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ABSTRACT

In this paper we analyse an age-structured predator-prey model in which
predators eat only very young prey. The model can be formulated as a system
of three Volterra integral equations with an implicitly defined non-lineari-
ty. An interpretation of the implicit relation is given. The linearized
stability of the steady-states is investigated. It turns out that concen-
tration of the predator on very young individuals is a stabilizing mechanism.
Furthermore, it is seen that a compound parameter which is a measure for
the efficiency of the predator has a major influence on the stability of
the steady-states. If the efficiency of the predator decreases the steady-
state can become unstable and oscillations will arise. Furthermore it is
seen from the model that the destabilizing effect of a juvenile period is
stronger when it concerns the predator than when it concerns the prey

species.
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1. INTRODUCTION

Many authors have introduced predator-prey models which take account
of realistic biological mechanisms. MURDOCH & OATEN (1975) present a good
review of the insight which can be gained from such studies. But still many
models suffer from obvious shortcomings, a rather important one being that
all individuals of the same species are treated as being equal. Such models
ignore the well-known fact that demographic indices such as fecundity and
surivival probability as well as properties related to the predation process
such as vulnerability or agressivity vary with the age, weight or some
other physiological characteristic of the individuals.

Some authors have introduced age-dependent demographic properties into
predator prey models (see for instance CUSHING & SALEEM (1982); HASTINGS &
WOLLKIND (1982)).

Recently age-dependence in parameters describing the predation process
has received some attention. From the biological literature it is known
that many predators do not eat all ages of prey indiscriminately. There are,
for instance, many well-documented examples where predators eat only the
very young individuals or the eggs of the prey. (NIELSON 1980; LE CREN et
al. 1977; P.S. DAWSON 1979; A.F. BROWN & M. DIAMOND 19843). In order to
translate this observation into a manageable model GURTIN and LEVINE (1979)
introduced the extreme case in which predation only affects the rate of
recruitment of the prey. In other words, the predation takes place in-
stantaneously at prey-age zero. This type of interaction is now commonly
refered to as an 'egg-eating predator-prey relation'. In continuations of
this study many authors have given different forms to the factor with which
the birth~rate is reduced to the actual recruitement rate (GURTIN & LEVINE
1979; THOMPSON et al. 1982; COLEMAN & FRAUENTHAL 1983). DIEKMANN et al.
(1985) criticize all of these. The mistake that produces wrong results is
that in the derivation of the birth-rate-reduction factor rates are treated
as numbers. A correct derivation, incorporating a general functional re-
sponse, is given in DIEKMANN et al. (1985) and subsequently it is used in

a model for a cannibalistic species.

In this paper we use the same approach to construct an egg-eating
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predator model. We will combine some analytical and numerical work and

reveal some robust properties of the model. Analytically the stability of
the non-trivial steady—state is studied for the most simple case and for a
prey species with a reproductive capacity slightly larger than the critical
one. Next we turn to a special case involving step functions for the age
specific birth-rates and predation index. The stability boundaries in this

case are calculated numerically.

2. THE MODEL

Consider age-structured prey and predator populations with age dis-
tributions given by, respectively, p(t,a) and ¥(t,t). (We shall, for the
sake of clarity, systematically denote prey age by a and predator age by 7).
The evolution of these distributions is governed by the well-known

McKENDRICK equation.

g%—p(t,a) +'§% p(t,a) = =v(t,a)p(t,a)
(2.1)
2o (e, 1) + e Y(E,T) = —u(E,TY(E,T)

With the boundary conditions

(2.22)  p(£,0) = b (£)

(2.2b) y(t,0) = b2(t).

In order to define a complete model we have to specify the birth~ and death-
rates for both populatioms.

Let B(a) be the expected number of young produced by a prey individual
of age a per unit of time. We assume that the birth rate of the prey is

density independent, so we take

o]

(2.3) bl(t) = J B(a)p(t,a)da.
0




The birth rate of the predator does depend on the amount of prey eaten

and on the reproductive capacity of the predator. The two quantities of im—
portance here are the attack rate of the predator on the prey and the con-
version efficiency of prey, eaten by a predator, into new predators. We will
assume that prey-age and predator-age influence each of these quantities

independently. The attack rate is given by G(1)C(a), where

C(a)
G(T)

The prey age specific attack rate

The predator age-specific predation index.

