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INTRODUCTION 

In [CL] a theoretically and algorithmically simplified version of the Adleman-Pomerance­
Rumely primality testing algorithm [APR] was presented. To prove its practical value, 
we implemented the algorithm from [CL]. As a result numbers of up to 213 decimal 
digits can be handled within approximately ten minutes of computing time on a CDC 
Cyber 1701750. , 

In fact, two programs have been written. The first program, written in Pascal, was dev­
ised for numbers of up to 104 decimal digits. In order to increase the portability of the 
program, we translated it into Fortran and at the same time extended its capacity to 213 
decimal digits. This Fortran implementation now runs on the following computers: CDC 
Cyber 1701750, CDC 205, and Cray 1. For these machines multiprecision integer arith­
metic routines were written in the respective machine languages by D.T. Winter from the 
Centrum voor Wiskunde en Informatica in Amsterdam. 

This paper does not present any new result. We only describe how a slightly improved 
version of the algorithm from [CL] was implemented. No detailed program texts will be 
given, but we supply enough information for anyone who might be interested to imple­
ment the algorithm from [CL], and who was discouraged by the more theoretical 
approach from [CL]. 

The primality testing algorithm as it has been implemented is described in Section 1. 
A further explanation of those parts of the algorithm for which we felt that this might be 
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helpful, can be found in Sections 2 through 6. Some examples and running times are 

given in Section 7. In the Appendix detailed formulae for multiplication in cyclotomic 

rings are presented. 
By Z we denote the ring of integers, and by Q the field of rational numbers. The 

number of times that a prime number p appears in m is denoted by vp (m ), for 

m E Z=f:.o· By r Im we mean that r is a positive divisor of m. For a prime power pk we 

denote by rpk a primitive pk-th root of unity. 

1. THE PRIMALITY TEST 

Combination of the results from [CL, Sections 10 and 12] and [Le, Section 8] leads to the 

primality testing algorithm described in this section. For the theoretical background we 

refer to [CL, Le]. The notation that we introduce here will be used throughout this 

paper. 
Let N be some large integer. The primality testing algorithm described here can be 

used to determine whether an integer n , 1 < n ~ N, is prime. The algorithm consists of 

two parts. The first part, the preparation of tables, has to be executed only once because 

it only depends on N ; the second part, the primality test, has to be performed for every 

number n to be tested. 

( 1.1) Preparation of tables. 

(a) Select an even positive integer t with e(t) > Nlfi, where 

e(t) = 2· IT qvq(t)+l, 

q prime,q-llt , 

and tabulate the primes dividing e (t ); these primes will in the sequel be called the 

q-primes. (In the Fortran program t is chosen as 55440=24·32·5·7·l1. Because 

e(55440) = 4.920· 10106 (rounded off downwards), we can handle numbers of up to 

213 decimal digits. For this value oft the number of odd q-primes is 44.) 

(b) Perform steps (b 1) and (b2) for each odd prime q I e (t) (so q - 1 I t ). 
(b 1) Find by trial and error a primitive root g modulo q, i.e. an integer g ± 0 mod q 

such that g<q - l)tp ± 1 mod q for any prime p I q - I. In our implementation this 

was done by trying g = 2, 3, 4, ... in succession. Make a table of the function 

f : { 1, 2,. .. , q - 2} ~ { 1, 2, ... , q - 2} defined by 1 - gx = gf <x >mod q . (So, first make 

a table of log(gxmodq)=x, for x = 1,2, ... ,q-2, and next /(x)=log((l-gx) 

modq), for x = 1,2, ... ,q -2.) 

(b2) Perform steps (b2a ), (b2b ), (b2c) for each p I q - 1 (sop I t ). 
(b2a) Put k = vp(q -1), the number of factors of p in q -1. 

(b2b) If pk =t= 2, compute and tabulate 
q-2 

}p,q = ~ r;k+f(x) E Z[rpk]. 
x =l 
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(b2c) If p = 2, k ;;;;:.: 3, compute and tabulate 
q-2 

Jiq = ~ t~+f(x) E Z[t2k], 
x=l 

and 
q-2 

Jfq = ~ rp;-3(3x+f(x)) E Z[t2k]. 
x =1 

Notice that };,q)2,q and (Jf,q)2 correspond to };,q and Jfq from [CL, Section 12] 

respectively. 
The Jacobi sums in (b2b) and (b2c) can be computed as follows. We represent 

an element ~O~i<(p-l)pk-ia;ttk of Z[tpk], with a; E Z, as a vector 

(a;)o~i<(p-l)pk-1. Initially we put a; =O for O:s;;;;i <(p-l)pk-l. Let a,b EZ; 

for the computation of }p_ ,q we take a = b = 1, for j ;,q we take a = 2, b = 1, and 

for Jfq finally a= 3-2k-3, b = 2k-3. For x = 1,2, ... ,q-2 in succession we do the 

following: 
Put I =a·x+bf(x)modpk. If I <(p-l)pk-l, increase a1 by one. Other­

wise, decrease a1 _ ;pk-1 by one for i = 1, 2, ... , p - 1. (Notice that, for each x , 

this is the same as replacing the vector (a;) by the vector (a;)+ t;,; x + b I (x > 

modulo the minimal polynomial of tpk, the pk -th cyclotomic polynomial 
"""p - 1 xipk - I ) 
""-i1=0 • 

At the end of this process we have a representation for the Jacobi sum in the vector 
(a;). , 

This finishes the preparation of the tables. 

(1.2) Remark. Notice that only the Jacobi sums are tabulated, and not the Jacobi sum 

powers as in [CL, Section 12], because that would require a lot of memory space even for 

moderately sized t . This implies that the Jacobi sum powers have to be recomputed for 

every n . As they are easily calculated this takes only a relatively small amount of com­

puting time (cf. remark after (6.1)). (In the Pascal program we stored the Jacobi sum 

powers, as in [CL, Section 12]; this resulted in a 1.5% speed-up.) 

The reason that the Jacobi sums themselves are tabulated and not recomputed for 

every n, is that their computation requires too much memory space (namely the space to 

store the table of the function f ). 
We now present the primality testing algorithm as it follows from [CL, Sections 10 and 

12] and [Le, Section 8]. A detailed description of the steps of the algorithm can be found 

in Sections 2 through 6. 

(1.3) The primality test. Let n, 1 < n :s;;;; N, be an odd integer to be tested for primality. 

Suppose that tables containing t, e (t ), the q-primes, and the Jacobi sums are prepared 

according to (1.1). 
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Preliminary tests. 

(a) Test whether gcd(t·e(t),n) = 1. If not, then a prime divisor of n is obtained, be­
cause all factors of t·e(t) are known from (1.1). In this case Algorithm (1.3) is ter­
minated. 

(b) Select a trial division bound B and perform the trial division step (2.1) as described 
in Section 2 for this value of B. If a non-trivial divisor of n is found, then n is 
composite and Algorithm (1.3) halts. If n is found to be equal to a prime number, 
then n is prime and Algorithm (1.3} halts. Otherwise let z- be the set of odd 
prime numbers ::;:;;;; B dividing n - 1, let r - be the largest odd factor of n - 1 
without prime factors ::;:;;;; B, and let 1- = (n -1)/r- be the factored part of n -1. 
Similarly, let I+, r +, and I+ be the set of odd prime factors ::;:;;;; B, the non-factored 
part, and the factored part of n + 1. 

(c) Select a small positive integer m, and perform the probabilistic compositeness test 
(3.4) as described in Section 3 at most m times. If, during the execution of (3.4), n 
is proved to be composite, Algorithm (1.3) halts. 

(d) As explained in [CL, Section 10] it is useful to distinguish between the prime power 
factors of t that divide n - 1 and those that do not divide n - 1. Declare therefore 
for all prime powers pk dividing t a boolean variable flagpk, and put 

flagpk ="true" if n = 1 modpk, and flagpk ="false" otherwise. 
We could have done something similar for the prime power factors of t that 

divide n + 1. We did not incorporate that in our implementations however (see also 
Remark (4.6)). 

(e) Perform the Lucas-Lehmer test (4.4) as described in Section 4. If n does not pass 
(4.4), report that (1.3) fails if (4.4) fails, and report that n is composite if that has 
been proved in (4.4). In either case Algorithm (1.3) is terminated. 

If n passes ( 4.4) and its primality has been proved in ( 4.4), report that n is prime 
and halt. Otherwise let, for pk such that flagpk ="true", elements p;k of Zin l. be 

as in (4.2) and (4.4)(cl). Then P)k is a zero of the pk-th cyclotomic polynomial, 

and P;k is its i -th power. 
If n passes the Lucas-Lehmer test, then for each r dividing n there exists an in­

teger i ;;;:i: 0 such that r =n; mod(f-1+) (where 1-1 + can be replaced by any 
number built up from primes dividing 1-1 +, cf. (5.2)). 

(f) Perform Algorithm (5.5) to select a new value for t dividing the old value, and 
S = SfS2 > nih. 

Here s 1 is built up from primes dividing 1-1 +, and s 2 is coprime to s 1 and 
built up from primes dividing e (t ). The factors of s 1 have been dealt with by 

means of the Lucas-Lehmer test, and the factors of s 2 will be dealt with by means 
of Jacobi sums. 

For the resulting values of t and s we have n 1 =1 mods (cf. [CL, Proposition 
(4.1)], (l.l)(a), and step (a)). 
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(g) Declare for each prime p > 2 dividing t a boolean variable Ap. Put A.P = "true" if 
nP - l ~I modp 2 or p If-I+, and Ap = "false" otherwise. 

This A.P tells us whether or not condition [CL, (6.4)], that has to be satisfied fot 
all primes dividing t, is satisfied already for p. For a further explanation of this 
step we refer to Remark ( 4.5). 

Pseudoprime tests with Jacobi sums. Perform steps (h), (i) for each prime p dividing t. 

(h) For each integer k ~ 1 with pk It, determine integers uk, vk such that 
n = UkPk +vb and o..;;;vk <pk. _./ 

(i) Perform steps (i 1 ), (i2), (i3) for each prime q Is 2 with p I q - I. 

(ii) Put k = vp(q -1), and u = uk> v = vk as in (h). Perform steps (ila), (ilb), (ilc), 
(ild). 

(ila) If p =I= 2, put 

M = { x E Z : 1 :s;;;; x ..:;;; pk, x ~ 0 modp }, 

and let Ox for x E M be the automorphism of O(rpk) for which oArpk) = r;k. 
Calculate 

h,p,q = II ox- 1((jp,q )x) E z[rpk ]Jn z[rpk ], 
xEM 

and 

}v,p,q = II Ox-l((jp,qivxlpkl) E z[rpk]/nZ[rpk] 
xEM . 

where [y] denotes the greatest integer ..;;;y (cf. (6.1)). 

(ilb) If pk = 2, put 
. . 1 

}0,2,q = q' 11,2,q ~ . 

(ilc) If pk = 4, calculate 

and 

Jo,2,q = Jiq·q E z[r4]1nz[r41, 

{

I ifv=l 
}v,2,q = Jz,q if V = 3. 

