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1 Introduction 

A vast field of research in theoretical computer science is the formalisation of program 
correctness. This research has resulted in a variety of programming logics, of which 
we mention: Hoare logic [Ho], dynamic logic [Ha], and temporal logic [PM]. In Hoare 
logic, one of the formalisms that we shall use, a program is seen as state transformer: 
A state assigns a value to each program variable and a program transforms an initial 
state (before the execution) into the corresponding final state (after the execution). 
One specifies the input/output behaviour of programs by means of triples 

{p}S{q} 

where p and q a.re formulas of first-order predicate logic and S denotes a program. 
The formula p is called the precondition of S: it specifies a set of initial states. The 
corresponding set of final states is denoted by the formula. q, which is called the 
postcondition of S. 

There are t .wo common ways to interpret these Hoare triples. One interpretation 
of {p}S{q} is the following: 

If the execution of s in a state satisfying p terminates, it does so in a state 
satisfying q. 

This gives rise to what is called partial correctness. On the other hand, total correct
ness uses the following interpretation: 

Every execution of S starting in a state satisfying p terminates in a. state 
satisfying q. 

Note that the total correctness interpretation additionally guarantees the termination 
of S when started in a state satisfying the precondition p. 

The first subject of this paper is a. Hoare-style logic to reason about the total 
correctness of programs. We shall be concerned with a proof system, i.e., a set of 
axioms and rules by which one can derive correctness formulas. (In this paper we 
shall use the term 'correctness formula' to refer to either a first-order formula or a 
Hoare triple as described above). For such a proof system two concepts are especially 
important: A proof system is called sound if every correctness formula that can 
be derived from it is indeed valid, i.e., if it really describes the behaviour of the 
corresponding program. (Of course, this should be measured against some formally 
defined semantics of the programming language.) On the other hand, a proof system 
is called complete if it can derive any valid correctness formula. 

The programming language we consider will contain recursive, parameterless pro
cedures. The basic statements of this language are assignments and procedure calls. 
Complex statements are constructed from these basic ones by sequential composition, 
conditional, and the while construct. 

In [S], Sokolowski presented a rule for proving the total correctness of recursive 
procedures. Apt (A] however proved that this rule does not enable one to derive 
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all valid correctness formulas. In addition one needs some rules which formalise the 
reasoning about certain invariance properties of procedure calls, properties stating 
that the initial value of a variable that is not used in the procedure equals its final 
value (the value after the execution of the particular procedure). The resulting proof 
system, presented in [A], however turns out to be unsound, that is, one ca.n derive 
from it correctness formulas which are not valid. The unsoundness of the system 
is due to the interaction of the recursion rule, the rule which enables one to reason 
about procedure calls, on the one hand, and those rules which formalise the invariance 
properties of these calls on the other hand. It turns out that the problem is due to 
the fact that the two sets of rules need different interpretations with respect to the 
scope of the implicit quantification applied to free variables. 

We will formulate some restrictions on the applicability of those rules which can 
interact in an incorrect way, and prove that the resulting system is sound. Further
more we will prove that even with these restrictions the resulting proof system is still 
complete. The proof of the completeness theorem differs from the one given in [A] be
cause in the proof given there, our restrictions are not satisfied. As the proof in [A] of 
the completeness theorem for total correctness follows the same pattern as the one for 
the proof system for the partial correctness for the same programming language, we 
may conclude that reasoning about total correctness differs from partial correctness 
in a substantial way which has not been recognised till now. 

After that we show that the techniques mentioned above can also be applied 
fruitfully to dynamic logic [Ha], another formalism to reason about the correctness 
of programs. In this logic the quantification scope can be mentioned explicitly. With 
our techniques, it is possible to give simpler and more natural rules for recursive 
procedures than the ones given in {Ha]. In particular, in our system it is. not necessary 
t o artificially extend the programming language. 

Our paper is organised as follows: In the following section we present the program
ming language and define its semantics. In the third section we give the proof system 
as presented in [A], and analyse its unsoundness. Then, in section 4, we formulate 
some appropriate restrictions on the applicability of those rules which may interact in 
an incorrect wa.y, and prove that these restrictions give rise to a sound proof system. 
The completeness of this new system is proved in section 5. In section 6 we apply our 
technique to dynamic logic and section 7 presents some conclusions. 

2 The programming language 

In this section we present the programming language which is the subject of our 
study. We shall give a formal definition of its semantics. We conclude this section by 
formally defining the total correctness interpretation of correctness formulas. 

2.1 Syntax 

We fix a set L of function and predicate symbols (and containing the equality symbol), 
a set Va,. of va.riables, typical elements of which are denoted by :z:, y, z, . . . , and a . 
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set Proc of procedure identifiers with typical element P. A term of L is a construct 
built up from variables and t he funct ion symbols of L. Terms are denoted by t, .... 
A boolean e:tpression of L is a construct built up from the terms, predicate symbols 
of L, and the usual logical connectives like A, V, -+,and-.. Boolean expressions are 
denoted by b, .... 

First-order predicate logic formulas of L are denoted by p, q, .. .. By FV(p) we 
denote the set of variables occurring free in the formula p. By p(z1, ... , .xn) we mean 
a formula p such that {x1, ... ,x11} ~ FV(p). A sequence of variables x1, ... ,xn will 
sometimes be written as x. Equally we shall sometimes denote a sequence t1, ... , tn 
of terms by t. Now p[t/x] will denote the result of the simultaneous substitution of 
ti for the free occurrences of Xi, assuming that the Xi are distinct. Wh·en it is clear 
from the context which variables are substituted for, we sometimes abbreviate p[t/x] 
to p(t). We shall denote syntactic equality by the symbol '='· 

We define the class of statements by means of the following grammar: 

S ::=P I x := t I S1; 82 I if b then 81 else 82 fi I while b do Sod 

By Var( 8) we denote the set of variables occurring explicitly in S. 
Programs are of the following form: 

where all the Pi are distinct, and only the procedure identifiers Pi, . .. , Pn occur in 
S1, ... , Sn and S. The first part of a program consists of declarations, associating 
with ea.eh procedure identifier Pt a statement 8i, which is called the body of the 
procedure ~. The second part of a program is called its initial statement. Execution 
of the program means execution of its initial statement in the context established by 
the declarations. Note that occurrences of P; in S;, 1 ::; i,j ::; n, give rise to the 
phenomenon of (mutual) recursion. 

Just for the sake of convenience we shall restrict ourselves in this paper to programs 
of the form {P +- So I S}. Furthermore we shall drop tile declaration P +- So and 
just write S, assuming the declaration P +- So to be fixed. It is a straightforward, 
but tedious task to generalise the results of this paper to programs with more than 
one procedure. 

2.2 Semantics 

Ari interpretation I of L consists of a set In , which is called I's domain of values, and 
a mapping which associates an operation on Iv with ea.eh function symbol of L and 
a relation on Iv with each predicate symbol of L. Throughout this paper we shall 
mostly assume a fixed interpretation I . We denote the elements of Iv by d, . . . . 

We define the set :E(I) of states (over I) by 

I::( I) = Var -+ Iv. 

Typical elements of :E (I) are denoted by q, .... 
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By E(Ih we denote the set E(I) extended with some new element .1. (pronounced 
"bottom"). We assume the following partial ordering on E(l).L: For a 1 ,a2 E E (I).L 
we put 

iff 

This ordering turns E(I).L into a complete partial order. The least upper bound of a 
sequence (an)n of elements of E(I).L such that Un :S an+l will be denoted by LJnun. 

Given a E E(I) and a term t, a(t) will denote the result of evaluating t in the 
state tr (so o-(t) E ID)· For a sequence t of terms, o-(t) denotes the sequence of values 
u(t1), ... ,a(tn)· 

Given a first-order formula pin L and a state a E E(I), the truth of p in a with 
respect to the interpretation I, denoted by a !=1 p, is defined as usual. We shall write 
FI p if u f=1 p for every <TE E(I). 

Let o- E E(I), d a sequence of elements of In, and x a sequence (of the same 
length) of distinct variables, then we define a{d/x} E E(I) such that 

{a _} ( { <is if !/ ::;:: Xi 
tr /x y) = a(y) otherwise 

To construct a semantics of the programming language as defined in the previous 
section it is convenient to extend the language by the following statements: skip, 
execution of which consists of doing nothing, and 0, execution of which never termi
nates. 

