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1. STATEMENT OF THE PROBLEM AND MOTIVATION 

1 

Many models of structured population dynamics have in common that individuals are assumed to 
interact through their environment: see METZ, DIEKMANN (1986]. One may think, for example of a 
situation where individuals (of one or more species) all consume from a common resource pool, and 
where the per capita growth-, reproduction-, and death-rate depend on this consumption. The number 
of individuals affects the food availability which again affects the population dynamical processes on 
the individual level. 

The case where individuals produce some chemical substance which diminishes or even completely 
inhibits their reproduction may serve as another example. 
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Often, such models can be properly described by an abstract Cauchy problem of the form 

d 
dt u(t) = A(E(t))u(t), (I.la) 

d 
dt E(t) = f( u(t), E(t)). (1.lb) 

Here E(t) describes the environment (a scalar- or vector-valued function) and u(t) describes the 
population distribution at time t. For every fixed t, u(t) can be considered as an element of some 
Banach space X. For every possible environment E, the (differential) operator A(E) is the infinitesimal 
generator of a strongly continuous semigroup of linear operators on X. Actually, the operator A(E) 
and its domain are obtained from a careful bookkeeping of all processes on the individual level. Finally, 
f : X x Rn ~ Rn is some nonlinear function describing the interaction of the individuals with 
the environment. Usually, the dependence of f on u is through some linear functional. From the 
interpretation it follows that E is positive and that u takes values in a positive cone X+. 

As a particular example of (1.1) we mention the following model. Suppose we have a size-structured 
population whose individuals reproduce by division into two equal halves. Suppose moreover that the 
cells produce some enzyme which has a restraining effect on the growth rate of individual cells and 
in such a manner controls the size of the whole population. This situation can be described by the 
following system of equations: 

! u(t, s) + :s (.Y(E(t))g(s)u(t, s)) = -µ(s)u(t, s) - b(s)u(t, s) + 4b(2s)u(t, 2s), 

! E(t) = -uE(t) + j h(s)u(t, s)ds. 

(1.2a) 

(1.2b) 

Here s is size, u(t, ·) denotes the population density, E(t) is the enzyme concentration at time t, 
.Y(E)g(s) is the individual growth rate of a cell with size s if the enzyme concentration is E, µ(s) 
is the death rate, and b(s) is the division ,rate. Furthermore h(s) denotes the production rate of the 
enzyme by a cell with size s, and u its desintegration rate. At this place we do not want to go into 
the specific details of the model but rather postpone this until Section 6 where the model is discussed 
in more detail. Instead, we formulate a rather general class of abstract Cauchy problems in which (1.2) 
(but not (1.1)) is contained, and which is the subject of this paper. 

Let X be an arbitrary Banach space, Ao the infinitesimal generator of a C0 -semigroup of linear 
operators { T0 (t), t ~ O} on X, and F : X ~ X a linear or nonlinear continuous operator. Finally, 
let 'Y: X ~ R+ be a continuous function. We consider the abstract Cauchy problem 

d 
dt u(t) = 1(u(t))Aou(t) + F(u(t)) fort~ 0, 

(Pt) 
u(O) = x, 

where x E X. In Section 6 we will give explicit expressions of 'Y, Ao, and F for the model (1.2). 

This type of Cauchy problems is typical for many structured population models. Indeed very often 
interaction takes place through the environment, and in such cases 'Y depends on u in a very special 
manner, namely 

1(u) = 'Y(L1(u),L2(u), ... ,Lm(u)), 
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where L1, L2, ... , Lm are linear functionals on X and i' is a real function of m variables. This also 

holds for the model given by {1.2) as we will see in Section 6. 

Nonlinear growth mechanisms have been considered before by DIEKMANN, LAUWERIER, ALDEN­

BERG and METZ [1983], HEIJMANS [1984], KOOIJMAN and METZ (1984], MURPHY (1983] and TUCKER 

and ZIMMERMANN (1988]. The linear version of the model discussed here has been treated using semi­

group methods by DIEKMANN' HEIJMANS and THIEME [1986], DIEKMANN and METZ [1986, Chap­

ter II], and GREINER and NAGEL (1988]. 

Our interest in (Pt), or more precisely, the generalized version of (Pt) involving the duality frame­

work of CLEMENT et al. [1987], originates from the study of a structured model of the blood cell 

production system. In the future we intend to consider the aforementioned generalized version of (Pt ) 
and apply it to our model of the blood cell production system. 

In this paper we will thoroughly investigate the abstract Cauchy problem (Pt). The key idea is to 

reduce this quasilinear problem to a semilinear problem by a time-scale argument. A general approach 

towards quasilinear equations is given by KATO [1975] (see also PAZY [1983]). For our situation the 

direct approach presented here is more efficient and leads to a better understanding of the underlying 

dynamics. 

Let u be a C1 -function which takes values in D(A0 ), the domain of A0 , and satisfies (Pt)· We put 

Tu(t) :=it 1(u(s))ds 

and define 

v(r) := u(tu(r)) for all T ~ 0, 

where tu(-) is the inverse function of Tu(·). One can easily verify that the thus defined function v 
satisfies the semilinear equation 

d 
dr v(r) = A0v(r) + B(v(r)) for T ~ 0 1 

v(O) = x, 

where the (nonlinear) operator B given by 

B(v) := F(v)/J(v) 

maps X into itself. One should note that the definition of v is of course implicit, since it depends on 

the solution itself. Nevertheless one can show that the Cauchy problems (Pt) and (Pr ) are essentially 

equivalent and thus one can deduce properties of solutions of (Pt) from those of (Pr ) and vice versa. 

In Section 2 we will summarize a number of (more-or-less) standard results on the semilinear problem 

(Pr)· The relation between (Pt) to (Pr) will be discussed in Section 3. As indicated above, one is 

merely interested in positivity-preserving solutions of the problem. Therefore, in Section 4, we will 

state some equivalent conditions on the perturbation F which guarantee that solutions of (Pt) are 

positivity-preserving if { To(t), t ~ O} is a positive semigroup. We shall deal with the principle of 

linearized (in)stability in Section 5. Finally, in Section 6, we shall work out example {1.2) in some 

detail. 
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2. THE SEMILINEAR EQUATION 

As indicated in the introduction we want to study the nonlinear equation (Pt) by relating it to the 

semilinear equation (Pr). Hence a good knowledge about this type of equations is essential. We recall 

the corresponding results from PAZY [1983] and BALL [1977]. As already mentioned it is possible to 

extend the results of this and the next sections to semilinear and quasilinear equations in the wider 

(more general) setting of CLEMENT et al. [1987]. We therefore include some proofs which can easily 

be extended to the more general setting. Consider 

d 
dt u(t) = A0 u(t) + B(u(t)), (2.1) 

u(O) = x, 

where Ao is the generator of a linear strongly continuous semigroup { T0(t), t;::: O} on a Banach space 

X, and B : X -+ X is a locally Lipschitz continuous operator, that is, for r ;::: 0 there exists a constant 

C(r) 2'.: 0 such that 

llB(x) - B(y)ll ~ C(r) llx - Yll 

for all x,y EX with llxll ~ r, llYll ~ r. 

A (classical) C 1--solution of (2.1) satisfies a related integral equation, which is very often referred to 

as a variation-of-constants formula 

u(t) = To(t)x + lt To(t - s)B(u(s)) ds. (2.2) 

First we will study the existence of continuous solutions of (2.2). These are of course candidates 

for solutions of (2.1) as well. Indeed some results stating regularity properties of solutions of (2.2) are 

given in Theorem 2.2 and 2.3. For related results see also CLEMENT et al. [1987]. It is well known that 

local Lipschitz continuity implies the existence of solutions of (2.2) on a maximal interval. 

