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Solving    Implicit   Differential
Equations    on   Parallel   Computers

P.J. van der Houwen & W.A. van der Veen
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P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Abstract

We construct and analyse three methods for solving initial value problems for implicit differential

equations (IDEs) on parallel computer systems. The first IDE method can be applied to general IDEs of

higher index, the other two methods can be applied to partitioned (or semi-explicit) IDEs. The partitioned

IDE methods both exploit the special form of the problem and often converge faster than the general IDE

method. The first partitioned IDE method is suitable for higher-index problems, the second partitioned

IDE method only applies to index 1 problems, but possesses more parallelism across the method. The

convergence of these methods is illustrated by solving implicit IDEs of index 0 until 3 that are taken from

the literature.
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Keywords and Phrases:   numerical analysis, implicit ODEs, DAEs, Runge-Kutta methods, parallelism.

Note: The research reported in this paper was partly supported by the Technology Foundation (STW) in 
the Netherlands.

1. Introduction

We consider initial value problems (IVPs) for systems of implicit differential equations (IDEs)

(1.1) φ(y
.
(t),y(t)) = 0,       y, φ ∈ RR

� d.

It will always be assumed that the initial conditions for y(t0) and y
.
(t0) are consistent and that the IVP

has a unique solution. Let us define the Jacobian matrices K := φu(u,v) and J := - φv(u,v) (in the

definition of J, the minus sign is inserted so that explicit differential equations with  φ = y' - f(t,y)

yield the familiar formula J = ∂f/∂y). Then, the IVP is said to be stable if in the neighbourhood of the

solution, the eigenspectrum σ(K,J) of the pencil J - λK is in the nonpositive halfplane, that is,

det(λK - J) has only zeros in the nonpositive halfplane. More generally, any pair of matrices {K,J} is

said to be a stable pair if they satisfy this requirement. In the analysis of iteration methods for solving

the numerical discretization of (1.1), the stability of matrix pairs will play a central role. Note that the
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stability of the matrix pair {K,J} associated with (1.1) implies that its solution is bounded as t → ∞.

Furthermore, we remark that higher-index problems are stable whenever their index 1 representation

are stable.

In particular, this paper will consider the partitioned case (or semi-explicit  case, cf. [2]) where

(1.2) K = ( )K11 O
O O  ,   J =  ( )J11 J12

J21 J22
 .

Here, K11, J11 and J22 are square matrices, with respective dimensions d1, d1 and d2 = d - d1.

Stability conditions for the pair (1.2) in terms of its submatrices can be obtained by writing the

eigenvalue equation Jw = λKw in the componentwise form

(1.3) J11u1 + J12u2 = λK11u1,  J21u1+ J22u2 = 0.

We briefly discuss two special cases that will arise later in this paper. Let us first consider the case

where J22 is nonsingular. Then, u2 can be eliminated from the eigenvalue equations (1.3) to obtain

the relation Su1 = λK11u1, where S is the Schur complement of J. Thus, the pair (1.2) is stable if

(1.4) J22 is nonsingular, { K11,S}  is stable,  S := J11 - J12J22-1J21.

If J22 is not necessarily nonsingular, but if it commutes with J12 (see Example 2.3), then u2 can be

eliminated by premultiplying the first equation of (1.3) with J22 (here, we assume d1 = d2). This

leads to the relation ∆u1 = λJ22K11u1, where ∆ is the 'determinant' of J. Thus, (1.2) is stable if

(1.5) d1 = d2, J22 commutes with J12, { J22K11, ∆}  is stable,  ∆ := J22J11 - J12J21.

It may happen that the IDE is not given in the semi-explicit form {(1.1),(1.2)}, but in the form

(1.6) Qy
.
(t) = f(y(t)),   y, f ∈ RRd.

Suppose that Q is a constant, singular matrix of rank d1. Then, there exist nonsingular matrices S1

and S2 such that (1.6) can be represented as the equation (see [4, p.406])

(1.7) S1QS2z
.
 - S1f(S2z) = 0,   z = S2-1y,  S1QS2 = ( )I O

O O  ,      y, z, f ∈ RRd

where the dimension of I equals the rank of Q. This problem is of the partitioned form {(1.1),(1.2)}

with K11 = I. Introducing the partitioning z = (uT,vT)T with u and v respectively of dimension d1

and d2, it can be written as an IVP for the semi-explicit differential-algebraic equation (DAE)

(1.8) u
.
(t) = f(u,v), g(u,v) = 0, u, f ∈ RRd1, v, g ∈  RRd2.

In this paper, we shall analyse integration methods for solving (1.1) that can be efficiently used on

parallel computer systems. We construct an IDE method for general IDEs of higher index, and two
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methods that can be applied to partitioned problems of the type (1.2). These partitioned IDE methods

both exploit the special form of the problem and converge faster than the general IDE method. The

first partitioned IDE method is suitable for higher-index problems, the second partitioned IDE method

only applies to index 1 problems, but is often considerably less expensive. The performance of the

methods is illustrated by test problems from the literature.

2. The numerical scheme

Let us start with the case where (1.1) is an (explicit) ordinary differential equation (ODE)

y
.
(t)) = f(y(t));   y, f ∈ RRd.