These functions can be normalized in various ways. We will normalize such
that G(1) € [0,1] and G(t) = 1 for at least one t. The conversion factor is

given by K(t)z(a), where

z(a)
K(T)

The maximal number of new predators from a prey of age a

]

The predator age-specific reproduction index normalized such

that K(t) € [0,1] and K(t) = 1 for at least one T.

The birth rate of the predator at a certain time t depends linearly on the

total amount of prey eaten at that time. So

(2.4) bz(t) = j G(t)K(t)y(t,T)dr J t(a)C(a)p(t,a)da ¢(c(t)),
0 0

where ®(c(t)) is a correction factor which we will explain later on.
For the predator population we assume that the death-rate does only

depend on the age of the predator and take:

(2.5) w(t,t) = w(t).

The death rate of the prey consists of two terms both of which are
prey-age specific. The first is the rate of death (u(a)) due to causes
other than predation. The second is the rate of death due to predation.

(2.6) v(t,a) = p(a) + C(a)Q(t)e(c(t))

with

(2.7)  + Q) = | 6()y(t,T)dr

|




(2.8) c(t)y = [ B(a)C(a)p(t,a)da
0

where

p(a) = the age specific death—rate of the prey
d(c(t)) = the correction factor for density dependent effects;
below we shall interpret & as the fraction of the time
that a predator spends searching at prey density p.

B(a) = the prey age specific handling time.

We can interpret Q as the effective number of predators and c as the ef-
fective number of potential victims (see below)
The functional response, i.e. the number of prey eaten per predator

per unit of time, is now given by

(2.9) R(p(t,a)) = J C(a)p(t,a)da 2(c(t)).

0
We will make the, biologically reasonable, assumption that c®(c) is in-
creasing for ¢ = 0 and that ®(c) is decreasing for c = 0. Since CQ? occurs
as a product in equation (2.6) we can normalize ¢ in various ways. We will
normalize such that ¢(0) = 1 and %ig c®(c) = 1. Here we assume that the
1limit exists and is finite (As a side remark we mention that the VOLTERRA-
LOTKA linear functional response corresponds to the choice ®(c) = 1)

For instance we can take:

1

(2.10) d(c(t)) =m

Then the functional response is the age—structured analogue of the Holling
type II functional response. This can be seen from the following argument.
The total time a predator spends handling prey (Th) equals the handling
time per prey times the total number of catches. The total number of
catches equals the attack rate multiplied by the population density and

the total time spent searching (TS). In the age-structured model we get:

h'

2.11) J B(a)C(a)p(t,a)da Ts =T
0
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So in this context c¢ is the ratio of the time spent handling and the time

spent searching and as such it is a convenient measure for the overall prey
density. HOLLING argued that the total time available to the predator T is
the sum of the total handling time and the searching timeCT = TS + Th).
Substitution in (2.11) gives:

T 1 1

(2.12) L _ .
T 1+f05(a)C(a)p(t,a)da I+e

Which is exactly formula (2.10) for the correction factor ¢(c).

The general model is now complete. It allows for predation varying with
the age of the prey and with the age of the predator in an independent
manner. Next, we specialize to predation on the utmost young individuals.

In the limiting case that we are going to study, the predation takes place
instantaneously at a = 0. The basic idea is to let the age interval in which
the prey suffers from predation, as described by the support of C(a), tend

to zero while at the same time increasing the risk per unit of time of
falling a victim to predation in such a way that the total risk, as described
by 8 = f: C(a)da remains strictly positive. The parameter 6 can be con-
sidered as a vulnerability index.

