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Solving Implicit Differential
Equations on Parallel Computers

P.J. van der Houwen & W.A. van der Veen
CWiI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract
We construct and analyse three methods for solving initial value problems for implicit differential
equations (IDEs) on parallel computer systems. The first IDE method can be applied to general IDEs of
higher index, the other two methods can be applied to partitioned (or semi-explicit) IDEs. The partitioned
IDE methods both exploit the special form of the problem and often converge faster than the general IDE
method. The first partitioned IDE method is suitable for higher-index problems, the second partitioned
IDE method only applies to index 1 problems, but possesses more parallelism across the method. The
convergence of these methods is illustrated by solving implicit IDEs of index O until 3 that are taken from

the literature.
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1. Introduction
We consider initial value problems (IVPs) for systems of implicit differential equations (IDES)

(1.1)  e(®)y®)=0, y,eOR

It will always be assumed that the initial conditionsyf(is) andy(tg) are consistent and that the IVP
has a unique solution. Let us define the Jacobian matricespg(trv) and J := ,(u,v) (in the
definition of J, the minus sign is inserted so thadlicit differential equations withp =y' - f(t,y)

yield the familiar formula J 9f/dy). Then, the IVP is said to lsable if in the neighbourhood of the
solution, the eigenspectrum(K,J) of the pencil J AK is in the nonpositive halfplane, that is,
det(AK - J) has only zeros in the nonpositive halfplane. More generally, any pair of matrices {K,J} |
said to be atable pair if they satisfy this requirement. In the analysis of iteration methods for solving
the numerical discretization of (1.1), the stability of matrix pairs will play a central role. Note that tt



stability of the matrix pair {K,J} associated with (1.1) implies that its solution is bounded as.t
Furthermore, we remark that higher-index problems are stable whenever their index 1 represente
are stable.

In particular, this paper will consider thartitioned case (osemi-explicit case, cf. [2]) where

_( K11 O) _f N1 312)
(1.2) K—(O g) 3=( 3 32).

Here, Ki1, J11and 3> are square matrices, with respective dimensigndicand @ = d - d.
Stability conditions for the pair (1.2) in terms of its submatrices can be obtained by writing tt
eigenvalue equatiomd= AKw in the componentwise form

(1.3)  Jpaug + Joup =AK1u1, JBauit+ Joup =0.

We briefly discuss two special cases that will arise later in this paper. Let us first consider the ¢
where 32 is nonsingular. Thenyo can be eliminated from the eigenvalue equations (1.3) to obtair
the relation 81 = AK11u1, where S is the Schur complement of J. Thus, the pair (1.2) is stable if

(1.4) J2is nonsingular{ K11,S} is stable, S :=31 - J2d71kh1.

If Jo2 is not necessarily nonsingular, but if it commutes with(See Example 2.3), therp can be
eliminated by premultiplying the first equation of (1.3) with fhere, we assume & ). This
leads to the relatioAuy = AJp2oK11u1, whereA is the 'determinant’ of J. Thus, (1.2) is stable if

(1.5) di =db, po commutes with 1b, { J2K11, A} is stable,A := bodi1- hak1.

It may happen that the IDE is not given in the semi-explicit form {(1.1),(1.2)}, but in the form

(1.6) Qyt) =fy®), vy, fORY

Suppose that Q is a constant, singular matrix of ranKlden, there exist nonsingular matricas S
and $ such that (1.6) can be represented as the equation (see [4, p.406])

(17) SIQ%z-Sf(S2) =0, 2=%1y, 50%=(53). v.zfOR?

where the dimension of | equals the rank of Q. This problem is of the partitioned form {(1.1),(1.2
with K11 = I. Introducing the partitioning = (uT,vT)T with u andv respectively of dimensiomd

and @, it can be written as an IVP for the semi-explicit differential-algebraic equation (DAE)
(1.8) u@t) =f(uyv), g(uv)=0, u,fORIY v, gORY2,

In this paper, we shall analyse integration methods for solving (1.1) that can be efficiently used
parallel computer systems. We construct an IDE method for general IDEs of higher index, and t



methods that can be applied to partitioned problems of the type (1.2). These partitioned IDE mett
both exploit the special form of the problem and converge faster than the general IDE method. -
first partitioned IDE method is suitable for higher-index problems, the second partitioned IDE meth
only applies to index 1 problems, but is often considerably less expensive. The performance of
methods is illustrated by test problems from the literature.

2. The numerical scheme
Let us start with the case where (1.1) is an (explicit) ordinary differential equation (ODE)

y(©) = fy); y,fORY
A large class of implicit step-by-step methods for solving ODEIVPs can be represented in the form
(2.1)  yp+1=(@ETODY, Y - h(AODF(Y) =W.