Definition 2 .1 
We define for an arbitrary program S the semantic function 

transforming any initial state to the corresponding final state, as follows (we assume 
the declaration P ~So): 

• M1(S)(.1.) = .1. for arbitrary S. Assume from here on that u :I .1.. 

• M1(x := t)(u) = u{u(t)/x} 

• M1(skip)(a) =a 

• M1(0)(a) = .1. 

• M1(P)(u) = Ui: M1(sJ*))(u) 

where sgo) = 0 
sak+i) = So[SJA:) /P] 

and where S [S' / PJ denotes the result of replacing every occurrence of P in S 
by S'. 
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• M1(if b then S1 else S2 fi)(u) = M1(S1)(u) if (J' ~I b 
M1(S2)(u) otherwise 

• M1(whlle b do S od)((J') = LJ.c M1(S{l:})((J') 

where 5{o} = if b then n else skip ft 
s{Hl} = if b then S; s{k} else skip fi 

This definition is inductive on the complexity of statements, measured as follows: 
We define C(S) to be a triple of natural numbers, and we order these triples lexico
graphically. The first component of C(S), denoted by C1(S), is 1 if P occurs in S, 
0 otherwise. The second component of C(S), denoted by C2(S), gives t.he maximal 
nesting level of while statements occurring in S, and the third component of C(S) 
gives the length of S. Now for the semantic definition of a. procedure call we have a 

decrease in the first component, since C 1 (P) = 1 while C1(Sdk)) = 0. For the seman
tic definitions of the sequential composition and the conditional we have a decrease 
in the third component, while the first two components do not increase. Finally, for 
the while statement we have a decrease in the second component, while the first one 
does not increase. 

The well-definedness of this semantics follows from the following propositions: 

Proposition 2.2 
For any natural number k EN, for any a E E(I), and for any statement S we have 

M1(s{.c})(a) ~ MI(s{i:+i})(a), 

where we assume s{k} to be defined with respect to some fixed boolean e·xpression b. 

Proof 
Induction on k . 0 

Proposition 2.3 
For arbitrary statements S, Si, and 82 such that M1(S1)(a) ~ M1(S2 )(u) for every 
a E E(I), we have 

for every (J' E E(I). 

Proof 
Induction on the complexity of S. 

Proposition 2 .. 4 
For all k EN and for all (J' E E(/) we have 

M1(S~k))(a) ~ M1 (sJ.c+1))((J'). 

Proof 
Induction on k, using proposition 2.3. 

0 

0 

We conclude this subsection with some propositions that will be used in the proofs of 
the soundness and the completeness theorem. 
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Proposition 2.5 
For an arbitrary interpretation I, a state a E 'E(I), a sequence t of terms, and a 
sequence x of distinct variables, we have 

q FI p{t/xl iff u{q(t)/x} FI p. 

Proof 
Induction on the complexity of p. 0 

Proposition 2.6 
Let I be an arbitrary interpretation, p a formula, and let tT, tT1 E 'E(J) such that a 
agrees with <f

1 on the variables occurring free in p. Then 

<T FI p iff a' FI P· 

Proof 
Induction on the complexity of the formula p. 0 

Proposition 2. 1 
Let I be an interpretation, S a program, y a sequence of variables such that y n 
Var(S, S0 ) = 0, and d a sequence of data in ID. Let O' E 'E(I), put 0'

1 = Mr(S)(q), 
and suppose 0'1 =/= ..L. Then 

cr'{d/y} = Mr(S)(o-{d/y}). 

Informally speaking, this means that a program S only depends on and accesses the 
variables that occur explicitly in S or in S 0 • 

Proof 
Induction on the complexity of S. 

Lemma 2.8 
For any statement S and any state O' E E{J) we have 

MI(S)(u) = LJ MI(S[S~k) / PJ)(u) . 
.I: 

Proof 

0 

Induction on the complexity of S. The following property of the ordering on E{J).L is 
heavily used: If a= Lia aa, where the <Ta form a nondecreasing sequence, then there 
exists a ko such that <T = <T Jc for all k ?: ko. 0 

Proposition 2. 9 
For any state <TE E(I) we have 

MI(So)(u) = MI(P)(O'). 
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Proof 
Applying lemma 2.8 to So we get 

2.3 Total correctness 

LJ M1(So[Sd1i:) / P])(o-) 
Ii: 

= LJ M1(s6.c+i))(u) 
k 

= LJM1(sJ.tl)(u) 
k 

= M1(P)(o-). 

D 

Correctness formulas are triples of the form {p}S{q}, where p and q a.re first-order 
formulas of L . We shall interpret such correctness formulas with respect to so-called 
arithmetical interpretations [Ha], as defined in 

Definition 2.10 
Let L+ be the set of symbols of L extended with some one-place predicate 'nat' and 
with the usual function and relation symbols for describing the arithmetic of the 
natural numbers (like addition, multiplication and comparison). An interpretation I 
of L+ is called arithmetical if the following conditions are satisfied: 

• ID contains the standard model of Peano a rithmetic, that is, (a copy of) the 
set N of natural numbers. 

• The predicate nat is interpreted in such a wa.y that for arbitrary q E E( I) 

·eT FI nat(x) iff eT(x) EN. 

• The arithmetical function and relation symbols in L + are given the standard 
interpretation, i.e., they are mapped to the standard operations on the natural 
numbers in ID . 

• There exists a formula of L + defining some coding of the finite sequences of 
ID. More precisely: There exists an injective mapping f from the set of finite 
sequences of elements of In to ID itself, and a formula tf>(x, y, n) which represents 
this mapping in the following sense: For arbitrary u E E(I) we have <T f=1 
ef>(x,y,n) iff, for some sequence di, ... ,d_c in ID, /((d1, ... ,d_c}) = a(x), 1 ~ 
o-(n) $ k, a.nd o-(y) = du(n)· 

Arithmetical interpretations a.re important for the following reasons: Firstly, the basic 
pattern in reasoning about termination involves a well-foundedness argument, that 
is, with the body of a procedure or while statement we associate a formula. p(x), 
where the variable x ranges over some set on which some well-founded ordering is 
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defined. Termination of the particular procedure or while statement is then proved 
by showing that p(:z:) holds initially, and that p(:z:) holds after every execution of the 
corresponding body for some smaller value of :z:. It is always poasible to take the set 
of natural numbers with the standard ordering for this purpose, and by requiring that 
this set is contained in the interpretation I, we can carry out the above termination 
argument in a formal way. 

The second reason is that to prove completeness the interpretations we consider 
must have sufficient expressive power to represent the notion of an execution in our 
assertions. In order to do this, we must be able to reason about natural numbers and 
about sequences of data elements. 

In any case, it is shown in [AJ that even for a language without recursive procedures 
(but with while statements) there exists no adequate proof system for total correctness 
that is sound for arbitrary (nonarithmetical) interpretations. 

Now we define the truth, or validity of a correctness formula {p}S{q} with respect 
to some arbitrary interpretation I: 

Definition 2.ll. 

Let I be an arbitrary interpretation. For <TE :E(I) we write <T FI {p}S{q} iff <T FI p 
implies that there exists a a' i= .l such that u' = M1(S)(u) and <T

1 FI q. We write 
F I {p}S{q} ifffor all u E E(I) we have a F I {p}S{q}. 

Although we have defined t=I for any arbitrary interpretation I , we shall be interested 
in it only if I is arithmetical. 

3 The proof system G0 

In this section we give the proof system Go as presented in (A]. We give two examples 
of derivations in this proof system, of which one leads to a valid correctness formula 
and the other to an invalid one. 

Definition 3.1 
The proof system Go consists of the following axioms and rules: 

Assignment: {p[t/:z:J} x := t {p} 

Sequential composition: 
{p}S1{r} {r}S2{q} 

{p }S1; S2{q} 

Conditional: 

Iteration: 

{pAb}S1{q} {pA-,b}S2{q} 
{p}if b then 8 1 else S2 fi{q} 

{p(m + l)}S{p(m)} p(m + 1) -+ b p(O)-+ -,b 

{3mp(m)}while b do S od{p(O)} 
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provided m ff: Var(S) U Var(So). 