THEOREM 2.1. For every x E X there exists a maximal tmax(x) > 0 such that (2.2) has a unique 

continuous solution u(·;x) on [O,tmax(x)). Iftmax(x) < oo, then limtltma.x llu(t;x)ll = oo. This solution 

satisfies the semigroup property, that is, u( t; u( s; x)) = u( t + s; x) for t, s ;::: 0 with t + s < tmax( x) . 

In order to find solutions of (2.1) in a "strong" sense, one has to study the regularity properties of 

solutions of (2.2). A first result by BALL [1977] shows that continuous solutions of (2.2) are indeed 

"weak solutions" of (2.1) in the following sense: 

THEOREM 2.2. Let u(·) := u(·; x) be a local (continuous) solution of (2.2) on [O, t 0 ) with initial value 

x EX. Then (u(·),x*} is continuously differentiable for every x* E D(A0) and moreover 

d 
dt (u(t), x*} = (u(t), A~x*} + (B( u(t)), x*}, for all t E [O, to). (2.3) 

Under appropriate conditions on B and the initial condition x a continuous solution of (2.2) is auto­

matically a "strong" C 1 --solutions. 
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THEOREM 2.3. Let B be continuously Frechet differentiable. H x E D(Ao) and u := u(-;x) is the 
continuous solution of (2.2) on [O, t0 ) then t 1-+ u(t) is continuously differentiable and 

d 
dt u(t) = Aou(t) + B(u(t)), for all t E [O, to) 

(2.4) 
u(O) = x 

holds. 

For a proof see PAZY [1983, Chapter 6, Theorem 1.5]. 

The main assertions so far can be summarized as follows. Theorem 2.1 assures the existence of local 
solutions of (2.2). If the solution u(-; x) of (2.2) stays bounded on every open interval [O, t 0 ) then, 
again by Theorem 2.1, equation (2.2) possesses a global solution, or in other words tmax(x) = oo. If 
this holds for every x EX, then we can define a family of operators { TB(t), t ~ O} by 

TB(t)x := u(t; x) for t E [O,oo) and x EX. (2.5) 

The operators TB(t) form a strongly continuous (nonlinear) semigroup on X. 

Very often one is interested in the long time behaviour of the solutions of (2.1), resp. (2.2). Thus we 
want to conclude this section by collecting and extending some of the results about "linearized stability" 
of semilinear equations. 

We restrict our attention to the case where 0 is an equilibrium solution of (2.1), thus B(O) = 0. (In 
case we are interested in a nontrivial equilibrium u we consider the corresponding Cauchy problem for 
the function w := u - u and B(w) := B(w +ii) - B(u) which has 0 as an equilibrium solution.) 
Furthermore we assume without loss of generality that llTo(t)ll $ 1 for all t ~ 0. 

For x EX let u(t) := u(t; x) be the local solution of (2.2) defined for t < tmax(x). First we show, 
that for any given time t0 the solution u(t; x) exists up to time to if x is close enough to the equilibrium 
0. More precisely we have: 

PROPOSITION 2.4. Let x EX and u(t) := u(t;x) the continuous solution of (2.2). 
(i) If r E lR+ and llxll $ r, then llu(t)ll $ etC(r) llxll, whenever t $ (C(r))- 1 log(r · llxll- 1

). 

(ii) For all t 0 ~ 0 there exists r > 0 such that tmax(x) ~ to for all x with llxll $ r. 

PROOF. (i): Let llxll $rand let t ~ 0 be such that llu(s)ll $ r for all 0 $ s $ t. Then 

llu(t)ll $ llxll + lt llB(u(s))ll ds $ llxll + lt C(r) llu(s)ll ds. 

Using Gronwall's lemma we obtain llu(t)ll $ etC(r) llxll· Lett= inf{s > 0 I llu(s)ll = r}. Note that t 
may equal oo. Then, if t < oo, r $ etC(r) llxll, hence t ~ (C(r))- 1 log(r llxll- 1

). From this the result 
follows immediately. 

(ii): Let to ~ 0 and define r by r := e-toC(l). For llxll $ r $ 1 we obtain by part (i) that 
llu(s)ll $ esC(l) llxll whenever s $ (C(l))-1 log(llxll- 1

). Hence llu(s)ll $ esC(l) llxll for s $ to = 
(C(l))- 1 log(r- 1). This implies tmax(x) >to. D 

Now assume that B is Frechet differentiable and denote its Frechet derivative at 0 by L := (DB)(O). 
Thus L is a bounded linear operator mapping X into X . We define 

H(u) := B(u) - Lu. (2.6) 
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Let { TL(t), t ~ O} be the perturbed linear Co--semigroup generated by Ao+ L. Since { T0 (t), t ~ O} 

is a contraction semigroup there exists w > 0, such that llTL(t)ll $ ewt for all t 2: 0. We shall prove 

that for every t 2: 0, x 1-1- u(t; x) is Frechet differentiable at x = 0 and that 

(D.,u(t; x))(O) = TL(t). (2.7) 

We use t.he following identity which is a consequence of CLEMENT et al. [1987, Part III, Proposition 2.5]: 

u(t;x)-TL(t)x = lt TL(t - s)H(u(s; x)) ds fort< tmax(x). (2.8) 

THEOREM 2.5. For every t 2: 0 the mapping x 1-1- u(t; x) is Frechet differentiable at 0 and its derivative 

equals TL(t). 

PROOF. Fix t ~ 0. For all c; > 0 we have to find 8 > 0 such that llu(t; x) - TL(t)xll $ c; llxll whenever 

llxll $ 8. Choose 0 < 8 < 1 such that 

8 < e-C(l)t and - , 

llH(u)ll $ c:C(l)e-(w+C(l))t !lull whenever !lull$ etC(l)o. 

Now fix x EX with llxll < 8. For short we write u(t) := u(t; x). By Proposition 2.4(i) we have 

llu(s)ll $ e5c(i) llxll ifs$ C(l)-1 log(llxlr1
), 

hence by ( *) 

llu( s )II $ esC(l) llxll ifs$ t. 

Using ( **) we obtain 

llH( u(s ))II $ c;C(l )e-(w+C(l))te3C(l) llxll ifs$ t, 

and thus by (2.8) 

llu(t) -TL(t)xll $ lt ew(t-3)c;C(l)e-(w+C(l))tesC(l) llxll ds 

$ c;C(l)e-C(t)t llxll fot esC(l) ds $ c; llxll. 0 

As usual we denote by w(Ao + L) the growth rate (type) of the semigroup { TL(t), t 2: O}. 

THEOREM 2.6. Let w(Ao + L) < 0 and 0 $ "( < -w(Ao + L). Then there exists 8 > 0 such that for 

llxll $ 8 we have tmax(x) = oo and limt-oo e"Yt llu(t;x)ll = 0. 
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PROOF. We take 'Y = 0. (If 'Y =/= 0 consider e1'tTL(t) instead of TL(t) .) Let to > 0 such that 
llTL(to)ll $ t. Furthermore choose 61 E (0, 1) such that for llxll $ 61 we have 

1 
llu(to; x) -TL(to)xll $ 4 llxll. 

Define 6 := e-toC(l)61. If llxll $ 61, then tmax(x) 2:: to and 

Hence tmax( u(to; x)) 2:: to and thus tmax(x) 2:: 2to and 

llu(2to;x)ll $ (~) 
2 

llxll. 