(ild) If p = 2, k ~ 3, put 

L = { x E Z : 1 ..:;;; x ..:;;; 2k, x is odd}, 

M = {x EL : x = 1 or 3 mod 8}, 

and_ let Ox for x EM be the automorphism of O(r2k) for which ox<r2k) = r~. 
Calculate 

Jo,2,q = II ox-
1
((j;,q"i2,qt) E z[r2k]/nZ[r2k], 

xEM 

and 
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{ 

II ox- 1((j;,q} 2,q)£vxt2kl) E Z[r2k]lnZ[r2k] if v EM 
xEM 

iv,2,q = (jf,qf II ox- 1((j;,q·}2,q)Cvx!2kl)EZ[r2k]lnZ[r2k]ifv EL-M, 
xEM 

(cf. (6.1)). 

(i2) If flagpk ="true", perform step (i2a), otherwise perform step (i2b). 

(i2a) Define a ring homomorphism A: Z[rpk ]In Z[rpk] ~Zinz by A(rpk) = f3)k, and verify 
that there exists an integer h E {O, 1, :..,pk -1} with 

A(j O,p ,q )" · A(jv ,p ,q) = f3tk, 
where p;k for 0 is;;; i <pk are as in (e) (notice that we apply here the results from 
[CL, Section 10] for the case where, in the notation of [CL, Section 10], f = 1, i.e. 
n = 1 modpk). If h does not exist then n is composite and Algorithm (1.3) ter­
minates. Suppose that h exists. 

(i2b) Verify that there exists an integer h E {O, 1, ... ,pk -1} with 

JH,p,q"}v,p,q = r;k modn Z[rpk] 

(cf. (6.2)). If h does not exist then n is composite and Algorithm (1.3) terminates. 
Suppose that h exists. 

(i3) If h ± 0 modp and p is odd, put AP = "true". 

Additional tests. Perform steps (j) and (k) for every prime p dividing t for which 
AP = "false". 

(j) Select a small prime number q not dividing s such that 

q=Imod2p, , 
n<q-I)IP=t=lmodq. 

(In the Fortran implementation the search for these prime numbers begins at 
20p + 1, and we allow for at most 50 primes of the form 2pm + 1 to be considered.) 
If such a prime q cannot be found below a reasonable limit, do the following. Test 
whether n is a p-th power. If so, report that n is composite and halt. Otherwise, 
halt with the message that the algorithm is unable to prove that n is prime. Sup­
pose now that q has been found. If n = 0 mod q then a prime divisor of n is 
found and the algorithm halts. 

(k) Let u, v be integers such that n =up +v, with 0 is;;; v <p (cf. (h)), and perform 
steps (l.l)(bl), (l.l)(b2b), (ila), (i2). Test whether the resulting h E Z satisfies 
h ± 0 mod p . If this is not the case, n is composite, and Algorithm ( 1.3) halts. 
Otherwise, put AP ="true". 

Final trial division. We now have proved that for every divisor r of n there exists 
i E {0,1, ... ,t-l} such that r=nimods. Since s >n'li, the following suffices to deter­
mine the divisors of n . 



(1) Put fl = n mods, r = 1, and perform steps (11), (12), (13). 

(11) Replace r by (fir )mods, in such a way that the new value of r satisfies 0 .::;; r < s . 

(12) If r = 1, report that n is prime and halt. 

(13) If r I n and r < n , report that n is composite and halt. 
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Notice that (11), (12), and (13) are performed at most t times because n1 =1 mods (cf. 

step (f)). 
This finishes the description of the primality testing algorithm (1.3). 

(1.4) Remark. The above formulation of"lhe primality testing algorithm follows from 

[CL, Section 10, (11.5), Section 12] and [Le, Section 8]. We do not need i\2 in (l.3)(g), 

because i\2 is already set to "true" by the Lucas-Lehmer test (4.4) (cf. Remark (4.5)). The 

correctness of (i2a) follows from [CL, Section 10]. 

In the rest of this paper we will have a closer look at the steps of Algorithm (1.3). 

2. TRIAL DIVISION 

Step (b) of the primality testing algorithm (1.3), the trial division, has two purposes: to 

detect composite numbers with a small factor, and to determine the small prime factors 

of n2-l, for numbers n for which we attempt to prove primality. Let B be as in step 

(b) of (1.3) the trial division bound. 
The trial division routine that will be described below, needs a table of prime numbers 

up to B. Our implementations made use of a table of prime numbers up to 106• To save 

memory space, only the differences between consecutive primes were stored, in such a 

way that as many successive differences as possible were packed in one machine word. 

For the primes up to 106 none of the differences exceeds 1000, so that on the CDC 

170/750, which has 48 bit integers, we can accommodate four differences in one single 

length integer. (In the Pascal implementation we use the full 60 bit machine words of the 

CDC 1701750 by packing 6 differences in one machine word; in the Fortran program we 

do not do so to make the program less machine dependent to increase its portability.) 

(2.1) Trial division. First set r - and r + equal to the largest odd factors of n - 1 and 

n + 1 respectively, and set r and 1+ both equal to the empty set 0. Next for all primes 

p .::;; B in succession, do the following: 
If n + 1=1 modp, then p divides n, so that the execution of Algorithm (2.1) and 

of Algorithm (1.3) is terminated. Otherwise if n + 1=0 modp, remove all factors p 

from r + and replace I+ by I+ U {p } , and finally, if n + 1 = 2 mod p , remove all fac­

tors p from r - and replace 1- by 1- U {p } . 
If, after this search for small factors of n 3 - n , no factor of n is found, set f- and f + 

equal to (n -1)/r- and (n + l)/r+ respectively. 

This fuiishes the description of Algorithm (2.1 ). 

(2.2) Remark. In the Fortran program B can be chosen as any integer in {11, 12, ... , 106 } 

(cf. remark before (5.2)). In practice we always take B ~ 55441 so that step (a) of (1.3) 

can be avoided (where 55441 is the initial value oft+ 1). 
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(2.3) Remark. In the main loop of Algorithm (2.1) we have to perform one division of a 
'multiple' (n + 1) by a single-length integer (p) for each prime number p < 106 (for an ex­
planation of 'multiple' see Section 7). If the product of two consecutive primes p 1 and p 2 

can be represented in one single-length integer, as is the case on the CDC 1701750, then 
we can replace the computation of (n + l)modp 1 and (n + l)modp 2 by the computation 
of (n +l)mod(pIP2) = m, and next m modp 1 and m modp 2• 

Per two primes this saves one 'multiple' -single division at the cost of two single-single 
divisions. It depends on the size of n and the actual implementation of the division rou­
tines whether this change will result in a speed-up of the trial division routine (on CDC 
1701750 it resulted only in a 2% speed-up). 

(2.4) Remark. In an early version of the Pascal program we attempted to find also some 
prime factors > B of r - and r + by means of the Pollard rho-method. Because this Pol­
lard step appeared to be quite time consuming, and because we never found any factor 
> B, we left this step out in later versions. 

3. THE PROBABILISTIC COMPOSITENESS TEST 

Probabilistic compositeness tests are well known and can be found at many places in the 
literature [Kn, LT, Ra, SS]. In step (c) of the primality testing algorithm (1.3) we per­
form a number of these tests to detect composite numbers that passed the trial division 
step. Of course we cannot guarantee that compositeness is always detected here (other­
wise the rest of Algorithm (1.3) would have been superfluous), but in practice it never oc­
curred that a composite number passed this step. 

For completeriess we formulate the probabilistic compositeness test that was applied in 
Algorithm (1.3); furthermore we discuss some computational aspects of the test, which 
will also be useful in the sequel. 

Let n -1 = u·2k with u odd and k ;;;;i:: 1. An integer a is called a witness to the com­
positeness of n if the following three conditions are satisfied: 

(3.1) n does not divide a, 

(3.2) au ± 1 mod n, 

(3.3) au·2; ± -1 modn for i = 0, l, ... ,k -1. 

Obviously, if a is a witness to the compositeness of n, then n is composite. Conversely, 
if n is an odd composite number, then there are at least 3(n - I)/ 4 witnesses to the com­
positeness of n among { 1, 2, ... , n - 1} ( cf. [Ra]). This leads to the following test. 

(3.4) Probabilistic compositeness test. First choose at random an integer a from 
{1,2, ... ,n -1}. Next verify (3.2) and (3.3) by computing au modn (cf. (3.6)), and succes­
sively squaring the result modulo n . If (3.2) and (3.3) hold, then n is composite and the 
execution of Algorithm (1.3) is terminated (notice that (3.1) already holds due to the 
choice of a). Otherwise n passes the probabilistic compositeness test. 

This finishes the description of the test. 



9 

(3.5) Remark. In our implementations of Algorithm (1.3) the user can specify how often 
(3.4) should be performed (m in (l.3)(c)). For composite numbers a small number of 
probabilistic compositeness tests (m = 1 or m = 2) usually suffices to detect composite­
ness. For numbers that already were declared to be 'probably prime' by others, and that 
had to be proved prime by (1.3), we skipped the probabilistic compositeness test (3.4) 
(m = 0). 

In fact, we only used (3.4) to debug the rest of Algorithm (1.3): if a number passed a 
small number of probabilistic compositeness tests, and it was declared to be composite by 
the rest of (1.3), this always led to the discovery of a bug in the implementation of (1.3). 
Of course, not all bugs are detectable in this way. 

(3.6) Remark. We now discuss some computational aspects of the exponentiation modulo 
n in (3.2). As is well known, au modn can be computed in Llog2 u J squarings and P(u) 
multiplications of integers modulo n, where P(u) is the number of ones in the binary 
representation of u (cf. [Kn, Section 4.6.3]). We can improve on the number of multipli­
cations modulo n as follows [Kn, page 444). 

Instead of the binary representation of u, we use, for some integer m to be specified 
b I h 2m · ( ) f · - 2mt + 2m(t -1) e ow, t e -ary representation u,, u, -I> •.. , u I> u0 o u, 1.e. u - u, u, -l 
+ ... +u 12m+u0, where u; E {O,l, ... ,2m-l} and u,:f=O. Let u; =v;i' with V; odd and 
O:s;;;.f; <m, forO:s;;;.i :s;;;.i (cf. (3.7)). 

To compute au mod n, first compute the first 2m - l odd powers of a modulo n by re­
peated multiplication by a 2 mod n . This takes 2m - 1 multiplications of integers modulo 
n. We get a 1 = a, a 3 = a 3 mod n, ... , a2m _ 1 = a 2m - l mod n . 

Next compute r =au' modn by t, successive squarings modulo n of av,· Finally per-
form the following three steps for i = t - 1, t - 2, ... , 1, 0 in succession: 

raiser to the (2m-t,)-th power by m -I; successive squarings modulo n; 

multiply r by av, modulo n ; 

raiser to the (i')-th power by I; successive squarings modulo n. 

