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INTRODUCTION 

It is generally accepted by cell biologists that cell size is one of the most decisive parameters as far 
as the individual dynamic behaviour of a cell is concerned. (See [l,2,3,4,8,15,16,20,21].) In addition cell 
size is an attractive parameter because of the relative ease and precision with which it can be measured. 
During the past twenty years size distributions of cell populations have become of increasing interest, 
because the instrumentation for obtaining them has improved considerably. (See [2,4,21].) 

One of the main purposes of studying theoretical growth models of cell populations is to compare 
the analytical results with the experimental data in order to test the validity of the model. In other 
words: to derive information about the dynamics of the individual (growth, death, division) from the 
dynamics of the population as a whole. One of the main problems is to find a model which is general 
enough to give an acceptable description of the biological reality and which does not contain too many 
parameters. In this context our contribution must be seen as an attempt to describe some features of 
proliferating cell populations and to provide some additional insight in this complex sub-area of struc­
tured population dynamics. 

In this paper we consider a continuous culture (see [12]) of proliferating cells which are assumed to 
be characterized by their size alone. Here "size" can be replaced by any other quantity obeying a physi­
cal conservation law, for instance weight or protein content. We assume that the growth of an indivi­
dual is proportional to its size (exponential growth). (See [1,2,3,4,15]). In general this assumption is 
very restrictive. However Anderson et al [1,2,3,4] concluded from their measurements of mammalian 
cells in suspension cultures that the cell size growth rate is approximately proportional to cell size. The 
reason for restricting ourselves to the case of exponential growth becomes perfectly clear in section 5. 
The idea is the following. If the growth of a cell is proportional to its size, the dynamics of the total 
biomass represented by the population, is described by an ordinary differential equation. As a conse­
quence the non-linearity, which makes the model rather intractable in the most general case, can be 
computed a priori, i.e. without knowledge of the size distribution. Furthermore we assume that the ra­
tio P of birth size of a daughter cell to the division size of her mother is a random variable described 
by a smooth probability density function, which does not depend on the division size of the mother and 
which is symmetric around ½- This assumption was first suggested by Koch & Schaechter [15]. 

1.THEMODEL 

We consider a population of cells contained whithin some completely stirred tank of volume V. 
The population is supplied at a constant rate Q with fresh medium containing nutrients essential for 
their growth, and at the same rate medium containing cells and nutrient is removed from the tank. The 

ratio D = f is called the dilution rate, and is a control variable of the process. We assume that one 

main compound S of the medium is needed to describe the dynamics of the cell population. This com­
pound is called the growth-limiting substrate (or nutrient). In literature a population living in such en­
vironment is called a continuous culture. (See e.g. [12].) 

We assume that the individuals of the cell population are characterized by their size x only. (The 
state of an individual is its size; see [5].) An individuals size increases deterministically according to the 
ordinary differential equation 

dx dt =g(x) (1.1) 

g is called the individual growth rate and, although this is not expressed in our notation, may also 
depend on environmental factors such as nutrieD:t concentration. For some populations, g(x) is found 
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to be proportional io x 

g(x) =yx, (1.2) 

in which case we speak of exponential individual growth because in this case (1.1) has the solution 
x(t) =x(O)eY1

, if y does not depend on time t. In this paper we assume that the individual growth 
rate is given by (1.2) where y is not necessarily constant, but may depend on the substrate concentra­
tion S in the tank. 

Let the organisms reproduce by fission into two parts and let the probability per unit of time that a 
cell of size x divides be described by a function b (x ). The ratio p of the size at birth of a daughter 
cell and the size at division of her mother is a random variable with smooth probability density func­
tion d (p ), which does not depend on the division size of the parent. Observe that d (p) has to be sym-

1 

metric aro~nd p =½-Notice that f d(p) = 1. (We refer to [15,16,21] for more details.) 
0 

Our system can be described by two non-linear equations 

an a 
ftit,x) + t"(r(S)xn(t,x)) =-Dn(t,x) (1.3) 

I 

-b(x )n (t ,x) +2 f qltlb( ~)n (t, ~)dp 
0 p p p 

dS 1 
00 

· dt =-7fY(S)[xn(t,x)dx +D(Sm -S) (1.4) 

X2 

where n (t ,x) is the (unknown) population density distribution, i.e. f n (t ,x )dx is the number of cells 
XI 

with size between x 1 and x 2 at time t per unit of volume. sin is the input nutrient concentration and (J 

is the so-called yield constant, i.e. the ratio "biomass of the organism formed/mass of substrate used". 
We assume that y(S) has the form of a hyperbola 

mS 
y(S) = k+S 

This was experimentally found by Monod (See e.g [12].) m is called the maximum growth rate and k is 
the Michaelis-Menten constant. However, we wish to point out that this assumption is not essential for 
our calculations. The analysis can be carried through for more general y. 

The last two terms at the right-hand-side of (1.3) describe the population's reproduction process. 

The factor !_ accounts for the fact that newborn cells with size in (x ,x + dx) come from a mother with 
p 

· · h · al (X x + dx) hi h . l . 1 W d . d . . f . size m t e mterv -, - - w c 1s - times as arge. e o not give a envation o equation 
. pp pf p al 

(1.3) but lllStead refer to a paper o Fredericlcson et [8]. 

The first expression at the right-hand-side of (1.4) accounts for the amount of substrate used by the 
individuals of the population for their growth (per unit of volume). Notice that 

00 

W(t) = f xn(t,x)dx 
0 

is the biomass concentration. The second expression at the right-hand-side of (1.4) is the difference of 
input and output of substrate 
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b(x) is continous on [0,1) 
b(x) =0, o.;;;;x.;;;;a, b(x)>0, a<x<l 

X 

lim fb(E)dE = oo 

xfI a [ x l £.hl !?.ill. . 
g(x) exp - [ g(E) dE 1s bounded on [a,l] 

d(p) =0 outside (½-ll,½+ll), where 0<ll<½ 

dis piecewise C 1 on (½-A,½+A) 

with bounded derivative 

3 

Condition [Hb] describes the following biological situation. Cells cannot divide before they reach a 
minimal size a >0, and they have to divide before they reach a maximal size which is normalized to be 
1. The last assumption in [Hb] means that the function describing the chance per unit of size that a cell 
will divide at size x, remains bounded. (See section 9.) In equation (1.3) one must read 

b ( x )n (t, x ) = 0, if !_ > 1. We introduce the following notation 
p p p 

a =(½-ll)a, p =½+ll 

a and P can be interpreted as the minimum resp. maximum size of a newborn cell. The fact that cells 
with size smaller than a cannot exist is expressed by the boundary condition 

n(t,a) =0. 