We refer to DIEKMANN et al.(1985) for the technical details of the

limit procedure. The limit-model takes the form:

(2.133) -%% + g%-= -u(a)p(t,a)

(2.13b) p(t,0) = bl(t)eXP(-eQ(t)é(C(t)))
(2.13¢) %%-+ %% = ~w(D)YP(t,T)

(2.134) y(£,0) = b2(t)

where

(2.13e) bl(t) = f B(a)p(t,a)da
0
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(2.135) bz(t) = CB—IC@(C) J R(t)G(t)y(t,t)dT
0

(2.13g) Q(t) = J G(Dy(t,1)dr
0

b, (t)
(2.13h) C(t)g(“(t)) - Q‘(t) (1-exp (-6Q(£) 8 (c (£))))

with ¢ = £(0) and B = B(0). For Q(t) = O the right-hand side of (2.13h)
should be interpreted as Gbl(t)Q(c(t)).

From (2.13h) we see that the predation rate is determined by an im-
plicit relation. The left~hand side is equal to the limit of the functional
response (2.9). The right—hand side is, indeed, equal to the number of prey
eaten per predator per unit of time. Hence (2.13e) is a consistency condi-
tion. The assumptions on c®(c) and ¢(c) ensure that ¢ is uniquely determined
as a function of b1 and Q by this implicit relation.

System (2.13) will be the subject of our analysis in the next paragraph.

3. STEADY-STATES AND STABILITY

By integration along characteristics we can reduce the limit-model to

a system of three Volterra—integral equations and one scalar-equation.

/

b](t) Y g(a)b](t—a)exp(—6Q(t~a)®(c(t—a)))da

O 8

bz(t) c8_16c®(c) J f(T)bz(t—T)dT
3.1) < 0

Q(t) = a h(T)bz(t-T)dT

~ ON—e— 8

b, (1)
c(t)Z(C(t ) _ Ql(t) (1-exp(-8Q(t)o(c(t)))).
L

—fgu(o)dc
B(a)e

it

Where yeg(a)

—fSw(o)dc
S£(1)

G(t)K(D)e

—fgw(o)do

& oh (1)

G(t)e




and v,8 and o are chosen such that g(a), £(1), h(t) have integral onme.

Consequently

Y the eﬁpected number of offspring produced by one newly recruited

prey individual during the course of its future life.

8 = the expected time a predator spends searching and eating during
the whole course of its reproductive life.

o = the expected time a predator spends searching and handling during.

its entire life.

We will study the existence and local stability of the steady-states
of this system. For a treatment of the theory of linearized stability of
Volterra convolution integral equations we refer to DIEKMANN & VAN GILS
(1984).

Besides the trivial-steady-state
(6,,5,,Q,8) = (0,0,0,0)

we also find a non-trivial steady-state from:

5y - &
to(c) = 7
_elylny
B1 € o8 v-1
(3.2) 9
5:.1_ In y
2 o 088(28)
~ In vy
Q=———-7r—
L ad(c)

The assumptions on ® ensure that the first equation has a unique solution
(which does not depend on y!) provided that §/8>1. From the interpreta-
tion of 8 and B we see that 8/8 is the maximal number of victims a preda-
tor can make during the whole course of its life. Multiplying this quanti-
ty with the conversion factor [ gives the maximal number of offspring a
predator can have. When 78/B8<l the predator population goes extinct no

matter how large the prey population is. We will call ¢8/B the efficiency

factor of the predator.




In the special case ¢(c) = 1/I+c we find explicitly
(3.3) T
° C ’E.é_] -
B

For y = | there are also the steady-states

(¢]
I

b
8O,

b, € R, arbitrary
(3.4) y |
b, =0,

It
[e]

The bifurcation diagram is depicted in Figure 1. Note the vertical bifurca-
tion at vy = 1.
Linearization of (2.13) about the trivial steady-state yields the

characteristic equation
yg(\)-1 =0

where

g(\) = J e
0

and we can conclude that the trivial steady-state is stable if y < 1 and un—.

Aag(a)da

stable if y > 1 in accordance with the biological interpretation of .
Linearization about the non-trivial steady-state (3.2) yields, after

some calculations, the characteristic equation
(3.5) g hO) (I=Qk(n) + (E)-1) (gk(v)+1)]

-h (W) (1=)m(Y)- (E(A)=1) (qm(y)+1) = 0

In y

where | k(y) = ~1+ln v

n
v-1




m(y) =

1= 5w

and

The assumptions about ®(c) imply that the parameter q necessarily is con—

fined to the interval (0,1).

