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Factoring multivariate integral polynomials, 'II *) 

by 

A.K. Lenstra 

ABSTRACT 

We show that the problem of factoring multivariate integral polynomials can 

be reduced in polynomial-time to the univariate case. our reduction makes 

use of lattice techniques as introduced in [3]. 

KEY WORDS & PHRASES: polynomial algorithm, polynomial factorization 

This report will be submitted for publication elsewhere. 



1 

1. Introduction. 

In [5] we presented a polynomial-time algorithm to factor polynomials in 

2Z[X, Y], and we pointed out how to generalize the algorithm to 2Z[X1 , x2 , • 

•• ,Xt] for t~3. A nice feature of this algorithm is that it doesn't 

depend on the polynomial-time algorithm to factor in 2Z[X] (cf. [3]}. 

Instead of working out the details of this direct approach for t ~ 3 (this 

will be done for ~(a)[x 1 , x2 , •.• , Xt] in a forthcoming paper [6]), we here 

simplify the method from [5] somewhat, which results in a polynomial-time 

reduction from factoring in 2Z[X1 , x2 , ••• , Xt] to factoring in 2Z[X]. This 

reduction is similar to the reduction from ~[x1 , x2 , ••• , Xt] 

that was given in [4]. 

to F[X, Y] 
q 

An outline of our reduction is as follows. First we evaluate the poly-

nomial f E2Z[X1 , x 2 , ••• , xt] in a suitably chosen integer point cx2 = s 2 , 

x3 = s 3 , ••• , Xt = st), to obtain a polynomial f E2Z[x1]. Using the algorithm 

from [ 3] we then compute an irreducible factor fi E2Z[x1] of f. Next we 

construct an integral lattice containing the factor h 0 of f that corre­

sponds to n, and we prove that h0 is the shortest vector in this lattice. 

As usual, this enables us to compute h 0 by means of the so-called basis 

reduction algori~hm (cf. [3: Section 1]; in the sequel we will assume the 

reader to be familiar with this basis reduction algorithm and its properties) • 

2. Factoring multivariate integral p:>lynomials. 

Let f E2Z[x1 , x2 , ••• , Xt] be the polynomial to be factored, with the number 

of variables t ~ 2. By o.f=n. 
l. l. 

we denote the degree of f in X .• 
l. 

We 
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of ten use n instead of We put 
t 

N.=nk .(n.+1), 
1 =i 1 

and The 

content cont (f) E:iZ[x2 , x 3 , ..• , Xt] of f is· defined as the greatest common 

divisor of the coefficients of f with respect to Xi; we say that f is 

primitive if cont(f) = 1. 

Without loss of generality we may assume that 2 :S: ni :s: ni+l for 1 :S: i < t, 

and that the gcd of the integer coefficients of f equals one. 

We present an algorithm to factor f into its irreducible factors in 

2Z[X1 , x 2 , ... , Xt] that is polynomial-time in N and the size of the integer 

coefficients of f. 

Let s 2 ,s3 , ••• ,stEZG>O be a (t-1)-tuple of integers. For gE2Z[X1 , 

x 2 , ••• , Xt] we denote by gj the polynomial g modulo((X2-s2), cx3-s3l, ... , 

(X. -s . )) EZG[X1 , X. l' X . 2 , • · · , Xt] i 
J J ]+ ]+ 

i.e. is 

for Xi for i = 2, 3, ... , j. Notice that g l = g, 

(X.-s.). 
J J 

We put g= g . 
t 

g with s. 
1 

substituted 

and that g.= g. 1modulo 
J J-

Suppose that an irreducible, primitive factor fi EZG[X 1] of f is given 

such that 

(2.1) n.2 doesn't divide f in ZG[x 1 ], and o1li > O. 

This condition implies that there exists an irreducible factor h 0 E2Z[x 1 , x 2 , 

•.. , Xt] of f such that fi divides fi0 in 2Z[X1], and that this polyno-

mial h 0 is unique up to sign. 