As a result we get r =au modn. 
The total number of multiplications modulo n is 2m - l +Pm (u ), where Pm (u) is the 

number of non-zero u; 's; the total number of squarings modulo n is, as in the binary 
method, Llog2 uJ. Clearly, m should be chosen in such a way that 2m- 1+Pm(u) is 
minimal. We estimate Pm(u) by (1-2-m)flog2m ul and because u will be of the same 
order of magnitude as n , we can take m such that 2m - l + (1-2-m )flog2m n l is minim­
ized. (The Fortran implementation was devised for numbers of up to 213 decimal digits, 
so that we used a fixed value m = 6. Notice that for this choice of m the 2m-ary method 
can be expected to perform considerably less multiplications modulo n than the binary 
method.) 

(3.7) Remark. Because of their constant use, we precomputed two tables containing v; 

and l; for all possible values of u; E { 0, 1, ... , 2m - I } . 
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(3.8) Remark. In the sequel we will use the method described in (3.6) for exponentiations 
in (Zin Z)[T]l(T2-uT-a) and z(rpk ]In Z[rpk] as well. The only difference then is that 
we have to apply other squaring and multiplication routines. The same tables as in (3.7) 
can be used. 

4. THE LUCAS-LEHMER TEST 

In this section we present the details of the Lucas-Lehmer test that is used in step ( e) of 
(1.3). As we will see in Section 5, the Lucas-Lehmer test enables us to select fewer q­
primes in step (f) of (1.3). Because the Lu,eas-Lehmer test is relatively fast compared to 
the tests in step (i) of ( 1.3), this can save a lot of computing time. Let 1-, I+, r - , r +, 
f-, f +, be as computed in step (b) of ( 1.3) the odd prime factors ~ B, non-factored 
parts, and factored parts of n - l and n + 1 respectively. 

In rare cases we can even omit the rest of (1.3). This happens if the following condi­
tion is satisfied, where B denotes the trial division bound: 

(4.1) n < max(f- ,f+)f-f +.B3• 

This is a slight refinement of what can be found in the literature, namely ( 4.1) with n re­
placed by 2n [Kn, page 378] (see (4.5)). 

For an explanation of the Lucas-Lehmer test as it is formulated here, we refer to the 
extensive literature on this subject [Wi]. We need the following two auxiliary tests. By p; 
we denote the i -th prime number. 

(4.2) Test for n - l. Let p be an odd, not necessarily prime number dividing n - I, and 
let prod E Zin Z be an integer modulo n to be specified in (4.4). 

Look for a prime number x E (p1'p 2, .•. ,p 50} such that x<n-l)lp =t= 1 modn. If no such 
x is found Test (4.2) fails. Otherwise verify that xn -l = 1 modn; if this is not the case 
Test (4.2) halts because n is composite. Otherwise replace prod by prod·(x<n -l)!p -1) 
mod n. If prod = 0, then the old value of prod has a non-trivial gcd with n . In this case 
Test ( 4.2) halts because n is composite, otherwise report that n passes Test ( 4.2). 

If p is prime then, for those I> 0 for which p 1 divides t and flagp' ="true", set 
13;, = xi(n -l)lp' modn for i = 0, l, ... ,p1 -1. (In the Fortran implementation, which al­
lows a maximal value 55440 = 24·32·5·7· ll fort, this may be done for p 1 = 3, 9, 5, 7, ll.) 

This finishes the description of Test ( 4.2). 

( 4.3) Test for n + 1. Let p be a not necessarily prime number dividing n + 1, and let 
prod E Zin Z be as in (4.2). In this test computations have to be performed in the ring 
A = (ZlnZ)[T]l(T2-uT-a), for integers u and a to be specified in (4.4). (We 
represent elements of A as x 0 +x 1a where x 0,x 1 E ZlnZ and a= (TmodT2-uT-a).) 
How these computations should be carried out is explained in Remark ( 4.9). 
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Look for an element x EA of norm one such that x<n +l)lp =:/= 1 in the ring A (see Re­

mark (4.10)). If no such x is found after 50 trials, Test (4.3) fails. Otherwise verify that 

xn + 1 = I; if this is not the case Test ( 4.3) halts because n is composite. Otherwise let 

x<n+l)IP-I=x0+x 1aEA. Choose i E{O,l} such that xi=:/=O, and replace prod by 

prod· X; mod n. If prod= 0, then the old value of prod has a non-trivial gcd with n . In 

that case Test ( 4.3) halts because n is composite, otherwise report that n passes Test 

(4.3). 
This finishes the description of Test ( 4.3). 

( 4.4) Lucas-Lehmer test. Set prod E ZI n Z equal to one; in prod we accumulate numbers 

that should be tested for coprimality with n at the end of the test. 

We say that this test fails if it fails itself, or if one of the tests (4.2) or (4.3) fails; in ei­

ther case the execution of (4.4) can be terminated. It is also possible that n is proved to 

be composite during execution of this test or one of the tests ( 4.2) or ( 4.3). As soon as 

that happens, the execution of (4.4) halts. If the test does not fail and if n is not proved 

to be composite in this test, we say that n passes the Lucas-Lehmer test. In the latter 

case it is possible that the primality of n is proved, namely if (4.1) holds (cf. step (f)). 

(a) For all primes p E 1- verify that n passes Test (4.2). 

(b) If (4.1) holds (i.e. if n is prime then the Lucas-Lehmer test will be able to prove it) 

and if n -1 is not completely factored (i.e. r - =:/= 1 ), verify that n passes Test ( 4.2) 

with p replaced by r - . 

(c) Define the ring A that has to be used in Test (4.3) by performing (cl) if 

n = 1 mod-4 and (c2) if n =3mod4. 

(cl) Case n =I mod4. Set u = 0. Look for a prime number a E {pi,p2, ••• ,p 50} such 

that a<n-l)/2= -1 modn. If no such a is found the Lucas-Lehmer test fails. Oth­

erwise the ring A is detined as (Zin Z)[T]/(T2-a ). 

For those values of I ;;;:i: 1 for which 21 divides t and for which jlag21 ="true" we 

set, in the process of the above computation, /311 = ai(n -l)/2' modn for i = 0, 1, ... , 

i-1. 
( c2) Case n = 3 mod 4. Set a = 1. Look for an integer u E { 1, 2, ... , 50} such that the 

Jacobi symbol ( u
2
+4 ) equals -1. If no such u is found the Lucas-Lehmer test 
n 

fails. Otherwise the ring A is defined as (Zin Z)[T]l(T2-uT-1). Verify that 

an+ 1 = -1 in A ; if this is not the case the Lucas-Lehmer test halts because n is 

composite. 

( d) For all primes p E I+ verify that n passes Test ( 4.3). 

(e) If (4.1) holds and if n + 1 is not completely factored (i.e. r+ =:/= 1), verify that n 

passes Test ( 4.3) with p replaced by r +. 
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(f) Check that gcd(prod, n) = 1. If this is not the case the Lucas-Lehmer test halts be­
cause a non-trivial divisor of n is found. Otherwise report that n passes the 
Lucas-Lehmer test, and if ( 4.1) holds, report that n is prime. 

This finishes the description of the Lucas-Lehmer test. 

(4.5) Remark. Notice that, due to (4.4)(cl) and (4.4)(c2) and [CL, (7.24), (10.8)] the 
Lucas-Lehmer test has also proved that the condition [CL, (6.4)] that has to be verified 
for all primes dividing t, holds for p = 2 (and if this is not proved, it is shown that n is 
composite unless the test failed). This easily implies the slight improvement mentioned in 
connection with ( 4.1 ). 

It follows from (4.2), (4.3), and [CL, Proposition (10.7)] that condition [CL, (6.4)] also 
holds for the odd primes dividingf-f+. This explains step (l.3)(g). 

(4.6) Remark. The jlagpk and p;k are kept for later use in step (i) of (1.3). As we have 
seen in Section 1, jlagpk ="true" implies that we can replace the Jacobi sum test in 
Z[tpk ]In Z[rpk] by a similar but 'cheaper' test in Zin Z (see [CL, Section 10]). A similar 
speed-up is possible for primes p dividing n + 1 and t, but we did not implement that. 

( 4. 7) Remark. After execution of the Lucas-Lehmer test, the primes p E 1- U I+ can be 
removed from the list of candidate q-primes in step (f) of (1.3). 

( 4.8) Remark. The method described in (3.6) can be applied for the exponentiations in 
the Lucas-Lehmer test. The only difference is that in Test (4.3) and in (4.4)(c2) the 
squarings and multiplications have to be carried out in the ring A instead of in Zin Z 
(see (4.9), cf. (3.8)). , 

(4.9) Remark. To be able to carry out the exponentiations in the ring 
(ZlnZ)[T]l(T2 -uT-a) we need multiplication and squaring routines for elements of 
this ring. Here we explain how these routines can be implemented. We distinguish the 
following cases: multiplication for n = 1mod4 (so u = 0), multiplication for n = 3 mod 4 
(so u =/=- 0 and a = l ), and a combined squaring routine for elements of norm one in 
(Zln.l)[T]l(T2-uT-a). We also mention how an+I in (4.4)(c2) can be computed. 

Multiplication for n = lmod4 in (ZlnZ)[T]/(T2-a). Let x 0+x 1a, y 0+y1a E 
(Zln.l)[T]l(T2-a) then (xo+x1a)(yo+y1a) = (xo·yo+xry1a) + (xo·Y1 +xryo)a 
= z0+ z 1a. This is computed in three 'multiple'-'multiple' multiplications instead 
of four as follows (for an explanation of 'multiple' see Section 7): p 0 = xo·yo, 
p 1 =xryi. so=xo+xb s 1 =yo+Yb and zo=(po+ap1)modn, z1 =(so·s1-po­
p1)modn. 

Multiplication for n =3mod4 in (ZlnZ)[T]l(T2-uT-I). Let x 0+x 1a, 
Yo+y1a E (Zin Z)[T]l(T2-uT- I), then (xo+ X1a)(yo+y1a) = (xo·yo+ xry1) + 
(xo·y 1+xry0 +xryru)a=zo+z1a which is computed by po=xo·yo,p1=xryi. 
s0 =xo+xi. s 1 =y0 +yi. and zo=(p0+p 1)modn, z1 =(so·s1+(u-l)p1-po) 
modn. 
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Combined squaring in (llnl)[T]l(T2-uT-a). Because we only need this rou­

tine for x 0 +x 1a E(ZlnZ)[T]l(T2-uT-a) of norm one, we have (x0 +x 1a)2 

= (x 0·xru +2xJ-1) + (x[·u +2x0·x 1)a = z 0 +z 1a as is easily verified. This is 

computed bys= ux 1+2xo, and z 0 = (x0·s-l)modn, z 1 = (xrs)modn. 