Here, A denotes a nonsingular s-by-s matfixis an sd-dimensional vector containing information
computed in preceding integration steps, | is the d-by-d identity matrix, h is the stgpsizg, tand

[ denotes the Kronecker product. The s vector compoivgmkthe sd-dimensional solution vector
Y represent numerical approximations to the exact solution vegabgst ch), ¢ being the abscissa
vector with ¢ = 1 ande representing the s-dimensional vector with unit entries. Furthermgaee,
the sth unit vector angy, is the numerical approximation §(tn). In (2.1),F(V) contains the
derivative value:{f(vi)) for any vectoV = (Vi). In the following, | will denote the identity matrix
and its dimension will always be clear from the context.

In order to derive the analogue of (2.1) for IDEs, we observe tlpasifnvertible with repect tg,

then this analogue should be equivalent to (2.1). This leads us to use (2.1) for expressing
derivative stage vectdf(Y) in terms ofY, and to substitute this expression into the equation
®(F(Y),Y) =0, with @ defined in the same way BsThis yields the method

(22)  yne1=(@TONY, R(Y) =0, R(Y):=o((h1A101)(Y -W),Y).

Thus, the method (2.2) is completely specified by the paWA,
An important class of methods leading to implicit relations of the form (2.1) are the stiffly accura
Runge-Kutta (RK) methods which arise #&f := e[ly,. As an example, we consider the equation

(1.6). If we apply (2.2), then
(2.3)  yna1=(&TONY, (W1A-1OQ)(Y - W) -F(Y) =0,

which is equivalent to the RK method discussed in [4, p.406].



Remark 2.1. As explained in [4, p.407], the RK solutioh defined by (2.3) is algebraically
identical to (0Sp)Z, whereZ is the RK solution obtained by applying (2.2) with := e[1z, to
(1.7), or equivalently, to (1.8). This equivalence holds for any methot/JA®

The implicit equation in (2.2) will be solved iteratively by generating sequences of iteydigs
Our starting point is the iteration method

2.4) N(YO-YGD) =-(hAO)R(YED), j=1, .., m,

where N is a nonsingular matrix. The iteration error associated with (2.4) satisfies the recursion
N(YO -v) = N(YGD - Y) - (haD1) (R(Y (D) - R(Y)).

so that ignoring second-order terms leads to

25) YO-y=M(YGED-Y), M:=NLN-Ny), No:=I0K - AOhJ,

where the Jacobian matrices K and J are both evalaatbd step pointt The conventional choice
for N is the modified Newton iteration matrixgMesulting in a zero amplification matrix M. The
advantage of the choice N 3l that, even in strongly nonlinear problems, a few iterations usually
suffice to solve the implicit system in (2.2). However, a disadvantage is that solving the line
Newton systems can be quite expensive. For example, when direct methods are used, the
decomposition of the sd-by-sd matriyg Mquires as many as Ggs) arithmetic operations.

In this paper, we shall consider several choices of more 'convenient' iteration matrices N.
necessary and sufficient condition for linear convergence of the iteration method (2.4) requires
spectruma(M) of M (to be referred to as the setafiplification factors) within the unit circle.
Therefore, we shall try to combine a spectral ragii) < 1 with a reduction of the complexity of
the linear Newton systems. In particular, we shall look for matrices N that reduce the computatio
complexity on parallel computer systems (for example, matrices N with a block-triangular structure

Remark 2.2. In an actual implementation of (2.4), it may be recommendable to removelthe h
factor in the residual in (2.2) by defining the 'derivative' itevdte:= (h-1A-101)(Y () - W). Then,
the iteration scheme becomes

2.4 N(ADI)(YO - YG-D) = - (A0 o(YED,W + (hADIYED), YO =W + KADI)YO).

The sequencesy{l)} generated by the schemes (2.4) and (2.4") are algebraically identical, but (2.

can be used ash 0.4



2.1. General IDE method

In the case of IVPs for the IDE (1.1) wigeneral Jacobians K and J, the Newton process defined by
(2.4) with N = Np = IOK - AOhJ can be 'simplified’ by replacing A by a lower triangular
approximation B, so that

DK-hB]_lJ @) @) [

(2.6) N=IOK - Bohy=LJ ~NBaaJ K -hBz2) O ...[]
[] - hB31J - hB3z2J K -hB33J ...[]
L O

In addition, one may also replace J by an approximatitimal is tuned to the problem to be solved.
In the case of RK methods for ODEIVPs, a first analysis of such an approach can be found in
and for IDEIVPs, results will be given in a forthcoming paper.

Substitution of (2.6) into (2.4) yields

2.7) (10K - BOh) (YO - YGD) = - (hADI)R(Y (D).

Formally, the iteration method (2.7) can be applied to problems of any index if the matr
N = I0K - BOhJ is nonsingular. Thus, the s blocks K 4jiBhould be nonsingular. The method
(2.7) will be referred to as thgeneral IDE method. Furthermore, we shall say that the method is in
diagonal mode if B is a diagonal matrix D and tniangular mode if B is a lower triangular matrix T.

