with the second equation of (III.6) it can be 

seen that the graph of V(p) consists, at least, of a closed curve 

resulting from the absolute minimum (the AMCC). The local minima/ 

maxima could possibly cause isolated closed curves 'outside' the 

AMCC, loops on the 'outside' of the AMCC fusing with the AMCC at 

one point, or more exotic possibilities like double loops in 

conjunction with closed curves, etc. The important point is that 

the properties of FP(\IJ) mentioned ensure that loops and isolated 

closed curves cannot occur 'inside' the AMCC. The closed convex 

set A as given by Weinberger equals the AMCC leaving out the 

isolated closed curves and pruning the loops. This pruning may 

result in a sharp angle. It are such sharp angles where the 

geometrical derivation breaks down. 

In cenclusion we can say that equation (3.12) tells the whole 

story if V(p) is a smooth function of p, which is biologically 

reasonable. In other situations {3.12) also gives us the desired 

contour of equal birth rate/population density after pruning of 
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loops and crossing out isolated islands. Whether or not such 

loops or islands do actually occur for 'decent' kernels we don't 

know. 

Appendix IV 

Derivation of formula ;5.10) 

The dispersal oensity takes the form 
00 

] d'( D{x1 ,x2 ) = 1 ft exp [-T -
4 7TO 

2 0 
1 

Substitution of X I : 

2 -x1 sin w + 

x2 cos w and dropping the primes again yields 
2 2 

1 x1 x2 
oxp[-~-l--'f-- + --
'- - L ' 2" l l 

401 

The marginal density is found from 

00 

D(x2 ) = J D{x1 ,x2 )dx1 
-oo 

We first calculate 

00 

f exp {-
-oo 

Using Siegel (1968, p.98, formula 15.75) this integral equals 

So, 

00 
1 1 -exp -{13 T + y -} dT 

IT T 
6 ( x 1 ) = 

where 

a. = 1 m sin W --- exp { 2 x 1} 
2 01 /IT 2 01 

a 1 f_m , 2 . 2 '" µ = + \ , sin 'V 

201 
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Substitution of T' = IT anr'l dropping the pri!'les gives 

00 

exp - { f3 + y l_2} <lT 
T -

Using Siegel (1968, p.98, formula 15.79' we fin~ 

D(x1 ) =a/ ~ exp{-2 /SY} 

So, D'x1 ) is in~ee<l given hy for~ula !5.10). The laplace 

transform 

= 

is easily calculated to he 

1 + rn .A sin l!J - 2 

Appendix V 

A further connection with the Fisher 1 Skellam model 

In section 6 it was shown that the velocity of population 

expansion, as calculated from the Fisher/Skellam model, is, if we 

make the right identification between the model parameters, equal 

to the lowest order term of the approximation formula derived 

from a perturbation expansion. Considering the parameter region 

where this approximation formula is valid leads us to expect that 

when 

ln R0 + o lJ + 0 a2 + o 

• h tl t 1 p I 1I ...:! cr2 ./ 11 ' t t th in sue a way 1a n _,0 i ..... anu ..... remain cons an , e 

Fisher/Skellam model is an approximation to the general model. 

Before formulating such a conjecture we make some preliminary 

remarks about non-spatial models. 

The state N of a, non-spatial, general structured population 

model always satisfies an equation 



dN 
dt = Aa(E)N 

with A8 (E} a linear operator 
k where E(t) E JR • The parameter 

be used later on. For constant 
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( v. 1 ) 

depending on the environment E, 

e is introduced for convenience to 
-environment, E{t) = E, we assume 

that A depends on E and 8 in such a way that the corresponding 

semigroups are uniformly continuous in E and a. Denote by -Ad(A8 (E)) the right-most (dominant) eigenvalue of A8 (E). 

Environmental feedback is either direct, i.e., E = G(HN) where 

H is a linear operator with finite dimensional range, or indirect 

through an equation of the form 

dE 
dt = F(E,HN) • (V. 2) 

In the second case we assume that for fixed HN = Y there is a 
A A 

unique globally stable steady-state E of (V.2) given by E = G(Y) 

with G continuous. Let E0 := G(O). 

Assume, for simplicity, that everyone is born equal. We can -then define R(~8 (E)) to be the total expected l~fetime offspring 

number under constant environmental condition E, as in section 
-

(3.1 ), and u(A8 (E)) to be the mean age-at-childbearing (section 

6.1 ). Note that in this situation an age representation of (V.1) 

is possible (for an example see section 4). 

The parameter 8 is incorporated in Aa such that for 8 + 0 we 

have 

Aa (E) + A 

with 

Ad(A) = 0 = R(A) - 1 I 

such that A is not degenerated (that is to say the corresponding 

birth-kernel is not a single a-function). 

Denote by N the (unique) eigenvector of A corresponding to 

Ad(A) = O, and by v the corresponding eigenvector of the adjoint 

of A, normalized such that -<v,N> = 1 

N can be interpreted as the stable i-state distribution of the 

popula~ion and v is the reproductive value as a function of the 

i-state. 
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-For 8<<1, or correspon<lingly R(~ 8 (E~l-1<<1, the dominant 

eigenvalue of A8 (E) ~an he approximated by 

Rf l'1e { E) } -1 
• <A 'E" :::: /\a, e, . , 

µ {A) 
( v. 3} 

The quantity 1/Aa is a measure of the tirnescale of population 

growth. For 8 + O, population growth becomes extremely slow, so 

that the tirnescale of convergence to the stahle i-state distribu­

tion is fast relative to any change in the individuals reproduc­

tion and survival due to changing input conditions. This time­

scale argument leads us to expect that for 8 + 0 and looking at -the right timescale, which will be defined below, N + nN where n 

is a function of time only, representing the population density. 

