
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

P.J.W. ten Hagen, C.G. Trienekens

Pattern representation

Department of Computer Science Report CS-R8602 January

!9iblioth"!el<
· .'; ;;: (~;;'l i'°'f".U"l'11fl<"..~~

Amsterdam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Pattern Representation

P.J.W. ten Hagen, C.G. Trienekens
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper introduces a new method of representing area oriented picture primitives. The representation

aims at efficient conversion of these primitives to framebuffers for raster displays. The representation and

the conversion to raster can be the basis for area generators being comparable in speed to vector genera

tors used in conventional vector displays. The representation is independent of the type and fesolution of

raster hardware. As a result interactive graphics on raster display can be of higher quality because of fast

responses involving picture change without compromising picture quality. This paper concentrates on the

treatment of the area's domain, e.g., definition and manipulation of domains. The generation of the texture

in the domains will be dealt with in a subsequent paper.

1980 Math. Subject Classification: 69K31, 69K33, 69K36. ~
1983 CR Categories : 1.3.1, 1.3.3, 1.3.6.
Key Words & Phrases : Computer graphics, raster displays, pattern representation, scanconversion.

Note: These investigations were supported by the Netherlands Technology Foundation (STW)

1. INTRODUCTION

1

This paper discusses the representation of patterns given certain requirements. Patterns are area
oriented picture elements. The requirements are that the picture making devices can use raster tech
nology and that the applications using the pictures are highly interactive, making intensive use of
real-time picture change.
It is a well known fact that in the general case small picture changes require a complete regeneration
of the raster image in order to make this change visible. This situation causes interaction on raster
devices being either unacceptably slow or highly restricted because the kind of changes that can be
efficiently supported is limited.
Recently introduced methods originating from image processing techniques have provided more
elegant methods for raster image representation. Examples are quadtrees, octrees, run length encod
ing schemes and other hierarchical representations. However, at this moment all of these methods are
insufficient for interaction support.
Graphics devices using vector technology are essentially low quality devices for representing area
oriented pictures. Their ability to support real-time picture change and therefore interaction stems
from the fact that they support a structured display file, which on the one hand can be changed
locally and on the other hand can be traversed very efficiently generating the new screen image.
Efficient picture change obviously can be realized by combining the ability to make local changes and
the ability to quickly regenerate the image from the display file.

Report CS-R8602
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 Primitive pattern representation

The representation for area-oriented pictures proposed here on the one hand allows the primitives to
be part of a structured display file, and on the other hand represents each picture primitive in such a
way that fast rasterization (comparable to fast vector generation) is possible. Being part of a struc
tured display file among other things requires that picture elements can be retransformed or
differently coloured while being displayed.
Fast rasterization requires that the individual picture elements can be scan converted quickly and in
the right order. The most time consuming step in the rasterization process (2D or 3D) is the sorting
of the points that make up an area.
The strategy being followed to realize picture representation for interactive use on raster displays,
includes a representation in a structured display file which has already performed most, if not all, of
the sorting.

2. PRIMITIVE PATTERN REPRESENTATION

In ten Hagen, de Ruiter and Trienekens [l] a system for area-oriented picture elements, called pat
terns is proposed. In this section we will summarise this proposal giving some emphasis on the
aspects relevant for representation. The proposal defines the pattern functionality and its associated
semantics for application programmers. As a result the notation in that paper is different from the
one choosen here. In this paper implementation issues are discussed for which mathematical notation
is more appropriate.
The representation issues and display list solution will be discussed for 2D primitives. The primitives
in [I] are 3D primitives. In section 3 it will be pointed out how 2D and 3D primitives are related and
what consequences this has for the implementation.