By iteration we find that for every n 2:: 0 we have 

In particular this implies that tmax ( x) = oo. 
Now let llxll $ 6 $ 61. Then, as before, tmax(x) = oo. For every t 2:: 0 we have t = nto + tl, where 
t1 E [O,to). Thus 

since llu(t1 ; x )II $ etiC(l) llxll < etoC(l)6 = 61 by Proposition 2.4(i), the choice of t1 and the definition 

of 6 . Consequently 

llu(t;x)ll $ rnetiC(l) llxll for all t 2:: 0 and all n E 1N, 

hence limt-oo llu(t; x )II = 0 · D 

The corresponding instability result is the following. 

THEOREM 2.7. Let X = X1 $ X2 where X1 and X2 are invariant under TL(t) and dimX1 < oo. 
Let Ti(t) denote the restriction ofTL(t) to Xi (i = 1, 2) and Ai the corresponding generator. Finally 
assume that 

w(A2) < min{Re.X I .X E u(A1)} 

and that 

0 < s(A1) := max{Re .X I .X E u(A1)}. 

Then there exists an an c > 0, a sequence tn in IR+, tn -+ oo, and a sequence Xn in X, Xn -+ 0, 
such that tmax(xn) > tn and 

for n large enough. 
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PROOF. Let P denote the projection on X1 and let Q =I- P be the projection on X2. Without loss 
of generality we may assume that 

llxll = llPxll + llQxll, for x E X. 

(Otherwise one can consider the equivalent norm llxlle := llPxll + llQxll .) 
Furthermore we suppose that 

min{Re A : A E u(A1)} > 0. 

This can always be achieved by taking X 1 small enough. Hence there exists µ > 0 such that 

llTL(t)xdl ;:::: eµt llx1ll for t ;:::: 0 and x1 E X1. 
Let 0 < 1J < µ be such that 

llTL(t)x2ll ~ e.,t llx2ll for t ;:::: 0 and x2 E X2. 
Let to > 0 be fixed and define 

1 (eµto _ e'l/to) 
<T := - to log 2 . 

By Theorem 2.5 there exists an £ > 0 such that 

1 
llTL(to)x - u(to; x)ll ~ 2e-uto llxll if llxll ~ £. 

Let x be such that llxll ~ £ and llQxll ~ llPxll · Assume that 

llu(mto; x)ll <£for all m E IN. 

(In particular tmax(x) = oo.) 
Then we obtain 

and also 

llPu(to; x)ll;:::: llPTL(to)xll - llP (u(to; x) - TL(to)x)ll 

;:::: eµto llPxll - llu(to; x) -TL(to)xll 

;:::: eµto llPxll - ~e-uto llxll 

;:::: eµto llPxll - ~e-uto(llPxll + llQxll) 
;:::: eµto llPxH - e-uto llPxll 

llQu(to; x)ll ~ llQTL(to)xll + llQ(u(to; x) -TL(to)x)ll 

~ llQTL(to)xll + llu(to; x) - TL(to)xll 

~ e'l/to llQxll + ~e-uto llxll 
~ e'llto llQxll + e-uto llPxll 
~ (e'llto + e-uto) llPxll 

= (eµto - e-uto) llPxll by(*)· 

Consequently 11Pu(t0 ; x)ll;:::: llQu(to; x)ll and by iteration we now find that 

llPu(nto; x)ll;:::: (e'llto + e-utor llPxll, 

hence llPu(nto;x)ll - oo since 1J > 0. Thus 

llu(nto;x)ll = llPu(nto;x)ll + llQu(nto;x)ll -1- oo for n -1- oo. 

This yields a contradiction to ( **) and the result follows. o 
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3. THE QUASILINEAR EQUATION 

In this paper we are primarily interested in the quasilinear Cauchy problem 

d 
dt u(t) = 1(u(t))Aou(t) + F(u(t)) 

(Pt) 
u(O) = x, 

where Ao is the infinitesimal generator of a C0 -semigroup {To(t), t 2: O} on a Banach space X (see 

Section 2), I is a function from X to lR+, and F is a nonlinear mapping from X into X. Throughout 

the remainder of this paper we make the following assumptions on F and /. 

ASSUMPTION 3.1. 

(i) I is a continuous, strictly positive, and locally bounded (i.e., I is bounded on bounded subsets 

of X) function. 

(ii) The operator B defined by 

B(u) := F(u)h(u) 

is locally Lipschitz continuous. 

In particular, these assumptions imply that F is a continuous operator. We also consider the 

semilinear problem 

d 
dr v(r) = A0 v(r) + B(v(r)) 

v(O) = x. 

In Section 1 we already briefly indicated the relation between (Pt) and (Pr ) . Below we shall give a 

very precise description of this relation. We need the following notation. For every continuous function 

u : [O, to] 1-+ X we define 

Tu(t) :=lot 1(u(s))ds, t E [O, to]. (3.1) 

We denote by tu(·) the inverse of Tu. Thus tu is defined on [0,To], with To= ru(to). Analogously, if 

v : [O, ro] 1-+ X is a continuous function, we define 

1T 1 
tv(r) := 

0 
[,(v(u))r du, r E [O, To], (3.2) 

and denote by rvO the inverse of tv on [O,to] (with to= tv(ro)). 

Throughout the remainder of this paper we use the following notational convention. If we write 

u we always mean a function of t, whereas v will be used to denote a function of T. Furthermore, 

tu, tv, Tu, and Tv are defined as above. 



10 

LEMMA 3.2. To every t0 2'.: 0 and u E C((O, to]; X) there corresponds a unique To 2'.: 0 and a unique 
v E C([O, To]; X) such that the following relations hold: 

To= Tu(to) (3.3) 

to= t.,( To) (3.4) 

tu(T) = t.,(T), 0::::; T::::; To (3.5) 

Tu(t) = T.,(t), 0::::; t::::; to (3.6) 

v(T) = u(tu(T)), 0::::; T::::; To (3.7) 

u(t) = v(T.,(t)), 0::::; t::::; to. (3.8) 

Conversely, to every To 2'.: 0 and v E C((O, To]; X) there corresponds a unique to 2'.: 0 and a unique 
u E C((O, t 0]; X) such that (3.3)-(3.8) hold. 

PROOF. Let t 0 2'.: 0 and u E C((O,t0];X) be given. Let Tu be defined by (3.1) and let tu be its 
inverse. Define To, v, and t., by (3.3), (3.7), and (3.2) respectively. By construction, both tu and t., 
are continuously differentiable, and we have 

dt., ( ) 1 
dT T = 7(v(T)) 

Thus tu = t., and hence also Tu= T.,. This proves (3.5) and (3.6). In particular, 

which establishes (3.4). Finally, substituting T = T.,(t) in (3.7), we find 

v(T.,(t)) = u(tu(T.,(t))) = u(tu(Tu(t))) = u(t), 

which proves (3.8). The converse result is proved in an analogous way. o 

If u E C((O, to]; X) then we denote by v = v[u] the element of C([O, To]; X) defined by (3.7), where 
To is given by (3.3). Similarly, u = u[v] is defined. It follows immediately that 

u[v[u]] = u and v[u[v]] = v. 

DEFINITION 3.3. We call u : [O, to] 1--1- X a (local) classical solution of (Pt) if u is continuously 
differentiable, u(t) E D(Ao) for all t E [O, t 0], and u satisfies equation (Pt). Analogously, (local) 
classical solutions of {PT ) are defined. 