Each iteration with (2.7) requires the solution of a linear system with the block-triangular matrix |
Hence, the system splits into s subsystems of dimension d, reducing the computational c
considerably. In this paper, we assume that the subsystems are solved by a direct solution me
Then, apart from solving these s linear subsystems, each update of the matriBL1hJ implies

the LU-decomposition of the s blocks K -jhBassociated with the s subsystems. However, this
only requires O(s¥ flops which is a factorsless than the number of flops needed when the
modified Newton matrix iyis used. Moreover, these LU-decomposutions can be done in parallel, ¢
that the effective costs on a parallel system are a fat®maller. Likewise, the solution of the s
subsystems can also be done in parallel, both in the case of the diagonal-implicit and the triangt
implicit approach. The triangular approach requires additional costs for performing similarit
transformations, but as will be demonstrated in our numerical experiments in Section 3, it usus
converges much faster. We remark that the linear system in (2.7) has similarities with the lin:
systems occurring in the parallel diagonal-implicitly iterated RK methods and the parallel triangul:
implicitly iterated RK methods analysed in [6] and [8] for solving IVPs for ODESs. In particular.
reference [8] presents a detailed discussion of the advantages and disadvantages of the diag
implicit and the triangular-implicit approach which to a large extent also applies to the IDE case.
Next, we consider the convergence of the iteration method (2. 7)KIf-IBOhJ is nonsingular,
then it follows from (2.5) that the error amplification matrix corresponding to (2.7) is given by



2.8) M= (10K - BOh)*((A - B)ONY).
Let us denote the eigenvectors and eigenvalues of &kyandu. Then, we derive the relation
h(A - B + uB)alJw = palKw.

This shows thatwl and Kw are related by the generalized eigenvalue equavonAKw, whereA
IS a generalized eigenvalue. On substitutionnoFAKw and by defining z :Ah, we obtain

2(A - B)aOKw = (1 - zB)(aOKw).
Thus, if Kw # 0, thenu = u(z) is an eigenvalue of the matrix
2.9) 2@ =41-zB)"(A-B),

provided that | - zB is nonsingular. 1K= 0 with w # 0, thenA = 0, so thafu is an eigenvalue of
the matrix | - BLA. Matrices of the type (2.9) have extensively been studied in [6] and [8]. For .
large number of RK matrices A, diagonal and lower triangular matrices B have been found such f
the eigenvalueg(z) of Z(z) are within the unit circle whenever Re£A). Lower triangular matrices

B that possess this property will be said to lie in theB$A) associated with the matrix A (in the
following, it will be assumed that Bl B(A), unless stated otherwise). The condition Re&(D) is
satisfied if, and only if, the eigenspectratkK,J) of the pencil JAK is in the nonpositive halfplane,
that is, if {K,J} is a stable pair. Hence, stability of {K,J} impligs()| < 1. Furthermore, stability
implies the nonsingularity of the matrices K -jliBbecause if the matrix B B(A), then its diagonal
entries B are necessarily positive, otherwiseoX(would be singular. Thus, we have proved the
convergence theorem:

Theorem 2.1. Let B[ B(A). Then, the general IDE method (2.7) converges for all h > 0 if, and
only if, {K,J} is a stable pair$

Example 2.1. Consider equation (1.6) with Q = Y( Then, K = Qy) and J H(f(y) - Q¥)Y)y.
Thus, Theorem 2.1 implies convergence for h > 0 if {K,J&(y).(f(y) - Q¥)y)y} is a stable
pair. ¢

Example 2.2. Consider equation (1.8) witlp=g(u), that is, the equation
(1.8) G =f(uv), g)=0, v,g0R%

If fygy is assumed nonsingular, then this equation is of index 2. Evidently, it is of the form (1..

with
<=(00) =(g ¢



Recalling that higher-index problems are stable whenever their index 1 representation is stable
write (1.8") in the index 1 form(t) = f(u,v), gu(u)f(u,v) = 0. This equation is again of the form
(1.2) with

K= K—(Og) J=3= (gufu gufv)

Hence, we have convergence for all h > 0 if {K} is a stable pair$

2.2. I1DE methods for partitioned problems

In this section, we consider problems of the partitioned form {(1.1),(1.2)}. For such problems, it
convenient to writey = (uT,vT)T, whereu andv are respectively of dimension dnd @, and to
replace the stage vectérby the permuted stage vectgr= PY := (UT,VT)T, whereU andV are
stage vectors associated witlandv in the same way a6 is associated witi. Let us introduce the
permuted iterate¥() := Py (), then the permuted versions of (2.4) and (2.5) respectively become

2.20) N (YO0 -YG@D) =- AhADI)R(PLY(D), N:= PNPL,
211)  YO-Y=M(YGD-Y), M:=pPMPl= N N-Ng), No:=P{IOK-AOn)PL

Before selecting suitable matricesfor the problem {(1.1),(1.2)} we consider the general IDE
method when applied to {(1.1),(1.2)}. By replacing in (2rf) by P1Y () and by observing that for
any matrix C and any matrix J with a partitioning as in (1.2), the permutation matrix P satisfies

P(CDJ)P‘l _0CAh1 Chh2 O
Heodb, cods H

it can be verified that the general IDE method (2.7) takes the form

Ol0Kq11- BOhJ1 -BOhgo D(Y(J) G- 1)): - hADI @)

(2.7")
-BOhdp, -BDthz @) - hAOI

ﬁPR(Pl\?(j-l)).