For our special case ¢(c) = 1/l+c we find:
8
q= ‘E‘

which is the efficiency factor of the predator as we have defined earlier.
(As an aside note that ¢(c) = 1 yields q = 0)
Equation (3.5) is rather unwieldy. We will study some special cases in

order to obtain some insight.

(i) The most simple case

Suppose that, except for the fact that predation takes place at

prey age a = 0, all indices are age-independent. So, in particular,

—ua
Ueu

g(a)

£(1) =we %,

h{t)

Straightforward manipulations applied to either (2.13) or (3.1) lead to the

system of ordinary differential equations

%%~= uyn exp(-6Q2(c))-un
(3.6)
R - g ea(e)euQ

with ¢ as a function of n and Q defined by

cd(c)

(3.7) g

= uy %-(l~exp(—6Q®(C)))

and




10

n(t) = J p(t,a)da = total prey population
9

Q(t) = J y(t,7)d = total predator population
0

Of course one can also write down (3.6) directly from the assumptions and
the interpretation.
The characteristic equation (3.5) now becomes

(3.9) ekz + b+ c=0

where

1 + qm(y)
—quX(y)-m(y)) + wm(y)(q-1)
w(K(y)-m(y)) (1-q).

(¢]
il

Since e >0 and ¢ 20 for vy 2 1 and q € (0,1) we conclude that the steady
state is stable if b > 0 and unstable if b < 0. The criticality condition
b = 0 defines the stability boundary in parameter space. Expressing q as a

function of the other parameters we find

G0y aen by e B lwy
5 oy m(y) Iny-y+1- = loy(y-1)

Some important properties are:

. . 1
(1) lim q(y, %) ==
Y41 2 — +1
w
(ii) lim q(v, %) =0
‘Y—>0°
2 2
@) ek, B -2 BXUED A oo fory > |
(Iny=y+1- " Iny(y-1))
. 9 U
(iv) — q(v, ED <0 for vy > 1.

3

€|

In figure 2 we display q as a function of Yy for various values of %u We

see that the form of the stability boundary in the (y,q)-plane is not
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influenced by the value of p/w.

In the case of a linear functional response (q=0) the steady state is

always stable. .In fact the corresponding system

.dn

T un(ye 2%1)
(3.11)
%% = Cn(l-e_eQ)—wQ

has a globally asymptotically stable steady state as can be deduced from
Bendixson's criterion after the change of variables n = em, Q = eR.

In Appendix III we modify the system (3.11) to account for the pre-
sence of yet another predator species which eats all prey indiscriminately

and make a remark about the competitive exclusion principle.

(ii) prey with small reproductive capacity

For vy = 1 the characteristic equation (3.5) has two roots equal to
zero. The stability of the non-trivial steady state (3.4) for y slightly
larger than one depends on the sign of the real part of these two critical
roots. The procedure to assess the stability properties of the steady-state
in such a situation is explained in Appendix I. With this procedure we find

that the steady state is stable if and only if

(3.12) (g=1)p+r <O
2R R~ o~
where p=fLig+gf-2g6hf+3gif
r = 2§ %2
With E = J ag(a)da = the mean of g(a)
9
~ ~ 2 .
g = (a-g)“g(a)da = the variance of g(a)

and similar definitions for f and h.

From (3.12) we see that a reduction of the efficiency of the predator

(i.e. an increase of q) can cause a stable steady state to become unstable.

&
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In the limit q 4 1 the steady state is always unstable.
If we take h = E, for instance by putting K(t) = 1, (3.12) can be

written as:

(3.13) q < ==

From (3.13) we see that an increase of the mean age of reproduction of any
of the species can destabilize a stable steady state. If we let E » o for
~ & ~
fixed £,f and g the condition becomes
282

X~

f+f

gy <1-

1s

LR

which still can be satisfied for some positive values of q provided
i1 ~ ~ ~ ~
sufficiently large (in fact f >> f2). However, if f - « for fixed g,g and

f we find

which clearly is impossible for positive q. So in this sense the mean age
of reproduction of the predator can have a stronger destabilizing influence

than the mean age of reproduction of the prey.