THEOREM 3.4. The function u E C([O, to]; X) is a (local) classical solution of (Pt) if and only if 
v = v[u] is a (local) classical solution of (PT). 
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PROOF. Let u be a classical solution of (Pt). Thus u E C 1([0, to]; X), u(t) E D(Ao) for 0 ~ t ~ to, 
and u satisfies (Pt). Let v be given by (3.7), then v E C1([0,ro];X) and v(r) E D(Ao) for 0 ~ T ~To. 
Furthermore 

!v(r) = :Ttu(r) ·u'(tu(r)) 

= ['Y(v(r))]-1 [1(u(tu(r))) · Aou(tu(r)) + F(u(tu(r)))] 

= Aov(r) + B(v(r)). 

The other direction is proved analogously. o 

We can write down the variation-of-constants formulas corresponding to (Pt) and (Pr ) respectively: 

u(t) = To(ru(t))x + 1' To(ru(t)- Tu(s))F(u(s))ds, (VOCt) 

v(r) = T0 (r)x + 1r To(r - u)B(v(u))dcr. (VOCr) 

DEFINITION 3.5. A continuous function u: [O,t0] 1-+ X is called a (local) mild solution of (Pt) if u 
satisfies (VOCt ). Similarly, (local) mild solutions of (Pr) are defined. 

In the following section we shall justify this definition. There we will study regularity properties of 
solutions of ( VOCt )and specify the sense in which a solution of ( VOC, ) is a solution of (Pt). Moreover 
we shall give a condition under which a mild solution is automatically a classical solution. ' 

Analogously to the case of classical solutions the following correspondence between mild solutions of 
(Pt) and (Pr) holds. 

THEOREM 3.6. A function u is a (loca.l) mild solution to (Pt) if and only if v = v[u] is a local mild 
solution of(Pr ). 

PROOF. This result follows immediately by substituting tu(r) fort in (VOCt)· D 

Theorem 3.4 and Theorem 3.6 provide a rigorous justification of the intuitive idea that solving the 
quasilinear equation (Pt) amounts to solving the semilinear equation (Pr), a problem which, as we 
showed in the previous section, is well understood. By Assumption 3.1, the operator B is locally 
Lipschitz continuous, and hence, by Theorem 2.1, there exists a local solution v( r; x) of ( VOCr) on 
[O, Tmax(x)), for every x E X. As we have seen, Tmax depends only on the norm llxll. Furthermore, 
this solution v has the semigroup property, that is, 

v(r;v(cr;x))=v(r+u;x), forr, u>Owithr+u<Tmax(x). (3.9) 

Thus using the relation between solutions of {Pt) and (Pr) given in Theorem 3.4 and 3.6 we can 
conclude that there exists a local mild solution of (Pt), for every x EX. More precisely, for every 
x EX there exists a local solution u(t; x) of (VOCt) on some interval [O, tmax(x)), where 

• {rma.x(v) -l 

tmax(x) := limrtr...,.x(v)tv(r) =Jo ['Y(v(u;x))] du. (3.10) 

We shall prove that this solution u(·;x) inherits the semigroup property from v(·;x). But first we 
introduce some further notation. For x E X we define 

t(r;x) := tv(-;v)(r) = 1r ['Y(v(cr;x))r
1
du, (3.11) 

and let r(·;x) be its inverse. Thus the solution u(·;x) of (VOCt) is given by 

u(t;x) := v(r(t;x);x), fort E [O,tmax(x)). (3.12) 

PROPOSITION 3.7. The solution u(·; x) of (VOCt) satisfies the semigroup property. 
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PROOF. We have to show that 

u(t + s; x) = u(t; u(s; x)) 

for s, t ~ 0 with t + s < tmax(x). From (3.11) we easily deduce that 

t(T;v(u; x)) + t(u; x) = t(T + u; x). 

Substituting T=T(t;v(T(s;x);x)) and u=T(s;x) we obtain 

t + s = t(T(t; v( T(s; x); x)) + T(s; x); x), 

or equivalently, 

T(t + s; x) = T(t; v( T(s; x); x)) + T(s; x). 

Thus, using (3.12) and the fact that v satisfies the semigroup property, we find that 

u(t+s;x) =v(T(t+s;x);x) 

= v( T(t; v( T(s; x); x)) + T(s; x); x) 

= v( T(t; v( T(s; x); x)); v( T(s; x); x)) 

= v( T(t; u(s; x)); u(s; x)) 

= u(t;u(s;x)), 

which is true as long as t + s < tmax(x). D 

We now address ourselves to the question of global existence of solutions. Since (Pr) is a semilinear 
equation of the type studied in Section 2 we know that a local solution v(·; x) on [O, To), where To < oo, 
which stays bounded can be extended beyond To . Our next theorem shows that a similar result holds 
for solutions of the quasilinear problem (Pt). 

THEOREM 3.8. Let x E X and suppose that, for some finite constant C, llu(t; x )II ~ C for t E 
[O,tmax(x)). Then tmax(x) = 00. 

PROOF. Suppose that u( ·; x) is a local mild solution of (Pt) on [O, to) (where to < oo), and suppose 
also that llu(t; x )II ~ C for all t E [O, to). Define 

to 
To:=limtjt0 T(t;x)= Jo -y(u(s;x))ds. 

Assume now that To= oo. Then -y(u(t;x))--+ oo fort l to. By Assumption 3.1, 'Y is locally bounded, 
thus llu(t;x)ll-+ oo as t l to. This contradicts the assumption that u is bounded. Therefore To< oo. 
Since llv(T;x)ll = llu(t(T;x);x)ll ~ C for TE [0,To) we may conclude that v(·;x) can be extended 
beyond To. But this also implies that u( ·; x) can be extended beyond t0 . From this the result follows. D 

If tmax(x) = oo for every x EX, then the quasilinear Cauchy problem (Pt) has a unique global 
mild solution u(·; x) which, by Proposition 3.7, satisfies the semigroup property. By setting 

T(t)x := u(t; x), t ~ 0, x EX, (3.13) 

we obtain a nonlinear strongly continuous semigroup { T(t), t ~ O} on X. 

We conclude this section with an example which illustrates that it is not sufficient merely to assume 
that 'Y is nonnegative, but that strict positivity is a requirement which cannot be omitted. 
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EXAMPLE 3.9. Consider the quasilinear Cauchy problem 

d 
dt u(t) = -y(u(t))A0 u(t), u(O) = x, (3.14) 

where Ao is the generator of a C0 -semigroup { T0 (t), t ~ O} on X. The "integral equation" corre­

sponding to this problem is: 

u(t;x) = To(fot -y(u(s;x))ds)x. (3.15) 

Indeed, for x E D(Ao), every continuous solution of (3.15) is automatically continuously differentiable 

and satisfies (3.14). Nevertheless solutions to (3.15) are not always unique as we now show. 

Let X be the Banach space 

X := {x E C(lR+) I 0 1--+ e-9x(O) is bounded and uniformly continuous} 

with norm llxll := sup9~ 0 e-9 lx(O)I. Let { To(t), t ~ O} be a Co-semigroup of translations on X, that 

is, we set 

(T0 (t)x)(O) := x(t + 0), t, 0 ~ 0. 