Furthermore we supply (1.3)-(1.4) with the initial conditions 

n(0,x) =n 0(x);;a,,0 

S(0) =So>0 

(1.5) 

(1.6) 

(1.7) 

The first part of this paper (sections 2,3,4) is concerned with the investigation of the corresponding 
linear equation in a slightly more general form. By means of an elementary transformation, it is re­
duced to a more tractable problem. This is done in section 2. In section 3 the asociated eigenvalue 
problem is treated. Section 4 is concerned with the time-dependent linear equation. We prove that its 
solutions can be represented by a strongly continuous semigroup. The results of section 3 are used to 
establish the large time behaviour of these solutions. In section 5 it is explained how equation (1.4) can 
be solved a priori, i.e. without knowledge of the solution of (1.3). Existence and uniqueness of solu­
tions of the non-linear problem (1.3)-(1.7) is proved in section 6. In section 7 we state our main result 
which says that there exists a globally stable equilibrium. The proof of this result can be found in sec­
tion 8. In section 9 we shall make some final remarks. 

2. TRANSFORMATION OF THE LINEAR EQUATION. 

A good starting point for our investigation is the linear equation associated with (1.3). For the sake 
of generality (and because it causes no extra difficulties) we shall deal with a slightly more general form 
of this linear equation 

~t,x)+ ~(x)n(t,x))= -(D(x)+b(x))n(t ,x) (2.1) 
ut" uX . 
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. .L+A 
2 

+ 2 f ~b( ~)n(t, x )dp 
_!__A p p p 
2 

n(t,a) =0 (2.2) 

In words: we do not restrict ourselves to the case of exponential individual growth characterized by 
(1.2), and the death rate D ( = dilution rate if it concerns a continuous culture) is allowed to depend 
on x. We make the following assumptions on g and D . 

g is a strictly positive, continuous function on [ a, 1] 

D is a nonnegative, integrable function on [a,l]. 

Now let us define 

E(x) = exp (- j b(~)+D(~) dg). 
a g{O 

This quantity has a clear biological interpretation. From a cohort of N individuals starting at size a, 
N·E(x) will reach size x without having died (been washed out) or divided. Observe that E(l) =0. 
Equation (2.1) is supplemented with the initial condition 

n (O,x) = n 0(x) (2.3) 

It is suggested by the biological interpretation of n (t ,x) that for all t ;;;a.o, both n (t ;) and b(·)n (t ;) 
should be integrable. We expect that, if similar conditions are imposed on the initial function n 0(· ), to­
gether with n 0(x);;;a.O, a.e. on [a,1], then (2.1) has a solution also satisfying these conditions. However, 
guided by the desire for mathematical simplicity we shall impose a more restrictive condition on n0• 

no(x) . . 
E(x) 1s mtegrable on[a,1]. [Hn0] 

It is implied by the results of section 4 that this property is inherited by the solutions n (t;) of (2.1 )­
(2.3). With this in mind, the following transformation does not come out of the blue. 

_ _g_(& 
m (t ,x) - E (x) n (t ,x) (2.4) 

We obtain the following initial value problem for m (t ,x ): 

where 

.L+A 
2 

o~m +g(x) !m = f k(p,x)m(t,~)dp 
ut uX J__4 p 

2 

m(t,a) =0 

m(O,x) =cf>(x): = f~:3 no(x) 

k(p,x) = '!:...d(p)b(x /p) g(x) 
p g(x /p) 

One should read k(p,x)m(t, x) =0, if ~>L 
• p p 

E(x /p) 
E(x) . 

(2.5) 

(2.6) 

(2.7) 

(2.8) 
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For allp E[t-a,t+a], the function k(p;) has support fpa,p) (which is contained in [a,P)) and is 
bounded because of assumption [Hb·4]. 

Condition [Hn
0

] yields that cf, is an integrable function, i.e. cf,ELi[a,l]. Most of the time we shall 
write L 1 if we mean L 1[a,l]. We shall look for solutions m(t,x) of (2.5)-(2.7) satisfying m(t;)EL1, for 
all 1 ;;;.,,o. 

(2.5)-(2. 7) can be rewritten as an abstract Cauchy problem. 

dm 
dt =Am, t>O, 

m(O) =cf,, cf,ELi, 

where A is the closed operator on L 1 given by 
1-+a 
2 

(Al[.,)(x) =-g(x)~+ f k(p,x)1[.,(::£)dp 
La p 
2 

for all I[., in the domain D(A ) of A . 

D(A) = {1[.,ELdl[., is absolutely continuous and 1[.,(a) =O} 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

Finally, we refer to [6] where Diekmann et al discuss a similar problem, and use the same transfor­
mation (2.4). However, they work in the space of continuous functions, whereas we do work in L 1• The 
reason for this becomes clear in lemma 8.1 where we prove boundedness of solutions of the nonlinear 
problem. 

3. nm LINEAR EIGENVALUE PROBLEM 

This section is entirely concerned with the investigation of the spectrum a(A ) of the operator A 
given by (2.11)-(2.12). The results that we shall find can be used to characterize the behaviour of the 
solutions of the time-dependent linear equation (2.1)-(2.3) for t-HX>. 

Throughout this paper we use the following notation. For an operator L we denote by P a(L) the 
point spectrum of L. N(L) is the nullspace of L and R(L) denotes the range. 

We are looking for solutions 1[.,ED(A) of the homogeneous equation 

where f EL 1• Let 

and 

XI[., - Al[., =f, 

- X d~ 
G(x) - [ g(~) 

cf,(x) = eAG(x ll[.,(x ). 

Substitution of (3.3) in (3.1) using (2.11) yields 
1-+a 
2 

def, = f kA(p,x)cf,(::£)dp+f(x)eAG(x), 
dx La p 

2 

(3.1) 

(3.2) 

(3.3) 



6 

where 

k (p x) = k(p,x)e-">..(G(x/p)-G(x)) 
>.. ' g(x) . 

Integration from a to x and using that q>(_a) =0 (because 1"ED(A )) yields 
I 
2+A (x,/J)-

q>(_x) = f ( f k>..(p ,~)#.J / p )d ~)dp 
!._A a 
2 

X 

where (x ,/Jr stands for the minimum of x and /J. We can write (3.5) abstractly as 

</> =T>..</> + Uif, 

where T >.. and U >.. are given by 
I 
2+ A (x ,/J) -

(T>..1")(x) = f ( f k>..(p,~)o/(~/p)d0dp, 
!._A a 
2 

X 

a 

for all 1"EL1. 
Obviously T >.. and U >.. define bounded, linear operators from L I into L 1• 

Toe following result is straightforward. 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Theorem 3.1 Let f EL1. Then 1"ED(A) is a solution of the inhomogeneous equation (3.1) if and only if</> 
given by (3.3) is a solution of (3.6). 

The advantage of this reformulation should be come dear to the reader, if we state our next result. 