Since

R = 0!/0K11- ADhJiy - ADhJio ]
0 -AOh®;  -AOhks b

the matrix Nassociated with (2.7") can be written as

010K11-BOhy1 -BOhJo

(2.6') N= 0(A-B)0J11 (A -B)UJr2
' H -BOhd; -BOhg»

0_7 U
47N " HA -B)0h: (A-B)OI



We now want to 'improve' this matrix by exploiting the special form of the equation {(1.1),(1.2)}
From (2.11) it follows that convergence is expected to be faster as the magnitTJde ﬁ@ N
smaller, that is, if the generated method is 'closer' to the true (modified) Newton process. Of
various possibilities, we shall consider the cases

I0K11-BOhJy1 -BOhJo

2.12a) N = [ 0 _No+hOA-B)0A1 (A-B)0X2

( ) H -AOh®; -AOhkoH ° O O o) 0
~  gI0OK1-AOhd; -AOhJo O ~ O O

2.12b)N= 7 =Ng+hU 0,

( IN=1H o) “AOhh, H™ 07 "OAOXR; OO

Notice that (2.12b) requires the matrixo 1o be nonsingular, that is, the equation {(1.1),(1.2)}
should be of index 1. This condition is satisfied by many IVPs (e.g. all IVPs for the equation (1.
with gy nonsingular), so that it is relevant to analyse the case (2.12b). The iteration matrices (2.1
and (2.12b) respectively generate the methods

I0K11-BOhJ 1 -BOhg2

2.13a) H H (Y0 -vG6D) = O0- hADlL O Opr(p1y(-1)
(2.13a) O EN X 10Jo f( ) g o | O ( ),
0I0K11-AOhJn -AUhJ2 O(Sm S -hAOl O 3 G-
2.13b) O g(y0-v@1)=10 UPR(P-1y(-1)),
( ) O @) 102 f( ) g o | O ( )

and will be referred to as tlpartitioned IDE method | and thepartitioned IDE method I1. Note that

for do = O (that is, if there is no partitioning), the methods (2.13a) and (2.13b) respectively reduce
the general IDE method (2.7') and to the modified Newton method~\/\Fi1hN}@5. From (2.12) it
follows that we may expect (2.13a) to converge faster than (2.7'yB)AJy1 and (A-B)[Jy12 are

of small magnitude, whereas (2.13b) will converge fastes ilsJof small magnitude.

In the Subsections 2.2.1 and 2.2.2, the computational efficiency and convergence conditions for
partitioned IDE methods (2.13a) and (2.13b)will be discussed.

2.2.1. Partitioned IDE method I
Each iteration with (2.13a) requires the solution of s systems of dimensiondt:ebdvhose
matrices of coefficients are of the form

—._( K11-hBijJ11 hBiile) .
(2.14) N;j:= o1 Br2) i=1 s

Thus, in order to apply the partitioned IDE method I, the matrigehdlld be nonsingular. Let D

be the diagonal matrix withpdliagonal entries 1 ang diagonal entrieshBjj. Then we may write

N; = Di"I(K - hB;jjJ). For stable IVPs, the matrices K -jiBare nonsingular, and therefore the
matrices N Furthermore, it follows from (2.7') and (2.13a) that for partitioned problems, the
computational complexities of the general IDE and the partitioned IDE method | are comparable.



In the convergence analysis, we proceed as in the proof of Theorem 2.1. The~miat|gj<vb/h by

IUK11-BUhL1 -BOhJi2 O (A -B)OJ11 (A -B)Odi2

M=hH
H -AOhL; -AOhR,H O O 0 0

Let the eigenvalues and eigenvectors?dtﬁek/denoted by and %E:@ Then,

h(A -B)bO(Jr1u + Jov) = u(bOK13u -BbO(hdiqu + hdav)),
u(AbO(Ju + Hav)) =0.

Again, we use the generalized eigenvalue equatwr= AKw. Writing this equation in the
componentwise form (1.3), we obtain upon substitution

(A -B)bOK1qu =p(l - zB)(bOK1u), z :=Ah.

If K1qu £ 0, thenp = u(z) is again an eigenvalue of the matrix Z(z) defined in (2.9).1luk= 0
with u # 0, thenp is an eigenvalue of the matrix | =18. The analogue of Theorem 2.1 becomes:

Theorem 2.2. Let B B(A). Then, the partitioned IDE method | defined by (2.13a) converges for
allh > 0 if, and only if, (1.2) is a stable pa#.