Let -y(u) := lu(O)I and let x EX be given by x(O) := 2..(i. It is easy to check that for every c E lR+ 

Uc(t;x)(O) := {;Jo+ (t- c)2 , 
0 ~ 0, t < c, 
0 ~ 0, t ~c. 

is a solution of integral equation (3.15). In particular, u = x is an equilibrium solution. Using the 

definition of T0 (t) the integral equation (3.15) amounts to 

u(t;x)(O) = x(O+ lot lu(s;x)(O)lds). (3.16) 

Note that the initial condition x is an equilibrium of the system (3.15) although x r;/. D(Ao). In fact, 

every initial condition x with x(O) = 0 is an equilibrium. By substitution of 0 = 0, equation (3.16) 

can be reduced to the scalar integral equation 

u(t;x)(O) = x(fot u(s;x)(O)ds), 

as long as we consider only nonnegative initial data. Moreover, for .,P(t) := J; u(s; x)(O) ds this equation 

reduces to the ordinary differential equation: 

.,P'(t) = x(.,P(t)), .,P(O) = O. 

Clearly, the nonuniqueness of solutions of this differential equation is a consequence of the fact that x 

is not Lipschitz continuous. 
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4. POSITIVITY, BOUNDEDNESS AND REGULARITY 

As motivated in the introduction we are interested in equations of form (Pt) which are derived from 
models for structured populations, and whose solutions describe the distribution of its individuals over 
some structuring variable(s) such as age and/or size. Thus the only biologically relevant solutions 
u( ·; x) of (Pt) are those which are positive as long as we start with a positive initial distribution x. We 
thus are interested in conditions, preferably on Ao and F, which assure that solutions u(·; x) of (Pt) 
are positive given that the initial data is positive. Whenever we speak of positivity, we assume that X 

is a Banach lattice and denote its positive cone by X+ (see SCHAEFER [1974]). If x is an element of 

X+ then we write x ~ 0. 

We start our considerations concerning positivity for the semilinear equation (Pr ) and afterwards 
extend our results to the quasilinear equation (Pt). An easy consequence of the variation-of-constants 
formula ( VOCr ) is the following 

PROPOSITION 4.1. Let Ao be the generator of a linear positive Co -semigroup { T0 (t), t ~ O} on X 
and let B map X+ into X+. If x ~ 0 then v(r; x) ~ 0 for all T E [O, Tmax(x)), where v(·; x) is the 
solution of (VOCr) given by Theorem 2.1. 

In applications it seems too strong to assume that B is positive in order to obtain positive solutions 
of ( VOCr) for positive initial values. We want to allow some "local" non positivity. Thus we claim that 
the assertion of Proposition 4.1 remains valid under a weaker positivity assumption on B. 

THEOREM 4.2. Let Ao be the generator of a linear positive Co-semigroup { T0 (t), t ~ O} and Jet B 
satisfy the following "positive-off-diagonal" property 

(B(x),x*} ~ 0 for all x ~ 0, x* ~ 0 with (x,x*} = 0. (POD) 

Then x ~ 0 implies v(r;x) ~ 0 for all TE (0,Tmax(x)). 

To prove this theorem we need some auxiliary results. 

REMARK. The conclusion of Theorem 4.2 can easily be proved if B is a linear bounded operator on 
X. Indeed by Proposition 4.1 we know that Ao+ B + llBll I generates a positive semigroup, since 

B+llBllI ~ 0: see NAGEL (1986, Section C-II, Theorem 1.11]. Hence Ao+B = Ao+B+llBllI-llBllI 
generates a positive semigroup as well. 

In the nonlinear case the analysis is somewhat more tedious. We will need some results concerning 
the geometry of the positive cone X+. For x EX we denote by x+ := sup{x, O}, x_ := sup{-x, O} and 
lxl := sup{x,-x} the positive part, the negative part and the modulus of x, respectively. Furthermore 

let dist(x,X+) := infyeX+ llx -yll denote the distance function. 

LEMMA 4.3. Let X be a Banach lattice. Then 

(a) x = x+ - x_ and lxl = x+ + x_ for all x EX; 

(b) x 1--+ x+ , x 1--+ x_ and x 1--+ lxl are continuous; 

(c) llx-yll~llx-11-llY-11 forallx,yEX; 

(d) x 1--+ llx-11 is convex and positive homogeneous, i.e. llAx-11 =A llx-11 for all x EX and A~ O; 

(e) llx-11 = dist(x,X+) for all x EX; 

{f) dist(x + y,X+) $ dist(x,X+) + dist(y,X+) for all x,y EX; 

(g) ll[x + y]_ II :5 llx-11 + llY-11 :5 llx-11 + llYll for all x, YE X i 

(h) Let T be a positive linear operator on X. Then (Tx)_ $ Tx_ for all x EX. 
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PROOF. (a),(b): easy. 

(c): For zi, z2 E X we have (z1 + z2)- $ (zi)_ + (z2)-. Indeed let z3 = z1 + z2. Since (zi)- = 
Hlzil - Zi) ( i = 1, 2, 3) we have (z3)- $ Hlz1I + lz2I - z1 - z2) = (z1)- + (z2)-. Let x, y EX. Then 
x_ = (x-y+y)_ $ (x-y)-+Y-· Forthenormweobtain llx-11 $ ll[x-y]_ll+llY-11 $ llx-yll+llY-11· 
Thus llx -yll ~ llx-11- llY-ll for all x,y EX. 
(d): easy. 

(e): Let x,y EX. Then dist(x,X+) = infyeX+ llx-yll $ llx- x+ll = llx-11. For the converse estimate 
we conclude from (c) that llx -yll ~ llx-11- llY-11 = llx-11 for all y EX+. Hence dist(x,X+) = 
infyeX+ llx - Yll ~ llx-11 which proves assertion (e). 

(f): Let x, y E X. Then dist(x + y, X+) = infzeX+ !Ix+ y - zll = infueX+ infveX+ !Ix+ y - u - vii $ 
infueX+ llx - ull + infveX+ lly-vll = dist(x,X+) + dist(y,X+)· 

(g): easy. 

(h): Let 0 $TE .C(X) and x EX. Then (Tx)_ = HITxl - Tx) $ !(Tlxl -Tx) = Tx_. D 

LEMMA 4.4. Let x ~ 0. Equivalent are: 

(i) If x* ~ 0 and (x,x*} = 0, then (B(x),x*} ~ 0. 

(ii) limh!O k dist(x + hB(x), X+) = limh!O t l![x + hB(x)]_ II = 0. 

PROOF. We can assume without loss of generality that x E 8X+. Indeed for x E int(X+) the 
conditions (i) and (ii) are trivially satisfied. 

(i)<=?(ii): Consider <I>: X-+ IR+ given by <I>(x) = dist(x, X+). One easily verifies that <I> is a sublinear, 
continuous function (Lemma 4.3). We thus can define the subdifferential d<I>(x) of <I> in x (see e.g. 
NAGEL [1986, A-II, Section 2] or CLEMENT, HEIJMANS et al. [1987,Appendix A.l]). 

d<I>(x) :={x* EX*: (y,x*) $ <I>(y) for ally EX, and (x,x*) = <I>(x)} 

={x* EX*: (y,x*) $ dist(y,X+) for ally EX, and (x,x*) = dist(x,X+)} 

={x"' EX* : llx*ll $ 1, (x, x*} = 0 and - x* ~ O}. 

Since x ~ 0 we have 

lim -h
1 

dist(x + hB(x), X+) = lim-h
1 

(<I>(x + hB(x))- <I>(x)) = D~(x)(x) 
h~ h~ 

where Dt(x)(x) denotes the right sided Gateaux-derivative of <I> at x in the direction of B(x). It is 
well known (see e.g. CLEMENT, HEIJMANS et al. [1987, Proposition A.1.24]) that 

D~(x)<P(x) = sup{(B(x),x*}: x* E d<I>(x)}. (4.1) 

From the explicit form of d<I>(x) we now conclude that condition (i) is equivalent to (B(x), x*) $ 0 for 
all x* E d<I>(x). By formula (4.1) this is equivalent to D~(x)<P(x) $ 0, and thus to limh!O k dist(x + 
hB(x),X+) $ 0, hence to condition (ii). D 

REMARK. Obviously condition (i) of Lemma 4.4 is equivalent to: 
if x" EX* and {x,x*} = SUPyex+{y,x"}, then (B(x),x*} $ 0. 