Computation of a"+ 1 in (Z/nZ)[T]/(T2-uT-l). Although a has norm -1, we 

can apply the above multiplication and squaring (for elements of norm one) by ob­

serving that a2=ua+1 has norm one, and that a"+ 1 = (a2)<n + 1>12• 

(4.10) Remark. To get elements of norm OJle in A =(ZlnZ)[T]!(T2-uT-a) in Test 

(4.3) we try elements of the form ~+m EA form E {l,2,. .. ,50}, where a denotes the 
a+m 

conjugate of Ol (so a= -a if n = 1 mod4, and a= u -a if n = 3 mod4). It is easily 

verified that this yields ( m 2
+ ~ + (~m: "}a for both n = 1 mod 4 and 

m m +u -a m m u -a 
n =3mod4 (notice that (m(m +u)-a)- 1 can be computed in l.!nZ unless n is compo-

site). 

(4.11) Remark. The number 50 in (4.2), (4.3), and (4.4)(c) is arbitrarily chosen, but in 

practice sufficient. See [CL, remark preceding (10.4), (11.6)] for a discussion of this 

point. 

(4.12) Remark. There are inequalities similar to (4.1) under which only the tests for n -1 

(Test (4.2)) need to be done, or only the tests for n + 1 (Test (4.3)). For instance, if 

1- ~ n'h, then execution of (4.4)(a) suffices to prove the primality of n. If 1- < n'h but 

1-· B ~ n 'h, then .n must also pass Test ( 4.2) with p replaced by r - . Similar inequalities 

hold for n + 1. 

5. SELECTION OF t AND s 

It follows from [Le, Section 8] that the Lucas-Lehmer test can be combined with the pri­

mality testing algorithm from [CL, Section 12]. Here we describe how this can be done. 

Lett be as (l.l)(a). Assume for the moment that every prime p It satisfies condition 

[CL, (6.4)], i.e. 

(5.1) for every prime divisor r of n there exists a p-adic integer ~(r) E Zp such 
that rP - l = (nP - If(r) in the group 1 + p Zp 

(where lp denotes the ring of p-adic integers). In (4.5) we have seen that this condition 

already holds for p = 2. For the other primes p dividing t for which we need this condi­

tion, a boolean variable Ap is declared in step (g) of Algorithm (1.3); as soon as the con­

dition is proved to hold for such a p , we put Ap = "true". On successful termination of 

Algorithm (1.3) all~ will be set to "true", which justifies the above assumption. 

For eveiy prime power pk ~ 2 dividing t, we define a cost Cpk E Z. This cost Cpk is an 

estimate (in milliseconds for instance) for the running time needed to perform step (i) of 

Algorithm (1.3) for pk and one q-prime with k = vp(q-1). In step (l.3)(i) the most 

time will be spent in the u-th powering in (l.3)(i2); if flagpk ="true" this computation 

can be done in llnZ (as in (i2b)), otherwise we work in z[rpk]/nZ[rpk] (as in (i2b)). 
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Defining cpk ("true") and cpk ("false") as the cost of (i2a) and (i2b) respectively, we set 

cpk = Cpk (fiagpk ). Both cpk (" true") and cpk ("false") depend on the implementation and 
the number of binary bits of n, and they are best determined empirically as functions of 
the number of bits of n (this is what we have done in the Fortran implementation). 

Having defined cPk' we define the cost w(q) of a q-prime as 

w(q) = ~ Cpk· 
plq-1,k =vp(q-1) 

Another function of the number of bits of n that we will need and that is best deter­
mined empirically, is an estimate for the running time needed for one iteration of the 
final trial division step of Algorithm (1.3) (so, that is one execution of (11), (12), and (13) 

of (1.3)). For a fixed value of n we denote this running time by cftd· Of course, cftd is 

measured in the same dimension as cpk· 

As in (l.3)(b) let f-f + be the factored part of n2 - l, and assume that 
vp(f-f +) = vp(n 2 - I) for the primes p dividing t (this implies that in the Fortran im­
plementation the trial division bound should be at least 11 ). 

(5.2) Lett' be an even divisor oft. Defining 

s1 = (lh} II Pvp(t')+vp<r·r>, 

:1:/!~t+ 
then 

(5.3) for all r dividing n we have that r =nt(r)modsi. 

where l(r)=~(r)modpvp(t') for allp [t'. As mentioned in (l.3)(e) this follows from the 

fact that n passed the Lucas-Lehmer test. Remark also that ( 5 .1) is satisfied for the 
primes dividing s 1 due to the Lucas-Lehmer test (cf. step (1.3)(g) and Remark (4.5)). 

If s 1 > nv2
, then (5.3) suffices to prove the primality of n by means of the final trial 

division (1.3)(1) with t and s replaced by t' and s 1 respectively. If on the other hand 
s 1 :s:;;; n 'h, let s 2 be a product of distinct q-primes such that q - I I t' and q t s 1 (so, these 

q-primes can be found among the factors of e(t) and are tabulated in (1.l)(a)). 
The pseudoprime tests with Jacobi sums as in (1.3) (with t replaced by t'), combined 

with (5.3), yield 

for all r dividing n we have that r =n/(r)mod(srs2), 

where 

(5.4) _ - II vp(nP- 1- l)+vp(t')- I 
S2 - St p ' 

p prime 
plt',plsi 

and /(r) as above. Obviously, in order to be able to prove the primality of n by means 
of (l.3)(l);we should choose s2 in such a way that srs2 > n\.l. 
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." 
We now discuss how s 2 should be chosen such that s 2 > n 'h Is 1 and ~q 1 si w ( q) is 

minimal (where we take the minimum over s2 for which s 2 > n'hls 1). In [CL, Section 4] 

we have seen that this problem can be formulated as a knapsack problem, which makes 

an efficient way of finding an optimal solution unlikely to exist. As suggested in [CL, 

Section 4] we approximate an optimal solution in the following way. 

First we put 

s2= II q, 
q prime 

q-llt',qfs1 

and s 2 as in (5.4). If s 2 ~ n'hlsi, then the current value oft' is too small and (5.2) fails. 

If on the other hand s 2 > n'hlsi. we proceed as follows. As long as s2 has a prime factor 

q such that s2/qvq(si) > n 1
h.lsi. we choose such a q with w(q) /log(qvq(si» as large as pos­

sible, and replace s2 and s2 by s2/q and s21qvq(si) respectively. 

From (5.2) we get the following algorithm for the selection oft and s. 

(5.5) Selection oft and s. 

For all even divisors t' oft do the following: 
Apply (5.2) and compute for those values of t' for which (5.2) does not fail, the 

corresponding approximations s2 (and s2) to the optimal q-primes choice, and the 

total cost c(t') = t'·cftd + ~qls2w(q). 
Replace t by the value of t' for which c (t ') is minimal, .and put s = s I's 2, where s 1 and 

s 2 correspond to the chosen value fort. This finishes the description of (5.5). 

(5.6) Remark. If. we add a test 11r ~ ~'h11 in step (13) of Algorithm (1.3) before the test 
11 r I n 11 (and perform the latter only if the former is satisfied), then we can replace the 

t'·cftd-term in Algorithm (5.5) by t'·cftd·n
1
h.·s- 1 (where s corresponds to t'). Of course 

this slightly increases the value of cftd· 

(5.7) Remark. It is possible that Algorithm (5.5) chooses t and s = Sfs2 such that there 

is an odd prime number p dividing t for which p ~ q -1 for all primes q dividing s 2. It 

can then be proved thatp divides s, with vp(s)=vp(t)+vp(nP- 1-1). Removing vp(t) 

factors p from s , allows us to remove the same number of factors p from t also. This 

does not change the set of numbers that are congruent to a power of n modulo s. The 

resulting value of s, however, may be smaller than n 'h, and therefore it might be reason­

able to take these s 's also into account in Algorithm (5.5). 

This complicates step (13) of Algorithm (1.3), where we will have to trial divide all 

numbers of the form r +i·s ~ n'h for i ;;;;i. 0, and accordingly change the t'·cftd-term in 

Algorithm (5.5) into t'·cftd·n1h.·s- 1• We did not implement this. 

(5.8) Remark. The choice of t = 55440 guarantees that the Fortran implementation can 

handle numbers of up to 213 decimal digits. From (5.2) it follows that larger numbers 

can also be handled if we are able to find enough prime divisors of n 2 - 1. 
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(5.9) Remark. With respect to Remark (5.7) we mention the following, not implemented 
improvement, which is due to H.W. Lenstra, Jr. Instead of choosing s > n\lz, we could 
take s > n \lzt, where the factor t may be replaced by any sufficiently large number. We 
then expect that only one of the t possible divisors of n in step (1.3)(1) is o::;;;; n\lz. At the 
cost of one test "r o::;;;; n\lz" per iteration of (1.3)(1), this saves us most trial divisions. 

It is not unlikely that this will prove to be an important improvement for larger values 
of n than we tested. 

6. PSEUDOPRIME TESTS WITH JACOBI SUMS 

Let q be a prime number dividing s 2 and let p be a prime number dividing q - 1. Here 
we explain how the pseudoprime tests with Jacobi sums in (l.3)(i) and (l.3)(j),(k) for the 
pair q, pk can be performed. So we put k = vp(q -1) in case of (l.3)(i), and k = I in 
case of (l.3)(j),(k). Let m = (p-I)pk- 1. 

The computations in (l.3)(i) can all be done in the cyclotomic ring Z[tp' ]In Z.[tpk ]. In 
(l.3)(i2a), in the case jlagpk ="true", we can work in the subring Zin Z after application 
of the homomorphism A.. This case will be discussed at the end of this section. First we 
explain how to compute in Z[tpk ]In Z[tpk ], how to handle the inverse of ox in (l.3)(il), 
and how we implemented (l.3)(i2b). 

An element a = ~f"=o 1 a; ttk E Z[tpk ]In Z[tpk] is represented as a vector (a; )t=o 1, where 
a; E {O, 1, ... , n - I}. Addition and subtraction of two elements of Z[tp• ]In Z[tp•] is done 
by componentwise addition or subtraction modulo n of the corresponding vectors. Mul­
tiplication of two elements of Z[tpk ]In Z[tpk] can be seen as multiplication of two polyno­
mials of degree less than m with coefficients in Zin Z and modulo the pk-th cyclotomic 
polynomial ~f ,;-01 Xipk -t. 

A straightforward implementation would need m 2 integer multiplications, whereas, due 
to a theorem of Winograd [Kp., page 495], 2m -1 integer multiplications suffice. We did 
not implement Winograd's methods however, because they involve a large overhead of 
additional operations. Instead we used special formulae for multiplication and squaring 
for each pk, which improve considerably on the m2-method, but which do not achieve 
Winograd's (2m -1) bound for the integer multiplications. In the Appendix these formu­
lae are given for pk = 3, 4, 5, 7, 8, 9, 11, 16. 

Better formulae can certainly be given and the authors would be happy to hear of non 
negligible improvements. For example in auxiliary routine 3 one 'multiple'-'multiple' 
multiplication can be gained by noting that the second time auxiliary routine 1 is called, 
the quantity a 2·b2 is recomputed. This would gain 3 such multiplications in the multipli­
cation for p = 11, and one in the squaring for p = 11. 