(2. 2) Let m be an integer with o1 li :s: m < n. We define L as the collection 

of polynomials g in 2Z[X1 , x2 , •.. , Xt] such that 

(i) and o. g S n. for 2 ;s; i ;s; t, 
1 1 

(ii) fi divides g in 2Z[x1]. 

This.is a subset of the (m+1)N2-dimensional real vector space JR+lRXt+ ••. + 
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m n 2 nt 
lRX1x2 • • .xt . We put M= (m+l)N2 • This vector space can be identified 

M m · n2 nt i j k 
with lR by identifying the polynomial I:i=O L:j=O .•. .Lk=O aij ••• kx1 x 2 ••• Xt 

ElR[X1,x2 , ••• ,_Xt] with the M-dimensional vector (a t a00 f • • • I 00 ••• 0 ••• 1 

amn n ) . The collection L is a lattice in :iZM of rank M - o1fi, and 2. . . t 

a basis for L is given by 

0 :::;; i ~ m, 0 ~ i . ~ n. 
J J 

for 2 :::;; j :::;; t, and 

(cf. [4: (3.2) ]) . 

We define the length lgl of the vector associated with the polynomial 

g as the ordinary Euclidean length of this vector. The height gmax is 

defined as the largest absolute value of any of the integer coefficients 

of g. 

(2.3) Proposition. Suppose that b is a non-zero element of L such that 

( 2. 4) 
m n j-1 n. n+m 

s . ~ f b (n + m) ! (N2 n1. __ 2 s 1. 
1 ) 

J max max 

for 2:::;; j :::;; t. Then gcd(f,b) ~ l 

Proof. Suppose on the contrary that gcd (f ,b) = 1. This implies that the 

resultant R=R(f,b) E:iZ[X2 , x3 , ••• , Xt] of f and b (with respect to the 

variable x 1) is unequal to zero. 

We derive an upper bound for (R.) . Because R. is the resultant 
J max J 

of I. and B. we have 
J J 

( 2. 5) (R.) :::;; <f.)m (:0.)n (n+m)! N~+ml-2 
J max J max J max J+ 

*) · h 1 fm denotes Here, and in t e seque , max 
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as is easily verified. Because 13 . = 15 . 1modulo (X . -s. l , 
J J- J J 

we have 

n. 
(13.) s (13. 1 > (n.+ll s.J, 

J max J- max J J 

so that 

( 2. 6) 
j n. 

(15.) sb n. 2(n.+1ls.i, 
J max max i= i i 

and similarly 

(2.7) 
. n 

(f.) sf n~ 2(n.+1ls.i. 
J max max i= i i 

Combining (2.5), (2.6), and (2.71, we obtain 

(2. 8) - < Jll bn (n + m) .' j ni n+m (R.) r (N2 n. 2 s. ) 
J max max max i= i 

for 1 :s; j < t. 

Because fi divides both f and :0 ( (2. 2) (ii)) , we have that R = 0. 

But also R ;e 0, so there must be an index j with 2 :s; j :s; t such that s. 

is a zero of R. 1 . This implies that 
J-

ls.ls(R. 1> 
J J- max 

for some j with 2 s j s t, which yields, combined with (2.4) and (2.8), 

a contradiction. We conclude that gcd(f,b) ;e 1. 0 

(2.9) Proposition. Let b 1,b2 , ••• ,bM be a reduced basis for L (cf. 

[3: Section 1]), where L and M are defined as in (2.2). Suppose that 

(2. 10) 

t 
M 1 ~ ( I: . n . . -1 n. )n+m 

s. ~ fm ( (M 2 - ) f ) n (n + m) ! e i=l i N2 ni~ __ 2 si. 1 _. 
J max max 

for 2 :5: j s t, and that f doesn't contain multiple factors. Then 

J 
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(2.11) 

and h 0 divides b 1 , if and onlg if o 1 ho ::;; m. 

"only if"-part. 