Thus, a comparison with Theorem 2.1 reveals that for partitioned problems where K is of the fo
(1.2), the two theorems impose the same convergence conditions.

Example 2.3. The IDE (1.6) considered in Example 2.1 can be written as the DAE (cf. [4, p.486]
(1.7) u@®) =v, Q)v-f(u)y=0, u,v,fORI

K and J are of the form (1.2) withiK=1and 31 =0, 32 =1, 11 =(Q)V - f(u))u, L2 = Q).
Since 32 commutes with b, it follows from Theorem 2.2 and (1.5) that the partitioned method |
converges for h > 0 whenevg®(u),(f(u) - Qu)v).} is a stable pair (compare Example 24t).

2.2.2. Partitioned IDE method 11

From (2.13b) it follows that in each iteration we can first solve in parallel the s (uncoupled) d
dimensional systems for the lasb®®dmponents/() of 20) (requiring the nonsingularity obg),

and next the s systems of dimensiariad the first s components&)() of \7(1'), that is, the system

2.15) (10K112-A0hY) (U0 -UGD) =QM), QO := h(-ADI ADJ2kz1)PR(PLY(-D).

The iterateJ() as defined by (2.15) will be computed iteratively byiraer iteration method. The
recursion (2.13b) itself will be callemliter iteration.



1C

For the inner iteration, we shall use a method which is very much like the general IDE method u:
for solvingR(Y) = 0in (2.2). Denoting the inner iterates B), we have

(2.16) (10K11-BOhd1)(z® - zk-D) =Q0) - (10K 11-A0NY 1) (2D - UGD), k=1,..., 1,

requiring the nonsingularity of the matricesik hB;jJi1. In this inner iteration process we may use
as initial approximatio (0) = U(-1) and, after r iterations, we dgt) = z(").

If B is diagonal, then the s linear systems to be solved in each iteration of (2.16) can be treate
parallel. For triangular B, the degree of parallelism depends on the linear solver used. Let us cons
the case of direct solvers. Then, the LU-decomposition®0&dd the matrices {4 - hBjjJ11,
i=1,..,s, can be done in parallel. It is here where the sequential (or effective) costs of
partitioned method Il may be substantially less than those for the general IDE method and
partitioned method I. The LU-costs of the latter two methods &(d; + dp)3/ 3 flops, whereas the
partitioned method Il requires ordy2(max {d;,d2} )3/ 3 flops, yielding a speed-up factor for the
(often dominating) LU costs 6&f (d1 + dp)3(max {d1,d2} )3 = (1 + min{dyd>1,drd171})3. Hence, if

di equals d, then a maximum speed-up factor of 8 is obtained, ¥ dy and if the matrix K1 is
allowed to be singular, then we may repartition the partitioned equation {(1.1),(1.2)} by addir
algebraic equations to the 'differential equation’ part so thatidcreased. This would reduce the
computational complexity of the method when implemented on a parallel system.

In the next two subsections, the convergence of the outer and inner iteration will be analysed.

2.2.2.1. Convergence of the outer iteration. A convergence result for the outer iteration
(2.13b) is obtained by elimination ®f) from (2.15) and by writing down the error recursion for
U0 - U. The corresponding amplification matrix becomes

M11:= - (10K 11 - ADhd) H(AOhI 2% 1%1).

Denoting the eigenvectors and eigenvaluegpf by allw andy, we obtain
(Aadh(s - 31+ fid1))w = (a0fiK1g)w

Leta be an eigenvector of A with eigenvalueThen,
(ﬂ(Kll -ahgg) + Gthszz'lle)W = 0.

Suppose thafK11,J11} is stable, that is, the 'differential equation' part of the IVP is required to b
stable, which seems to be a quite natural requirement. Then, it follows that the matrxhd; 1,

and thereforelK11-A0hJi1, is nonsingular for altth in the positive halfplane. Hence, for
Re@h) > 0, the eigenvalugsare also eigenvalues of the matrix

(2.17) Z(cxh) = -Gh(Kll - O(thl)_l(leJzz'lJﬂ).



11

This leads us to the convergence theorem:

Theorem 2.3. Assume thatz} is nonsingular and that A has its spectraf®) in the positive
halfplane. Then, the outer iteration (2.13b) converges if, and only §fK¢),J11} is stable and (ii)
Z(ath) has its eigenvalues within the unit circle forealll o(A). 4

Using properties of the logarithmic matrix nogpt], the following corollary from Theorem 2.3 can
be proved.

Corollary 2.1. Let the assumptions of Theorem 2.3 be satisfied afKlet, 11} be stable. Then,
each of the following conditions are sufficient for convergence of the outer iteration (2.13b):

(2.18a) h>0u[K11M1q] <-|K1r1d230 %] K11 nonsingular

Re() 1
a2 K11 312300101]| + P[K1172311]

(2.18b) O0<h< a Oao(A), Kiinonsingular.

u[-K11 +ah]

(2.18¢) 0<h< ,
la| |P12322- 134 |

a Oao(A).