The formulae in the Appendix have all been obtained by using recursively the identity 
. 2 

(A 1X +A 0)(B 1X +B0) =A 1B 1X +((A 1 +A 0)(B 1+B0)-A 1B 1-AoB0)X +AoB0 , 
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which uses only three multiplications instead of four. This was combined with trial and 
error methods to eliminate unnecessary multiplications, and if possible also some addi­
tions or subtractions. (The identity above was already used to compute in 
(ZlnZ)[T]l(T1-a) for n =3mod4, see Remark (4.9).) It seems plausible that the 
number of multiplications in squaring for p = 7 can be reduced from 14 to 12 (as for 
pk = 9). Also the number of multiplications in squaring for p = 11 seems really too 
high. 

The inverse of the automorphism ox from (l.3)(ila) can be computed as follows. 

(6.1) Computation of ox-•· For a= (a;)r=o 1 E Z[rpk]lnZ[rpk] this algorithm computes 

b = (b;)r=o 1 E Z:(rpk]lnZ[rpk] such that o_; 1(a) =b. 
Let a;= 0 for i ~m. First we put, for i = 0, l, ... ,m -1 in succession, b; = aximodpk· 

Next we replace, for i =m,m+l, .. .,pk-1 in succession, bi-jpk-1 by (b;-jpk-1-

ax; modpk )modn for 1 ~j <p. 
As a result we have b such that ox (b) = a. 

The small powers of elements of Z[rpk ]In Z[rpk] that we need in (l.3)(il) are computed by 
repeated multiplication in the same iteration that computes the j o,p ,q and jv ,p ,q (in 
(l.3)(ila) and (l.3)(ild)). The u-th power in (l.3)(i2b) clearly should not be done by re­
peated multiplication. Instead we use the method described in (3.6) with the squaring 
and multiplication in Zin Z replaced by the squaring and multiplication in Z[rpk ]In Z[rpk] 
( cf. (3.8) and Appendix). 

The integer h E {O, l, ... ,pk -1} in (l.3)(i2b) is determined in the following way. 

(6.2) Determination of h. For a =(a; );~o 1 E Z[rpk ]In z[rpk] this algorithm determines an 
integer h E {O, 1, .. .,pk -1} such that a = r;k, if such an h exists. 

If there exists an integer I E {O, 1,. . ., m -1} such that a1 = 1 and a; = 0 for 0 ~ i < m 

and i =I= I, or if there exists an integer I E {O, l,. .. ,pk-I _ l} such that a1 + jpk-1 = -1 

modn for 0 ~j <p -1 and a; = 0 for the other indices, then put h =I and (6.2) ter­
minates. Otherwise, h does not exist and (6.2) fails, which implies that, in Algorithm 
(1.3), n is proved to be composite. 

Finally, we discuss what should be done in (l.3)(i2a), in the case that flagpk ="true". 

For a= (a;)r=o 1 E Z[rpk]lnZ[rpk], we compute A(a) = ~r'=c(a;/JJ,k E ZlnZ by means of 

a Horner scheme, or by means of the powers /JJ,k for 0 ~ i < m , which were computed in 
(l.3)(e). To raise A(}o,p,q) E ZlnZ to the u-th power, we apply (3.6), and determination 
of h is simply done by comparing A(}o,p,q)u·A(}v,p,q) with /JJ,k for 0 ~ i <pk, where of 
course the equality should hold modulo n . 
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7. EXAMPLES AND RUNNING TIMES 

In both our implementations we distinguish between two kinds of fixed length multipreci­
sion integers, the ordinary 'multiples', and the so-called 'doubles'. The numbers of 
binary bits of a 'multiple' should be somewhat larger than the number of binary bits of 
n, and a 'double' contains twice as many bits as a 'multiple'. Addition and subtraction 
of two 'multiples' ('doubles') again yields a 'multiple' ('double'), multiplication of two 
'multiples' yields a 'double', and remaindering modulo a 'multiple' of a 'multiple', or of a 
'double', yields a 'multiple'. 

In the Pascal program, devised for numbers of up to 104 decimal digits, a 'multiple' 
('double') is represented by 8 (16) words of 47 binary bits each; in the Fortran program a 
'multiple' ('double') contains 16 (32) words of 47 bits. In Table 1 we give the average 
running times (in milliseconds) of the elementary arithmetic operations on a CDC 
1701750. These routines were written in the assembly language Compass. 

Table 1. Average running times of elementary arithmetic operations 
on the CDC 1701750 in milliseconds 

'multiple' consists of 8 words of 47 bits 16 words of 47 bits 

'multiple'+ 'multiple' 0.014 0.019 
'multiple'· 'multiple' 0.07 0.21 

'double' mod 'multiple' 0.20 0.47 

The running times of the various steps of the CDC 1701750 version of the Fortran pro­
gram are given in Table 2. For each number d in the first row we tested 20 prime 
numbers of d decimal digits. Each prime was selected by drawing a random number of 
d digits and using the program to determine the least prime exceeding the number 
drawn. 

For each step of Algorithm (1.3) listed in the first column of Table 2, and for each 
number of digits d in its first row, the table contains the following data: average running 
time t = (~;2~ 1 t;)l20, the sample standard deviation ((~;2~ 1 (t; -t)2)119)

1
h, the maximal 

running time, and the minimal running time. All times are in seconds. For running 
times of the Pascal program we refer to [CL, Table 3]. 

The Fortran program was used to prove the primality of some of the numbers of the 
Cunningham tables [CTab], which were not yet proved to be prime. To illustrate the pri­
mality testing algorithm (1.3) we will go through the primality proof for one of these 
numbers, namely 

n =38765043353179975014693910353191097086635896251806 
23029822890926723711514115245155566479256098717968 
31049683605391251330391031054184702591128155858755 
97000563569377039492262413967236168374702472481350 
48208451745439902122005282381436679587515252273, 
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Jacobi sum 
tests 

Additional 
tests 

Final trial 
division 

total 
running time 

Table 2. Running times of the Fortran program 
on the CDC 1701750 in seconds (see text) 

100 120 140 160 180 

7.965 7.972 7.963 7.951 7.973 
0.039 0.025 0.027 0.047 0.016 
8.019 8.010 8.022 8.010 7.999 
7.824 7.887 7.904 7.778 7.926 

0.567 0.759 0.957 1.292 1.558 
0.015 0.023 0.029 0.054 0.059 
0.602 0.803 0.999 1.387 1.680 
0.544 0.723 0.906 1.181 1.472 

2.211 2.419 3.705 5.086 5.354 
0.936 0.777 1.547 2.722 2.031 
3.930 4.348 6.371 12.615 9.494 
0.724 0.864 0.480 2.147 1.365 

0.017 0.017 0.016 0.015 0.014 
0.003 0.003 0.003 0.002 0.002 
0.023 0.024 0.023 0.019 0.020 
0.011 0.012 0.012 0.011 0.011 

37.334 78.151 130.251 205.347 308.475 
15.696 24.042 42.919 45.350 56.701 
62.705 113.357 186.919 252.452 392.170 
12.426 34.503 52.947 64.833 206.021 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

2.336 8.468 13.525 26.501 36.341 
1.379 7.062 5.257 8.301 0.658 
6.216 27.571 28.782 33.927 37.930 
1.099 2.422 2.546 16.045 35.280 

50.442 97.797 156.429 246.204 359.728 
15.203 28.274 43.122 44.144 55.833 
75.416 147.259 210.756 298.144 439.039 
26.031 51.077 77.316 111.888 259.021 

19 

200 

7.950 
0.035 
8.000 
7.859 

1.998 
0.127 
2.191 
1.552 

6.653 
2.214 

10.469 
2.834 

0.015 
0.002 
0.020 
0.012 

438.143 
80.472 

560.381 
205.896 

0 
0 
0 
0 

40.978 
1.606 

43.292 
35.761 

495.748 
80.025 

614.254 
258.859 
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being one of the factors of 2892 + 1. (To handle this number, which has 247 decimal 
digits, we used 'multiples' of 24 words of 47 bits; as a consequence the basic operations 
became somewhat slower.) 

Of course we cannot guarantee beforehand that the Fortran program, with a maximal 
value of 55440 for t, will be able to prove the primality of this number, because n > N 
(cf. (l.l)(a)). In several respects however n appears to be a lucky number. The running 
times below are on a CDC 1701750. 

After verification of (l.3)(a), we performed (2.1) with B = 106. After 8755 milliseconds 
we found 1- = {7,223,2017,4001, 162553} and 1+ = {3, 19,367}. Because n was already 
declared to be 'probably prime' in the Cunningham tables, we did not perform any pro­
babilistic compositeness test (3.4), so m = 0 in (l.3)(c) (cf. (3.5)). 

In (l.3)(d) we found flag3 ="false", flag 4 ="true", jlag5 ="false", flag 7 ="true", 
jlag8 ="true", flag9 ="false", flag 11 ="false", jlag 16 ="true". This implies that the 
Jacobi sum tests are relatively cheap for pk = 4, 7, 8, 16. The Lucas-Lehmer test (4.4) for 
the primes in 1- u1+ U {2} took 14679 milliseconds. Because many prime divisors of 
n2 -1 were found, all remaining q-primes (that is, the q-primes except 2, 3, 7, and 19) 
just appeared to be sufficient to gets rs 2 > n 'h. The distinct primes dividing s 2 are 

{5, 11, 13, 17,23,29,31,37,41,43,61,67,71,73,89, 113, 127, 181, 
199,211,241,281,331,337,397,421,463,617,631,661,881, 
991, 1009,1321,2311,2521,3697,4621,9241, 18481,55441}. 

The corresponding t value is 55440. In (l.3)(g) all A.P for p It were found to be "true" 
already. The pseudoprime tests with Jacobi sums in (l.3)(h)&(i) were performed in 
806940 milliseconds. We list some typical timings (in seconds) in Table 3. 

Pk 

3 
4 
2 

11 
5 
8 
7 
9 

16 

Table 3. Running times of Jacobi sum tests 
on the CDC 1701750 in seconds 

q running time of ( 1.3)(i 1) h in (l.3)(i2) 

13 2.079 1 
13 0.986 1 
23 0.975 0 
23 26.256 8 
41 5.427 3 
41 1.019 4 

1009 1.118 5 
1009 9.908 0 
1009 1.164 11 

The additional tests in (l.3)(j)&(k) have not to be performed because the A.P were 
already "true" in (l.3)(g); notice that A.P ="true" also follows from the h values for 
p = 3, 5, 7, 11 in Table 3 (cf. (l.3)(i3)). The 55440 trial divisions in (l.3)(1) took 56296 
milliseconds. It follows that the primality proof for this n was completed within 15 
minutes. 
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We conclude this section by listing in Table 4 the running times (in seconds) of the 
Fortran program when executed on CDC 1701750, CDC 205, and Cray 1, and applied to 

n =33954972493534960748198631920405504974392404498599 
70217757256140913782004041861855452464309315250380 
59779334403309483454226092284418382591337309620364 
938100840903721641622176153759 

(this is one of the 180 digit primes that were used for Table 2). 