We prove the "if"-part. Suppose that o1h 0 ::;; m. The ol onu.· al h 1' p yn 0 s 

a divisor of f, so that 

t 
L:. ln. 

(h ) ::;; e i= 1 f 
0 max max 

according to [2]. With o 1 h 0 ::;; m 

t 

and o . h. ::;; n. for 2 ::;; i ::;; t we get 
J.. J.. J.. 

L L 1n. I h 0 I ::;; M "l e i= i f 
max' 

so that [3: (1.11)] combined with hO e: L (this follows from o1h 0 ::;; m) yields 

t 
M-1 L L 1n· I b I ::;; (M 2 ) " e i= 1 f 

1 max 

This proves (2.11) because (b1 ) ::;; lb 1 I. With (2.10) and (2.3) we now 
max 

have that gcd (f ,b 1) ;t 1. Suppose that h 0 doesn't divide r = gcd (f ,b1) • 

Then fi divides f/r, so that, with 

t 
L 1n· 

(f/r) ::;; e J.= 1 f , 
max max 

and (2. 10) , (2 .11) , and (2. 3) , we get that gcd (f/r ,b1) ;t 1. This is a 

contradiction with r=gcd(f,b 1), because f doesn't contain multiple 

factors. D 

(2.12) Suppose that f doesn't contain multiple factors and that f is 

primitive. Let s 2 , s 3 , ••• , st and fi be chosen such that (2.10) with m 

replaced by n-1 and (2.1) are satisfied. The divisor h 0 of f can be 
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determined in the following way. 

For the values m= o1fi, o1l'i+1, ... , n-1 in succession we apply the 

basis reduction. algorithm (cf. [3: Section 1]) to the lattice L ~s defined 

in (2.2). We stop as soon as a vector b 1 is found satisfying (2.11). It 

is not difficult to see that the first vector b 1 satisfying (2.11) that we 

encounter, also satisfies b = ±h 
1 0 

(here we apply [3: (1.37)] and (2.9)). 

If no vector satisfying (2.11) is found, then 

this follows from (2.9). 

so that h = f· 0 I 

(2.13) Proposition. Assume that the conditions in (2.12) are satisfied. The 

polynomial can be computed in arithmetic operations 

on integers having binary length O (N log B ) , where 

t 
log B = 0 ( log f + n + log N2 + L . 2 n . log s , ) . 

max i= i i 

Proof. Combining 

I fi I 

(cf. [7]) and (2.7), we find that 

The proof follows now immediately from (2.2), [3: (1.26)] and [3: (1.37)]. D 

(2.14) We describe an algorithm to compute the irreducible factors 0£ f 

in 2Z[x1,x2 , ••. ,xtJ. Assume that f is primitive. 

First we compute the resultant R=R(f,f') E2Z[X2 , x3 , •.• , Xt] of f 

and its derivative f' with respect to x1, using the subresultant algo­

rithm from [ 1]. We may assume that R ;t 0, i.e. f doesn't contain multiple 
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factors. (In the case that R•O, the greatest ccmaon dlvisor li1 of f 

and f' is also caaputed by the subresultant algorithm, and the factoring 

algorithm can be applied to f/g.) 

Next we determine s 2, s 3 , ••• , st € 2'Z such that Ric 0 and such that 

(2.10) is satisfied with m replaced by n-1: 

(2.15) 

for 2 s j st. It follows frcm the reasoning in the proof of (2.3) that if 

we take sj E7Z>O minimal such that (2.15) is satisfied, then R;I! O. 

By means of the algorithm from [3] we compute the irreducible and 

primitive factors of f of degree > 0 in x1 • The condition R :ie 0 

implies that (2.1) holds for every irreducible factor fl of f thus 

found. 

Finally, the factorization of f is determined by repeated application 

of the algorithm described in (2.12). 

