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Factoring multivariate integral polynomials, 'II

by

A.K. Lenstra

ABSTRACT

We show that the problem of factoring multivariate integral polynomials can
be reduced in polynomial-time to the univariate case. Our reduction makes

use of lattice techniques as introduced in [3].
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*) This report will be submitted for publication elsewhere.



1. Introduction.

In [5] we preseqted a polynomial~time algorithm to factor polynomials in
z[X, Y], and we pointed out how to generalize the algorithm to 2Z[X1, Xor -
eey Xt] for t23. A nice feature of this algorithm is that it doesn't
depend on the polynomial-time algorithm to factor in Z[x] (cf. [3]).
Instead of working out the details of this direct approach for t23 (this
will be done for Q(a)[xl, Ror weey Xt] in a forthcoming paper [6]), we here
simplify the method from [5] somewhat, which results in a polynomial-time
reduction from factoring in Z[Xl, X2, ey Xt] to factoring in Z[X]. This
reduction is similar to the reduction from IF('I[Xl, X2, cees Xt] to IE(‘:I[X, Y]
that was given in [4].

An outline of our reduction is as follows. First we evaluate the poly-
nomial fszz[xl, X2, . Xt] in a suitably chosen integer point (X2= Sy
X3= 33, ey Xt= st) ; to obtain a polynomial fez[xlj. Using the algorithm
from [3] we then compute an irreducible factor ﬁeZ[le of E. Next we
construct an integral lattice containing the factor h of £ that corre-

0

sponds to H, and we prove that h is the shortest vector in this lattice.

0

As usual, this enables us to compute h. by means of the so-called basis

0
reduction algorithm (cf. [3: Section 1]; in the sequel we will assume the

reader to be familiar with this basis reduction algorithm and its properties).

2. Factoring multivariate integral polynomials.

Let fez[xl, Xy eues Xt] be the polynomial to be factored, with the number

2

of variables t=22. By <Sif=ni we denote the degree of £ in Xi' We



t
often use n instead of n,. We put N,=Tl_ . (n.+1), and N=N,. The
1 i k=1i""1 1
content cont(f) eZZ[Xz, Xyr wees Xt] of f is defined as the greatest common

divisor of the coefficients of f with respect to Xi; we say that £ is

primitive if cont(f) =1.

Without loss of generality we may assume that 2<% n, < N for 1<i<¢t,

and that the gcd of the integer coefficients of £ equals one.
We present an algorithm to factor £ into its irreducible factors in
ZZ[Xl, X2, ey Xt] that is polynomial-time in N and the size of the integer

coefficients of £f.

Let s,/ Syroveey stezz>o be a (t-1)-tuple of integers. For geZ[xl,
X2, cees Xt] we denote by gj the polynomial g modulo((xz—sz) ’ (X3—s3) g oeeey

(X.-s.)) ezZ[X, , X, X
o3 1

41 j+2,...,Xt:[; i.e. §. 1is g with s, substituted

J
for xi for i=2,3, ..., 3j. Notice that cfjl =g, and that é}j = ijvlmodulo
(X.-s.). We put g=4g, .
3% P g9 gt
Suppose that an irreducible, primitive factor ﬁezz[xlj of f is given

such that
(2.1) 1'"12 doesn't divide ¥ in ZZ[Xl], and 611’1>0.

This condition implies that there exists an irreducible factor hO eZ[Xl, X2,

...,xt] of f such that A divides PiO in ZZ[X1], and that this polyno-

mial ho is unique up to sign.

(2.2) Let m be an integer with 61ﬁ5m< n. We define L as the collection
of polynomials g in ZZ[Xl, Xor eens xt] such that
i < < <icg
(i) Glg..m, and cSig__ni for 2<ic<t,
(ii) KA divides § 1in Z[Xl:l.