A pattern primitive Pisa pair (D,C) where:
D is a domain function, which specifies a 2D or 3D planar region, and
C is a colourfunction, which assigns a colour to each point of the domain.
e.g.: P = (D,C).
Conceptually what will take place when P is visualized is that D is mapped onto the raster of the dev
ice. For each rasterpoint the colour of the corresponding point of Dis calculated by C. This colour
is assigned to the rasterpoint (pixel).
The system has a number of elementary domain functions, such as: POLYGON, PARALELLO
GRAM, and a number of elementary colour functions, such as: SOLID COLOUR, CELLS and
INTERPOLATE. Any combination of domain and colour function is a picture primitive. Domains
can have holes or consist of unconnected regions. However, domains are finite.
Pattern primitives can be operands in pattern expressions. The operators for these expressions are set
theoretic operators, such as UNION, INTERSECTION, DIFFERENCE etc .. They are called pattern
combining operators. These operators are affecting the interior of patterns. The result of, say, a
union is a new domain which is the union of the interiors of the domains of the operands. The result
ing colour function of the union will be for overlapping parts of the regions a new colour function
which is somehow a mixture of the two original functions, or for non-overlapping regions it is the ori
ginal function of the corresponding pattern. How the colour function will mix colours is determined
by a parameter attributed to the union function. This parameter is called the mix-attribute for pat
tern combining operators.
The representation needs to be concerned primarily with pattern representations after combining.
This means that it is important to know how a representation is constructed for a given pattern
expression. It is, however, not required that the representation accomodates fast (real-time) combin
ing. The combining operator is for convenient pattern definition. Pattern manipulations for realizing
picture changes in real time do not include combining.
A second category of operators are monadic operators for geometric and colour transformations of
patterns. In as far as these are used in the pattern definition phase they have to fulfill similar

Primitive pattern representation 3

requirements: support convenient pattern definition, be able to represent patterns after transformation

which need not to be applied in real-time. These requirements are derived from the basic design prin

ciple for the area oriented primitives, namely that there will be a definition phase which is distinct

from the presentation and manipulation phase.
During the manipulation phase complex patterns originating from a possibly complex pattern expres

sion will be treated as a unit which does not change. For these complex patterns it is necessary to

have a representation which allows all kinds of manipulations to support interaction such as: transfor

mations (again!), blinking, 'removal, identification and grouping.

In the next paragraphs, the prerasterized representation will be described from two points of view.

First, how to construct it from a pattern expression and second, how it can support interaction. The

latter will only be done from the point of view of transformations. The other aspects will be dealt

with in a future paper.
A representation function must store both domain- and colour function. These will be treated as

separate components. The correspondence will be, that at all times, the colour function can supply

the colour value of a point in the domain. This property must be maintained for complex patterns

and under transformations.
Note that a geometric transformation can affect both domain and colour function. A colour transfor

mation will only affect the colour function.
Eventually a rasterization is envisaged to take place as follows: The domain is mapped onto the ras

ter. As a result all rasterpoints (pixels) belonging to the mapped domain can be associated with a

point of the original domain. For each of these points the colourfunction will supply the value.

In scheme:

4

D(P)

p

prerasterization Chrf P)
via Rect(P) ::ao 'J'

display

interpolation
(i.e. lining up
with display
scanlines) ::ao

and
scanconversion

Primitive pattern representation

list of 'active'
pixels of domain

on screen

l
C(P)

!
pixel store
(colour

index)

colour
table
entry

In order for the colourfunction to be a separate component in the representation it is necessary that
the colourfunction is defined for all points in the domain. Moreover, the colour function must be
independant of the domain. If, for instance, as a result of intersection the shape of the domain
changes drastically, then the colour function still must be defined. This requirement can cause severe
performance problems which must be solved by choosing an adequate representation. For instance,
under union a colour function may look quite different depending on whether a point is in an over
lapping part or not. Colour functions should preferably not have to reconstruct parts of the domains
during their evaluation.
The prerasterization method that will be described anticipates that the primitives and the raster they
will be mapped onto, will be oriented the same. The orientation is invariant under translation and
scaling. This suggests that these operations can be carried out efficiently. Rotation requires a re-

Domain representation 5

orientation and hence calculation of a completely new representation. However, the original represen
tation will still be of some help when calculating the rotated one.