Theorem 3.2 T >.. and U >.. define completely continuous operators. 

Toe proof of this result is evident and will be ommitted. The sense of the following definition should 
be clear from theorem 3.1 

~ ={AECI 1 EPo(T>..)} (3.9) 

Notice that o(T>..)\ {O} =Po(T>..)\ {O} because T>.. is completely continuous. 

Theorem 3.3 o(A) =Po(A) =~. lfAfJ.o(A) then the resolvent of A,R>..(A) =(M-A)- 1 is completely 
continuous. 

Proof It is obvious from theorem 3.1 that~ =Po(A). Now suppose that Afj:.Po(A). Consequently 
lfJ.o(T>..) and we conclude that <1>-T>..</> =Uif is solvable for all f EL 1• From theorem 3.1 we con­
clude that AEo(A). For Afj:.o(A) the resolvent is given by (R>..(A)f)(x) =e->..G(x).((I-T>..)- 1Uif)(x) 
and from theorem 3.2 we deduce that R>,_(A) is completely continuous. • 

Most results of the remainder of this section shall be given without proof. Instead, we refer to 
another paper of ours [ 11 ], where a similar eigenvalue problem has been treated, and the reader will 
have no difficulty to see that many results of that paper can be carried through to our present case. 

Theorem 3.4 o(A ) consists of isolated eigenva/~es. 
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Proof See [11, theor. 2.4] 

An important quantity is the dominant eigenvalue of A , i.e. the eigenvalue with largest real part. 
(In practical cases the dominant eigenvalue happens to be real.) In many cases positive operator theory 
can be used to prove the existence of a dominant eigenvalue. 

Let the positive cone L 1+ be defined by 

(3.10) 

The dual cone of L 1+ is L;I,, i.e. the subset of functions in L 00[a,l] which are nonnegative a.e. For 
J\ER we have that T1,. is positive with respect to the cone L 1+. For the basic theory concerning posi­
tive cones and positive operators we refer to the monograph of Schaefer [19]. 

In [18] Sawashima introduced the very useful notion of a non-support operator (which is more res­
trictive than just positivity). 

Definition (18] Let x+ be a positive cone in the Banach space X and let (X+)* be the dual cone. A 
positive operator T;X • X is called non-support with respect to x+ if for all t/;EX+ ,#0 and 
F E(X+)*, F-=f=0, there exists an integer p such that for all n ~p we have F[Tnt/;]>0. 

It can be shown with very little effort that T1,. is non-support with respect to L 1+ for all J\ER. As a 
matter of facJ we have: there exists an integer p such that for all t/;ELt, ifr-1=0 and for all 
x E(a,l], (T~t/;)(x)>O. (See also [11, theorem 5.1].) 
From this it follows that there exists a 'PA EL 1+ and F1,. EL;I, such that 

T1,.cJ,,. =r1,.4>A (3.lla) 

T{F1,. =r1,.F1,., (3.llb) 

where r1,. =r(T1,.) is the spectral radius of T1,. and T{ :L 00• L 00 is the adjoint of T1,.. (See [11, theorem 
3.3]). If r(T0 =l, then J\EPa(A). The equation r(T0 =l has a unique solution ]\dER (See [11, 
theorem 4.41) 

Now let 

(3.12) 

where <l>Ad is determined by (3.1 la). As in [11. theorem 5.4 and theorem 6.2] it can be proved that the 
eigenvalue ]\d of A is algebraically simple and strictly dominant, i.e. if ]\ E a(A ), J\=f=-'J\d, then Rel\ <'J\d. 
We summarize some of our results. 

Corollary 3.5 The operator A has a dominant eigenvalue 'J\d which is algebraically simple. The correspond­
ing eigenvector o/d and adjoint eigenvector Fd are positive. If'J\EPa(A) and 'J\=f=-'J\d, then Re'J\<'J\d. 

Remark 3.1 The element Fd EL;I, can be computed from F1,.d given by (3.llb). (See [11, section 7]). 

However, they do not coincide. 

Remark 3.2 o/d is absolutely continuous, because o/d ED(A ). 

Remark 3.3 The fact that all eigenvectors of A are (absolutely) continuous would have permitted us to 
work in the space of continuous functions in stead of L 1• This is done in [11]. The results, however, 
remain the same. 

As in [11, section 6] we can compute the characteristic equation (i.e. the equation from which all 
eigenvalues of A can be computed) for our problem. Let ei EL 1, j ~ 1 be given by the recurrent rela-
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tion 

e 1(x) =I, a:s;;;;x :s;;;;I, 
.L+A 
2 fJ 

ej(x) = - J ( J k).(p,~)ej-1(~/p)d~)dp. 
½-A (x,fJ)-

Remark 3.4 ej does depend on A, j ;;;,,2. 

Let q be the smallest integer such that a;;;,,(½+Ll)q then the characteristic equation is given by 
I 
2H fJ 

?T(A):= f (jk).(p,O{e1(t)+ ... +eq-1(f_)}d~)dp =I 
L-A a p p 
2 

(See [11, section 61) 

(3.13) 

Theorem 3.6 AEPo(A) if and only if ?T(A) = 1. In every finite vertical strip {Als :s;;;;ReA:s;;;;t} where 
- oo <s <t < oo there are at most finitely many elements of o(A ). 

Proof [H, theorem 6.5 and theorem 6.6.] 

Using the algebraic simplicity of the eigenvalue Ad and the compactness of the resolvent (c.f 
theorem 3.3) we can give the following decomposition of the space L 1• 

L1 =N(Adl -A )EBR(Ad/ -A) (3.14) 

Let P be the projection on N(Ad/ -A) associated with this decomposition, then P is given by 

Pq, =Fd[q,]if!d, q,EL1 (3.15) 

where the linear functional Fd is given by corollary 3.5, and satisfies 

(3.16) 

For our purposes the case of exponential individual growth and constant deathrate (wash-out) is of 
special interest. Let g(x) =-yx and D(x) =D. If a;;;,,(½+Ll)2, then 'IT(A) is given by 

1 
2H fJ 

'IT(A) = f (jk).(p,0d0dp = 
_!__A a 
2 

.L+A 
2 ).+D 

=2 f d(p)·p 1 dp, 
.L_A 
2 

where we have used (2.8) and (3.4). Because of the symmetry of d (p) around p = ½ and the fact that 
.L+A .L+A 
2 2 

J d(p) =I (which is clear from the interpretation) we have 2 J pd(p) =l. Consequently the dom-
.L_A .L_A 
2 2 

Ad+D 
inant eigenvalue hd is determined by --- = I, hence Ad =-y-D. This result remains valid if 

y 
a<(½+Ll)2. To prove this, we regard the eigenvalue problem associated with the original equation 

c, 



(2.1). 

d 
Nt(x)+ t"{rxn(x)) =-Dn(x)-b(x)n(x) 

l+a 
2 

+ 2 / ~ ( ~)n ( ~)dp 
La p p p 
2 

After multiplication with x and integration from a to 1 we arrive at 

AW-yW =-DW, where 
I 

W =W[n] = f xn(x)dx 
a 

9 

(3.17) 

can be interpreted as the biomass associated with the size distribution n . The eigenvector nd associated 
with the dominant eigenvalue Ad is given by 

nd(x) = ~J(x), (3.18) 
yx 

where 1Pd is given by (3.12). So nd(x) is positive a.e., and has a consequence W[nd]>O from which we 
conclude that Ad =y-D. 