(2.16) Theorem. Let f be a polynomial in 2'Z[X1, x2, ••• , Xt] with t ~ 2, 

6 if== ni, and 2 s n = n1 s n2 s ... s nt. The irreducible factorisation of f 

. t-2 6 5 can be found in O (n (N + N log f l) arithmetic operations on integers 
max 

having binary length O(n t- 2 (N3 + N2log fmax)), where N = TT~ .. 1 Cn1 +1). 

Remark. Because t 
n = O(N), Theorem (2.16) 

in time polynomial in N and log f . 
max 

implies that f can be factored 

Proof of (2.16). First assume that f is primitive. The resultant R can be 

computed in O(n3t-lN;) arithmetic operations on integers having binary 

2 
length O(n log(fmaxN2}) (cf. [1]}. 



From the choice of· s. (cf. (2.15)) we derive 
J 

2 ·-1 
logs. = 0 (n N2 + n log f +I:.~ 2 n n. log s.) 

J max i= i i 

for 2 :5: j :5: t, so that 

2 . ·-1 
logs.= O((n N2 +nlogf )TI~ 2 (1+nn.)). 

J max i= i 

This yields 

(2.17) 
t t-2 2 

L.. 2 n. logs. =O(n (N +Nlogf )), 
i= i i max 

which gives, combined with (2.7), 

(2.18) 
t-2 2 

log f = 0 (n (N + N log f ) ) . 
max max 

The polynomial f can be factored in 
6 5 

O(n + n log f ) 
max 

8 

arithmetic operations 

on integers having binary length 
3 2 

O(n +n logf ), according to [3: (3.6)]. 
max 

With (2.18) this becomes 

t+3 2 o (n (N + N log f l} 
max 

arithmetic operations on integers having binary length 

t 2 
O (n (N + N log f ) ) . 

. max 

According to (2.13) and (2.17), repeated application of the algorithm 

described in (2.12) takes 

t-2 6 5 
0 (n (N + N log f ) ) 

max 

arithmetic operations on integers having binary length 

t-2 3 2 
O (n (N + N log f ) ) . 

max 
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The cost of applying (2.12) therefore dominates the costs of the computation 

of R and the factorization of f. 

The same estimates are valid in the case that R = 0. In this case we 

have that 

t 
I:. 1n. 

(f/ ) :Se i= 1.f 
g max max 

(cf. [2]), so that the same estimates as above are valid for the computation 

of the factorization of f/g. 

Finally, we consider the case that the content of f is unequal to one. 

3t-4 2 
The computation of cont(f) can be done in O(nn2 N3 ) arithmetic oper-

2 
ations on integers having binary length O(n2 log(fmaxN3 )) (cf. [1]). Because 

o. f = o. cont (f) + o. (£/cont (f)) for 2 :Si :St, the proof follows by repeated 
1. 1. 1. 

application of the above reasoning. 0 

(2.19) Remark. As mentioned in the introduction, a somewhat more complicated 

but similar approach leads to an algorithm that doesn't depend on the poly-

nomial-time algorithm for factoring in 2Z[X]. Instead, it can be seen as a 

direct generalization of the 2Z[X]-algorithm. We won't give a detailed 

description of this alternative method here, we only indicate the main 

differences. 

The divisor fi E2Z[Xl] of 

k 
(f mod p ) , 

k 
f is replaced by a divisor (Fi mod p ) E 

k 
for some suitably chosen prime power p . 

Condition (2.2) (ii) is therefore replaced by the condition that 
k 

(l'imod p ) 

divides in The lattice 
M 

L C2Z now has rank 

M, and a basis for L is given by 
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i t i. 
u {x1 TI. 2 (X. - s.) J: 0:;:; i:::; m, 0:::; i. :::; n. for 2:::; j:::; t, and 

J= J J J J 

• • • I 0) } • 

Again, it can be proven that, if 
k 

p are sufficiently 

large, then the irreducible factor of f that corresponds to 
k Cfi mod p ) 

is the shortest vector in L. This factor can therefore be found by means 

of the basis reduction algorithm, and the resulting algorithm appears to be 

polynomial-time. For fE2Z[X,Y] the details are given in [S], and for 
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