This .is a subset of the (m+1)N2—d:Lmensional real vector space ]R+]th+ .ot



m n n
IRX1X22.. .Xtt. We put M= (m+1)N2. This vector space can be identified
. M . e . m’ _nj ng id k
with IR by identifying the 1 oo oo
v ying polynomial Zi=0 Zj=0 zk=0 aij . .kx1x2 Xt

€ ]R[Xl, X2, ""‘Xt] with the M-dimensional vector (aOO...O' B0g. . gt e

aﬂDz"‘“t). The collection L is a lattice in ZM of rank M-—dlﬁ, and

a basis for L is given by

{Xiﬂt (X, - )ij- 0<icx< 0<i. < £ 2<4<
1 5= X378y 72 O=iEm O=igsn, for 2=Jst, and
(izl i3l LA it) z(0[ O[ o ey 0)}
u {Hxi“slﬁ: §,A<ism}

(cf. [4: (3.2)D).

We define the length |g| of the vector associated with the polynomial

g as the ordinary Euclidean length of this vector. The height I pax is

defined as the largest absolute value of any of the integer coefficients

of g.

(2.3) Proposition. Suppose that b is a non-zero element of L such that

j-1 ni)n+m

n ]
(2.4) stfm be  (n+m! (N, T _ s,

max max

*
for 2<j<t. Then gcd(f,b)#1 in z[xl,xz,...,xt]. .

Proof. Suppose on the contrary that gcd(£f,b) =1. This implies that the
resultant R=R(f,b) EZ[XZ, Xar eees Xt] of £ and b (with respect to the
variable Xl) is unequal to zero.

We derive an upper bound for (ﬁj)max' Because ij is the resultant

of fj and Bj we have

~ m n . o tm=2
(2.5) (Rj)maxs (fj)max(Bj)max(nfm) . Nj+1

m
* Here, and in the sequel, ffnlax denotes (f___)

max



as is easily verified. Because Bj=5j_1modulo (Xj—sj), we have

(B.) < (B

n.
J
3/ max * Py-1)max (751 857/

so that

.
. < 1
(2.6) (Bj)m bm i= 2(n +1)s

and similarly

(2.7) () __<f T _(n.+1)s 1,
j'max” max i=2""i i

Combining (2.5), (2.6), and (2.7), we obtain

n -+
(2.8) By < ) mem! o s hyT

j'max “max max 2 =251 !

for 1<j<t.

Because K divides both ¥ and B ((2.2)(ii)), we have that R=0.
But also R#0, so there must be an index j with 2<j<t such that sj

is a zero of R,

-1 This implies that

< (3
lsjl - (Rj-—l)max

for some j with 2<3j<t, which yields, combined with (2.4) and (2.8),

a contradiction. We conclude that gecd(f,b) z1. [

(2.9) Propoéition. Let bl'b ’ ...,b be a reduced basis for L (cf.

[3: Section 1]), where L and M are defined as in (2.2). Suppose that

1%

t
n+m
M- ' Zl—l i j-1 nl)
(2.10) sjsz;ax((M2 )fmax) (n+m)! (e AT

for 2<3j<t, and that £ doesn't contain multiple factors. Then



t
Xz n
M-135 “5=1"4
(2.11) (bl)m < (M2 ) e £ <

and ho divides bl’ if and only if Glh <m.

0

Proof. If h0 divides bl' then Glh

"only if"-part.

< 61b <m; this proves the

0 1

We prove the "if"-part. Suppose that SlhOSm. The polynomial ho is

a divisor of £, so that

£ on.
h) <e i=1"1¢
0 max max

(

according to [2]. with cSlhOSm and 6ihi'<'ni for 2<i<t we get

t

5 Zi=1ni )
<
IhO' Moe J":max'

so that [3: (1.11)] combined with hOEL (this follows from GlhOSm) yields

M-1 ;i Zi.:_ln.
Ibll S M2 )te YT

This proves (2.11) because (b,) < |b

1) max |. With (2.10) and (2.3) we now

1

have that gcd(f,bl) #1. Suppose that h., doesn't divide r=gcd(f,b1) .