Let Fd be the associated adjoint eigenvector (see corollary 3.5). We shall prove that Fd =F, where 
Fis given by 

I 

F[</>] = f </>(x )E (x )dx, </> EL 1, 

a 

by showing that for this F we have 

Now let if;ED(A ). 

F[Aif;] =(y-D)F[if;], forallif;ED(A). 

I 
I 2+a 

F[Aif;] = j{-yx1+ f k(p,x)if;(~)dp}E(x)dx 
a .L_a p 

2 

I 
I I 2+a 

f 
d ff XX X = if;(x)prxE(x))dx + {2 d(p)b(-)E(-)if;(-)dp}dx 

a X a .L_a p p p 
2 

.L_a 
I I 2 I 

=(y-D)jif;(x)E(x)dx - fb(x)E(x)if;(x)dx + 2 / pd(p)dp-fb(f)E(~)if;(~)d~ 
d a .L_a a 

2 

I 

=(y-D) jif;(x)E(x)dx =(y-D)F[if;] 

l+a 
2 

where we have used that 2 / pd (p) = 1. 
.L_a 
2 

a 

We summarize our results in the following theorem. 
,, 
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Theorem 3.7 If g(x)° =yx and D(x) =D,for all x E[a,11 then the dominant eigenvalue Ad of A is given 
I 

by Ad =y-D. The associated a4ioint eigenvector Fd is given by Fd[cf,] = jcf,(x)E(x)dx. 
a 

4. THE LINEAR TIME-DEPENDENT PROBLEM 

In this section we shall investigate the initial value problem (2.5)-(2. 7), and we shall prove existence 
and uniqueness of solutions and determine their behaviour for large t. All the results in this section 
are based on semigroup methods. Readers unfamiliar with the theory of semigroups are referred to 
[17,22]. 

In section 2 we have rewritten (2.5)-(2.7) as the abstract Cauchy problem (2.9)-(2.10). We write 

A =B +C, (4.1) 

where 

(Bt/!)(x) = -g(x)i 

!.+a 
2 

(Ct/!)(x) = f k(p,x)t/!( £)dp. 
.La p 
2 

B is an unbounded closed operator on L 1 with domain 

D(B) ={t/!ELilt/! is absolutely continuous and t/!(a) =0}, 

(4.2) 

(4.3) 

and C defines a bounded operator. With little effort one can see that B generates a strongly continu­
ous semigroup e'B given by 

(4.4) 

where G- 1 denotes the inverse of the function G given by (3.2). One should read G- 1(T) =0 if T<O. 
Obviously 

(4.5) 

Now a standard result from semigroup theory (See [17, Ch 3, theorem 1.1]) yields that A =B +C gen­
erates a strongly continuous semigroup as well, because C is bounded. We denote this semigroup by 
T(t). 

Theorem 4.1 A generates a strongly continuous semigroup T(t). 

This proves the existence and uniqueness of solutions of the initial value problem (2.5)-(2. 7). If we 
denote this solution by m(t ,;cf,) or also m(t ;cf,) then m(t ;cf,) = T(t)cf,. 

Remark 4.1 m(t;cf,) =T(t)cf, is not a solution of (2.5)-(2.7) in the strong sense of the word. More pre­
cisely, m (t ,x ;cf,} is not necessarily differentiable with respect to t and x seperately. (This is only true if 
cf,ED(A}). It can be shown however, that m(t,x;cf,) is differentiable along the characteristics 
t-G(x) = constant of the PDE given by (2.5). 

lim m(t +h,G-1(G(x)+h))-m(t,x) 
h • O h . 

1-+a 
2 

= f k(p,x)m(t,£)dp, 
La p 
2 
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wherem(t,x) =m(t,x;4>). 

It is possible to obtain the solutions m(t;q,) explicitly as a series. Applying the variation - of - con­
stants formula, the abstract Cauchy problem (2.9)-(2.10) leads to the integral equation 

let 

t 

m(t;q>) =e1Bq>+ Je<t-s)BCm(s;q,)ds. 
0 

mo(t ;q,) =e 1B q>, 
t 

m;+1(t;q,) = Je<t-s)Bcm;(s;q,)ds, ;;;;;..o, 
0 

then the solution m(t;q,) is given by 
00 

m(t;q,) = ~m;(t;q,). 
i=o 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

This series representation of the solution has a clear biological interpretation. m0(t ;q,) represents the 
o'th generation at time t, i.e. all individuals which were present at time t =0 and have not yet died or 
divided. Inductively the i'th generation m;(t ;q,) contains all daughters of cells of the (i - l)'th genera­
tion. 

For the ·proof of the following result we refer to [6, lemma 4.1]. 

Theorem 4.2 At every (finite) time instant t only a finite number of generations are present in the popula­
tion. 

The asymptotic behaviour of the solutions for large t can be determined relatively easy if one is 
able to prove compactness of the semigroup after finite time. Compactness of a semigroup means, 
among others, that the initial function is smoothened if the semigroup acts on it. 

Theorem 4.3 T (t) is compact for t ;;;;.. G ( 1) 

Observe that G(l) is the time instant at which the o'th generation goes extinct. (See (4.5)). 
Theorem 4.3 is proved in the Appendix for the case g(x) =yx. We restrict ourselves to this situation 
for several reasons. First of all because this is exactly the case for which the compactness property is 
not fulfilled if fission occurs into two equal parts (i.e d(p) =8(p -½)). (See [6, section 8] and remark 
4.2 below.) Secondly, this happens to be the case that we are mainly interested in. However, it can be 
checked rather easily that the result remains valid for all functions g satisfying [Hg]. 

Remark 4.2 In [6] the dynamics of a population reproducing by fission into two equal parts is inves­
tigated rigorously. In that case the semigroup is compact after finite time if some condition on the 
growth rate g(x) is fulfilled. It is proved among others: 

(i) If g(2x)<2g(x) for all x, (or g(2x)>2g(x)) then T(t) is compact after finite time. 

(ii) T(t) never becomes compact if g(2x) =2g(x) for all x. (g(x) =yx is an important example of 
this situation) 

Biologically the relation g(2x) =2g(x) means that the size of the offspring of some mother does not 
depend on the moment of fission of that mother, yielding that the property 'equal size" is hereditary. 
This, of course, is not true if a cell can divide into two unequal parts. 