2.1. Domain representation

The first facility provided by the representation functions for domains is to define the smallest upright
rectangle that contains the domain. This is the initial step for rasterization later on.
All subsequent manipulations with the domain must keep the smallest rectangle associated with the

domain updated.
This rectangle has on each side at least one intersection with the pattern.(See figure 1). Hence, one

way to represent it could be storing the minimum and maximum pattern domain values in the axes
directions in a 'lower-left' and an 'upper-right' rectangle point.

Rectangle

FIGURE 1
Smallest upright rectangle containing the domain

A further step in the direction of rasterization which is provided as part of the representation function
is a characteristic function 1 over this smallest rectangle.
The characteristic function is raster independent or (approximately) continuous. When final rasteri
zation will take place, the characteristic function only needs to be evaluated on the rasterpoints. In
particular, the colourfunction needs to be evaluated for those points.
The characteristic function can be stored using run-length-encoding (RLE) techniques. By applying
linear interpolation techniques the RLE for an arbitrary scanline can be reconstructed from its nearest

neighbours in the coding, provided that the precision along the scanline (real numbers) and the dis
tance between the nearest neighbours is within the precision required for the approximation. Figure 2
gives an example of encoding, where coding lines (not all depicted) are choosen to have equal 'Vy

separation.

I. This characteristic function indicates whether or not an element is a member of the pattern. Its outcome only results in two

values: l (or true) if that element is part of the pattern and 0 (or false) if it falls outside the pattern.

6

Rectangle

scanline

FIGURE2

Colour representation

coding lines

·...:.·...:.·...:.·..1.·..:.·..:.········

-----···················· ------

Some arbitrary scanlines between their nearest neighbour coding lines

2.2. Colour representation

Colour functions can work with true colours or with colour indices. In the latter case a colour table
exists which defines a true colour for each valid index. A colourfunction has at all times access to the
colour table. Hence, whenever a true colour is required rather than the index, it can be retrieved.
This property will be used in cases of colour mixing, which is done with true colours.
Intermediate true colour values need not be mapped back into the (nearest) corresponding colour
index, at least not until real rasterization takes place. This makes it possible to avoid propagation of
rounding off errors of intermediate colour values.
Colourfunctions can be generators or pseudo-rasters. Generators are procedures yielding a colour for
each point in a domain, pseudo-rasters are two-dimensional arrays of colour cells covering a domain.
It is possible to rewrite a generator as a pseudo-raster, but the reverse is not generally the case.
Examples of generators are SOLID and RANDOM (See doc [l]).
Combining patterns during pattemexpression evaluation may require rewriting of generators or
pseudo-rasters (as new pseudo-rasters) in order to have one colourfunction after mixing in cases of
overlap.

Pattern intersection 7

3. PATIERN EXPRESSION REPRESENTATIONS

Pattern expressions are defined in more detail in [1]. They are built from operands (primitive pat

terns or pattern(sub)expressions) and operators.
We will first discuss the representation requirements for the various operands assuming that the

operands are primitive patterns. Subsequently the description of the representation functions will be

extended to cover sub.expressions as well.
It will tum out that two ba.Sic representation strategies can be followed. At this time no decision will

be taken about which strategy has preference. However, properties that allow a comparison of the

two will be highlighted.

A pattern can be written as

with
D(P) = DP, the domain of P

and
C(P) = CP, the colourfunction of P.

In the following we will point out that the

quadruple R (DP' Cp, RectP, Chfp)

where D, C are the primitive domain function and the colour function
(C is not necessarily primitive), and Rect and Chf are
the enclosing rectangle and characteristic function respectively
providing redundant information

is the general form of representing a primitive pattern, which suits our purposes.

Depending on domain or colourfunctions these four elements are explicitly present or can be gen

erated when needed. Hence, the system will interface to primitive pattern objects through four ele

mentary functions:

Domain of P

Colourfunction of P

Rectangle of P

Characteristic function of P

3.1. Pattern intersection

(D(P))

(C(P))

(Rect(P))

(Chf(P))

A pattern expression of the form
P, nmix Pz,

can yield a resulting pattern with the following properties:

8

By definition (= def) : Domain function

By definition : Colour function

where
mix or mix is used for: 'specified colourmixing function'
- and

ID(P, n P,) for: 'restricted to' the domain of P1 n P2.