-.p(O} {p(n)}P{q} I- {p(n + I)}So{q} 
{:3np(n)}P{q} Recursion: 

provided n <t FV(q) U Var(So). 

Invariance: 
{p}P{q} 

{p /\ r} P{ q /\ r} 

provided FV(r} n Var(So) = 0. 

Elimination: 
{p}P{q} 

{3zp}P{q} 

provided z <t FV(q) U Var(So). 

Substitution: 
{p}P{q} 

{p[y/z]}P{q[y/ z]} 

provided y, z ¥c Var(So). 

Consequence: 
P--+ P1 {p1}S{q1} q1--+ q 

{p}S{q} 

The variables n and m occurring in the rules for recursion and iteration are sup
posed to range over the set of natural numbers, that is, p(n), for example, is an 
abbreviation 0£ p(n) /\ nat(n}. 

The premiss {p(n)}P{q} I- {p(n + l)}S0{q} of the recursion rule states that it is 
possible to derive {p(n + I)}S0 {q} if one takes {p(n)}P{q} as an assumption. The 
intuition behind the recursion rule is that the value of the variable n in a state 
satisfying p(n) gives an upper bound to the number of nested calls necessary to 
complete the computation of the procedure P starting from this state. 

The notion of derivability is defined relative to some interpretation: 

Definition 3.2 
Let I be an arithmetical interpretation. We write h {p}S{q} to denote that the 
correctness formula {p}S{q} is de.riva.ble from the axioms and rules of the proof 
system, making use of the (first-order) theory of the interpretation I in the iteration, 
recursion, and consequence rules. (In other words, every assertion p such that l=r p 
can be used as an axiom.) 

Let us give an. example of a derivation which illustrates the use of the recursion, 
elimination, invariance, and the substitution rule. Consider the well-known recursive 
procedure which calculates the factorial of the number stored in the variable x: 

P .-- if x=O 
then y := 1 

else x := x - I; P; x := x +I; y := y x x 

fi 
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We shall prove that this procedure indeed calculates the factorial of z , and moreover 
that the value of z after the execution equals the initial value of z. For the latter 
purpose, we use the variable z, which does not occur in the program, as a "freeze 
variable". Since we know that the program does not change the value of z (see 
proposition 2.7), we can use z to remember the value of z in the initial state. Therefore 
we want to derive the correctness assertion 

{x = z ~ O}P{x = z /\ y = z!} 

We will do so by first proving that 

{x = z = n - 1 ~ O}P{x = z/\y = x!} 1-i {z = z = (n +l)-1 ~ O}So{z = z/\y = x!} 

where So is the body of the procedure P, as defined above. We take an arbitrary 
arithmetical interpretation I, of which we shall only use the valid formulas that deal 
with natural numbers. Let S = x := x - 1; P; x := x + l; 11 := y x x and reason as 
follows (within t he proof system): 

1. {x = z = n - 1 ~ O}P{x = z /\ !I = :rl}, our assumption. 

2. {x = u = n - 1 ~ O}P{x = u /\ y = :r:!}, from 1 by the substitution rule. 

3 . {x = u = n - 1 :2:: 0 Au= z - l}P{:z: = u A !I = x l A u = z - 1}, from 2 by the 
invariance rule. 

4. {x = u = z - 1 = n - 1 ~ O}P{x = z - 1 /\ y = x!}, from 3 by the consequence 
rule. 

5. {3u(x = u = z - 1 = n-1 ;:::: O)}P{x = z-1/\y = z!}, from 4 by the elimination 
rule. 

6. {:r: = z - 1 = n - 1 ~ O)}P{x + 1 = z I\ y x (:r: + 1) = (x + 1)!}, from 5 by the 
consequence rule. 

7. {x - 1 = z - 1 = n - 1 ;;:::: O}S{:r: = z /\ y = :r:I}, by applying three times the 
assignment axiom and the rule for sequential composition, using 6. 

8 . {x = z = (n+ 1) - 1 ~ 0/\ -,z = O}S{x = z /\ y = xl}, from 7 by the consequence 
rule. 

9 . {x = z = (n + 1) - 1 :2:: 0 Ax= O}y := l{x = z /\ y = xl}, by the assignment 
axiom and the rule of consequence. 

10. {x = z = (n + 1) - 1 ~ O}So{x = z I\ y = x!}, by applying the rule for the 
conditional to 8 and 9. 

In addition we have FI -.(x = z = 0 - 1 ~ 0), so applying the recursion rule yields 

{3n(x = z = n - 1 ;:::: O)}P{x = z /\ y = xl} . 
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Now ~Ix = z ~ O--+ :ln(x = z = n - 1 ~ 0), so applying the consequence rule gives 
us the desired result. 

Note how we have used the rules for substitution, invariance, and elimination 
to change the context in which the procedure P is called. More precisely, we have 
renamed the freeze variable z, in order to call the procedure P for a different value 
of x. 

The above derivation might give the impression that all works welL However, we shall 
now give an example of a derivation the conclusion of which is invalid (with respect 
to any interpretation), thus establishing the unsoundness of the system Go. Consider 
the following declaration: 

P- P;P. 

(The simplest example would be P - P, but the above example is clearer because it 
has P ~ So.) It is obvious that every computation of P diverges, so the correctness 
formula 
{true}P{true}, stating that every computation of P terminates, is invalid. Never
theless, the following derivation establishes the derivability of {true} P{ true}: 

1. {n > O}P{true}, assumption. 

2. {:ln(n > O)}P{true}, by the elimination rule. 

3. {true}P{true}, by the consequence rule. 

4. {3n( n > 0)} P; P{ true}, by applying the sequential composition rule to 2 and 3. 

5. {n + 1 > O}P; P{true}, by the consequence rule. 

6. {3n(n > O)}P{true}, by applying the recursion rule to 1-5 (Note that FI 
--.(0 > 0).) 

7. {true}P{true}, by the consequence rule. 

Note that in the first and last application of the consequence rule we made explicit use 
of the fact that the variable n ranges over the natural numbers, and that > denotes 
the usual notion of "greater than" . 

To understand what went wrong in this derivation we shall investigate where exactly 
a formal justification breaks down. Establishing soundness consists of proving that, 
for every arithmetical interpretation I and for every correctness formula {p}S{q}, if 
f-1 {p}S{q} then FI {p}S{q}. 

Usually one proves the soundness of a proof system by first showing that the 
axioms are valid and then that the validity of the premisses of an arbitrary rule 
implies the validity of its conclusion. But with respect to the present proof system 
one runs into the difficulty that the recursion rule is really a meta.rule. To overcome 
this problem we follow the strategy presented in [A] of transform.ir>g the proof system 
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into an ordinary one, and reducing the problem of proving the soundness of the 
original system to proving the soundness of its transformed version. 

We shall call the transformed system K. This system manipulates correctness 
ph.rases of the form <I> -+ 111, where ip and 'IF are (possibly empty) sets of correctness 
formulas. 

Definition 3 .3 
The proof system K is defined as follows: 

• For each axiom t/> of Go, add the axiom <I>--+ 4> to K. 

• For each rule 
</>i' ... 'cf>n 

<f>n+l 

of G 0 , except for the recursion rule, add the rule 

to K. 

<I> --+ </>i ' . .. ' t/>n 
<p--+ c/>n+l 

Finally add the following rules and axioms to K: 

<I?-+ -ip(O) <I?, {p(n)}P{q}-+ {p(n + l)}So{q} 
• <p-+ {3np(n)}P{q} 

provided that n does not occur free in CJ>, So, or q. 

• 
CJ? -+ c/>1 cl»-+ t/>n 

• <I> -+ </>, for every 4> E et». 

Let 1-f et» -+ 111 denote the derivability of the correctness phrase <p--+ 111 in K making 
use of the additional axioms et»' -+ p, for any first-order formula p such that FI p. 
1--?0 4> will now denote the derivability of the correctness formula</> in Go making use 
of the first-order theory of I as additional axioms. We ah.all write <p 1-7° </>to denote 
that 4> can be derived in the proof system G 0 using as axioms the elements of et» (in 
addition to the first-order theory of I). 