Note that for x E 8X+ the elements x* E X* with {x, x*} = supyEX+ {y, x*) can be interpreted as the 
normal vectors to X+ in x. Condition (i), or equivalently (ii), is also called the subtangential condition 
of B in x E 8X+ (compare DEIMLING (1977]). 

The following lemma can be found in MARTIN [1976, Lemma 1.3, p.326]. 
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LEMMA 4.5. Let x E X+. Assume that one of the equivalent conditions of Lemma 4.4 holds. Then 

1 {h 
h [To(h)x +Jo To(s)B(x) ds]_ --+ O ash! 0. (4.2) 

We are now prepared to prove Theorem 4.2: 

PROOF OF THEOREM 4.2. Without loss of generality we may assume that 

B(x) = B(x+) forallxEX. (4.3) 

If this is not satisfied we define Bo : X--+ X by B0 (x) := B(x+) (x EX). Then by construction 

B0 (x) = B 0(x+). Furthermore (POD) remains valid. If solutions of (VOCr) with B replaced by Bo 

are positivity preserving, then they coincide with solutions of the original (VOCr) for positive initial 

data x. 

We first consider the case where llT0 (t)ll $ M ewt with M = 1 for all t ;::: 0 (sometimes called the 

quasi-contractive case). In a second step we will reduce the general case (with M > 1) to this situation. 

Let x ;::: 0 and let v( r) = v( r; x) be the continuous solution of ( VOCr) on [O, r max( x)). We show that 

v(r) 2: 0 or equivalently that v_(r) := [v(r)]- is zero. For r < Tmax we define 

Now 

v(r + h) = T0(h)v(r) + 1h To(h - s)B(v(r + s)) ds. 

Thus by Lemma 4.3(c), Lemma 4.5 and (4.3) we have 

llv-(r + h)ll $ llv(r + h)-To(h)v+(r)-1h To(h - s)B(v+(r + s)) dsll 

+II [To(h)v+(r) + 1h To(h - s)B(v+(r + s)) ds] _II 
$ llTo(h)v_(r)ll + llv(r + h) -To(h)v(r) -1h To(h - s)B(v(r + s)) dsll 

+II [To(h)v+(r) + 1h To(h - s)B(v+(r)) ds] _ 11 + o(h) 

$ ewh llv-(r)ll + o{h). 

Hence <P( r + h) $ <P( r) + o(h) for h ! 0 and r < Tmax. In other words 

Since <P(O) = llu-(O)ll = llx-11=0, a well known result from the theory of differential inequalities (see 

e.g. MARTIN [1976, Lemma 7.4, p.260]) implies <P = 0. 
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It remains to consider the case where llTo(t)ll $ M ewt with M > 1. We use a renormalization 

of X which allows us to reduce this situation to the the case M = 1. For x E X let llxll' := 

supt~o cwt llT0 (t)lxl II· We have llxll $ llxll' $ M llxll, thus II · II and II · II' are equivalent norms and 

llTo(t)xll' = supe-w3 llTo(s)ITo{t)xl II$ sup e-wsllTo(s + t)lxl II 
a~o .. ~o 

$ ewt sup e-w(a+t)llTo(t + s)lxl II$ ewt sup e-wallTo{s)lxl II = ewtllxll'· 
.. ~o .. ~o 

Let x, y EX with lxl $ IYI, then 11 lxl II' := SUPt>o e-wtllTo(t)lxl II $ supt>O cwtllTo(t)IYI II = 11 IYI II'. 
This shows that II · II' defines a lattice norm on X. Hence the properties l~ted in Lemma 4.3 hold for 

II · II' and dist' ( dist' defined in the obvious way) as well. Thus { T0 (t), t ? O} is a positive quasi­

contraction semigroup on (X, II· II') and we are in the before discussed situation and thus the assertion 

follows. o 

REMARK. Note that our perturbation B needs not to be defined on the whole space X but only on 

X+ , which is of course the situation we usually meet in biological examples. 

For the solutions u(t;x) of the quasilinear Cauchy problem (Pt) the following positivity result follows: 

THEOREM 4.6. Assume that F satisfies (POD). Then, for any x ? 0 we have u(t; x) ? 0 for all 

t E [O,tmax(x)). 

PROOF. The assertion follows directly from Theorem 4.2 using relation (3.8) and Theorem 3.6. D 

Another important property of solutions of (Pt) or (VOCt) which has to be investigated is the 

boundedness. Recall from Theorem 3.8 that solutions of (VOCt) which are bounded on a finite time 

interval can be extended. Thus in order to obtain global existence of a solution of (VOCt), we have to 

show that it stays bounded on any finite time interval. 

THEOREM 4.7. Let Ao be generator of a linear bounded positive C0 -semigroup {T0(t), t? O}. 

Assume that u( t; x) ? 0 if x ? 0 and t < tmax{ x). Furthermore let F satisfy the following "off­

diagonal-boundedness" property: there exists an operator Fo on X such that 

(i) F(x) $ F0 (x) for all x? O; 

and (4.4) 

(ii) llFo(x)ll $ Cllxll for all x? 0. 

Then tmax(x) = oo for all x? 0. 

PROOF. In Section 3 we have seen that a mild solution u{t) = u(t;x) of (Pt) is by definition a 

continuous solution of the variation-of-constants formula 

u(t) = To(ru(t))x +lot To(ru(t)- Tu(s))F(u(s)) ds, t E [O, to), (VOCt) 

where Tu is given by formula (3.1 ). Let x E X, x ? 0 and t < to. Using assumption (i) for F and the 

positivity of u(s) we have 

u(t) $ To(ru(t))x +lot To(ru(t)- Tu(s))Fo(u(s)) ds, 
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since every T0 (t) is a positive operator. Thus by assumption (ii) and the boundedness of the semigroup 
{ T0 (t), t ;::: O} there exists a constant M > 0 such that 

llu(t)ll ~ Mllxll + 1t MCllu(s)ll ds. 

By the lemma of Gronwall we have llu(t)ll ~ M ·eMCtllxll for all t <to. Hence llu(t)ll ~ M ·eMCtollxll · 
Thus the assumptions of Theorem 3.8 are satisfied and we can conclude that there is a globally defined 
continuous solution of ( VOCt), or equivalently a global mild solution of (Pt). o 

REMARKS. 1) To assume that llF(x)ll ~ Mllxll for all x;::: 0 is much stronger than the "off-diagonal­
boundedness" property (4.4). Indeed in many examples from structured population dynamics such an 
assumption is quite unrealistic due to the presence of a death term, whereas the existence of an operator 
Fo as in (4.4) can usually be established. 
2) One can easily construct examples which show that the assumption "{T0(t), t;::: O} bounded" is 
essential in order to have global solutions of (Pt). 

COROLLARY 4.8. Let Ao be the generator of a linear, positive, bounded Co -semigroup { To(t), t ;::: 
O}. Furthermore, assume that F satisfies the ''positive-off-diagonal" property (POD) and the "off­
diagonal-boundedness" property (4.4). Then tmax(x) = oo for all x;::: 0. 