From now-on we will use the symbol 11 subscript I 11 in the special meaning of
restricted to the then following domain.

Equation (2) can be further simplified to :

By definition : general pattern function

Substituting equations (1) and (3) in (4)
and using the property

(D, C1D) = (D,C)
gives the resulting pattern intersection equation :

Pattern intersection

(1)

(2)

(3)

(4)

(5)

Based on these definitions and properties we can now formulate how both enclosing rectangle and
characteristic function can be calculated for intersections.

Let Rect(P) be the function which yields the smallest enclosing rectangle of the domain D (of pattern
p).
Let Chf(P) be the characteristic function of the domain D (of pattern P), restricted to the rectangle
of P.
Then:

D(Chf(P)) = Rect(P) (6)

Pattern intersection

For intersection of two primitive patterns the following
properties are true:

Rect(P 1 n mix P 2) = Rect(D(P 1) n D(P 2))

with

Rect(P I n mix p 2) ~ Rect(P I) n Rect(P 2)

9

(7)

(8)

Note that the smallest enclosing intersection rectangle can be empty even if the enclosing rectangles
intersect. See also figure 3.

10

a:

b:

c:

Rectangle around the resultant overlapping domain
and the overlap of the rectanW.es around the two
original domains are identicaf ·

I
I

I
L

I
"""--P-.:.2 _J

Rectangle around the resultant overlapping domain is
smaller then the overlap of the rectangles around the
two original domains

1) n Rect(P2)

No overlap of the two original patterns exists although there
is an overlap of the rectangles around the two original domains

P1 nmix P2 is empty

FIGURE 3

I
L

Examples of intersection of two patterns

Pattern intersection

I
I

I
_J

I
I

I
_J

Pattern intersection

This equation can be rewritten as

Chf(P1 nmix P_2) = (Chf(P1) and Chf(P2))1Rect(P, n P,)

The and function will be used as follows:

chf1 and chf2 =de/ {

}

v x E D(chf1) n D(chf2) I
if Chf1(x) = Chfz(x) = 1 then 1

else 0

A schematic representation of R(P 1 nmix P2) is now as follows:

which can be further simplified to the pattern intersection representation

)

D(P1) n D(P2),

C(P 1) mix C(P 2),

Rect(D(P 1) n D(P 2)),

Chf(P 1) and Chf(P 2)

11

(9)

(10)

(11)

Chf(P1 n P2)

(12)

12 Union of patterns

3.2. Union of patterns

A pattern expression of the form

Pi Umix P2
can yield a pattern with the following properties:
Domain function

This can be rewritten in an alternative way as :

D(Pi Umix p 2) = D(P,)-,(D(P1) n D(P2)) U

D(P 2)-,(D(P i) n D(P 2)) U

D(Pi) n D(P2)

(1)

(2)

The latter is a decomposition of the resulting domain in three disjunct subdomains, each with a
different simple colourfunction.
The symbol -., will be used for : ' excluded the following domain '.
In writing a shorthand for

D(Pi) n D(P2)
as

D(PiP2)
the equation can be simplified to

D(Pi Umix P2) = D(Pi)-., D(PiP2) U

D(P2)-., D(P1P2) U

D(P1P2)

(2')

Using properties and definitions mentioned in this and the previous section the
resultant colourfunction is :

Conclusion:

C(Pi)tD(P,)...,D(P,P,);

C(P2)1D(P,)-. D(P,P,) ;

(C(Pi) mix C(P2))tD(P,P,)

As a result a union of patterns can be written in two alternative ways:
either as one primitive pattern having a fairly complex (three component) colourfunction;
or as a sequence of three primitive patterns having a simple colourfunction.