Proof. To prove assertions (2.18a) and (2.18b) we use the inequality
(2.19) p(Z(ah) < h ] || H2| |K112312322 1021,

where H := | -ahK11-LJ11. Obviously,p(Z(ah)) < 1 if h|[K 117131232 L4|| < |[@1H)-L|[L. By
virtue of a property of the logarithmic norm, we have that for nonsingular, complex matrices C bc
-u[C] and {4[-C] are less than |[{@[1 (the proof given in [3] for real C, is easily generalized for
complex C). Hence, setting Co=1H, we conclude that satisfying|K111J12J2 131 | < -p[-a-1H]

= -p[-a-1 + hK11 11 certainly implies thap(Z(ah)) is less than 1. Since (cf. [10])

Re(@)

u-a-l+hKyplgg] =-
Jor[2

+ K11 1h4],

we are led to the conditions (2.18a) or (2.18b). For proving (2.18c), we use the inequality

(2.19) p(Z(ah)) < h | || L] [P12922 231

where L := K1 - ahdi1. We havep(Z(ah)) < 1 if h x| |Piadoo13a|| < [IL-2f] L. Sincel||L-2]| s
bounded below by m:{x— u[-L],- u[L]} , we conclude that(Z(ah)) is certainly less than 1 if the
inequality hd [P1od71h4|| < -u[-L] is satisfied. This leads to the condition (2.1).
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Condition (2.18a) implies unconditional convergence and is satisfigdif1-1J11] is sufficiently
negative (i.e. {(1.1),(1.2)} is sufficiently dissipative). If the problem is not sufficiently dissipative,
then we have to impose a step restiction and we may use the conditions (2.18b) or (2.18c
practical advantage of (2.18b) over (2.18c) is the separation of quantities defined by the method
eigenvaluest of A) and quantities defined by the problem (the matricgs ¥4, etc.). On the other

hand, (2.18b) cannot be applied if Kis singular and it may be unnecessary restrictive in cases
where Ref) is small (note that (2.18b) and (2.18c) are equivalentifo and K1 =1).

Example 2.4. Let K11 = | and let 1 be symmetric. Then, using the Euclidean norm, vg have
for any complex matrix C (see e.g. [100k[C] = %)\max(C+C*). Hence, the conditions (2.18)
become

(2.18a) Amax(J11) < - |P12322131|,

Re(@) 1
R |M12J22234| + Amax(di1)
1
lo| |M12d2271321]| + Re@) Amax(d11)

(2.18b) O<h<

a O o(A),

(2.18¢c) O<h< a Oo(A). ¢

2.2.2.2. Convergence of the inner iteration. Finally, we have to prove that the inner iteration
process (2.16) converges to the outer itetde defined by (2.15). From (2.15) and (2.16) it
follows that

(10K11-BOh 1) (z® - zD) = - (10K 11-ADhY ) (ZKD - UD).
It is easily verified that this relation yields the error equation
z® -U0 =(10K11 - BOhd1) Y((A - B)Ohd ) (zKD - UD).

The corresponding amplification matrix is of the same structure as the matrix M defined in (2.
Hence, proceeding as in the proof of Theorem 2.1, we are led to the convergence result:

Theorem 2.4. Let B B(A). Then, the inner iteration method (2.16) converges for all h > 0 to the
solutionU0) of (2.15) if, and only if{ K11,J11} is stable$

Recall that B B(A) implies that the B are positive, so that the convergence condition implies that
the matrices K1 - hBjjJ11 are nonsingular as required for applying the inner iteration (2.16).
Furthermore, we recall that convergence of the outer iteration method (2.15) requires the eigenva
of Z(ah) within the unit circle for altt (see Theorem 2.3). In cases where this condition imposes
stepsize restriction ({(1.1),(1.2)} not sufficiently dissipative), one may wonder whether we shou



13

require the inner iteration to be unconditionally convergent with respect to h, that is, why should"
choose B1B(A). For example, we may simply take B = O, to obtain the result:

Theorem 2.5. Let B = O. The inner iteration method (2.16) converges to the solufibaf (2.15)
if

1
o] p(K112319)

(2.20) a Oa(A), Kjpinonsingular$

Example 2.5. Consider the case of Example 2.4 wheilg K1, J1 is symmetric. A comparison of
(2.18b") and (2.18c") with (2.20) shows that (2.20) is less restrictive if, respecti¥elizo111||

> a[-tRe@) p(311) - Amax(J11) and|P12J22 11| > p(312) - la[-tRe@) Amax(J11) for all a O o(A).