0
Then R divides ¥/¥, so that, with

Z;-:=1ni
<o i
(£/x) max -~ © fmax'

and (2.10), (2.11), and (2.3), we get that gcd(f/r,bl) z1. This is a
contradiction with r=gcd(f,b1), because f doesn't contain multiple

factors. [J

(2.12) Suppose that £ doesn't contain multiple factors and that £ is

primitive. Let s,, s and A Dbe chosen such that (2.10) with m

g7 Sgr seer Sp

replaced by n-1 and (2.1) are satisfied. The divisor ho of £ can be



determined in the following way.
For the values m= 615, 61H+1, ..., n-1 in succession we apply the
basis reduction algorithm (cf. [3: Section 1]) to the lattice L as defined

in (2.2). We stop as soon as a vector b is found satisfying (2.11). It

1

is not difficult to see that the first vector b1 satisfying (2.11) that we

encounter, also satisfies b1=:l:ho (here we apply [3: (1.37)] and (2.9)).

If no vector satisfying (2.11) is found, then 61h0> n-1, so that h0= £;

this follows from (2.9).

(2.13) Proposition. Assume that the conditions in (2.12) are satisfied. The

, 4 , , .
can be computed in O((8,h_N.) logB) arithmetic operations

polynomial h 1Po N

0

on integers having binary length O(N1logB ), where

t
= + .
logB=0(log £ ax +n + log N2 Zi= n; log si)

2

Proof. Combining
2n. %
<
Els (71l

(cf. [71) and (2.7), we find that

2n, % _t

n,
1
IBl<£ (e )M (n +1)s

The proof follows now immediately from (2.2), [3: (1.26)] and [3: (1.37)]. 0O

(2.14) We describe an algorithm to compute the irreducible factors of £
in ZZ.[XI, Xor eees Xt]. Assume that .f is primitive.

First we compute the resultant R=R(f,f') ez[xz, Xis eees Xt] of £

3

and its derivative f' with respect to X using the subresultant algo-

1’

rithm from [1]. We may assume that R#0, i.e. f doesn't contain multiple



factors. (In the case that R=0, the greatest common divisor g of £
and f£f' is also computed by the subresultaﬁt algorithm, and the factoring

algorithm can be applied to £/g.)

Next we determine 52’ S,y aeey ste Z such that ﬁ: 0 and such that

3
(2.10) is satisfied with m replaced by n-1:

t
- ¥ .n -1 n -
MNp-L)n/2 ooy e i=My ng 1)2n-1

1
(2.15) s,z (nN, 2 252084

i 2

for 2<jst. It follows from the reasoning in the proof of (2.3) that if
we take Sj ezz>0 minimal such that (2.15) is satisfied, then R=z0.

By means of the algorithm from [3] we compute the irreducible and
primitive factors of £ of degree >0 in xl' The condition R#0

implies that (2.1) holds for every irreducible factor B of ¥ thus

found.

Finally, the factorization of £ is determined by repeated application

of the algorithm described in (2.12).

(2.16) Theorem. Let f be a polynomial in ZZ[XI,sz ...,Xt] with t=22,

i’ and 2<n= n1 < n2 <...% nt. The irreducible factorization of £
can be found in O(nt-z(N6+N510gf )) arithmetic operations on integers

, t-2, 3 2 _at
having binary length O(n (N” + N log fmax 1), where N--]'Ii=1 (ni+1).

§ £f=n
i

Remark. Because nt=0(N), Theorem (2.16) implies that f can be factored

i i .
n time polynomial in N and log fmax

Proof of (2.16). Firstassume that f is primitive. The resultant R can be

computed in O(n3t-1N:2z)

Y)Y (ef. [1D).

arithmetic operations on integers having binary

2
1l
ength O(n log(f N2



From the choice of- Sj (cf. (2.15)) we derive

j-1
+
+n log fmax Zi=2 nng log si)

2
log sj = O(n N2

for 2<j<t, so that

_ 2 ~j-1
log sj = 0((n"N_,+nlog fmax) Ui=2(1+n ni)) .