CDC 1701750 
CDC 205 

Cray 1 

Table 4. 

running time 

378.007 
590.623 
196.544 

'multiple' represented as 

16 words of 47 bits 
32 words of 24 bits 
32 words of 24 bits 

Obviously, the architecture of the Cray 1 is better suited for computations on integers 
of this size than the CDC 205. To take full advantage of the vector registers of the CDC 
205, much longer vectors should be used, whereas the Cray 1 is designed to handle vec­
tors of length 64 (which are, in our case, the 'doubles'). 

Acknowledgements are due to H.W. Lenstra, Jr. for his great help in writing this paper. 
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APPENDIX: MULTIPLICATION AND SQUARING ROUTINES 

Here we present the multiplication and squaring routines that are used in the pseu­
doprime tests with Jacobi sums. For a given prime power pk we put m = (p-I)pk-i, 
and we denote by (x; )f'=o i, (y; )f'=o i, (z; )f'=o i three elements of Z[spk ]/ n Z[spk ]. The mul­
tiplication routines below have x and y as input and compute their product x ·y. On 
output x and y are unchanged and the product is returned in 7. The squaring routines 
have x as input and compute its square x 2

• On output x is unchanged and its square is 
returned in y. Auxiliary variables whose names begin with a 'c' or a 'd' are 'doubles', 
the others are 'multiples' (so, x;, y;, and z; are 'multiples', cf. Section 7). 

Let D be the time to compute the remainder of a 'double' modulo n, let M be the time 
for a 'multiple'-'multiple' multiplication, A 1 for a 'multiple'-'multiple' addition or sub­
traction, and A 2 for a 'double'-'double' addition or subtraction. At the end of each rou­
tine we give the total time expressed in the number of D's, M's, A i's, and A 2's for that 
routine. 

First we present five auxiliary routines. 
Auxiliary routine 1. This routine operates on the variables (a; );2=0, (b; )l=o• (c; );4=o· The 
a; and b; are input to the routine and their values are not affected; the c; are output 
variables. 
co= ao·bo; 
mi= ao+a2; 
d2 = c0 +di; 
C3 = ds-d2. 

di= afb 1; c4 = atb2; m 1 = a0 +ai; m2 = b0 +bi; 
m1 = bo+b2; d4 = mfm2; mi= ai +a2; m1 =bi +b2; 
ci = d3-d2; d1 = d4+di; d4 = co+c4; c2 = d1-d4; 

The following now holds: 
co= ao·bo, 
ci = ao·bi +afbo, 
c2 = a0·b2+afbi +atb0, 

c3 = afb2+a2·bi. 
C4 = atb2. 

Time= 6M +6A 1 +7A 2. 

d3 = mrm2; 
d5 = mfm2; 
d2 = d 1 +c4; 

Auxiliary routine 2. This routine operates on the variables (a;)/ =O• (b; );3 =O• (c; );6=o· The 
a; and b; are input to the routine and their values are not affected; the c; are output 
variables. 
c0 = a0·bo; di= arb1; d1 = atb2; c6 = a3·b3; mi= ao+a1; m1 = bo+bi; d3 = mfm2; 
mi= ao+a2; m 2 = b0 +b2; d4 = mrm2; m 3 = a2+a3; m4 = b2+b3; d5 = m3·m4; 
m 3 = ai +a3; m4 =bi +b3; d6 = m3·m4; d1 = c0 +di; ci = d3-d1; d1 = c0 +d2; 
dg = di+d4; c2 = dg-d7; ms= mi +m3; m3 = m1+m4; d1 = d1+c6; C5 = ds-d1; 
d1 = mfm5; dg = ci +c5; d9 = ds+d6; dg = d9+d4; c3 = d1-dg; d1 = d6+d2; 
dg =di +c6; C4 = d1-dg. 

The following now holds: 
co= ao·bo, 
ci = ao·bi +arbo, 



c2 = ao·b2+arb 1 +atb0, 
c 3 = ao·b 3+arb2+atb 1 +a3·bo, 
c4 = arb3+a2·b2+a3·bi. 
c5 = atb3+a3"b2, 
c6 = a3·b3. 

Time= 9M +WA 1+14A 2• 
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Auxiliary routine 3. This routine operates on the variables (a; );4=0, (b; );4=0, (c; );8=o· The 
a; and b; are input to the routine and their values are not affected; the c; are output 
variables. · 

Apply auxiliary routine 1 to (a;)f=o, (b;)f=o• (c;)f=o; mo=ao+a3; m1 =a1+a4; 

mi= bo+b3; m3 = b1 +b4; m4 = a3+a4; ms= b3+b4; apply auxiliary routine I with 
(a;)f=o• (b;)f=o• (c;)f=o replaced by m 0, mi. a2, m 2, m 3, b2 and (d;);4=o respectively; 
d5 = aJ"b3; cg = a4·b4; d6 = m 4·m5; d1 = d5+cg; c7 = d6-d7; d6 = d 3+d5; 

c6 = d6-c3; d6 = co+d5; d1 = c3+do; c3 = d1-d6; d6 = c1 +c7; d1 = c4+d1; 

c4 = d1-d6; d6 = c2+cg; c5 = di-d6· 
The following now holds: 

co= ao·bo, 
c1 = ao·b1 +arbo, 
c2 = a0·b2+arb 1 +atb0, 
c3 = ao·b3+arb2+atb 1 +a3·bo, 
c4 = a0·b4 +a rb3 +atb2 +a3·b 1 +a4·b0, 
c5 = arb4 +atb3 +a3·b2+a4·bi. 
c6 = atb4+a3·b3+a4·b2, 
C7 = a3·b4+a4·b3, 
Cg = a4·b4. 

Time= I5M + 18A 1 +26A 2• 

Auxiliary routine 4. This routine operates on the variables (a; );4=0, (c; );g=O· The a; are 
input to the routine and their values are not affected; the c; are output variables. 
m 1 = a2+a2; m 2 = a0+a 1; m 3 = a 1 +m 1; m 4 = a 3+a4; m 5 = a3+m 1; m 6 = a0+a0; 

m 6 = m 6+m 1; m 7 = a 1 +a3; mg= a4+a4; mg= mg+m 1; m 9 = a0+a3; m 10 = a 1 +a4; 

c0 = a0·a0; d 1 = a0·a 1; cg = a4·a4; d 2 = a3·a4; d3 = arm 1; d4 = a 3·m 1; c 1 = d 1 +d1; 

c7 =d2+d2; ds=mtm3; d6=d1+d3; c2=d5-d6; d5=m4·m5; d6=d2+d4; 

c6 = ds-d6; ds = m 6·m7; d6 = c 1 +d4; c3 = d5-d6; d5 = m 7·mg; d6 = c1+d3; 

c5 = ds-d6; ds = m 9·m10; d6 = d1 +d2; d5 = d5-d6; d6 = ds+d5; ds = a2·a2; 

C4 = ds+d6· 
The following now holds: 

c0 = aJ, 
c 1 =2a0·ai. 
c2 = 2a0·a2+ar, 
c3 = 2a0·a3+2ara2, 
c4 = 2a0·a4+2ara3+ai, 

cs = 2ara4+2ata3, 
c6 = 2ata4+a}, 
c7 = 2a3·a4, 
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Cg=al. 
Time= 12M + 12A 1+14A 2. 

Auxiliary routine 5. This routine operates on the variables (d1,;);8=0, (d2,;);8=0, (d3,;);8=0, 

(z; ){ =O· The d 1,;, d 2,;, and d 3,; are input to the routine, and the z; are output. The d 2,; 

and d 3,; will be unaffected, but the values of the d 1,; will be changed. 
d = d 2,0+d3,5; for i = 0, 1, ... , 7: d 1,; = d 1,; +d2,;+ 1; for i = 0, 1,2: d 1,; = d 1,; +d3,;+6; 
for i = 5,6, 7, 8: dl,i = dl,i +d3,;-5; for i = 0, 1, ... , 8: z; = (d 1,; -d)modn; z 9 = (d3.4 
-d)modn. 

This routine is used only to do the final reductions mod n fo the multiplication and 
squaring routines for p = 11. 

Time= lOD +26A2. 
Now we are ready to present the multiplication and squaring routines. 
Multiplication for p = 3. 
d1=xo·yo; d1=xry1; m1=xo-x1; m2=y1-yo; d3=mrm2; d3=d3+d1; 
z 1 = d 3 mod n ; z 0 = (d 1 -d 2)mod n. 

The following now holds modulo n : 
z 0 =x0·yo-xry1> 
Z1 = Xo:YI +xryo-XfYI· 

Time= 2D +3M +2A 1 +2A 2. Return z = x·y. 
Squaring for p = 3. 
m 1=x0-x 1; m 2=x0+x 1; d 1 =mrm2; m 2=m 1+x0; y 0 =d1modn; d 1=xrm2; 
y 1 = d 1modn. 

The following now holds modulo n : 

Y 
-x2 x2 . o- 0- I• 

y I = 2x o· x I - x f . 
Time= 2D +2M +3A 1• Returny = x 2. 

Multiplication for pk = 4. 
m1 = xo+x1; m2 = Yo+y1; m3 =Yi-yo; d1 = mryo; d1 = mtx1; d3 = m3·xo; 
z0 = (d 1-d2)modn; d2 = d 1+d3;z 1 = d2modn. 

The following now holds modulo n : 
zo = xo·yo-xry1> 
z1 = xo·Y1 +xryo. 

Time = 2D +3M + 3A 1 + 2A 2• Return z = x ·y. 
Squaring for p k = 4. 
m 1 =x0-x1; m 2=x0 +x 1; d 1 =mrm2; m 1 =x0 +x0; y 0 =d1modn; d 1 =mrx 1; 

y 1 = d 1modn. 
The following now holds modulo n : 

Yo =x6-x[, 
Y1 = 2xo·x1. 

Time= 2D +2M +3A 1• Returny = x 2. 
Multiplication for p = 5. 
m1=x1-x3; m2=y1-y3; m3=x2-x3; m4=y3-y2; m5=xo-x1; m6=y1-yo; 
m1 = xo-x2; ms =y2-yo; do= xo-yo; d1 = mrm2; d1 = do+d2; d1 = m3·m4; 
d3 =m5'm6; d4 =m1·m8; d5 =xry 1; d6 =x2-y2; d1 =x3·y3; ds=d1+d2; 
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z 0 = (dg-d5)modn; dg = d 1 +d3; z 1 = (dg-d6)modn; dg = d 1 +d4; z 2 = (dg-d7) 

modn; m3 = m 1-m1; m4 = m 2+mg; d1 = m 3·m4; dg = d0 +d1; d1 = dg+d2; 

dg = d1+ d3; d1 = dg+d4; z 3 = d1modn. 
The following now holds modulo n : 

Zo = Xo·yo-xry3-XtY2-x3·y1 + Xty3+ XfY2· 

z1 = xo·Y1 +xryo-xo3-xz-y2-x3-y1 +x3·y3, 

z2 = xo·y2+ x1·Y1 + XtYo-x1·y3-xty2-x3-y1, 

z3 = xo·y3+xry2+XtY1 +x3·yo-xry3-xty2-x3-Y1· 
Time=4D+9M+lOA 1+11A 2• Retumz =x·y. 