This situation can easily occur if in J the entries of large magnitude are concentrated in the plocks
and 31. ¢

Finally, we remark that in actual computation, it is often sufficient to perform only a few inne
iterations. In the extreme case where just one inner iteration is used (i.e., r = 1 in (2.16)),
partitioned IDE method {(2.13b),(2.16)} reduces to

0l0K11-BOhJ 1 -AOhd2 O

(2.21) O [0J22 E

(YO - YD) = E héﬂl (I) %pR(pl\?(j-l))_

In fact, in our experiments, we did apply the partitioned IDE method Il with a single inner iteration.

3. Numerical experiments

The aim of this section is to compare (i) algorithmic properties of the general IDE method and i
partitioned IDE methods (if applicable), and (ii) the convergence behaviour of the diagonal and -
triangular mode of the IDE methods. This comparison is carried out for IDEIVPs, taken from ti
literature, with index varying from O until 3.

In all cases, the corrector is defined by the four-stage Radau IlIA corrector. The predictor formule
given byY ©) := EY 4(M), whereY ,(M) denotes the final approximation to the stage vector obtained ir
the preceding step, and E is the extrapolation matrix of maximal order. As already remarked,

partitioned iteration method Il is applied in the one-inner-iteration mode (2.21). The matrix

occurring in the three iteration schemes is either the diagonal matrix D derived in [6] or the low
triangular matrix T derived in [8]. Thus,

03205 0 0 0 0.1130 0 0 0
B=D = 0 0.0892 0 0 B=T=f[ 0234402905 o0 0
: 0O 0 0.1817 0 ’ : 0.2167 0.4834 0.3083 0

O 0 0 0.2334 0.2205 0.4668 0.4414 0.1176
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Both matrices have the property thiZ(z)) < 1 whenever Re(z 0. However, for B = D the
maximal value of || Z(z)| in the lefthand halfplane is greater than 1 fodj whereas for B =T, it is
less than 1 for all j. As a consequence, B = T should lead to a much more robust iteration sche
Furthermore, the matrices A - B that play a role in how close the iteration methods are to the t
Newton iteration process are given by

- 0.2075- 0.0403 0.0258- 0.0099
— 0.2344 0.1177- 0.0479 0.0160 —_
A-D= 0.2167 0.4061 0.0073- 0.0242 yA-T=
0.2205 0.3882 0.3288- 0.1709

0.0403- 0.0258 0.0099
0.0836 0.0479- 0.0160
0.0773 0.1192 0.0242
0.0786 0.1126 0.0551

[eNoNoNe]

Evidently, the magnitude of A - T is considerably smaller than that of A - D. Finally, we observe th

for this Radau IIA corrector the quantity-f Re@) in the convergence condition (2.18b) is bounded

below by 3.2.

Since this paper aims at a comparison of algorithmic properties of the three IDE methods and

effect of the diagonal and triangular modes, we avoided effects of stepsize and iteration strategie

performing the experiments with fixed stepsizes h and fixed numbers of iterations m. Furthermc

the Jacobian and the LU-decompositions were computed in each integration step.

The tables of results in Section 3.5 list the valueg ¢s3dr, where D and T refer to the diagonal

and triangular mode, respectively, and where csd is the minimal number of correct significant digits
t

(3.1) csd:=- Iogo|| yNy(tz)( V) ||

Hereyy denotes the numerical solution at the end pginamd where the division of vectors should

be understood as componentwise division. Divergence will be denoted by.csd =

3.1. The Colpitts oscillator (index 0)

Our first test problem is the IVP for the Colpitts oscillator specified in [9] on the interval [0,1.8]. Thi
IVP of index 0O is described by an implicit ODE system of the form (1.6) with four linear differentia
equations and with constant, nonsingular capacity matrix Q. For such problems, the general |
method and the two partitioned IDE methods are identical, so that only results for the general |
method are listed. The results in Table 3.1 show, surprisingly, that the diagonal mode performs m
better than the triangular mode. In all other examples, it is, as expected, the other way around.

3.2. The transistor amplifier (index 1)

The second test problem is an IVP for the transistor amplifier given in [4] on the interval [0,0.2] (s
also [11]). This nonlinear, eight-dimensional problem of index 1 can be represented in the impli
form (1.6) with a constant, nonpartitioned (but singular) capacity matrix Q, as well as in the ser
explicit form (1.8) with d = 5 and @ = 3. In the implicit form (1.6), only the general IDE method
can be applied, whereas the semi-explicit form (1.8) allows application of all three IDE methods.
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order to facilitate a mutual comparison, the csd-values in the Tables 3.2 until 3.5 all refer to 1
accuracies of the numerical solution of the untransformed problem (1.6).

Table 3.2 lists results for the general IDE method when applied to the implicit form (1.6). It clear
shows the greater robustness of the triangular mode.