Lemma 3.4 
For any arithmetical interpretation I and any correctness phrase of the form et» -+ </>, 
where 4> is a (single) correctness formula, we have 

implies 

Proof 
A simple induction of the length of a derivation for CJ> 1-f0 ef>. 0 
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It follows that for any arithmetical interpretation I and any correctness formula </> 

implies f-f 0-+ </>. 

Thus, given a definition of validity for correctness phrases which agrees on correctness 
formulas with definition 2.11, the soundness of K implies the soundness of Go. 

We next look at two ways to interpret the correctness phrases. In either way, however, 
the system K will turn out to be unsound. 

First consider the following way to interpret correctness phrases: For an arbitrary 
interpretation I we define 

iff FI <I> implies FI \JI 

where FI <I> iff FI</> for all </> E <I>. 
This definition, however, will make the recursion rule unsound: Consider the 

d.eclara.tion P +- P; P and take p(n) = n > 0, q := true. Take some arbitrary 
arithmetical interpretation I, then FI -.(0 > 0) and 

FI {p(n)}P{q}-+ {p(n + l)}So{q }, 

because it is not the case that FI {p(n)}P{q}: For any state u E :E(J) such that 
o-(n) > 0 we have u FI p(n), but nevertheless MI(P)(u) = _l_ . Therefore the premisses 
of the recursion rule are valid. However, it is not the case that FI {3np(n)}P{q} 
(note that rT FI 3np(n) for every rT E :E(I)). 

The unsoundness of the recursion rule with respect to this interpretation is due to 
the fact that the variable n is universally quantified at both sides of the implication 
sign independently, so that it does not retain its value over the implication. 

This suggests that one should define the validity of a correctness phrase as follows: 

FI <I>-+ Ill iff u FI <I> implies <r FI \JI for all <r E :E(f) 

where we define u FI <I> iff a FI ef> for all </> E <I>. 
This second way to interpret correctness phrases will, however, make the elimin&

tion rule unsound: Take the same declaration for P as above, then for any arithmetical 
interpretation I we obviously have 

FI {n > O}P{true} - {n > O}P{true}, 

but it is not the case that 

FI {n > O}P{true} - {3n(n > O)}P{true}. 

To see this take au E :E(/) with u(n) = 0. Then u FI {n > O}P{true}, because 
o- P1=I n > 0, but <T P1=I f3n(n > O)}P{true} because <T FI 3n(n > 0) and P does not 
terminate. 

This analysis suggests the following solution: Introduce a set Count of variables 
ranging over natural numbers. Interpret such variables as described in the second 
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case above, i.e. they are interpreted as being universally quantified, the scope of the 
quantification being the correctness phrase in which they occur. The other variables 
a.re interpreted as being universally quantified at both sides of the implication sign 
independently. We shall not allow variables of this set Count to occur in programs, to 
be quantified over by the elimination rule, nor to be substituted for in the substitution 
rule. On the other hand, only variables of the set Count are to be used in the recursion 
rule to establish termination of the particular procedure. This solution we shall work 
out in the following section. 

4 The proof system T 

T'he new proof system is defined by adding some restrictions on the applicability of 
some rules of the system Go, as described in the previous section. 

Let Count be a set of variables ranging over the natural numbers. Variables of 
this set will be called counter variables. We do not allow counter variables to occur 
in programs. 

Definition 4.1 
The proof system T consists of the same axioms and rules as the proof system Go, 
but for the following restrictions: 

Iteration rule: The variable m occurring in the rule, used to establish termination 
of the iteration construct, may not be a counter variable. 

Recursion rule: The variable n used to establish termination of the procedure P 
must be a counter variable. 

Elhnination rule: The quantified variable z may not be a counter variable. 

Substitution rule: Let y and z be the variables such that y is substituted for z in 
the conclusion of the rule. Then we require that y, z f Count. 

Note that the derivation given in the previous section to establish the unsoundness of 
the system Go is not a correct derivation in the system K, because the variable n must 
be an element of Count for the recursion rule to be applicable, but then application 
of the elimination rule is not allowed. 

4.1 Soundness 

In this subsection we prove the soundness of the system T. Let K' be the proof system 
which manipulates correctness phrases as described in section 3, but now generated 
from T instead of G 0 • To be able to reduce the problem of proving the soundness of T 
to that of K' we first have to define the notion of validity for correctness phrases. 
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DetiDition 4.2 
Let 4> be a set of correctness formulas such that no counter variable occurs free in 4>, 
for any</> E 4>, and let I be an arithmetical interpretation. We define 

iff FI</> for all</> E 4>. 

Definition 4.3 
For any natural number k EN, let ff be a constant term in the first-order language 
denoting k, that is, u(k) = k for any state u. Let n 1 , .•. , n, be all the counter 
variables occurring free in the correctness phrase~ - ~- If k1, •.. ,k, EN, then by 
~' ... ,~n1, ... , n,], abbreviated to [k/n], we denote the simultaneous substitution 
of ka for~· More precisely, with {{p}S{q})[k/n] we denote {p[1£/n]}S{q[k/n]}, and 
with 4>[k/nJ we denote {</>[1£/n] I</> E 4>}. Now for any arithmetical interpretation I 
we define 

iff for all kin N l=r q>[k/n] implies l=r w[k/n]. 

Note that the notation FI is used to denote both the truth of a correctness formula 
and that of a correctness phrase. The following proposition however states that 
this interpretation of correctness phrases agrees on correctness formulas with the 
interpretation as given in definition 2.11: 

Proposition 4A 
For any arithmetical interpretation I and for a.ny correctness formula {p} S { q} we 
have 

FI {p}S{q} iff for all kin N FI {p[k/n]}S{q[1£/n)} 

where ii consists of all the counter variables occurring free in {p}S{q}. 

Proof 
=>: 
Let u FI p[k/n], then by proposition 2.5 we have 0-1 FI p·, where o-1 = c:r{k/n}. Now 
if u~ = MI{S)(o-1), then u~ l==r q, because l=1 {p}S{q}. On the other ha.nd, if we put 
a'= M1(S)(u}, then by proposition 2.7 we get 

u~ = Mr(S)(ui) = Mr(S)(u{k/n}) = a'{k/n} 

(note that ii n Var(S) = 0). Applying proposition 2.5 again, we get u' l=r q[k/nj. 

~: 

Let <J l=r p and let furthermore u(ni) = It. for i = 1, ... , I. Then by proposition 2.5 
we have u FI p[k/n], because u~ = u(n,), so that u{o-(&)/n} = u. So for u' = 
M1(S)(C1) we get <J

1 f=r q[~/n]. Because f1i rl. Var(S) we have u'(~) = CT(~) = It. 
(this is implicit in proposition 2.7). Therefore we can apply proposition 2.5 again to 
get a' f=r q. O 

We prove the soundness of the recursion and the elimination rule iu separate lemmas: 
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Lemma 4.5 (Soundness of recursion rule) 
Let I be an arithmetical interpretation and ii' a set of correctness formulas. Suppose 
that FI 4>---+ -.p(O) and 

FI 4>, {p(n)}P{q}---+ {p(n + l)}So{q}. 

Then 
FI ii'-+ {3np(n)}P{q}, 

p·rovided n ¥. FV (4>, q). 

Proof 
Let n1 , ... , n1 be all the counter variables occurring free in 4> -+ {3n p( n)} P { q}. Let 
k1, ... , k1 EN such that FI <t>[tfn]. It is not difficult to see that tT FI (3np(n))[k/n] 
iff there is am EN so that u FI p(m}(k/n] (note that this only holds in arithmetical 
interpretations). From this it follows that 

F I {(3np(n))[!/n]}P{q[k/n]} iff for all m EN FI {p(m)~/n]}P{q[kfn]}. 

We now prove that for all m E N 

FI {p(m)[k/n]}P{q[k/n]} 

l>y induction on m: 

m ;;;;: 0: By the hypothesis ~I 4> -+ -.p(Q) we have a FI -,p(Q)[tfn] for every a E :E{I), 
so 

FI {p(Q)[k/n]}P{q[kfnj}. 

m > 0: We know that n rt FV(<P) so that n rt {ni, ... , n1} and FI <P[~/n][m - 1/n]. 
Therefore, from f= / ii', {p( n)} P { q} -+ {p( n + 1)} So { q} it follows that 

FI {p(n)[k/nl[m - 1/n]}P{q[k/n] [m - 1/n]} 
implies 

FI {p(n + l)[k/n][m - 1/n]}So{q[k/n]fm - 1/n]}. 