(iii) delayed reproduction and predation
Next we take the death-rates to be age independent, and the age speci-

fic birth rates and the predation index to be step—functions. So,

g(a) = H(a-Tl)ue-U(a_Tl)
(3.10) £(1) = H(T—TB)we_w(T_T3)
h(t) = H(T—Tz)we_w(T—Tz).

With H(*) the Heaviside-stepfunction. T, and T3 are the juvenile period of

1
the prey and predator respectively. T2 is the pre-predatory period. So,

T2 < T3. The stability boundary is determined numerically with a procedure

descrilbed in Appendix II.
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states are unstable.
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1 3
1,0
wT

unstable
u/w=0,5
Stable
« 0,0 N
0,0 1,0 wT 2,0

Figure 6: The stability boundary in the (wTI,mT)—plane, where

wT = sz = T

3 for ¢ = 0,0; vy = 10,0 and various values of u/w
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From figures 3,4 and 5 we see that the form of the stability boundary
is not much influenced by variation of the delays in any of the species.
The figures shown here are representative for most parameter values we in-
vestigated. The general picture is that the stability domain becomes smaller
when p/w or any of the delays is increased. A comparisbn of figures 3 and 4
gives the impression that the stability domain is reduced more when the
juvenile period of the predator is increased than when the juvenile period
of the prey is increased.

When T2 # T3 restabilization can occur when T3 is increased when u/w
and wT3 are large. This restabilization occurs in a small interval of q
values. Although this phenomenon is rather intrigueing, we consider it, in
this model, as biologically irrelevant.

In figure 6 we illustrate the destabilizing effect of the juvenile
periods in more detail. This figure is representative for all parameter
values investigated. From figures 3,4 and 6 we see that the juvenile period
of the predator is more critical to the stability of the steady-state than
the juvenile period of the prey. We will return to this point in the dis-
cussion.

The period P of the periodic solution that arises at the stability
boundary seems to depend mainly on Yy and not so much on other parameters.
We found that P decreases with increasing y. For vy = 10 we found P ~ 10 for
y = 100, P~ 6 for y = 1000, P ~ 4. The time unit in which the period is ex-

pressed is 'the mean longevity of the predator' (1/w).
4., DISCUSSION

The model we have analyzed in this paper is based on some assumptions
that will not be met in the real world. Density dependent effects other than
predation are not incorporated in the model. For instance, selfregulation of
the prey and/or the predator can be important when the population density
is high. These points should be given some attention before we can draw
general conclusions about the dynamical consequences of egg-eating predator-

prey relations, but some conclusions can already be drawn from the results

of sectien 3.

The well known LOTKA-VOLTERRA model, where prey is eaten
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indiscriminately, can be compared with our 'most simple case' with a linear
functional response. The LOTKA-VOLTERRA model has a neutrally stable steady-
state. The egg-eating predator model has a globally stable steady-state. So,
concentration of the predator on very young prey can be considered as a
stabilizing mechanism. With model formulations that are disputable (see sec-
tion 1) GURTIN and LEVINE (1979) concluded that egg-eating is destabilizing
while THOMPSON et al. (1982) concluded that it is stabilizing.

The functional response, expressed here through the efficiency factor q,
is seen to act as a destabilizing mechanism. It has a major influence on the
stability of the non-trivial éteady—state. When the predator is very inef-
ficient the steady-state is always unstable. COLEMAN & FRAUENTHAL (1983)
also investigated an egg-eating predator model where the predator has a
non-linear functional response. They arrived at the opposite conclusion,
but, as argued in section 1, their model formulation is disputable.