2
This yields

t t-2 2
(2.17) Zi=2 ni log si =0(n (N~ +N log fmax) ),

which gives, combined with (2. 7).,
t-2, 2
(2.18) log fmax'_ o(n (N + N log fmax)) .

The polynomial f can be factored in o(n6+n510g fma.x) arithmetic operations
2
on integers having binary length O(n3+n log fmax) , according to [3: (3.6)].

With (2.18) this becomes

t+3, 2
n

0 (N” + N log fma.x“

arithmetic operations on integers having binary length
t, 2
+ .
O(n”(N" +Nlog fmax))

According to (2.13) and (2.17), repeated application of the algorithm

described in (2.12) takes

t-2,.6 5
o(n (N +N 1ogfmax))

arithmetic operations on integers having binary length

o™ 2’ + nPlog £ ).
max



The cost of applying (2.12) therefore dominates the costs of the computation

of R and the factorization of E.

The same estimates are valid in the case that R=0. In this case we

have that

t
Y. .n.
i=1%1
< .
(f/g)max =e fmax

(cf£. [2]), so that the same estimates as above are valid for the computation
of the factorization of f/g.

Finally, we consider the case that the content of £ 1is unequal to one.

31:-4 N§) arithmetic oper-

ations on integers having binary length O(nz log(fmaxN3)) (cf. [1]). Because

The computation of cont(f) can be done in O(nn

cSif= Gicont(f) + Gi(f/cont(f)) for 2<i<t, the proof follows by repeated

application of the above reasoning. [J

(2.19) Remark. As mentioned in the introduction, a somewhat more complicated

but similar approach leads to an algorithm that doesn't depend on the poly-
nomial-time algorithm for factoring in Z[X]. 1Instead, it can be seen as a
direct generalization of the Z[X]J-algorithm. We won't give a detailed
description of this alternative method here, we only indicate the main
differences.

The divisor ﬁezz[xlj of F is replaced by a divisor (fhimod pk) €
(Z/pkz)[xlj of (¥Fmod pk) , for some suitably chosen prime power pk.
Condition (2.2) (ii) is therefore replaced by the condition that (hmod pk)
divides (§mod pk) in (zz/pkz)[xll. The lattice LCZZM now has rank

M, and a basis for L is given by

{kal:

1 0_<_i<61h}



10

u{(ﬁmodpk)x §,A<i<m}

i-§4h
1 : 1

it is
u{X;T, (X.-s.) J: 0<i<m, 0<i,<n, for 2<j<t, and
173=2""3 73 ! 3T 3 I= %

(i, iy, ...,it) 2(0,0,...,01.

Again, it can be proven that, if SyrSgr eeer Sy and pk are sufficiently
large, then the irreducible factor of f that corresponds to (ﬁnmﬁlpk)
is the shortest vector in L. This factor can therefore be found by means
of the basis reduction algorithm, and the resulting algorithm appears to be
polynomial-time. For feZ[X,Y] the details are given in [5], and for

fe Q(a)[Xl, X2, . Xt] in [6].
References.

1. W.S. Brown, The subresultant PRS algorithm. ACM Transactions on
mathematical software 4 (1978), 237-249.

2. A.O. Gel'fond, Transcendental and algebraic numbers, Dover Publ.,

New York 1960.

3. A.K. Lenstra, H.W. Lenstra, Jr., L. Lovasz, Factoring polynomials with
rational coefficients, Math. Ann. Zél.(1982)' 515-534.

4. A.K. Lenstra, Factoring multivariate polynomialé over finite fields,
Report IW 221/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings
15th STOC).

5. A.K.‘Lenstra, Factoring multivariate integral polynomials, Report IW
229/83, Mathematisch Centrum, Amsterdam 1983 (also Proceedings 10th

ICALP) .



11

6. A.K. Lenstra, Factoring multivariate polynomials over algebraic number
fields, to appear.
7. M. Mignotte, An inequality about factors of polynomials, Math. Comp. 28

(1974), 1153-1157.