Nowp(n)[k/n][m -1/n] = p(m - l)[k/n], andp(n+l)[k/n][m - l/n] = p(m - 1+ 
1) [k/n]. Furthermore p( m - 1 + 1) (k/n] is obviously semantically equivalent 
with p(m.)[k/n]. Finally, because n <fi FV(q) we have that q[k/n][m - 1/n] = 
q[k/n]. So we get 

FI {p(m - l)[k/n]}P{qfk/n]} implies FI {p(m)[tfn]}So{q[k/n]}. 

Here the antecedent is just the induction hypothesis and the consequent is equiv
alent to 

FI {p(m)[k/n]}P{q[k/n]} 

by proposition 2.9. 0 
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Lemma 4.6 (Soundness of elimination rule) 
Le·t, for some arithmetical interpretation I and some set of correctness formulas~' 

FI cp - {p}P{q}. 

Then 
FI~ - f3z p}P{q} 

where z f. Count U Var(So) U FV(q}. 

Proof 
Let n 1 , ... , n1 be all the counter variables occurring in the correctness phrase CJ> -
{3 z p} P { q}. Let k1, ... , k1 E N be such that I= r ~ [k/n]. Let a Fr (3z p) [k/n], so that 
for some d EID we have a{d/z} FI p[k/n]. Then we know FI {p[k/n]}P{q[k/n]}, so 
for a'= Mr(P)(u{d/z}) we get <T1 f:==I q[k/n]. Now z ¥. Var(So) implies u'{u(z)/z} = 
Mr(P)(u) by proposition 2.7. Finally, z rf. FV(q) implies a' {<1(z)/z} FI q[k/n]}. We 
conclude: 

FI {3zp[k/nJ}P{q[k/n]}. 

D 

Lemma 4.7 
For every arithmetical interpretation I we have 

1-f' <I> - '1' implies Fr <I> - '1'. 

Proof 
The soundness of all the individual axioms and rules of K' can be shown along the 
lines of lemmas 4.5 and 4.6. The soundness of the whole proof system then follows 
by induction on the length of a derivation of 1-f' <I> - W. o 
Theorem 4.8 
The proof system T is sound, that is, for every arithmetical interpretation I we have 

1-f {p}S{q} implies FI {p}S{q}. 

Proof 
This is now an easy consequence of (a slightly modified version of) lemma 3.4, 
lemma 4.7, and proposition 4.4. o 

5 Completeness 

In this section we prove the completeness of the system T, that is, we show that for 
any arithmetical interpretation I and any correctness formula {p} S { q}, 

FI {p}S{q} implies 1-r {p}S{q}. 

We assume the arithmetical interpretation I to be fixed throughout this section. To 
get started we need the following definitions and lemma: 
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Definition 5.1 
For any program S and any natural number k, we define 

(Remember that So denotes the body of th·e procedure P and for sJJc) recall defini
tion 2.1.) 

Lemm.a 5 .2 
For any program S, any first-order formula q, and any variable n E Count there exists 
a first-order formula Pre(S,q,n), such that for any a E I:{I) we have a FI Pre(S,q, n) 
iff there exists a u1 = MI(slkl)(u) i- J_ such that a' FI q, where k = u(n). 

Proof 
The proof of this lemma is quite hard work. It consists of showing that the computa.
tion of 5[k] can be coded in the first-order language. Here the fact that sequences of 
elements of ID can be coded into single elements is essential. We shall not carry out 
the proof of this lemma here, but refer the reader to [TZ] and to the appendix of [BJ, 
where similar proofs are carried out in full detail. o 

Definition 5 .3 
Take some varia.ble n E Count. We define 

Po(n) = Pre(P,x = z,n), 

where x = Var(S0 ), z n Count = 0, and z n Vaf'{So) = 0. (Here x = z abbreviates 
the formula x1 = z1 /\ · · · /\ Xm = zm). 

To appreciate the meaning of this definition, note that the formula 3n Po( n) describes 
the 'graph' of the function Mr(P) in the following sense: For arbitrary u E I:(I) 

u f=r 3nPo(n) implies u{u(z)/x} = Mr(P)(a) 

and 
a 1 = MI(P)(u) implies u{u'(x)/z} l=r 3nPo(n). 

Let us now outline the structure of the completeness proof. To do that we first 
describe the global structure of the proof given in [A]. There it is shown that for any 
va.lid correctness formula {p} S { q} 

{Po(n)}P{x = z} I-I {p}S{q} 

by induction on the complexity of S. For all statements S other t han a procedure 
call P, this can be done using the well-known techniques (see [A] or [BJ). To establish 
the case S = P, however, the first step is to derive {3nPo(n)}P{x = z}. Here 
th·e elimination rule is applied. From this latter correctness assertion arbitrary valid 
correctness formulas about the procedure P can be derived by an application of 
the invariance, substitution, and consequence rules. Having proved the derivability 

19 



of a.ny valid correctness assertion {p}S{q} from {po(n)}P{x = z} it is shown by an 
application of the recursion rule that the latter assertion is derivable, thus establishing 
completeness. 

Now note that this proof is not valid to establish the completeness of our new 
proof system T, because it uses both the elimination rule and the recursion with 
respect to the same variable n, which is not allowed, whether or not the variable n is 
a counter variable. Therefore we proceed in a different way. Instead of applying the 
elimination rule to derive {3nPo(n)}P{x = z}, we use the recursion rule. Therefore 
we have to prove 

{Po(n)}P{x = z} l-1 {po(n + l)}So{z = z}. (1) 

A straightforward induction on the complexity of So obviously does not work. To be 
able to carry out some inductive argument we prove the following generalised version: 

{po(n)}P{x = z} f--1 {Pre(S,q, n)}S{q}. 

for arbitrary S and q. This is done in lemma 5.5. Then, substituting S 0 for S and 
x = z for q, and applying the consequence rule, it is possible to prove (1), so that the 
recursion rule can be applied. 

The rest of this section provides the details. 

Lemma 5.4 
For any first-order formula q, for any variable n, and for any sequences v and w of 
distinct variables such that v n w = v n Var(So) = w n Var(So) = v n Count = 
w 11 Count = 0, we have 

l=r Pre(P,q,n)[v/wj - Pre(P,q[v/w],n). 

Proof 
From the definition of Pre(P, q, n) it follows that 

1. For every k EN we have l=1 {Pre(P, q, n) /\ n = k}P[A:J{q}. 

2. l=1 {p}PIA:l{q} implies l=1 p /\ n = k.-t Pre(P,q, n). 

From 1 it follows by the soundness of the substitution rule that for every k E N 

1=1 {(Pre(P, q, n) /\ n = £)[v/w]}P[A:l{q[v/w]}. 

Note that (Pre(P, q, n) /\ n = k)[v/w] = Pre(P, q, n)[v/w] /\ n =ls_. So we have by 2 
for arbitrary k EN 

l=1 Pre(P, q, n)[v/w] /\ n = !£-+ Pre(P,q[v/wj,n) . 

Therefore we conclude 

l=1 Pre(P,q,n)[v/w] - Pre(P,q[v/w],n). 

0 
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Lemma 5.5 
For any program S and any first-order formula q, 

{po(n)}P{x = z} h {Pre(S, q, n)}S{q}. 

Proof 
The proof proceeds by induction on the length of S. We distinguish several cases: 

• s = x :=t 
Within the proof system we can reason as follows: 

1. {q[t/x]}x := t{q}, by the assignment axiom. 

2. {Pre(x := t, q, n)}z := t{q} by the consequence rule. 

In order to justify step 2 above, we prove 

l=r Pre(x := t,q,n)--+ q[t/x]. 

Let <T F I Pre(x := t, q, n), then for <T' = MI(s!A:l)(<r), where k = a(n), we have 
<r' l=r q. But sl-"I =: S, so <r1 = <r{a(t)jx}, and therefore, by proposition 2.5, we 
get <T FI q[t/x] . 

•S=P 
Let u be a sequence (of the same length as z) of fresh variables, not occurring 
in Pre(P, q, n) or So, such that ii n Count = 0, and take qi = q[ii/z]. Now we 
can reason within the proof system as follows: 

1. {p0 (n)}P{x = z}, the assumption. 