(3)

Union of patterns 13

We will first give the derivations of both alternative pattern representations.
Following this we will compare the two on the basis of their rectangle- and characteristic functions
properties.

general pattern function

(4)

When substituting the first alternative domain description (equation (1)) and colourfunction (3) in this
pattern equation (4) the

first pattern union equation yields :

)

C(P1)1D(P,) ..,D(P,P,);

C(P2)1D(P,).., D(P,P,); (5)

However, when substituting the second alternative domain description (equation (2) and colourfunc
tion (3), together with using the property

(D, C1D = (D, C),
in the pattern equation (4) the alternative

second pattern union equation yields :

Pi Umix P2 = {

}

(D(P1)-, D(P1P2), C(P1)),

(D(P2)-, D(P1P2), C(P2)),

(D(P1P2), C(P1) mix C(P2))

The two alternative representations are depicted for one intersection in figure 4.

From now on we will use the terms case (1) and case (2) to point to
alternative 1, respectively 2, of the pattern representation.

(6)

14

Case (1):

Case (2):

Two patterns P 1 and P 2 with their resp. enclosing rectangles

Union of patterns

I
I

I
P, _J

One pattern with 'growing' rectangle around one (larger)
domain with one (three-component) colourfunction

Three disjunct patterns I, II, III, each with 'shrinking' rectangle
and domain and one 'simple colourfunction per pattern

FIGURE4
Example of a union of two patterns

Union of patterns

The rectangles associated with the resulting patterns
have the following properties:

Case (l);

Case (2);

with

Rect(P 1 U mix P 2) = Rect(D(P 1) U D(P 2))

Rect(PJ Um;x P 2) = Rect(D(P1)-, D(P1P2)),

Rect(D(P 2) -, D(P 1P2)) ,

Rect(D(P 1P 2))

Rect(D(P1) U D(P2)) ~ (

)

Rect(D(P1)-, D(P1P2)) U

Rect(D(P2)-, D(P1P2))U

Rect(D(P1P2))

15

(7)

(8)

(9)

The second alternatives set of rectangles can be considerably smaller in area than the first alternatives
rectangle (see figure 4).

For case (1) the characteristic function is also fairly complex:

(10)

The or function will be used as follows:
(Keep in mind that D(Chf(P)) = Rect(P))

16 Union of patterns

Chf(P1) or Chf(P2) =de/ {

V x E Rect(D(Chf(P 1)) U D{ Chf(P 2)))

ifx E (D(Chf(P1)) n D(Chf(P2)))

then Chf(P1) V 1 Chj(P2) (11)

else if x E D(Chf(P 1)) then Chf(P 1)

else if_ x E D{ Chf(P2)) then D(Chf(P2))

}

In case (2) the characteristic function is

Chf(P1 Umix P2) = Chj(P1)/Rect(D(P,)-, D(P1P,)) ;

Chj(P2)1Rect(D(P,)-. D(P,P2>) ;

(Chj(P i) and Chj(P 2))1 Rect(D(P,P,>)

As a result the pattern union representation can be written as:

Case (1)

R(PI U mix P 2) =

(D(P1) U D(P2) ,

)

C(Pi)/D(P,)-, D(P1P2) ; C(P2)JD(P,)-, D(P1P2) ; (C(Pi) mix C(P2))JD(P,P,) '

Rect(D(Pi) U D(P2)) ,

Chj(P1) or Chf(P2)

1 Chf(P1)(x) V Chf(P2)(x) =def
i[_Chf(P1)(x) = Chf(P2)(x) = 0 then 0 else I .

else 0

(12)

(13)

Pattern reduction

Case (2)

{

}

(D(P1)-, D(P1P2), C(P1), Rect(D(P1)-, D(P1P2)), Chf(P1)),

(D(P2)-, D(P1P2), t(P2), Rect(D(P2)-, D(P1P2)), Chf(P2)),

(D(P1P2), C(P1) mix C(P2), Rect(D(P1P2)), Chf(P1) and Chf(P2))

Note that the colourfunction only needs to be given for the pattern domain.