Squaring for p = 5. 
m 1=x0-x2; m 2=x0+x2; m 3=x2-x 1; m 4 =x0-x3; m 5=x 1-x0; m6 =x2-x3; 

m 1=x 1-x3; mg=x3+x3; d 1=mrm2; d2=m3·mg; d3=d1+d2; mg=m5+m1; 

d2=m4·mg; d4 =d1+d2; m3=m1+xo; d1=xtm3; m2=m1-x3; d2 =mz-x 1; 

y 0 = d3modn; y 1 = d4modn; d3 = d1 +d2; Y2 = d3modn; m 1 = m 6+m6; d2 = m 1·m5; 

d3 = d 1+d2;y3 = d3modn. 
The following now holds modulo n : 

y 0 = xJ-2xcx3-x} +2xz-x3, 
y 1 = 2x0·x 1-2xrx3-x} +x}, 
y 2 = 2x0·x2+ xf-2xrx3-x}, 
y 3 = 2x0·x3+2xrx2-2xrx3-x}. 

Time=4D+6M+l2A 1+4A 2• Retumy =x2. 

Multiplication for p = 7. , 

Apply auxiliary routine I with (a; )f =o, (b; )f =O• (c; );4=o replaced by (x; )f =O• (y; )f =O• 

(d; );4=o respectively; apply auxiliary routine I with (a; )f =0, (b; )r=o• (c; );4=o replaced by 

(x;),5=3, (y;)f=3, (d;)}2:. 6 respectively; m1=xo-x3; m2=x 1-x4; m3=x2-x5; 

m 4 = y 3-y0; m 5 = y 4-y1; m6 = y 5-y2; apply auxiliary routine I with (a;)f =o, (b;)f=o• 

(c;);4=o replaced by (m;);3=h ;(m;);6=4, (d;)}~II respectively; d1g = d6+d14; d 16 = d1g+d3; 

d 1g = d1+d 15 ; d 17 = d 1g+d4; d1g = d 3+dII; d3 = d 1g+d0; d 1g = d4+d12; d4 = d 1g+ 

d 1; d5 = d1+d 13; d13 = d3+d6; d14 = d4+d1; d 15 = ds+dg; d6 = d16+d9, d1 = d 17+ 
d 10; d 18 = d0+d1; z0 = (d1g-d6)modn; d 1g = d 1 +dg; z1 = (d1g-d6)modn; d 1g = d2+ 

d9; z 2 = (d1g-d6)modn; d 1g = d13+d 10; z3 = (d1g-d6)modn; z4 = (d14-d6)modn; 

z 5 = (d15 -d6)modn. 
The following now holds modulo n : 

zo = xo·yo-x1·y5-xty4-x3·y3-x4·y2-xs-y1 +xtys+x3·y4+x4·y3+xs-y2, 

z i = xo·y 1 + x rYo - x o s - x tY 4 - x fY 3 - x 4·y 2 - x s·y 1+x3·y s + x 4·y 4 + x s"Y 3, 

z 2 = xo·Y2 + x ry 1 + x tYo- x O s - x tY 4 - x 3°Y 3 - x4·y2 - x s·y 1 + x4·y s + x s-Y 4, 

z3 = xo·y3+xry2+XtY1 +x3·yo-xrys-xty4-x3·y3-x4·y2-xs-y1 +xs·y5, 

z4 = xo·y4+xry3+xz-y2+x3·y1 + x4·yo-xos-xz-y4-x3·y3-x4·y2-XfY1> 

z s = Xo"Ys + x1·y 4 + xty3+ x3·y2+ x4·y1+x5·yo-x1·y5- XtY 4-x3·y3- x4·y2-xs-y I· 

Time= 6D + 18M +24A 1 +45A 2. Return z = x·y. 

Squaring for p = 7. 
m 1=x0-x1; m 2=x 1-x2; m3=x2-x3; m4=x3-x4; m 5=x5-x4; m 6 =m1+m2; 

m 1 =m2+m3; mg=m 3+m4; m 9=x3-x5; m 10 =m 3+m6; mll=m4+m1; 

m 13 =m6+mg; m 14 =m1+m9; m 16 =x0 +x 1; m 17 =x0 +m 10; d 1=x3·m 17; 
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m11 = m14-x4; m1s = m14+x4; d1 = m17·m1g; m11 = mg-m2; d3 = m1rm11; 

m11=m14+m9; d4=m11·m7; m17=x1+x1; ds=m1rm6; d6=mrm16; 

m11 = m3+m3; m2 = xo+m13; d7 = m1rm 5; dg =di +d2; d1 = d 8+d3; y 3 = d 1 modn; 

dg=d3+d4; d 1 =ds+d5; y 1 =d1modn; dg=d4+d6; d1 =d8+d7; y 0 =d1modn; 

m 17 = m7 +m 14; d 1 = m 9·m 17; m 17 = m 8-x5; m 18 = x 2+m5; d2 = m 17·m 18; 

d3 = mtx4; m 17 = m 3+m8; d4 = m 17·m4; m 17 = m 1 +m 1; d 5 = m 17·m5; 

m11 = m14-m5; d6 = m17·m11; m17 = x2+ x2; d1 = m17·m10; dg = d 1 +d2; d 1 = dg+d3; 

y4=d1modn; d 8 =d3+d4; d 1=d8+d5; y 5 =d1modn; d 8 =d4+d6; d 1=d8+d1; 

y 2 = d 1modn. 
The following now holds modulo n : 

y 0 = xJ-2xrx 5-2xtx4-x} +2xtx5+2x3·x4, 
y 1 = 2x0·x 1-2xrx5-2xtx4-x} +2x3·x5+xJ, 
y 2 = 2x0·x2+x[-2xrx5-2xtx4-x} +2x4·x5, 
y 3 = 2x0·x3+2xrx2-2xrx5-2xtx4-x} +xl, 

y4 = 2xo·x4+2xrx3+x}-2xrx5-2xtx4-x}, 
y 5 = 2x0·x5+2xrx4+2xtx 3-2xrx5-2xtx4-x}. 

Time=6D+14M+29A 1+12A 2. Retumy =x2. 
Multiplication for pk = 8. 

m1=x1+x3; m2=y1+y3; m3=x2+x3; m4=y2+y3; m5=xo+x1; m6=yo+y1; 

m1 = xo+x2; mg= Yo+y2; do= xo·yo; di= xry1; d1 = XtY2; d3 = x3·y3; d6 = ms-m6; 

d7 =mrm8; dg=mrm2; d 9 =m 3·m4; m 3=m 1+m7; m4 =m2+mg; d4 =m 3·m4; 

d10 = do+d1; du= d2+d3; d12_= d10+d3; d 5 = d 8+d2; z0 = (d 12-d5)modn; 

d 12 = d6+d11 ; d 5 = d 10 +d9; z 1 = (d12-d5)modn; d 12 = d 1 +d7; d 5 = d0 +d 11 ; 

z2 = (d12 -ds)modn; d 12 = d7+d6; d 5 = d 12 +dg; d 12 = d 5+d9; d3 = d 10 +d11 ; 

ds = d3+d4; z3 = (d5-d12)modn. 
The following now holds modulo n : 

zo = Xo"Jo-xry3-x2-y2-x'3·yi, 
z1 = xo·Y1 +xryo-xty3-x3·y2, 

z2 = xo·y2+xry1 +x2·yo-x3·y3, 
z3 = xo-y3+x3·yo+xry2+XtYI· 

Time= 4D +9M + IOA 1+17A 2. Return z = x·y. 

Squaring for pk = 8. 
m 1=x0-x2; m2=x0 +x2; m3=x 1-x3; m4 =x1+x3; m 5 =x0 +x0 ; m6 =x 1+x 1; 

m 7 = m1 +m 3; mg= m2+m4; d 1 = mrm 2; d2 = m3·m4; d 3 = m 6·x3; d4 = m 5·x2; 

m2 = x2+x3; Yo= (d1-d3)modn; d6 = d1+d4; y 2 = d6modn; d 5 = m 7·mg; 

d6 =d1+d2; y 1 =(d5-d6)modn; m1 =m 5+m6; d 1 =mrm2; d6 =d3+d4; 

y3 = (d1-d6)modn. 
The following now holds modulo n : 

y 0 =xJ 2xrx3-x}, 
YI= 2xo·x i-2xtx3, 
Y2 = 2x0·x2+x[-x}, 

y3 = 2x0·x3+2xrx2. 
Time= 4D +6M + IOA 1 +6A 2. Retumy = x 2. 
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Multiplication for pk = 9. 

Apply auxiliary routine 1 with (a;)l=o• (b; >l=o• (c; )f=o replaced by (x; >l=o• (y; >l=o• 

(d;)f=o respectively; apply auxiliary routine 1 with (a;);2= 0, (b;);2=0, (c;);4=o replaced by 

(x; );5=3, (y; );5=3, (d;);12=6 respectively; mi = xo-x3; m2 = x i -x4; m3 = x2-x5; 

m4 = y3-yo; ms= y4-yi; m6 = y5-y2; apply auxiliary routine 1 with (a;)l,=O• (b;)l=o• 

(c;)f=o replaced by (m;)J=i. (m;)f=4• (d;)n.11 respectively; dis= d6+di4; di6 = dis+d3; 

dis= d1+d15; d11 = dis+d4; dis= d3+d11; d3 = dis+do; dis= d4+d12; 

d4 = dis+di; ds = d1+d13; zo = (do-d16)modn; z1 = (d1-d11)modn; z2 = (d2-ds) 

modn; z 5=d5modn; d 1s=d3+d6; di9=d16+d9; z3=(d1s-d19)modn; dis=d4+ 

d1; di9 = dio+d 11; z4 = (dis-d19)modn. 
The following now holds modulo n : 

z o = x o·Yo - x ry s - x tY 4 - x 3·y 3 - x4·y 2 - x s'Y i + x 4·y s + x s'Y 4, 

zi = xo·Y1 + xi·yo-xty5-xfy4-x4·y3-x5·y2+ x5·y5, 

z2 = xo·y2+ xry1 + xtyo-x3y5-x4·y4-x5·y3, 

z3 = xo·y3+xry2+XtY1 +x3·yo-xrys-xty4-x3·y3--x4·y2-xs·yi. 

z 4 = x o·y 4 + x i·y 3 + x tY 2 + x 3·y i + x 4·y o- x tY s - x 3·y 4 - x 4·y 3 - x s·y 2. 

zs = xo·y5+xry4+xty3+ x3·y2+x4·yi +x5·yo-x3·y5-x4·y4-x5·y3. 
Time= 6D + 18M +24A 1 +39A 2. Return z = xy. 