Now let o/d be the eigenvector of A associated with the dominant eigenvector >..d of A (c.f. corollary 
3.5). Then 

Xdt 
T(t)i/lc1 =e o/d, (4.10) 
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describing the action of T(t) on N(Adl -A). For the action of T(t) on 
R(Adl-A) =N(P) =R(I-P), where P is the projection given by (3.15), we can deduce an exponen­
tial estimate. 

Lemma 4.4 There exist positive constants £ and K such that for all q, EL 1 

11(/ -P)T(t)q,I I :o;;;;K/Xr£)t I lq,11 

Proof Theorem 3.6 yields that there exists a constant £>0 such that for all A Ea(A ), A=/=Ad we have 
ReA:o;;;;Ad-£. From theorem 4.3 we conclude that 

a(T(t))\{0} =Pa(T(t))\{0} ={eNIAEa(A)} 

(See [ 17, chapter 2, section 2.2]). Let A denote the restriction of A to R(Ad I - A ), then 
a(A) =Pa(.A) =Pa(A)\ {Ad}C{AIReA:o;;;;Ad-£}. A result of Hale [10, § 7.4] completes the proof. • 
Combination of this lemma and ( 4.10) yields the following result. 

Corollary 4.5 For all q,EL 1 we have 

11 T(t)q,-Fd[q,]/d' 'Pd I I :o;;;;K/Ad-()t I lq,I I 

where Fd is normalized by condition (3.16). 

If q,~0,q,=/=0, then Fd[cl>]>0. A similar result can be stated in terms of the original problem (2.1)­
(2.3). We shall do this for the case g(x) =yx,D(x) =D,x E[a,l], which is of special interest to us. 
Let n 0 satisfy condition [Hn

0
]. With n(t;n0) we denote the solution of (2.1)-(2.3). Let q, be given by 

(2.7), i.e. q,(x) = E~:) n 0(x ). Theorem 3.7 yields that 

I I 

Fd[cl>] = jcl>(x)E(x)dx = f yxno(x)dx =yW[no], 
a a 

where Wis given by (3.16) Let nd, given by (3.17), be normalized by the condition. 

W[nd] = l 
(See (3.16).) 

(4.11) 

Corollary 4.6 Let g(x) =yx and D(x) =D, for all x E[a,1]. Let noEL1 satisfy [Hn
0
1 then 

I ln(t;n 0)-W[n0]/d' nd 11 <M/Xr£)t I lnol I where Mis a positive constant not depending on n 0• 

5. THE DYNAMICS OF SUBSTRATE AND BIOMASS 

An important feature of the non-linear model discussed in section 1, which also explains why we 
restrict ourselves to the case of exponential individual growth, is the following. If we multiply (1.3) on 
both sides with x and integrate over all sizes x, we find a balance equation describing the evolution of 
the biomass concentration. This equation turns out to be an ordinary differential equation. 

dW dt =(y(S)-D)W (5.1) 

Equation (1.4) describes the evolution of the substrate concentration, and for convenience we write it 
down once more. 



dS = - ½-'Y(S)W + D(Sin -S) 
dt 0 

These equations are to be supplemented with the initial conditions 

W(O) =w, 

S(O) =So, 

where w is the biomass represented by the initial size distribution n0• 

1 

w = W[n0] = f xn 0(x )dx 
a 
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(5.2) 

(5.3) 

(5.4) 

(5.5) 

and S 0>0 is some fixed quantity. Summarizing we might say that the evolution of biomass and sub­
strate concentration in the tank reactor is described by a system of two ordinary d.iff erential equations. 
Mathematically this means that the non-linearity y(S) can be computed a priori, i.e. without knowledge 
of the solution. The situation turns out to be much more complicated if growth of an individual is not 
proportional to its size. 

(5.1) and (5.2) happen to be the equations originally found by Monod (See e.g [12]) and have been 
extensively investigated by Hsu et al [13] (They deal with the more general situation that several species 
are competing for nutrients) and for the following we refer to their paper. 

We denote the solutions of (5.1)-(5.4) by W(t;S0,w) and S(t;S0,w). 

Theorem 5.1 [13] The solutions W(t;S0,w) and S(t;So,w) o/(5.1)-(5.4) are positive and bounded. 

System (5.1)-(5.2) always has the trivial equilibrium 

W =O, S =Sin_ 

There exists a non-trivial equilibrium 

W =W =fJ(Sin - kD ) 
e m-D' 

kD 
S =Se= D' m-

if and only if the following conditions are satisfied: 

m > D and kD <Sin. 
m-D 

Theorem 5.2 [13] Let So>O and w >0. IJ[He] is not satisfied, then 

lim W(t;So,w) =O, limS(t;S0,w) =Sin 
1• 00 1• 00 

If[He] is satisfied, then 

lim W(t;So,w) =We, limS(t;So,w) =Se 
1• 00 1• 00 

(5.6) 

(5.7) 

Remark 5.1 Z(t) defined by Z(t) =S(t;S0,w) + ! W(t;S0,w) obeys the O.D.E. '1: =D(Sin -Z) 

having the general solution Z(t) =Sin +C·e-D1
, where C is a constant 

Summ.~g we might say that biomass and sub~trate concentration tend to a globally stable equilibri-
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um if t becomes large. Our main question is whether a similar result holds for the size distribution. 
Before answering this question we have to deal with the problem of existence and uniqueness of solu­
tions. 

6. EXISTENCE AND UNIQUENESS OF SOLUTIONS 

In the former section we already observed that the non-linearity y(S) can be computed a priori. Let 

y(t;S0,w) =y(S(t;S0,w)) (6.1) 

If there is to be no confusion we shall write y(t) instead of y(t;So,w). We introduce the new time vari­
able T, given by 

t 

T =T(t) = J y(s )ds 
0 

and we denote its inverse by t =t(T). Let u(T,x) be given by 

eD'n(t,x) =u(T,x) 

then u(T,x) obeys the equation 

where 

Let 

.L+,1 
2 

au a b(x) f din\ b(x /p) X -+ ~xu(T,x)) =- ~(T,x)+ 2 ~ A u(T,-)dp, 
OT ax y(T) .L_,1 p y(T) p 

2 

y(T) =y(t(T)). 

E(T,x) =exp[- j b(y) try]. 
a y(T+ logy/ x)-y 

A straightforward computation shows that 

Let m(T,x) be given by 

and let 

oE + X aE = -~ E ( T ,x ). 
OT ax y(T) 

_ xu(T,x) 
m(T,X) - E(T,x) ' 

k(T,X,P) = 2d(p) b(x /p) E(T,x /p) 
y(T) E(T,X) 

Substitution of (6.8) in (6.4) yields 
.L+,1 
2 

om om f X -;-+x-;- = k(T,x,p)m(T,-)dp, 
UT uX _L_A p 

2 

and m must satisfy the initial condition ., 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 



and the boundary condition 

xno(x) 
m(O,x) =q,(x) = E(O,x), 

m('r,a) =O. 