Delays in reproduction and predation are also seen to be destabilizing.
A striking feature of our results is that the range of juvenile periods for
which the steady-state is stable is larger in the prey than in the predator
species. HASTINGS (1984) analyzed a model where adult prey individuals are
eaten by adult predators. In that model the juvenile period of the prey
proved to be more critical than the juvenile period of the predator. Further-
more, he found that when the juvenile period of the prey is smaller or
equal to that of the predator the steady-state is always unstable. These
conclusions differ from the ones derived in the present paper and might
point to a qualitative difference between predation on adults and preda-
tion on very young individuals.

In conclusion we can say that concentration of the predator on very
young individuals is stabilizing, a non-linear functional response and |
delays in reproduction and predation are destabilizing. The conflicting
effects of these mechanisms determine the precise location of the stabili-

ty boundary.
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APPENDIX I

To assess the stability of the non-trivial steady-state for y slightly
larger than one put Yy = l+e and consider the characteristic equation as a
function F of X and €. The expansion of F(A,e) about A = € = 0 is given by

Ae +VBA2 + CeA + DAB P

F(A,€)

since (%;D 0.

A=03;e=0 B
Assume that A can be expanded in powers of Ve, i.e.

A= c1/€'+ C2€+... .
Substituting this into the expansion for F we find after equalizing like
powers of Ve
-
C=j-_-é

_ AD-BC
2 " T g2

We conclude that:
(i) the steady state is stable if

% >0 and AD-BC < O

(ii) the steady state is unstable if

éu< 0 or %—> 0 and AD-BC > O.

B
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APPENDIX II

We want to find solutions of F(A,a,B) = 0 where A is purely imaginary
and o and B are real. Assume that F is linear in o. Then the equation can

be written as:

F(}\,O",B) = Fl()‘as) - an()\’B) =0

or
F (A, 8)
@ = F,(58)

Since @ is real we necessarily should have

ReFIIsz + ReFZImF1 = 0.
This is an equation in two variables A and B. For fixed B successive roots
A can be found with standard numerical procedures. Subsequently o can be

found from

if ImF2 # 0 and

ImF1

Rer

otherwise. Thus we construct curves in the (a,B)~plane on which the equation
F = 0 has a purely imaginary root. The "outer" one is the true stability
boundary. The clue to this method is the first step in which the equation

is "solved" for a. When studying (3.5) with f,g and h given by (3.10) we
first gave q the role of ¢ and Y the role of B. But when making figure 6

we used a preparatory log-transformation to make the equation linear in

wT and then gave wT the role of o and wT, the role of B.

1
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APPENDIX III

Assuming linear functional responses, we may describe (after scaling
all variables), the interaction of one prey (n), one egg-eating predator

(Q) and one indiscriminate eating predator (R) by the system

%% = n(Ye—Q—l—R)
2 - q(az(@-w)
%% = R(en~)
'where £(Q) = l—gﬁ (so f is monotone decreasing) and y,w,c and ¢ are posi-

tive parameters. In the invariant n-R plane we have VOLTERRA-LOTKA dynamics:
periodic orbits around the equilibrium n = t/e, R = y=1. In the invariant
n-Q plane there is a globally stable equilibrium Q=1lny,n =0 ¥%?%u The
coexistence equilibrium

* *

- —n*
n* =/, QF=f 1(%? s R = 1vye R

is biologically relevant (i.e., lies in the positive octhant) provided

that

y-1 £V
<
Y1lny 4

(*)

Under the condition (*) both the (E,O,E) and the (n,Q,0) equilibrium are
unstable with respect to the three dimensional system. Some further calcu-
lations show that the * equilibrium can not change its stability type while
moving (as parameters are varied) from the (;,O,E) equilibrium to the
(5,6,0) equilibrium or vice versa and, moreover, that it is locally asymp-
totically stable near the bifurcation points. So we conclude that both
predators can coexist in a stable steady state if (*) is satisfied, although

there is only one food source. They manage to do so by specializing on dif-

ferent stages of the prey. This point was put forward by HAIGH and
MAYNARD SMITH (1972) in the context of a slightly more complicated model.
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From a mathematical point of view it seems interesting to add satur-
ating functional responses and carrying capacities and to study, in the
spirit of WALTMAN (1983), the movement of limit cycles from one invariant

plane to another as parameters are varied.
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