PROOF. The assertion follows directly from Theorem 4.6 and Theorem 4.7. D 

In the remainder of this section we study the regularity properties of the solutions of (VOCt) and 
justify the name "mild solution" of (Pt). We will use the relation between (Pt) and (Pr) (recall 
Lemma 3.2, and Theorem 3.4 and 3.6) and the knowledge we have about regularity of solutions of the 
sernilinear equation (Pr) (see Theorem 2.2 and Theorem 2.3). 

THEOREM 4.9. Let u(·) := u(·; x) be a local (continuous) solution of (Pt) on (0, to) with initial value 
x EX. Then (u(·), x*} is continuously differentiable for every x* E D(A0) and moreover 

d 
dt (u(t), x*} = r( u(t))(u(t), A~x*} + {F( u(t)), x*}, for all t E (0, to). (4.5) 

PROOF. Since u is related to v by formula (3.8) it is immediately clear that (u(·;x), x*} is continuously 
differentiable for all x* E D(A0) since the same is true for v( ·; x). Moreover by formula (2.3): 

~(u(t;x),x*} = ~(v(T(t;x);x),x*} 

= dd T(t;x)[dd (v(T;x),x*}] 
t T r=r(t;x) 

= r(u(t;x))[(v(T(t;x);x),A~x*} + (B(v(T(t;x);x)),x*}] 

= r(u(t;x))(u(t;x),A~x*} + {F(u(t;x)),x*} 

for all t E (0, to). Thus ( 4.5) holds. o 

Continuous solutions of (VOCt) are thus "weak solutions" of (Pt). It is an important task to find 
conditions under which the continuous solutions of (VOCt) are classical C 1 -solutions of (Pt). 
Once again we use the corresponding result from the sernilinear theory. In Theorem 2.3 we proved that 
a continuous solution v(·;x) of (VOCr) is a classical solution of (Pr) if B is continuously Frechet­
differentiable and x E D( Ao) . This result immediately carries over to our quasilinear equation {Pt). 
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COROLLARY 4.10. Assume that B = ...,.- 1 ·Fis continuously Frechet-differentiable. Then u(·;x) is a 

classical solution of (Pt) if x E D(Ao). 

PROOF. The map t I--+ u(t;x) is C1 if and only if T 1--+ v(r,x) is C1 . By Theorem 2.3 the latter is 

true if x E D(Ao) and we have 

d 
dr v(r) = Aov(r) + B(v(r)). 

Hence by Theorem 3.4 the result follows. o 

5. PRINCIPLE OF LINEARIZED (IN)STABILITY 

In this section we prove that the principle of linearized (in)stability holds for quasilinear equations of 

the form (Pt). Obviously an equilibrium u of (Pt) is an equilibrium of {Pr), and vice versa. The 

main result of this section is the following. 

THEOREM 5.1. An equilibrium u of(Pt) is stable if and only ifit is stable for (Pr). 

As in Section 2 we may assume without loss of generality that u = 0 is an equilibrium of (Pt), i.e., 

F(O) = 0. (5.1) 

Then 0 is also an equilibrium of {Pr). 

PROOF OF THEOREM 5.1. We only prove the if part. The only if part is proved in the same way. 

Assume that 0 is a stable equilibrium of {Pr). Let € > 0. We must show that there is a b > 0 such 

that for llxll ::; b: 

(i) tmax{x) = oo, and 

(ii) llu(t;x)ll::; €, t ~ 0. 

By hypothesis there exists b > 0 such that for llxll ::; b: 

(i') Tmax(x) = oo, and 

(ii') llv(r;x)ll :5: €, T ~ 0. 

Recall from Section 3 that 

100 dO' 

tmax ( X) = ( ( . )) . 
0 "'fVO',X 

Since 'Y is locally bounded there exists T/ > 0 such that for all v with llvll ::; € we have 'Y{ v) ::; T/. 

Hence, if llxll ::; b we have 

100 dO' 

tmax(x) ~ - = 00. 
0 T/ 

Furthermore, 

llu(t; x )II = llv( r(t; x ); x )II :5: €, t ~ 0. 

Thus we have proved (i) and (ii). D 



20 

From Theorems 2.6 and 2.7 we know that (in)stability of the equilibrium 0 of the semilinear problem 

(Pr) and therefore of the quasilinear problem (Pt), hinges upon the spectral properties of the generator 

Ao + B' (0). Here we have assumed that B = F h is Frechet differentiable at 0. If both F and 'Y are 
differentiable at 0, then the linearization of (Pt ) at u = 0 is given by 

dw dt = 1(0)Aow + F'(O)w. (5.2) 

Since 

1(0)Ao + F'(O) = 1(0)(A0 + B'(O)) 

and 1(0) > 0 we may equivalently state that the stability of the equilibrium is determined by (5.2), or 

more precisely, by the spectral properties of the linearized operator 1(0)Ao + F'(O). 

Let us denote by { 3(t), t ;::::: O} the semigroup corresponding to the linear Cauchy problem (5.2). 
One might wonder if the analogue of Theorem 2.5 holds: is x ~ u( t; x) Frech et differentiable at x = 0 
with derivative 3(t)? We now present an example which shows that this is not true in general. 

EXAMPLE 5.2. Let 3 1 be the unit circle in rn,2 and X = C(31). We will identify 3 1 with IR/[O, 27r). 

Define the Co-group { To(t), t ;::::: O} on X by: 

(To(t)x)(O) := x(t - 0), 0 E 3 1
, t E IR. 

Let 1(x) := 1/2+11/2 + x(O)I and F = 0. Obviously, x = 0 is a stable equilibrium of 

du 
dt = 1(u)Aou, u(O) = x. (5.3) 

Note that 1(u) represents the speed of rotation along the circle. Obviously, 'Y is differentiable at u = 0 
and the linearization around 0 is given by 

dw 
dt =Aow. (5.4) 

Let { T(t), t ;::::: O} be the nonlinear semigroup generated by (5.3) (note that this problem has a global 
solution for every x EX). 

We show that T0 (t) is not the Frechet derivative of x ~ T(t)x at x = 0. Actually we prove more, 

namely that for some t > 0 (but one can extend this for all t > 0) the following holds: for all € with 

0 < £ < 1 there exists x E X with llxll = £, such that llT(t)x - T0 (t)xll = llxll · Namely, fix t E (0, 7r /2] 
and 0 < £ < 1. Choose a > 0 such that a :::; d. 

Let x be as depicted in Figure (a). During the time interval [O, t] the rotation velocity in (5.3) equals 

1'(u(t;x)) = 1/2+ ll/2+u(t;x)(O)I = 1+£ 

smce u(t;x)(O) = (T(t)x)(O) = £ for all t E (0,7r/2], whereas this speed is constantly 1 in (5.4). 

Therefore T(t)x and To(t)x are as depicted in Figure (b) and (c) respectively. Since a:::; d we have 

{l + £)t ;::::: t +a and we find that llT(t)x - To(t)xll = £ = llxll · 
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(e) 

O ex n-cx n 2n 

(b) 

(c) 

For the sake of completeness we want to conclude this section by mentioning the explicit formula for 
the linearization of (Pt) in a nontrivial equilibrium point u. Again we first consider the linearized 

equation corresponding to (Pr). We obtain: 

dw _A + _l_F'(-) _ ('Y'(u), w) F(-) 
dt - ow 'Y(u) u w 'Y(u)2 u 

1 1 
= A 0 w + ('Y'(u), w) · 'Y(u) Aou + 'Y(u) F'(u)w. 