Next, we compare the three IDE methods when applied to the semi-explicit form (1.8) of tl
transistor amplifier. The general IDE method produces the same results as listed in Table
(algebraically, the two approaches are equivalent). The Tables 3.3 and 3.4 present the results obt
by the partitioned IDE methods. As expected, the triangular mode is again superior to the diagc
mode. Furthermore, we see that for larger stepsizes and low numbers of iterations, the partitic
IDE methods are more robust than the general IDE method. Nevertheless, we may conclude tha
general IDE method in triangular mode performs best for the transistor problem.

In order to appreciate these results, we give results obtained in [11] by means of the RADAUS c
of Hairer and Wanner [4]. In this table, TOL denotes the tolerance parameter (the absolute and rel:
error tolerance both equal TOL)\hs the averaged (accepted) integration step, apdd&y, LUay

are the averaged values per (accepted) step of the number of iterations, Jacobian evaluations ar
decompositions, respectively. Table 3.5 shows that RADAU5 computed the Jacobian and the
decomposition in (at least) each integration step. Thus, in this respect, both methods are compar
However, the LU decompositions needed in the general IDE method has more intrinsic paralleli
than those needed in RADAUS. Hence, on parallel computer systems, the sequential (or effective)
costs of the IDE method will be less. On the other hand, a comparison with the Tables 3.2, 3.3
3.4 reveals that the parallel IDE methods need about twice as many iterations than RADAUS to get
corrector equation more or less solved.

3.3. The Arnold-Strehmel-Weiner problem (index 2)
In the paper [1] of Arnold, Strehmel and Weiner, we find the index 2 test problem

o2 1 1 o 3,2
U= SV - g uw - w2,

(3.2) v= %u2w+ %uw2+ %w3+ %VZW, 0.5t< 0.6,
0=4R+\2- 4.

with exact solution u = w = cos(t), v = 2sin(t). Only the general IDE method and the partitioned IC
method | can be applied. The Tables 3.6 and 3.7 give the results. Evidently, it is here where
partitioned method is by far superior to the general IDE method, particularly, for small m.

3.4. The pendulum problem (index 3)
A familiar higher-index test problem is the mathematical pendulum. In index 3 form it reads [5]

p=u, p(0) = 1,
q=yv, q(0) =0,



(3.3)
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U=-pA, u(0)=0, Ct<10.
V=-9\-1, v(0)=0,
0=pR+@-1, A0)=0.

The Tables 3.8 and 3.9 again show that the partitioned method is faster than the general IDE mett

Table 3.1. General IDE method (2.7) Table 3.2. General IDE method (2.7)
Colpitts oscillator (form (1.6)) Transistor amplifier (form (1.6))
hi® m=3 m=4 m=5 m=6 hi® m=4 m=5 m=6 m=7
7.2 4.0/13.0 5.7/42 6.1/56 7.4/6.4 0.04 - -/68 -/65 5.7/6.5
3.6 4.8/4.2 7.8/58 7.9/7.3 9.4/8.7 0.02 6.0/8.0 7.9/8.6 8.0/8.8 8.6/9.3
Table 3.3. Partitioned IDE method | (2.13a) Table 3.4. Partitioned IDE method Il (2.21)
Transistor amplifier (form (1.8)) Transistor amplifier (form (1.8))
h m=4 m=5 m=6 m=7 h m=4 m=5 m=6 m=7
4104 3.3/3.8 3.6/4.0 3.9/4.3 4.2/4.7 4104 4.1/4.1 5.1/45 4.8/5.0 5.6/5.6
2104 5.1/5.4 5.7/6.2 6.3/6.9 7.0/7.6 2104 5.5/5.9 6.3/6.4 8.1/7.0 7.3/7.7

Table3.5. RADAUS applied to the transistor amplifier (form (1.6))

TOL csd hay May JEav LUav
1074 4.6 3.6104 3.0 0.99 1.31
1077 8.3 0.7 104 2.6 0.99 1.01
Table 3.6. General IDE method (2.7) Table 3.7. Partitioned IDE method | (2.13a)
Arnold-Strehmel-Weiner problem Arnold-Strehmel-Weiner problem
h m=4 m=5 m=6 m=7 h m=4 m=5 m=6 m=7
0.02 -/28 -/53 25/6.7 5.6/7.7 0.02 -1/6.7 5.1/7.4 6.8/8.2 7.5/9.1
0.01 -/55 4.4/6.0 59/7.4 7.2/8.8 0.01 3.8/9.0 6.0/9.2 8.0/9.9 8.9/10.9
Table 3.8. General IDE method (2.7) Table 3.9. Partitioned IDE method | (2.13a)
Pendulum problem Pendulum problem
h m=4 m=5 m=6 m=7 h m=4 m=5 m=6 m=7
0.1 - - -/19 -/21 0.1 - 14.3 -/3.6 3.7/3.2 4.1/3.7
0.05 -12.7 -/1.3 24/36 -1/3.6 0.05 - 14.9 -145 49/43 4.6/4.5
0.025 -/3.8 3.2/3.8 3.1/4.6 4.0/5.4 0.025 -/55 4.7/54 6.1/54 5.4/54
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