2. {p0 (n) /\ q1 [z/x]}P{x = z /\ q1 [z/x]}, by the invariance rule. 

3. {po(n) /\ q1[z/x]}P{q1 }, by the consequence rule (note that FI x = z /\ 
qi[z/x]--+ qi). 

4. {3z(po(n) /\ qi[z/x])}P{qi}, by the elimination rule. 

5. {Pre(P, qi, n)}P{q1}, by the consequence rule. This will be justified below. 

6. {Pre(P,q,n)[u/z]}P{q1}, again by the consequence rule, now ma.king use 
of lemma 5.4. 

7. {Pre(P, q, n)}P{q}, by the substitution rule. 

In order to justify step 5, we still have to show that 

1=1 Pre(P,qi,n) - 3z(po(n) /\ qi [z/x]). 

Let <T FI Pre(P,q1,n). Then for <T
1 = MI(Pl-"l)(u), where k = u(n), we have 

<T' FI qi. 

Let d = u'(x). Then, since zn Var(So) = 0, we get u'{d/z} = M1(PIA:l)(a{d/z} ). 
Furthermore a'{d/z} FI x = z, so 

<r{d/z} f=r Po(n). (2) 
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Now by proposition 2.5 we have 

a{d/z} )==r qi[z/x] iff o-{d/z}{d/x} l=1 q1. (3) 

Note that u'(y) = o{d/z}{d/x}(y) for all y E FV(qi). So from a' FI q1 and 
from (3) we can infer by proposition 2.6 t.hat 

(4) 

From (2) and ( 4) we conclude 

a F=1 3z(po(n) A qt[z/x]). 

• S:=S1;S2 
Again we reason within the proof system: 

l. {po(n)}P{x = z}, the assumption. 

2. {Pre(S2,q, n)}S2{q}, from 1 by the induction hypothesis. 

3. {Pre(S1, Pre(S2,q,n),n)}S1{Pre(S2, q,n)}, from 1 by the induction hy
pothesis. 

4. {Pre(S1, Pre(S2, q, n), n)}S1; S 2{q}, by the sequential composition rule from 
2 and 3 . 

5. {Pre(S1;S2,q,n)}S1;S2{q}, by the consequence rule. It is easy to see that 

• S = if bthen 8 1 else 82 fl 
We reason within the proof system: 

1. {po(n)}P{x = z}, the assumption. 

2. {Pre(Si,q,n)}S1{q}, from 1 by the induction hypothesis. 

3. {Pre(S, q, n) /\ b}Si{q}, by the consequence rule, using 

FI Pre(S, q, n) /\ b-+ Pre(S1,q, n). 

(Note that s[.t] = if b then s1A:J else S~A:J fi.) 

4. {Pre(S2,q,n)}S2{q}, from 1 by the induction hypothesis. 

5. {Pre(S, q, n) /\ •b}S2{q}, by the consequence rule, using 

FI Pre(S, q, n) /\ --.b-+ Pre(S2,q, n). 

6. {Pre(S, q, n)}S{q}, by the conditional rule from 3 and 5. 
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• S = while b do 81 od 
We may assume that there exists a formula t/J~m, n), where m ~ Count, such 
that <T F I 1Jl~m,n) iffthere exists a <T1 =MI((S1

1» [•1)(<T)1= J_ such that a' FI q 
and M1((S1' })["l)(u) = 1- for all I' < I, where I = u(m) and k = iT(n). Here 
sf'> is defined with respect to the boolean expression b (see definition 2.1). The 
existence of such a formula t/J(m, n) can be proved by the same techniques as 
used to prove lemma 5.2. 

Now we reason as follows within the proof system: 

1. {p0 (n)}P{x = z}, the assumption. 

2. {Pre(S1,t/J(m,n),n)}Si{t/>(m,n)}, from 1 by the induction hypothesis. 

3. {t/J(m + 1,n)}Si{t/J(m,n)}, by the consequence rule; we shall justify this 
below. 

4. {3mt/>(m,n)}S{t/J(O,n)}, by the iteration rule. Note that FI Y,(O,n) -+ 
-,b and F I Y,(m + l,n) -+ b. The truth of the first implication fol-
lows from the observation that for arbitrary k E N we have csi0»1•J = 
if b then n else skip fi. The truth of the second one can be justi
fied as follows: Let <T F I Y,(m + 1, n) A. -,b. From <T FI -,b we derive 
<T = MI((sf0l)!"l)(a), where <T(n) = k. But by u F I t/J(m + 1,n) we have 
Mr((S[1>)1"l)(u) = 1- for arbitrary l < <T(m) + 1. Contradiction. 

5. {Pre(S,q,n)}S{q}, bytheconsequencerule,makinguseofFI Pre(S,q,n)-+ 
3mt/>(m,n) and FI t/>(O,n)-+ q. The truth oftbe first implication follows 
from the observation that for arbitrary k E N if o-1 = M1(sl•l)(11) then 
there exists al EN such that 111 = Mr{(sf'l)["l)(a) and MI((sf''})["l)(11) = 
l_ for every l' < l. The truth of the second implication follows from the 
definition sf0> = if b then n else skip fi. 

We still have to justify step 3. To do so we prove 

FI 1f;(m + 1, n)-+ Pre(S1, t/>(m, n), n). 

Let u FI t/J(m+ 1,n). Then for u' = MI((Sfl+
1»[kl)(a) we have u' FI q, where 

l = a(m) and k = u(n), while M1((sf''})l"l)(u) = .l. for l' < l + l. Among other 
things, this implies that u FI b. 

Now if we take <T11 = Mr(sikJ)(a), it follows that u' = MI((sf'»l11l)(<T"), and 
that MI((sr»["l)(a") = .l. for I' < l. Furthermore note that I = u(m) = <T11(m) 
and k = u(n) = a"(n). So we have u11 FI 1/J(m, n). Therefore 

a FI Pre(S1,1/J(m,n),n). 

This concludes the proof of lemma 5.5. 0 
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Theorem 5.6 
The proof system T is complete, that is , for any arithmetical int erpretation I and 

any correctness formula {p} S { q} we have 

1=1 {p}S{q} imp lies 1-r {p}S{q}. 

Proof 
The proof proceeds by induction on the length of S. We present only t he case S = P. 

The other ones are treated exactly the same as in the proof of the completeness 
theorem for the sublanguage consisting of all those programs in which there occur no 

procedure calls, for which we can safely refer to [A], for example. 
So let us assume !=r {p}P{q}. We have to show that 1-r {p}P{q}. We know from 

lemma 5.5 that 

{p0 (n)}P{z = z} 1-r {Pr~( So, z = z, n)}So{z = z}. 

From p [.l:+l} = P[sJ1+1
) I PJ = sJ"+i) = So[sJ") IP] = sJJcl t ogether with definition 5.3 

and lemma 5.2 we derive 

FI Po(n + 1) -+ Pre( So, x = z, n). 

This enables. us to apply the consequence rule to derive 

{Po(n)}P{z = z} f-1 {Po(n + l)}S0{z = z}. 

Furt hermore F=r ...,.Po(O) because p{O) = 0 . So applying the recursion rule yields 

1-r {3nP<J(n)}P{z = :Z}. 

Now let q1 = q[u/z], where u is a sequence of fresh, distinct variables of the same 
length as z, such that u n Count = 0. We apply the invariance rule, yielding: 

1-r {3npo(n) /\ qi[z/ x]}P{x = z /\ q1 [z/x]}. 

Note that F=r x = z /\ qt[z/ x] -+ qi, so applying the consequence rule gives us 

Now note that z n Count = 0 and z n FV(q1) = 0. Therefore application of the 
elimination rule yields 

l-1 {3Z(3nPo(n) A q1[z/x])}P{q1}. 

We shall show below that 

l=r P1-+ 3z(3nPo(n) "q1 (z/z]) (5) 
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where Pl = p[u/z]. Applying the consequence rule thus yields f-I {p1}P{q1}. Finally 
we apply the subs.titution rule, yielding the desired result: 

1-r {p}P{q}. 