This system "corresponds" to the linearization of (Pt) in u which is given by: 

dw - = 'Y(u)A0w + ('Y'(u), w) · A0u + F'(u)w. 
dt 

6. APPLICATION TO THE CELL DIVISION MODEL 

After having studied the general quasilinear equation in some detail we now return to our starting 

point: the model describing size-dependent cell growth and division described by equation (1.2). Before 

starting the analysis we have to specify the setting. Let us recall from Section 1 the initial value problem 

which we want to investigate: 

!p(t, s) + i'(E(t)) :s (g(s)p(t, s)) = -µ(s)p(t, s) - b(s)p(t, s) + 4b(2s)p(t, 2s) (6.la) 
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g( o:/2)p(t, o:/2) = 0 

d 11 dtE(t) = -uE(t)+ h(s)p(t,s)ds 
a/2 

p(O,s) = Po(s);:::: 0 

E(O) = E0 ;:::: 0 

(6.lb) 

{6.lc) 

(6.ld) 

(6.le) 

The biological interpretation of this equation, outlined in Section 1, suggests to look for "densities" 
p satisfying (6.1). Mathematically it thus makes sense to look for solutions p(t, ·) E L1([a/2, 1]) which 
are positive. 

We assume that the minimal possible cell division size of a cell is o:. Thus the possible cell size s of 
an individual cell is restricted to values between a minimal size o:/2 and a maximal size 1. Furthermore 
we make the following assumptions on i', g, µ, b and h: 

ASSUMPTION 6.1. 

(A..y) i': X--+ IR+ \{O} is locally bounded and Frechet differentiable. 
(A 9 ) g: [o:/2, 1]--+ IR+ \{O} is continuous. 
(Aµ) µ : [o:/2, 1] --+ IR+ is measurable and bounded. 
(A 6 ) b: [o:/2, 1]--+ IR+ is measurable and bounded, b(x) = 0 for a.e. x E [o:/2,o:] and b(x) > 0 

for a.e. x E ( o:, 1] . 
(Ah) h : [o:/2, 1] --+ IR+ is measurable and bounded. 

REMARK. In (Ab) we assume that the division rate b is bounded on [o:/2, 1]. The biological interpre­
tation of this mathematical assumption has quite drastic consequences for our model. The boundedness 
of b implies that a cell which does not divide before reaching size 1 will never divide. It will just exist 
and grow until it eventually dies. Nevertheless these "large, quiescent" cells may have an effect on our 
system (6.1), since we assumed that the total number of cells (weighted by h) will contribute to the 
production of the enzyme E. Thus, also cells of size s > 1 would be of importance here, but they 
are not included in our model formulation. There are at least two ways out of the dilemma. We could 
make the assumption that cells with size s > 1 will automatically belong to another "type" of cells 
(for example by differentiation), which is out of our consideration. Thus they have no (direct) influence 
on the amount of the enzyme E present. Alternatively we could assume that cells which reach the 
threshold s = 1 die instantaneously. This may seem rather drastic but one should realize that the 
fraction of cells which indeed reaches this size can be negligible small depending on b and µ. 

We plan to discuss a more elaborated model describing the blood cell production system of man 
in the next future. The model we have in mind is based on the idea that cells which eventually will 
become blood ingredients have to pass through several different cell type compartments during their 
development. 

The system {6.1) is of the form (Pt). To show this we have to define Ao, F and 'Y. 
Let X := L1(o:/2, 1] x IR. We define 1, Ao and F by 

1((p, E)) := i'(E), 

Ao((p,E)) := (-(gp)',O), 

with domain 

D(Ao) := {(p, E) E L1[o:/2, 1] x IR Ip E AC[o:/2, 1] and p(o:/2) = O}, 



and 

F((p,E)) := (s1-+[-µ(s)p(s)-b(s)p(s)+4b(2s)p(2s)], -uE+j
1 

h(s)p(s)ds), 
a/2 

where we set b(2s)p(2s) = 0 ifs> 1/2. 
If we define 

u(t) := (p(t,·),E(t)) and x := (po(·),Eo) 

we see that (6.1) is of the form (Pt). 
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It is obvious that Ao generates a bounded, positive C0 -semigroup { T0(t), t ~ O} and that As­
sumption 3.1 is satisfied. Furthermore one easily verifies that Fh satisfies the "positive-off-diagonal" 
property (POD) introduced in Section 4. Since F is linear it automatically satisfies the "off-diagonal­
boundedness" property (4.4). Summarizing we thus have: 

THEOREM 6.2. Let Assumption (6.1) hold and suppose that Eo ~ 0 and Po is a positive, absolutely 
continuous function satisfying p0(o:/2) = 0. Then there exists a unique positive, continuously differen­
tiable solution p(t, ·), E(t) of (6.1) defined for all t ~ 0. 

REMARK. The abstract theory gives us "solutions" of (6.1) for all initial data p0 in L1[o:/2, 1]. In 
general these solutions are not continuously differentiable but satisfy a related integral equation which 
can be obtained by integration of {6.1) along characteristics. 

Next we will investigate the existence and stability properties of positive equilibrium solutions of the 
nonlinear system (6.1). Of course (0, 0) is an equilibrium point, but in general there may be others. 
Such nonzero equilibria (p, E) can be obtained from the functional differential equation 

- d 
.Y(E) ds (gp) = -µ(s)p(s) - b(s)p(s) + 4b{2s)p(2s), 

g(o:/2)p(o:/2) = 0, 

uE = f
1 

h(s)p(s) ds. 
la/2 

(6.3a) 

(6.3b) 

{6.3c) 

To make life easy we assume that o: > 1/2. Then we can solve (6.3a), (6.3b) successively for s ~ 1/2 
and s < 1/2 and obtain 

p(s) = cq(s) for all s E [o:/2, 1], {6.4) 

for a constant c (which must still be determined) and 

q(s) := { 
~<W ifs ~ 112, 

~ ~<W I:,2 :~m 1f1Ft8 de ifs < 112. 

Here (} := .Y(E) and 

( 
1 r b(e) + µ(e) ) 

H9(s) :=exp - 0 la;
2 

g(e) de for alls E [o:/2, l]. 

Since p is an element of D(Ao) it has to be a continuous function in particular it must be continuous 
at s = 1 /2. From this we obtain a scalar equation which determines E, or more precisely (} = i'( E) , 
namely by the fixed point equation: 

(} = Q(O) (6.5) 

where 

Q(O) := 41
112 

b(2e) exp(-~ f
2
e µ(TJ) + b(TJ) d'f/) de for all(}> 0. 

a/2 g(2e) (} le g( TJ) 

We thus have proved the following result: 
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THEOREM 6.3. The pair (p, E) f. (0, 0) is an equilibrium of (6.1) if and only if i'(E) is a solution of 

(6.5) and p= cq, with c := uE(f~12 h(s)q(s)ds)-
1 • 

Note that Q is a continuous increasing function and that Q(O) = 0. The quantity Q(O) can be 
interpreted as the reproductive value: see METZ and DIEKMANN [1986, Interlude 4.3.2, p.36]. 

From our previous results we know that the local stability properties of an equilibrium are determined 
by the linearized system: 

{) _[) ,-8 
at w(t, s) + r(E) OS (g(s)w(t, s)) = -i' (E) OS (g(s)p(s)). £(t) - µ(s)w(t, s) (6.6a) 

- b(s)w(t, s) + 4b(2s)w(t, 2s), 

g(a/2)w(t, a/2) = 0, (6.6b) 

:!_£(t) = -u£(t) + f
1 

h(s)w(t, s) ds. 
dt la/2 

(6.6c) 

The characteristic equation corresponding to this system can be obtained by a straightforward but 
lengthy computation. 
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