The initial function q, given by ( 6.11) is an L 1 - function if we assume 

no(x) 
E(O,x) is integrable on [a,l]. 
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(6.11) 

(6.12) 

Nota bene that E(O,x) depends on S 0 and w =W[n 0]. This assumption is the analogue of assumption 
[Hn

0
] mentioned in section 2. 

So, for a fixed initial pair S 0,n O the nonlinear problem stated in section I can be reduced to the 
linear (non-autonomous) problem given by (6.10)-(6.12). We call m('r,x) a solution if m is differentiable 
along the characteristics of equation (6.10) (see remark 4.1) and obeys (6.10), (6.11) and (6.12). We shall 
prove in this section that for all q,EL 1[a,l] there does exist a unique solution of the initial value prob­
lem (6.10)-(6.12), which we write abstractly as 

dm 
dT =Bm +C(T)m, m(O) =q,, 

where the unbounded closed operator B is given by 

(Bi/l)(x) =-x~t 

having a domain 

D(B) ={i/lELili/1 is absolutely continuous and i/l(a) =O}, 

and C(T),T;;;a.O defines a family of bounded operators on L 1[a,l]: 
L+a 
2 

(C(T)o/)(x) = f k(T,x,p)m(T,x)dp. 
L_a p 
2 

In section 4 we have seen that B generates a strongly continuous semigroup e1B given by 

(e 1Bi/l)(x) =i/l(xe- 1
) 

(6.13) 

Now a result of Kato yields that B +C(T) "generates" a unique evolution operator (or solution opera­
tor) V(T,o'). (See [14, theorem 4.5]). This means that the solution of (6.10)-(6.12) is given by 

m(T;;q,) = V(T,O)q,. (6.14) 

Nota bene that the family V(T,o) depends on w, and occasionally we shall write V(T,o;w) if this depen­
dence is to be emphasized. 

Th~ solution of the non-linear equation (1.3) can be found in the following way. Let S 0,n 0 satisfy 
[Hso,n0], w = W[n 0] and let q, be given by (6.11). Then the solution n (t ,x ;So,no) of the non-linear 
problem (1.3)-(1.7) is given by 

n(t,x;So,no) =e-D1 E(T(t),x)(V(T(t),O;w)q,)(x). 
x. 

Notice carefully that T =T(t) depends on w =W[n 0]. Now we have proved 

(6.15) 
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Theorem 6.1 Let the initial pair S 0,n0 satisfy condition [Hs
0
,n

0
]. Then the non-linear initial value problem 

(l.3)-(l.7)has a unique solution n =n(t ,x ;So,no), S =S(t;S0,w) where w = W[n0] 

Remark 6.1 As we did in section 4, we can represent the solution as a series, by applying a variation of 
constants formula to (6.13). (See the Appendix, proof of theorem 8.4) 

7. THE EXISTENCE OF A GWBALLY STABLE EQUILIBRIUM 

We ended section 5 with the question whether there exists a (globally) stable size distribution. In 
this section we shall answer this question affirmatively. First, suppose that condition [He] of section 5 is 
not satisfied. Then 

limW(t;S0,w) =O, fora/I S0>0,w>O. 
1• 00 

From this we obtain 

t I t I 
I ln(t;S0,n 0)1 I =jn(t,x;S0,no)dx,s;;, -fxn(t,x;So,no)dx = -W(t;Sow), (7.1) 

a a a a , 

yielding. the following result: 

Corollary 7.1 J/[He] is not satisfied, S 0 is an initial substrate concentration and n0 is an initial size distri­
bution such that [Hso,nJ is satisfied, then 1im n(t;;S0,n0) =O in the L 1 - sense. 

1• 00 

During the rest of this section we assume that [He] is satisfied. Theorem 5.2 states 

lim S(t;So,w) =Se 
1• 1X> (7.2) 
lim W(t;So,w) =We 
1• 1X> 

with Se and We given by (5.7). Suppose that for all t ;;;a.O 

S(t;So,w) =Se, W(t;So,w) =We, 

(this means that So =Se and w = W[no] = We) then y(t;So,w) given by (6.1) is to be replaced by 
y(Se) =D. The solution n(t,x;S0,n0) can be found by applying the (linear) theory of section 4, with 
g(x) =-y(Se)x =Dx, and D(x) =D. Theorem 3.7 states that in this case the dominant eigenvalue of 
the generator A is 0. Let us denote the corresponding eigenvector of A by 1Pe and let lie be given by 
(3.15): 

lie(X) = EA~) ,fie(x). 

Corollary 4.6 states that 

n(t;;So,no) =We·lie(·)+O(e-£1)' t • OO 

where lie is normalized by the condition W[lie] = 1 (See (4.11).) Let ne: = We·lie, then 

W[ne] = We 

(7.3) 

(7.4) 

(7.5) 

We conclude that n(t;;S0,n0) approaches the equilibrium ne if(*) is satisfied. Theorem 5.2 states that 
W(t;S0,w) and S(t;S0,w) approach the equilibria We and Se if t tends to infinity. We can state our 



main result now. 

Theorem 7.2 Let [He] be satisfied and let the initial pair So,no satisfy condition [Hso,no1 then 

lim n(t ;;S0,n 0) = neO in L 1-sense 
l • OO 

This result is proved in the following section 

17 

It is obvious that [He] is satisfied if and only if D is below some critical value Der· Corollary 7.1 and 
7 .2 have the following interpretation. 
If D <Der then a nontrivial steady state is reached. 

If D ~Der then the population goes extinct. 
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8. PROOF OF THE MAIN RESULT 

To prove corollary 7.2 we shall make use of the theory of dynamical systems. We use the following 
notation. Let 

X = RxL1[a,l]. (8.1) 

We denote an element of X with <S ,n >. 

ll<S,n>llx = ISl+llnllL
1
,<S,n>EX, 

defines a norm on X, and it is obvious that with this norm X becomes a Banach space. Let the subset 
Z of X be given by 

Z = { <S0,n 0> EX IS0;;;a.0,noELt and the pair So,no obeys [Hs
0
,n

0
1}. (8.2) 

Let <S0,n 0> EZ and w = W[no], then <S(t),n(t)> = <S(t;So,w), n(t;So,no)> is an element of 
Z, as one can see from section 6. Let U(t):R+xZ • Z be defined by 

U(t)<S0,n 0> = <S(t),n(t)>. (8.3) 

U (t) is sometimes called a generalized dynamical system, where the adjective "generalized" accounts for 
the fact that U(t) is only defined on a subset of X. For <S0,n 0> EZ, 

r+(<So,no>) = U { <S(t),n(t)>} ,;;;.o 

is called the orbit starting from <S0,n0 >. From section 6 it is clear that r+(<S0,n0>)CZ if 
<S0,n 0> EZ. The following result follows immediately from theorem 5.1 and the estimate (7.1). 