We still have to prove (5). From the soundness of the substitution rule it follows that 

FI {p}P{q} implies FI {p1}P{q1} 

(this also follows easily from propositions 2.5 and 2.7). 
Now let <T FI p 1 , then it follows that u' FI q1 for u' = MI(P)(u). Since u' = 

U.c Mr(sJ.c»(a) = LJ* Mr(Pl.i:l)(a) :f= J. (see definition 2.1) there must be a k E N 
such that a'= Mr(PlA:l)(u). Let furthermore d = u'(x). Then, from the definition of 
Po ( n), it follows that 

u{d/z}{k/n} l=r Po{n). 

Therefore 
u{d/z} Fr 3nPo{n). (6) 

From u' FI q1 and, (since z n FV(qi) = 0, q1 = q1[z/x][x/r]) we deduce by proposi
tion 2.5 

tT'{d/z} F=1 q1[z/x]. 

Now since FV(q1 [z/x]) n Var(So) = 0 we get by proposition 2.7 that a{d/z}(11) = 
a'{d/z}(y) for ally E (FV(qi[z/x]). So proposition 2.6 gives us 

(7) 

Now from (6) and (7) we conclude 

u FI 3z(3nPo(n) /\ qi[z/x]). 

This concludes the proof of (5) and also of theorem 5.6. D 

6 Application to dynamic logic 

In this sect ion we discuss the relevance of our analysis to dynamic logic [Ha]. Whereas 
in Hoare logic programs and logical formulas are strictly separated, in dynamic logic 
programs can occur inside logical formulas. There they play the role of modalities, i.e., 
they talk about the truth of a formula in other states than the current one. Formally 
we have the following definition of the assertion language of dynamic logic: 

Definition 6 .1 
The set of dynamic logic assertions, with typical element p, is given by the following 
grarrunar: 

p .. - q where q is an atomic asser tion 

Pt/\ P2 I 
Vxp 
(S}p I [S]p where S is a statement. 
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An atomic assertion consists of a predicate symbol of our first-order language L (see 
section 2.1) ll.pplied to a number of terms. We take the sa.me syntax for statements 
as defined in section 2.1. 

Definition 6 .2 
Let I be an interpretation. For an assertion p and a state u E I:(I) we define the 
truth of p in u, denoted by u 1=1 p, as follows: 

• If q is an a,tomic first-order assertion, u 1=1 q is defined as usual (cf. section 2.2). 

• u FI Pi /I. P2 iff <T 1=1 P1 and <T l=1 P2· Analogously for the other propositional 
connectives. 

• q l=1 'Vxp iff for every d E Iv we have a{d/x} l=1 p. 

• u 1=1 {S)p iff there exists a <I =fa ..L such that a'= Mr(S)(a) and u' l=1 p, 

• u l=r [S]p iff for all u'-:/= ..l such that u' = Mr(S)(a) we have a' l=r p. 

So the partial correctness interpretation of the Hoare t:riple {p}S{q} can be ren
dered in dynamic logic by the assertion p-+ [S]q, and its total correctness interpre
tation corresponds to the assertion p-+ {S}q. Now in [Ha] a proof system based on 
dynamic logic is presented which is sound a.nd complete (for arithmetical interpreta
tions). In this proof system the problem we ana.lyzed with respect to the Hoare-style 
proof system is solved in a different way. The main idea consists of extending the pro
gramming language by interpreting first-order assertions as programs in the following 
manner: 

Definition 6.3 
Let p be a first-order assertion with free variables % and y. Then we extend the 
syntax of statements (see section 2.1) by adding the clause S ::= ,;:.. Now if I is an 
interpretation we define the meaning of the program ~ as follows: 

MrW)(a) = {a': 3d(171 = o-{d/x} /I. a{d/y} l=r p }. 

Note that we thus have introduced nondeterminism in our progranuning language: 
A single statement can be executed in several ways, possibly leading to different re
sults. It is straightforward to modify the meaning function Mr as given in defini
tion 2.1 in order to cope with nondeterminism. 

Exaniple 
Let p = y = x + 1. Furthermore, let I be an interpretation such that ID is the set 
of integers together with t he standard interpretation of the arithmetical operations. 
We then have 

Mr(p~)(a) = { u': 3n(a'::::: a{n/x} /I. a{n/y} l=r y = x + 1} 
= M1(x := x + l)(u). 
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In general we have that MrW) = Mr(S) formalises that p(x, y) describes the 
graph of S as explained in the previous section, assuming that S is a program with 
Var(S, So)= x. 

We now give a proof system based on dynamic logic for our prograrruning language, 
along the lines of [Ha]. In order to focus on recursion we omit the iterative command. 

Definition 6 .4 
The proof system H consists of the following axioms: 

Assignment 1: [x := t]p.,... p[t/x] 

where p is a first-order assertion. 

Assignment 2: (x := t)p .....+ p[t/x] 

where p is a first-order assertion. 

Sequential composition 1: 

Sequential composition 2: 

Conditional 1: [if b then S1 else S2 6.]p +-+ (b - (S1]P A -.b - [S2]p) 

Conditional 2: (if b then 81 else 82 fi)p t"-!' (b - (81)P I\ -,b - {S2)p) 

Assertion 1: WJq -vz(p[z/y] - q[z/x]} 

Assertion 2: {pV)q .---. 3z(p[z/y] /\ q[z/x]) 

Invariance 1: p- [P]p 

where Var(p) n Var(So) = 0. 

Invariance 2: (p- (P)q) - (p Ar - (P)p Ar) 

where Var(r) n Var(So) = 0. 

'if- Elimination 

Further, we have the following rules: 

Modus ponens: 

Vxp-p 

P- q, q 
q 
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Box: 

Diamond: 

Universal: 

V-Introduction: 

Recurse 1: 

where Var(So) = x. 

p-+q 
[S]p-+ [S)q 

{S)p-+ (S)q 

p-q 
V:r:p--+ V:r:q 

p 
Vzp 

:i = y-+ [So~/ PIJ(p[y/x, x/yl) 
x = y-+ [P](p[y/z,z/y]) 

p(n + 1)-+ (So[p(n)~/ P])x = y -.p(O) 
Recurse 2: 

3np(n)-+ {P}x = y 

where Var(So) = x and n f/. Var(So) uxuy. 

Given an interpretation I we denote by 1-r provability in the proof system that can be 
obtained by adding to the above axioms and rules all the first-order assertions that 
valid with respect to I. 

Especially the recursion rules need some explanation. The key to understanding 
these rules is the following theorem: 

Theorem 6.5 
Let I be some interpretation and let S be a statement such that Var(S, So)= x and 
x n y = 0. Then we have the following two equivalences: 

Proof 
See [Ha]. 

l=1 x = -y- ~s](p[y,z/z,y]) 

F=1 p - {S}x = y iff 

iff Mr(S) ~ M1W) 

M1W) ~ M1(S) 

(8) 

(9) 

0 

The first equivalence states that the assertion x = y - [S](p[y, x/x, y]) holds if and 
only if the graph of the statement S is contained in that of ~- So to prove the 
assertion x = y _. [P](p[y, x/x, y]) amounts to showing that M1(P) s; M1(pJ), or., 

equivalently, that for all k we have M1(S~")) ~ M1W)- To prove this by induction 

we have to show that M1(S~k+l)) ~ M1W)· But by the induction hypothesis we 

have M1 (s6")) ~ M1(~), from which it follows that M1(saH1
)) ~ M1(So~/ P]) 

(cf. proposition 2.3). So it suffices to show that M1(So~/P]) ~ MrW)- Using the 
equivalence {8) this amounts to proving the assertion x = y-+ [So~/ P]jp[y,x/x,y]. 

In a similar way we can give a justification of the rule Recurse 2, using the equiv
alence (9). 

We have the following theorems about this proof system: 
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Theorem. 6 .6 (Soundness) 
Let I be an arithmetical interpretation. For a.n arbitrary dynamic logic assertion p 
we have 

Proof 
See [Ha]. 

f--1 p 

Theorem 6. 7 (Completeness) 

implies FIP· 

D 

Let I be an arithmetical interpretation. For an arbitrary dynamic logic assertion p 
we have 

Proof 
See [Ha]. 

FIP implies f-[p. 