Squaring for p k = 9. 

m 0 =x0 -x3; m 1=x 1-x4; m2 =x2-x5; m 3=x0 +x3; m 4 =x 1+x4; m 5=x2+x5; 

apply auxiliary routine I with (a; >l=o• (b; >l=o• (c; );4=o replaced by (m;)l=o• (m; );5=3• 

(d;);4=o respectively; m3 = x 0 +m0 ; 111 4 = xi +m 1; m 5 = x 2+m2; apply auxiliary routine 

1 with (a;)l=o• (b;)l=:o• (c;)f=o replaced by (m;);5=3, (x;);5= 3, (d;)f=s respectively; 

y 0 = (d0 -ds)modn; Y1 = (d1-d9)modn; y 2 = d2modn; d 10 = d3+d5; y 3 = (d 10 -ds) 

modn; d10 = d4+d6; y 4 = (dw-d9)modn; y 5 = d1modn. 

The following now holds modulo n : 

y 0 = xJ-2xrx5-2x2·x4-x} +2x4·x5, 
y 1 = 2x0·x 1-2xtx5-2x3·x4+xff, 
y 2 = 2x0·x2+x[-2x3·x 5-xf, 
y 3 = 2x0·x 3+2xrx2-2xrx5-2xtx4-x}, 

y 4 = 2x0·x4+2xrx3+x}-2xtx5-2x3·x4, 

y 5 = 2xo·x5+2xrx4+2xtx3-2x3·x5-xf. 
Time= 6D + 12M +21A 1 +20A 2. Retumy = x 2. 

Multiplication for p = 11. 
For i = 0, 1,. . .,4: a;= X; +x;+s and b; = y; +y;+5; apply auxiliary routine 3 with 

(a; );4=o, (b; )f=o• (c; );s=O replaced by (x;)f=o• (y; );4=0, (d 1,; );s=o respectively; apply auxiliary 

routine 3 with (a; )f=o• (b; );4= 0, (c; );s=o replaced by (x; ){ =S• (y; ){ =S• (d2,; );s=o respectively; 

apply auxiliary routine 3 with (a; )f=o• (b; )f=o, (c; );8=o replaced by (a; );4= 0, (b; );4= 0, 

(d3,; );s=o respectively; for i = 0, 1,. . ., 8: d3,; =d3,; -d1,; -d2,;; apply auxiliary routine 5 to 

(d 1,; )l=o, (d2,; );s=O• (d3,; );8=0• (z; ){ =O· 
The following now holds modulo n : 

z o = x o·Yo + x 2·y 9 + x 3·y 8+x4·y1+xs·y6 + x 6'.Y s + x tY 4 + x s·y 3 + x 9·y 2 - s, 

z 1 = xo·y 1 + x 1'Yo + x 3·y 9 + x 4·y 8 + x s·Y1+x6'Y 6+x1·y s + x 8·y 4 + x 9·y 3 - s, 

z 2 = x o·y 2 + x ry 1 + x tYo + x 4·y 9 + x s·y s + x 6'Y 1+xtY6 + x 8'Y s + x 9·y 4 - s, 
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z3=xo·y3+x1-Y2+ x2·Y1 + XfYo+ xs-y9+ x6·y8+ x7-y1+ x8·y6+ x9·y5-s, 
z4 = xo·y4+xry3+ XtY2+x3·y1 + x4·yo+x6·y9+xty8+x8-y1+x9·y6-s, 
z 5 = x o·y 5 + x fY 4 + x tY 3 + x 3·y 2 + x4·y 1+xs"Yo+x1·y 9 + x 8"Y 8 + x 9·y1- s, 
z6 = xo·y6+x1·y5+xty4+x3-y3+x4·y2+xs-y1 +x6·yo+x8·y9+x9·y8-s, 
z1 = Xo"J1+ xry6+ x2·y5+ x3·y4+x4·y3+ xs-y2+ x6·Y1 + X1"Jo+ x9·y9-s, 
z 8 = x o·y 8 + x rY1+xtY6 + x 3·y 5 + x 4·y 4 + x s"Y 3+x6"Y2+x1·y 1 + x 8"Yo - s, 
z9 = xo·y9+ xry8+ XtY1+ x3·y6+ x4·y5+ x5·y4+ x6·y3+ x7·y2+ x8·Y1 + x9·yo-s, 
where s = x rY 9 + x 2·y 8 + x 3·y 7 + x 4·y 6 + x 5"J 5 + x 6"Y 4 + x tY 3 + x 8"Y 2 + x 9·y I· 

Time= IOD +45M +64A 1+122A 2. Return z = x·y. . 
Squaring for p = 11. 
For i =0,1, ... ,4: a; =2x;; apply auxiliary routine 4 with (a;);4=0, (c;);8=o replaced by 
(x; );4=0, (d 1,; );

8=o respectively; apply auxiliary routine 4 with (a; )f=o, (c; );8=o replaced by 
(x; )( =5, (d2,; );8=o respectively; apply auxiliary routine 3 with (a; );4=0, (b; );4=0, (c; );8=0 
replaced by (x; )( =5, (a; );4=0, (d3,; );

8=o respectively; apply auxiliary routine 5 to (d 1,; );8=0, 
(d2,; );8=0, (d3,; );

8=0, and with (z; )( =O replaced by (y;)( =O· 
The following now holds modulo n : 

Yo= xJ +2xtx9+2x3·x8+2x4·x1+2xs-x6-s, 
Y1 = 2xo·x 1 +2x3·x9+2x4·x8+2xs-x1+ xl -s, 
Y2 = 2xo·x2+x[ +2x4·x9+2xs-x8+2x6·x1-s, 
y3 = 2x0·x3+2xrxf+2xs-x9+2x6·x8+xj-s, 
y4 = 2x0·x4+2xrx3+x:.f +2x6·x9+2x1·x8-s, 
y5 = 2x 0·x 5 +2xrx4+2xtx 3 +2xrx 9 +x~ -s, 
Y6 = 2x0·x6+2xrx5+2xtx4+xJ +2x8·x9-s, 
Y1 = 2xo·x 1 +2xrx6+2xtx 5 +2x 3·x4 +x~ -s, 
Y8 = 2xo·x8+2xrx1+2xtx6+2x3·x5+x]-s, 
y 9 = 2x o· x 9 + 2x r x 8 + 2x t x 7 + 2x 3• x 6 + 2x 4• x 5 - s' 
where s = 2xrx9+2xtx8+2x3·x1+2x4·x6+x?. 

Time= IOD +39M +47A 1 +80A 2. Returny = x 2. 
Multiplication for p k = 16. 
m1 = xo+x4; m2 = x1 +x5; m3 = x2+x6; m4 = x3+x1; apply auxiliary routine 2 with 
(a;)?=o• (b;)?=o• (c;);6=o replaced by (m;);4=1' (y;);3=0, (d;);6=o respectively; m 1 = y 0+y4; 
m2 = Y1 +y5; m3 = Y2+y6; m4 = y3+y7; apply auxiliary routine 2 with (a; );3=0• (b;)?=o• 
(c;);6=o replaced by (m;);4=1' (x;)?=4• (d;)/l.7 respectively; m1 = y4-yo; m2 = y5-y1; 
m3 =y6-y2; m4 = y7-y3; apply auxiliary routine 2 with (a;);3=0, (b;);3=0, (c;);6=o 
replaced by (m;)f=I> (x;);3=0• (d;)/~ 14 respectively; d 21 =d4+d1; d 22 =d21 +d18; 
z 0 = (d0-d22)modn; d 21 = d5+d8; d 22 = d 21 +d 19; z 1 = (d1-d22)modn; d 21 = d6+d9; 
d 22 = d 21 +d20; z2 = (d2-d22)modn; z 3 = (d3-d10)modn; d 21 = d4+d0; d 22 = d 21 + 
d 14; z4 = (d22-dn)modn; d11 = d 5+d1; d12 = d 21 +d15 ; z 5 = (d22 -dn)modn; d11 = 
d6+d2; d12 = d11 +d16; z6 = (d22-d13)modn; d 21 = d 3+d17; z 1 = d 21 modn. 

The following now holds modulo n : 
z o = x o·Yo - x ry1- x tY 6 - x 3·y 5 - x 4·y 4 - x 5"Y 3 - x 6"Y 2 - x 1·y 1> 

z1 = xo·Y1 +xryo-xty1-x3·y6-x4·y5-xfy4-x6·y3-x1-y2, 
z2 = xo·y2+xry1 +xtyo-x3·y7-x4-y6-x5·y5-x6·y4-x7·y3, 
z 3 = x o·y 3 + x O 2 + x tY 1+x3·y o - x4·y 1-x s"Y 6 - x 6"Y 5 - x 1·y 4, 



z 4 = x o·y 4 + x rY 3 + x tY 2 + x 3·y I+ x 4·y o- x s"Y 1-x 6"Y 6 - x 1·y 5, 
zs = xo·y5+xry4+xty3+ x3·y2+ X4"YI + xs-yo-x6·y1-x1"Y6• 
z6 = xo·y6+xrys+xty4+x3·y3+x4-y2+xs·YI +x6·yo-x1·y7, 
z 7 = x o·y 7 + x rY 6 + x tY 5 + x 3·y 4 + x 4·y 3 + x 5·y 2 + x 6"Y I + x iY O· 

Time= 8D +27M +42A I +62A 2. Return z = x·y. 
Squaring for pk = 16. 
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mI=x0+x4; m2=xI+x5; m3=x2+x6; m4=x3+x1; m5=x0-x4; m6=xI-x5; 
m1=x2-x6; m 8=x3-x1; apply auxiliary routine 2 with (a;)?==o• (b;)?==o• (c;);6==o 
replaced by (m;);4==1' (m;);8== 5, (d;);6==o respectively; mI=xo+xo; m2=xI+xI; 
m3=x2+x2; m4=x3+x3; apply auxiliary routine 2 with (a;)?==o• (b;)?==o• (c;);6==o 
replaced by (m;)f==i. (x;)l== 4, (d;)l'l. 1 respectively; y 0 = (do-d11)modn; 
YI= (dI-d12)modn; y 2 = (d2-d 13)modn; y 3 = d3modn; d0 = d4+d1; y 4 = d0modn; 
dI = d5+d8; y 5 = dI modn; d2 = d6+d9; y 6 = d2modn; y 1 = d 10 modn. 

The following now holds modulo n : 
y 0 = x6-2xrx1-2xtx6-2x3·x5-x], 
YI= 2x0·xI-2xtx1-2x3·x6-2x4·x5, 
y 2 = 2x0·x2+x[-2x3·x1-2x4·x6-xl, 
y 3 = 2x 0• x 3 + 2x r x 2 - 2x 4• x 7 - 2x s" x 6, 

y 4 = 2x0·x4+2xrx3+x}-2xs-x1-xg, 
y 5 = 2x0·x5+2xrx4+2xtx3-2x6·x1, 
y 6 = 2x0·x6+2xrx5+2xtx4+xf-xj, 
y 1 = 2x0·x1+2xrx6+2xtx5+2x3·x4. 

Time= 8D + 18M +32A I +34A 2. Returny = x 2. 