Moreover, the environment will always be approximately in its 

steady state, E = G(nE~). 
For infinitesimally small 8 we would have to wait infinitely 

long hefore we see any change in population density. To account 

for this problem we scale the time by introducing 

where 

~(8) = 
R (A ! EO ' ,, -1 . e, . 

µ(A) 

the per capita population growth rate at infinitesimally small 

population density. 

The above discussion leads us to the following 

Conjecture I: Any model for the growth of a structured population 

can, given all assumptions made in the preceding discussion, be 

approximated by 

~ = f (n) n, 

with initial condition n(O) = <v,N(0)>, and 

R ( Ae t G ( nHN ) ) ) -1 
f(n) = lim ~~~~~~~~ 

e + o R ( Ae ( Eo ) ) -1 

provided that this limit exists. 

(V. 6) 

Now add a spatial dimension to the model. (V.1) and !V.2) 

become 
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~~ ( t Ix ) = (] ( E I HN ) 

(V. 7} 

The linear operator a 6 , for which we make the same assumptions as 

for A6 , now incorporates both the demographic and the dispersal 

characteristics. We also assume a 8 (E) to be such that 

* * [ E ( t, x} = E ( t) and N ( t Ix) = N ( t) ] =? a e ( E) = Ae ( E) ( v. 8) 

Again 8 is incorporated in a~ such that for 8 + O, a 8 (E) + i with 

Ad(a) = O. Again i is not degenerate (in time and space). 

We assume that the initial condition is sufficiently smooth in 

time (age) and space. Again for e + 0 the local rate of popula­

tion growth and the rate of change of the environment, is 

extremely slow. This causes the profile (in the x-direction) of 

population densities and the profile of the environmental 

variable to be extremely flat. In the limit for 8 + 0 every 

individual will experience an environment which is constant in 

space, i.e. E(t,x) = E(t). Assumption (V.8) therefore makes that 

the local rate of population growth can again be approximated by 

(V. 3). 

In the limit for 8 + O, R(i) = 1 so every individual just 

replaces itself. Every individual produces one offspring at a 

random age. This age is drawn from the reproduction kernel, as 

defined in section 3. The place of birth of this child is also a 

random variable drawn form the dispersal density D(x), as defined 

in section 3. Therefore on the timescale of population change the 

individuals perform a random walk. The rate of increase of the 

variance per generation, the diffusion coefficient S, can be 

approximated by 

2 
s = -!- 0 

µ(A) 

where o2 is the variance of D(x). 

(V. 9) 

Collecting all results from the above discussion we can 

formulate the following 

Conjecture II: Any model for the spatial spread of a structured 

given all assumptions made in the preceding 

be approximated by the Fisher/Skellam diffusion 

,, 
population can, 

discussion, 

equation (2.1) 
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2 
= S 1-ll + f (n) n 

dX2 

where f(n) is given in (V.6) and S in (V.9). 

Appendix VI 

The mean and variance of a stochastic block function 

In this appendix we show how the mean and variance of the 

reproduction kernel can be calculated for a stochastic block 

function. Since these calculations are used in the rabies 

example we use the terminology of infectious diseases. 

Consider a block-function with a stochastic latency period 

<!>~a stochastic infective period (l) and a stochastic infecti­

ousness (~). When! and l are independent variables respectively 

with probability density f 1 and survivor function :t 
1 

, the 

average infectiousness of an individual T time after infection is 

T 

i ( T ) = ( &[_!_] ) - 1 J f ( x) :_:\ ( T-x) dx 
0 

This model subsumes the usual two stages (latent and infective) 

differential equation models in which both f 1 and ~ are assumed 

to be exponential. The two special time kernels from section 4, 

the block and gamma kernels, can be derived from it by assuming 

the densities of l and ! to be respectively both degenerated and 

gamma (p-1 ,1) and exponential (1). 

The mean and variance of i(T) can be calculated as follows. 

The mean infectivity of an individual is given by 

I(T) =& [n(T) ], 

where the individual infectivity ~ equals 

n(T) = ~{H(T-!)-H(T-!-l) 

with H the Heaviside-step-function. And 

" 00 

y =I I(T)dT 
0 

i+l 
= & [ - J- n ( T ) DT ] = & [ ~ l] . 

1 
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By definition i(T) = ~- 1 I(T). The mean, µ, of the time kernel is 

found from 
00 

µ = f Ti(T)dT 
0 

-1 = y 

When &, l and ~ are independent 

(VI. 1 ) 

where C[l] is the coefficient of variation of l. The calculation 

of the variance, o2 , precedes along the same lines 

00 1 )!, + l 2 &[ ~ 2 l ] +& [ r;; )!, l 2 ] + ~ & [ Q 3 ] 
µ 2 +v 2 = f T2 I(T)dT = Y- &[_f_T ~(T)dT] = 

0 )!, &[~ll 

And under the independence assumption, 

where S[l] is the skewness of i. 

(VI.1) and (VI.2) relate the quantities used in section 5 to 

quantities which are sometimes slightly better known. Usually we 

can make fair guesses about the mean and variance of the latency 

period. (VI.1) and (VI.2) moreover show that contrary to the 

situation for the contact distribution in the case of the time 

kernel an approach based on a direct phenomenological measurement 

may be preferable to an approach based on detailed micromodels. A 

quantity like the skewness of the infective period, S[l], is 

difficult to measure. Yet this quantity occurs already in the 

expression for the variance, v 2 , of the time kernel. 

For the probability density given by Berger (1976) we find 

C(l) = 0.32 & <&> = 2.99 &(l) = 7.9 

var<&> = 14.08 var ( l) = 6. 4 7 . 
I S(l) = 2.96 
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