17

(14)

Similarly, that the characteristic function only needs to be defined for the rectangle surrounding the

domain.
For instance, the first two characteristic functions in (14) are identical to the Chf for P 1 and P 2

respectively but they have smaller domains. This may lead to fewer storage locations for their
representation.
Based on the observation that case (2) leads to smaller rectangles and simpler colourfunctions we give

preference to case (2).
However, this introduces the need for considering lists of primitive patterns as operands rather than
single ones. We only need to consider lists containing disjunct patterns!
All operations will have to maintain the disjunctness property for lists of patterns.

3.3. Pattern reduction

The pattern reduction operator is used to maintain the disjunction property.
Let P,Q be patterns such that P .:::> Q.
Then

R(PrQ)

(pronounce

P reduced by Q)

This can be rewritten as:

)

D(P) -, D(Q) ,

C(P)tD(P)..., D(Q) ,

Rect(D(P) -, D(Q)) ,

Chf(P), D(P)-. D(Q)

R (P ~ Q) = (D(P) -, D(Q), C(P), Rect(D(P) -, D(Q)), Chf(P))

(1)

(2)

Hence, the reduction operator removes the domain of Q from the domain of P, called the reduced
domain of P. The colour function, rectangle function and characteristic function now apply only to
the reduced domain.
Using the reduction operator we can reformulate the union operation for patterns for case (2) as given
in the previous section. ·

(3)

18 Pattern reduction

where P 1P 2 is a shorthand notation for P 1 n P 2 •

This makes immediately clear what happens:
The result is written in three disjunct patterns, the first one contains the domain for which colour
function mixing has to be done. This domain is taken away from the two original domains.

Now the union of a list of disjunct patterns with a new one can proceed by calculating the union of
the new pattern with each of the patterns from the list, thereby reducing the new pattern by the inter
section of each pattern from the list:

Umix(Pi. P2, P3) = {

}

(P1P2P3)m;x ,

{ (P1P2)mix• (P1P3)mix• (P2P3)mix } ~ P1P2P3 ,

Pi r (P1P2, P1P3),

P2 r (P1P2, P2P3), (4)

Pattern reduction 19

FIGURES
Union of three patterns, resulting in seven 'new' disjuncted patterns

20 Run length encoding

4. RUN LENGTH ENCODING FOR THE CHARACTERISTIC FUNCTION

The representation of the domains in the prerasterized form is similar to run length encoding
methods. The coding here however, must be raster independent.
Differences are that the scan lines in our encoding can be on arbitrary y-values (but always in x
direction) and the number of scanlines used is minima].
For instance, a POLYGON primitive with n points (specifying the boundary) will have at most n
scanlines represented in the encoding characteristic function. Hence, the coding skips over all scan
lines which can be reconstructed unambiguously. In this way transformations can be applied and
domains whose "rasters" are not lined up can be matched. The chf provides a uniform representation
for domains which can be taken instead of the domain itself when needed.
An example is depicted in figure 6.

Polygon of 15 points
and its rectangle

Rect(P)

scanline D(Chf(P)) = Rect(P)

. . :-s-- --------- -----------:

. . . .

Chf of the polygon:
15 scanlines, plus scanpoints x

FIGURE6

In order to be able to reconstruct the pattern lines from the chf while interpolating or during display
rasterization it is necessary to add more details to the coordinates of the rasterpoints, namely the
'type' of the intersecting line at each rasterpoint.

'

Run length encoding 21

The 'type' is indicated by means of lettersymbols.
The lettersymbols and their meanings are the following:
c: intersection of a continuously polygon line, i.e. with same slope between its two nearest neighbour

scanlines.
C: intersection of a continuously polygon line, i.e. with different slopes from the previous scanline to
the current one, and from the current one to the next scanline.
B: 'bottom' intersection point, i.e. from here two connecting lines only exists with the previous scan

line.
T: 'top' intersection point, i.e. from here two connecting lines only exists with the next scanline.
HI - H2: 'horizontal' intersection points. HI can have a line connected to either the previous or next
scanline. The same is true for H2. ".LP Note that for the types C, B, T, HI, H2 the intersection of

the polygon and the scanline is a specified boundary point!