Lemma 8.1 For all <S0,n 0> EZ, the orbit r+( <S0,n 0>) is bounded. 

Boundedness of orbits is needed in order to prove precompactness. 

Theorem 8.2 For all <S0,n 0> EZ, the orbit r+(<S0,n 0>) is precompact. 

The proof of this very important result is given in the Appendix. 

The w-limit set 0( <S0,n 0>) of the orbit starting from some <S0,n 0> EZ is the set of elements 
<~,P > EX for which there exists a non-decreasing sequence {tn }, tn >0, tn • OO if n • OO, such that 

11 U(tn)<Sn,no>-<~,P > I lx • 0 as n • OO. 

Lemma8.3Let<So,no>EZ. Forall<~,P>EO(<So,no>)wehave~ = Se andW[P] = We· 

Proof This follows immediately from theorem 5.2. 

The c.,-limit set is only of practical use if every element in it is contained in the domain of the gen­
eralized dynamical system. 

l.emma8.4//<S0,n 0>EZ, then O(<S0,n 0>)CZ. 

Proof Let <S0,n 0> EZ and <~,P > EO(<So,no>) There exists a sequence {tk} satisfying 
tk >0, tk • oo if k • oo such that 

U(tk)<S0,n0> • <~,P > if k • oo. 

This yields n(tk;;S0,n0) • P, k • oo in L 1 - sense. Let m(T,x) be given by 



E(-r,x)m('r,x) = eD1xn(t,x), 
t 
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where -r = -r(t) = jy(S(t';S0,w))dt', w = W[n 0] and E(-r,x) is given by (6.6). We denote with 
0 

t = t(-r) the inverse function of T = -r(t). (See section 6) From the proof of theorem 8.2 in the Appen-
dix it follows that the set {e-D1Mm(-r,-)l-r;;;;.:0} ~s~~ecompact in L 1• Hence there exists a subsequence 
{tk'} of {tk} and an element q,EL 1 such that e k m(-rk',)• q, as k • oo. Here -rk' = -r(tk'). Relation 
(*) yields 

- Dtk, ( ' )E ( ' ) ( ' ) e m -rk ,x Tk ,x = xn Tk ,x . 

If we let on both sides k tend to infinity, we obtain q,(x )E (x) = x J1(x ), where 
X 

E(x) = exp(- jb(y~+D dy). 
a '.)' 

Lemma 8.1 states that~ = Se and W[P] = We, and this yields that <~,JI> obeys condition [Hs
0
,n

0
]. 

As a consequence <~,JI> EZ which proves the result. • 
Although U(t) does not define a dynamical system in the usual sense of the word (U(t) only acts 

on a subset_ of X), many results from dynamical system theory remain valid. 

Theorem 8.5 For all <S 0,n 0> E Z, the w-limit set 0( <S 0,n 0>) is non-empty, compact and invariant. 
Moreover U(t)<S0,n 0 > • O(<S0,no>) as t • oo, with respect to the norm of X. 

Proof A straightforward computation, using theorem 8.2 and lemma 8.4, shows that the proof of 
theorem IV.4.1 of [22] can be carried through. 

Now, let <S0,n 0>EZ and <~,J1>EO(<S0,n 0>). (Theorem 8.4 yields that such an element 
<~,JI> exists). Lemma 8.3 gives us 

(8.4) 

which means that an orbit starting from some element of O(<S0,n 0>) can be found by applying the 
linear theory of section 4. Using y(Se) = D (see section 5) theorem 3.7 states that the dominant eigen­
value satisfies Ad = 0, in this case. We obtain 

(8.5) 

for some constants t:,M >0, where ne is normalized by (7.5). Here we have used corollary 4.6. The in­
variance of O(<S0,n 0>) yields that for all 1;;;;.:0 there exists a <~-,,,,-'>EO(<S0,n 0>) such that 
U(t)<~-t,Jl- 1 > = <~,v>. Hence 11<~,v>-<Se,ne>I Ix= 

= IIU(t)<~-,,Jl-1 >-<Se,ne>llx = lln(t;~-,,,,-')-nellL
1

~ 

Me-(' I Iv-, 11 ~ .!__Me-(1 W[v- 1 ] = .!__MWee-•1 • 

a a 

Hence we have used that ~ -t = Se, inequality (8.5) and W[v- 1
] = We. The inequality above holds 

for all t ;;;;.:0, from which we conclude<~,,,> = <Se,ne >. We have proved the following result. 

Theorem 8.6 For all <So,no> EZ we have O(<So,no>) = <Se,ne >. 

Combining •. this and theorem 8.5 yields 
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and this proves theorem 7 .2. 
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9. CONCLUDING REMARKS 

The continuous culture of micro-organisms has become a technique of great importance in micro­
biology. However, up till now, most of the models describing continuous culture populations do not in­
corporate any structure distinguishing between the individuals of such a population. The paper of Gyl­
lenberg [9] forms an exception. He assumes that organisms can be distinguished from each other ac­
cording to their age. Another exception is formed by a paper of Diekmann et al [7]. This reference 
will be discused below. In this paper we considered a continuous culture of cells, whose individuals are 
assumed to be characterized by their size only. An important feature of our (non-linear) model is its 
analytic solvability. This is due to several assumptions made in this paper. For instance, the developed 
mathematical theory fails in both of the following cases: 

(i) one does not restrict oneselves to the case of exponential growth. (See section 5.) 

(ii) one assumes that fission occurs into two equal parts. In this case there does not exist a stable size 
distribution for the associated linear problem if g(x) = yx. (See [6, section 8].) 

In this paper we assumed that division can be described by a function b (x ), which quantity can be 
interpreted as the probability per unit of time for a cell with size x to divide. In [7] Diekmann et al 
present a second possibility to describe fission. They assume the existence of a function p (x) describing 

X2 

the chance _per unit of size that a cell will divide at size x, i.e. f p (x )dx is the fraction of cells dividing 
XI 

between x I and x 2• They call this the stochastic threshold model. The following relation between g ,b 
and p can be deduced: 

b(x) = g(x)- ~(x) 

I-jp(f)d~ 
a 

or equivalently: 

- f2.hl fx !!.ill_ 
p(x) - g(x) exp (- a g(~) dO. 