D 

Note that this proof system does not have rules corresponding to the substitution rule 
and the elimination rule of our Hoa.re-style proof system. These rules are in fact in 
a way incorporated by the rules Assertion 1 and Assertion 2. However the resulting 
proof system is quite complicated. We will show that there also exists a sound and 
complete proof system based on dynamic logic which more closely corresponds to 
the Hoare-style proof systems, and that we do not need to extend our programming 
language by interpreting assertions as programs. We will make use of the fact that we 
can express the special role of the counter variables in the Hoare style proof system 
directly in dynamic logic. We first introduce the following new version of Recurse 1: 

Definition 6.8 
We have the following rule dealing with partial correctness of recursion: 

Recursion 1: 

where z = Var(So,p, q). 

VZ(p- [P]q) - VZ(p- [So]q) 
p-+ [P]q 

Next we present the following version of Recurse 2: 

Definition 6.9 
We have the following rule dealing with total correctness of recursion: 

'vZ(p(n) - {P)q) -+ vz(p(n + 1) -+ {So}q) 
Recursion 2: 

3n p(n) - (P}q 

where Var(So,p(n), q) \ {n} -;;;; z and n ~ z. 

-.p(O) 

Note that universally quantifying all the variables except the variable n corresponds 
to the different interpretation of the counter variables. Furthermore we have the 
following versions of the elimination and the substitution rules: 
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Definition 6.10 
We have the following two elimination axioms: 

Elimination 1 : 'v'z(p-+ [PJ-+ (3zp---> [P]q) 

and 

Elimination 2: 'v'z(p -+ (P)q) -+ (3zp-+ (P)q) 

where in both rules we require that z <f. Var(So,q). 

Definition 6.11 
We have the following two substitution axioms: 

Substitution 1: 'v'z(p-+ (P)q) -+ 'v'y(p[y/ z] --. (P)q[y/ z]) 

and 

Substitution 2: 'v'z(p-+ [P]q)---> 'v'y(p[y/ z] --. [P]q[y/ z]) 

where in both rules we require that z, y 'I. Var(So) and y ~ Var(p, q). 

This new system can be proved to be sound by a straightforward induction on the 
length of the derivation. The soundness of the rule Recursion 1 is established in a 
similar way as the corresponding rule of the system manipulating correctness phrases 
introduced to prove the soundness of the Hoare-style proof system for partial correct
ness (see [Al). The soundness of the rule RecUl'sion 2 is established in a s imilar way 
as the corresponding rule of the system manipulating correctness phrases as defined 
in definition 3.3. 

Completeness follows from the following theorem, see [Ha]: 

Theorem 6.12 
Let I be an arithmetical interpretation and let p and q be first-order assertions. We 
have 

PIP- (S)q implies f-1 p-+ {S)q 

and 

FI p-+ [Sjq implies 

The proofs of both implications follow the proof method for the completeness of 
the corresponding Hoare-style proof systems, i.e., the Hoare-style proof system for 
partial correctness and the system presented in the previous section. We iilustrate 
this by the proof of the lemma corresponding to lemma 5.5. Let Pre(S, q, n) and p 0 (n) 
be defined as in the previous section. 

Lemma 6.13 
Let I be an arithmetical interpretation. For every statement S and first-order asser
tion q we have 

h 'vY{po(n) - (P)x = z)-+ 'ty(Pre(S, q, n) - (S)q) 
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where Var(po(n),q,S) UxUz\ {n} ~ y, n (/_ y, and x = Var(So). 

Proof 
The proof proceeds by induction on the complexity of S. Here we only deal with the 
case of S = P; let q1 = q[u/zj, where ii are some new variables: 

l. (p0 (n) -+ {P)x = z) -+ (po(n) A qi[z/ x j -+ {P}z = z A q1 [z/zJ), by Invariance 2. 

2. (po(n)-+ {P)x = z) - (po(n)Aq1 [z / x]-+ {P)qi), from FI x = zAqi[z/x]-+ qi, 
using Diamond and some propositional reasoning. 

3. VZ(p0 (n)-+ (P)x = z)-+ VZ(po(n) A qdz/x] -+ (P)q1), by Universal. 

4. VZ(p0(n)-+ (P)x = z)-+ (3z(po(n) A q1[z/x])-+ (P)q1), by Elimination 2 and 
some propositional reasoning. 

5. VZ(po(n)-+ {P}x = z)-+ (Pre(P,q1,n)-+ {P)q1), because F I Pre(P,q1,n)-+ 
3z(p0 (n) A qi[z/x}) (see the previous section) and using some propositional rea.
soning. 

6. VZ(p0 (n) -+ {P }x = z)-+ (Pre(P, q, n)[u / z] -+ {P )q1), since 1=1 Pre(P, q, n){u/z]-+ 
Pre( P , qi, n) (see lemma 5.4) and using some propositional r~asoning. 

1 . 'v'Z(po(n) -+ (P}x = z) -+ Vii(Pre(P,q,n) [u/z) -+ (P}q1), by Universal, V
Elimination (note that u n Var(po(n) -+ {P)x = z) = 0), and using some 
propositional reasoning. 

8. VZ(p0 (n) -+ (P)z = z) rightarrowVZ(Pre(P, q, n) -+ {P }q), by Substitution 2 
and some propositional reasoning. 

9. \t'y{po(n) -+ (P}~ = z) -+ Vy(Pre(P, q, n) -+ (P)q), by Universal. 

From this lenuna we derive in the same way as in the previous section that 

Vi(po(n)-+ {P)x = z)-+ vy(po(n + 1)-+ (So}z = z). 

Applying the recursion rule then gives us the derivability of 

3npo-+ (P)x = z. 
Next we apply the rule \/-Introduction, which gives us the <ieriva.bility of 

VZ(3nPo-+ (P }x = z). 

We have 
r-1 VZ(3nPo-+ (P }z = z)-+ VZ(p-+ (S)q) 

D 

for any valid assertion p-+ {S }q. The proof of this claim proceeds in a similar way 
as the one of lemma 6.13. So we have the derivability of 

VZ(p-+ (S}q). 

Using the 'v'-Elimina.tion axiom and the Modus ponens rule then concludes t he com
pleteness proof. 
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1 Conclusion 

We have studied in this paper a well-known Hoare-style proof system for the total 
correctness of recursive procedures. We showed that the proof system as presented 
in the literature is unsound due to the incorrect interaction of the recursion rule 
and the rules which formalise reasoning about invariance properties. Our solution to 
this problem consisted in defining some appropriate restrictions on the applicability 
of those rules which can interact in an incorrect way. We proved the system to be 
sound along the lines of [A] using a transformation of the system into a Gentzen
like calculus, thus turning it into a system in which the recursion rule is no longer 
a metarule. However, the interpretation of the result of this transformation differs 
from the one used in [A] to prove the soundness of the system for partial correctness. 
Special care had to be taken ,concerning the interpretation of the variables used to 
establish termination of procedures. 

Furthermore we proved that even with these restrictions the proof system is still 
complete. The completeness proof differs quite substantially from the one given by 
[A] because there the restrictions on the applicability of some rules are not satisfied. 

In [S] Sokolowski presented a different formulation of the recursion rule, based on 
predicate transformers, in orde.r to solve the problem of how to interpret the notion of 
derivability in the premise of the recursion rule. In the conclusion of this new version 
the existential quantification of the variable used to establish termination is replaced 
by an infinite disjunction. As a consequence, our counterexample to the soundness 
of the system does not apply to this new version of the recursion rule. However the 
proof system based on predicate transformers transcends the framework of Hoare-style 
proof systems in allowing infinite disjunctions. Furthermore, the system presented in 
[S] is incomplete because it does not include a reasoning mechanism about invariance 
properties. A similar proof as given in [A] that the rec1.1rsion rule for the partial 
correctness of recursive procedures does not suffice shows the same for the recursion 
rule for total correctness. 

We also applied our analysis to dynamic logic. We constructed a proof system 
based on dynamic logic which more closely corresponds to the Hoare-sty le proof sys
tem than the one presented in [Ha]. In [Ha] the problems we encountered are solved 
in a way which complicates the proof system considerably. In particular it extends 
the programming language with assertions considered as statements. We showed how 
our technique to arrive at a sound and complete system based on Hoare logic can be 
formulated in the formalism of dynamic logic. The resulting proof rules are simpler 
and the programming language need not be extended. 
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