The different intersection types are represented in figure 7.

scanline
--- ____________________________________ i ____ _

-------- --------------------- -------------------- --------------------------------9-----

FIGURE 7
POLYGON of 31 points, only 12 scanlines.

Characteristic function needs extra 'type' information.

Different types of intersecting polygon lines are depicted in scanline 4.

By way of example the representation of POLYGONal domains will be specified. The treatment of

22

most other domains is similar.
First a rectangle is given by four real values:

minx, miny, ,maxx, maxy.
e.g. in C(GKS)-notation:

typedef float Real;

typedef struct {
Real minx, miny, maxx, maxy;

} Rectan;

Next a sequence of scanlines is given as follows:

typedef struct {
Int nrofsl; /* number of scanlines *I

Scanline *crle _ sl; I* list of scanlines *I

} Crle; /* continuous run length encoding *I

with
typedef int fut;

typedef struct SCANLINE {
Real deltay;

nrofsp;
*scanl _ sp;
*scanl _next;

I* relative to miny *I

Int
Scanpoint
struct SCANLINE
} Scamine;

typedef struct SCANPOINT {

Sptype
Real
struct SCANPOINT
} Scanpoint;

I* number of scanpoints *I

Sp_type;
deltax;
*scanp _next;

I* type of scanpoint *I

I* relative to minx *I

typedef enum { c, C, B, T, HI, H2 } Sptype;

Run length encoding

Given this representation it now matters how easily a number of elementary operations can be carried
out.
The first group is linear transformations, which can be dealt with as follows:

- translation only affects Rect
- scaling affects all scanlines of Chf, including the points defining the scanlines themselves, besides
Rect; but only as multiplication factor(s)
- rotation requires a complete new calculation of Chf and Rect, however, the current already scan
converted representation can be dealt with more easily than the general case.

The second group is made up by the elementary actions used in intersection calculations, such as

20 and 30 areas 23

generating common scanlines and merging scanlines. The same elementary actions are used in

conversion to discrete rasters.
An important strategic question is, to what extent pathological cases must be identified and possibly

removed. Many applications would for instance become much more efficient if domains were

guaranteed to be connected. Maintenance of this property under intersection is one of the cases to be

studied.

5. RELATION BETWEEN 2D AND 3D AREA'S

The 3D primitives of [1] are all planar primitives. This means that the area's can be described as 2D
area's relative to a local coordinate system in the plane. If a mapping from 3D to 2D is taken follow

ing the GKS-3D model (see [3]) there will be an intermediate representation where the x-y values

under projection will not change. If the local coordinate system is choosen such that it coincides with
x and y directions, they can be treated (but for z-values) as 2D area's.
In a future paper it will be described how it can be arranged that the pattern expression will be gen

erated in this representation. This implies that the x-y part of the geometry can be described as for
the 2D case. The z-value wil only affect the colour- and mix- functions.
As a result we only have to consider the 2D case for domains.
Projections, hidden surface effects and the like can be represented as part of the colourfunction

expressions.

24 References

6. REFERENCES

(l]P.J.W. TEN HAGEN, M.M. DE RUITER AND C.G. TRIENEKENS (1985). Raster Graphics Facilities
(RGF) in Programming wnguages, Preliminary report CWI, department of Interactive Systems.

[2](1984). Information Processing - Graphical Kernel System (GKS) - Functional Description, ISO DIS
7942 (draft).

[3](1985). Information Processing Systems - Computer Graphics - Graphical Kernel System for Three
Dimensions (GKS-3D) - Functional Description, ISO/TC97/SC21/WG-2 N277 Rev (draft).

25

Contents

1. Introduction 1
2. Primitive pattern representation 2

2.1. Domain representation 5
2.2. Colour representation 6

3. Pattern expressions 7
3.1. Pattern intersection 7
3.2. Union of patterns 12
3.3. Pattern reduction 17

4. Run length encoding for the characteristic function 20
5. Relation between 2D and 3D area's 23
6. References 24