(Compare this to condition [Hb·4] of section 1). Both descriptions yield the same results if g only 
depends on x. However, if (as in our case) g depends through nutrient limitation (or any other en­
vironmental factor) on time, 

g =y(S)g(x), 

then the non-linearity y(S) only causes a deformation of the time axis if one works with the stochastic 
threshold model. (See [7].) In that case, a change of the dilution rate D will only cause a multiplication 
of the total population size with some factor. In our case, a change of the dilution rate D will also 
cause a deformation of the shape of the stable size distribution, and this provides an experimental test 
of the correctness of our model. 

We intend to study more general nonlinear models, describing proliferating cell populations, in the 
near future. 

Acknowledgment I would like to thank Odo Diekmann for some valuable discussions on the subject. 
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APPENDIX 

For the proof of theorem 4.3 and theorem 8.2 we need the following lemma. 

Lemma Let K CL 1[a,l] be bounded and suppose that every cf,EK is absolutely continuous and satisfies 
I 

f lct,'(x)ldx ~M, where M is a positive constant not depending on cf,, then K is precompact. 
a 

Proof We must proof that for all £>0 there exists a 8>0 such that for all cf,EK 
I 

f l<P(x +h )-<P(x )ldx <t, iflh I <6 
a 

Let cf,EK and h >0 
x+h 

l<P(x +h)-<P(x)I ~ f lct,'(t)ldt. 
X 

Hence 
I I x+h 

f l<P(x +h)-<P(x)ldx ~J{ f lct,'(t)ldt }dx 
a a x 

a+h t I I 

= f lct,'(t)l{jdx}dt + f lcf,'(t)I{ f dx}dt ~ hjlct,'(t)ldt 
a a a+h t-h a 

=hM<t, if h< ~. 

A similar estimate can be found for negative h , and this proves the result. 

Proof of theorem 4.3 (for the case g(x) = yx ). 

• 

The mapping cf, • m 1(t;cf,) where m 1 is determined by (4.7)-(4.8) defines a family of bounded opera­
tors which we denote by S 1(t): m 1(t;cf,) = S 1(t)cf,. A straight-forward computation, using (4.3), (4.4), 
(4.7) and (4.8) shows that 

where we have substituted g(x) = yx. If p is replaced by the new variable z = £e-rt, we obtain 
p 

It is clear that S 1(t)cf, is absolutely continuous. Let (L 1(t)cf,)(x) = ~S1(t)cf,)(x). It follows directly 
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that 

+ xe-yt 

where we have used that k(½-Ll,·) = k(½+Ll,) =O Using (2.8) we find dd {k(~e-yt, xe-YT)} = 
X Z 

Observe that ze y(t -'-T) ,;;;; 1 implies that xe -YT ,;;;; ½+ Ll = /1, because 

p E[½-Ll,½+Ll]. Let 

z = ;-yt 
p ' for some 

max {D(x)lx E[a,/11} 
max {d(p)lp E[½-Ll,½+Ll]} 

Dmax = 
dmax = 

d:nax = max { Id '(p)I Ip E[½-Ll,½+Ll]} 

(Notice that d:nax is well-defined because of hypothesis [Ha]. We obtain the following estimate 

_i -ytd' e max 

I d k(x -yt -y"l,o;:::: a . b(zeYCt-T))· E(zeY(t-T)) + 
dx -;e 'xe ' ""' E(/1) 

4dmax 

E(/1) 

We deduce 

I 

I </>(z) I { fb (ze YT)E (ze YT)dt }dz 
z2 o -.--£--.e -yt 

-'-+a 2 

f 

Using that 

we obtain 

l(L1(t)q,)(x)I ,s;;; ! l(S1(t)q,)(x)I + Ce;/ 11 q, 11 • 

Consequently 
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This result and the former lemma yield the compactness of S 1(t). Let S;(t) be defined by the relation 

S;(t)q, = m;(t ; q,). 

Using recurrence relation (4.7)-(4.8) and the fact that the integral expression in (4.8) is a standard 
Riemann integral we find that S;(t) is compact for all i;;;;,, 1, and this result holds for all t ;;;;,, 0. Now, 
the proof is completed by the observation 

00 

T(t) = ~S;(t), if 1;;;;,,G(I). • 
i=I 

Proof of theorem 8.2 

Let Z I be the subset of Z containing all elements <S0,n0> satisfying 

S (t ; So, w) ;;;;,, ½Se , t ;;;;,, 0, 

where w = W[n 0], 

By definition U(t) Z 1 CZ 1 , t ;;;;,, 0. 
Because of theorem 5.2 every orbit r+(<S0,n 0>) enters Z 1 fort large enough, and for that reason we 
may restrict ourselves to initial pairs <S0,no> which are element of of Z 1• 

The solution operator V(T,o) which has been defined in section 6, can be represented as a series: 
00 

V(T,o) = ~ V;(T,o). 
i=O 

and the elements of this series can be computed from the following recurrent relation: 

Vo('T,o) = e<-r-a)B' 
'T 

Vi+1(T,o) = j e<-r--r')BC('T') V;('T',o),IT'. 
a 

From this, it is clear that also U(t) can be written as a series: 
00 

U(t) = ~ U;(t), where 
i=O 

Uo(t)<So,no> = <S(t; So,w),n°(t; So,no)> 

U;(t)<So,no> = <0,ni(t ;So,no)>,i;;;;,,I, 

where ni(t,x ;S0,n 0) can be determined from (6.15). 

ni(t,x ;So,no) = e-Dt E(T(t),x)(V;('T(t),O;w)q,)(x), 
X 

where q, is given by (6.11). 

because 

1 V0(T,0) = 0 if T ;;,,log-, 
(X 

t t 

T(t) = jy(t')dt' = /r(S(t'; So,w))dt' ;;;;,, 
0 0 

t 1 

lr(½Se)dt' = r(½Se)t ;;;;,, log- if 
• (X 
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def 1 1 ---log-
y(}Se) a 

Now we can prove the following result. 

Lemma Let t ;;;.,, t 1 and K a bounded subset of Z 1, then U (t) K is precompact. 

Proof If 1;;;.,,11, then U 0(t)<S 0,no> = <S(t; S 0,w),0> which, together with theorem 5.1 yields that 
U0(t) is compact with respect to Z 1 for 1;;;.,,11• In a way which is very similar to the proof of theorem 
4.3, it can be shown that for i;;;.,, I, U; (t) is compact with respect to Z 1, for all t ;;;.,,o. The proof which is 
slightly more difficult, uses the fact S (t ; S 0,w) (and therefore the individual growth y(t ; S 0,w )x) is 
bounded from above and below for all t ;;;.,,o, uniformly in <S0,n 0> EK. 

Now r+(<S0,n 0>) = {U(t)<S0,n 0> I 1..;;;ti} U U(t 1){U(s)<S0,n0> I s;;;.,,O}, and theorem 8.1 
and the former lemma yield that r+(<S0,n 0>) is precompact. 
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