A large class of implicit step-by-step methods for solving ODEIVPs can be represented in the form

(2.1) yn+1 = (esT⊗I)Y,   Y - h(A⊗I)F(Y) = W.

Here,  A denotes a nonsingular s-by-s matrix, W is an sd-dimensional vector containing information

computed in preceding integration steps, I is the d-by-d identity matrix, h is the stepsize tn+1 - tn, and

⊗ denotes the Kronecker product. The s vector components Yi of the sd-dimensional solution vector

Y represent numerical approximations to the exact solution vectors y(etn + ch), c being the abscissa

vector with cs = 1 and e representing the s-dimensional vector with unit entries. Furthermore, es is

the sth unit vector and yn is the numerical approximation to y(tn). In (2.1), F(V) contains the

derivative values (f(Vi)) for any vector V = (Vi). In the following, I will denote the identity matrix

and its dimension will always be clear from the context.

In order to derive the analogue of (2.1) for IDEs, we observe that if φ is invertible with repect to y
.
,

then this analogue should be equivalent to (2.1). This leads us to use (2.1) for expressing the

derivative stage vector F(Y) in terms of Y, and to substitute this expression into the equation

Φ(F(Y),Y) = 0, with Φ defined in the same way as F. This yields the method

(2.2) yn+1 = (esT⊗I)Y,   R(Y) = 0,   R(Y) := Φ((h-1A-1⊗I)(Y - W),Y).

Thus, the method (2.2) is completely specified by the pair {A,W}.

An important class of methods leading to implicit relations of the form (2.1) are the stiffly accurate

Runge-Kutta (RK) methods which arise for W := e⊗yn. As an example, we consider the equation

(1.6). If we apply (2.2), then

(2.3) yn+1 = (esT⊗I)Y,   (h-1A -1⊗Q)(Y - W) - F(Y) = 0,

which is equivalent to the RK method discussed in [4, p.406].
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Remark 2.1. As explained in [4, p.407], the RK solution Y defined by (2.3) is algebraically

identical to (I⊗S2)Z, where Z is the RK solution obtained by applying (2.2) with W := e⊗zn to

(1.7), or equivalently, to (1.8). This equivalence holds for any method {A,W}. ♦

The implicit equation in (2.2) will be solved iteratively by generating sequences of iterates { Y(j)} .

Our starting point is the iteration method

(2.4) N(Y(j) - Y(j-1)) = - (hA⊗I)R(Y(j-1)),  j = 1, ... , m,

where N is a nonsingular matrix. The iteration error associated with (2.4) satisfies the recursion

N(Y(j) - Y) = N(Y(j-1) - Y) - (hA⊗I)(R(Y(j-1)) - R(Y)),

so that ignoring second-order terms leads to

(2.5) Y(j) - Y = M(Y(j-1) - Y),  M := N-1(N - N0),  N0 := I⊗K - A⊗hJ,

where the Jacobian matrices K and J are both evaluated at the step point tn. The conventional choice

for N is the modified Newton iteration matrix N0 resulting in a zero amplification matrix M. The

advantage of the choice N = N0 is that, even in strongly nonlinear problems, a few iterations usually

suffice to solve the implicit system in (2.2). However, a disadvantage is that solving the linear

Newton systems can be quite expensive. For example, when direct methods are used, the LU-

decomposition of the sd-by-sd matrix N0 requires as many as O(s3d3) arithmetic operations.

In this paper, we shall consider several choices of more 'convenient' iteration matrices N. A

necessary and sufficient condition for linear convergence of the iteration method (2.4) requires the

spectrum σ(M) of M (to be referred to as the set of amplification factors) within the unit circle.

Therefore, we shall try to combine a spectral radius ρ(M) < 1 with a reduction of the complexity of

the linear Newton systems. In particular, we shall look for matrices N that reduce the computational

complexity on parallel computer systems (for example, matrices N with a block-triangular structure).

Remark 2.2. In an actual implementation of (2.4), it may be recommendable to remove the h-1

factor in the residual in (2.2) by defining the 'derivative' iterate Y
.

(j) := (h-1A -1⊗I)(Y(j) - W). Then,

the iteration scheme becomes

(2.4') N(A⊗I)(Y
.

(j) - Y
.

(j-1)) = - (A⊗I)Φ(Y
.

(j-1),W + (hA⊗I)Y
.

(j-1)),  Y(j) = W + h(A⊗I)Y
.

(j).

The sequences {Y(j)} generated by the schemes (2.4) and (2.4') are algebraically identical, but (2.4')

can be used as h → 0. ♦
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2.1. General IDE method

In the case of IVPs for the IDE (1.1) with general Jacobians K and J, the Newton process defined by

(2.4) with N = N0 = I⊗K - A⊗hJ can be 'simplified' by replacing A by a lower triangular

approximation B, so that

(2.6) N = I⊗K − B⊗hJ = 

 




 


K - hB11J O O . . .

- hB21J K - hB22J O . . .

- hB31J - hB32J K - hB33J . . .
. . . .

 .

In addition, one may also replace J by an approximation J*  that is tuned to the problem to be solved.

In the case of RK methods for ODEIVPs, a first analysis of such an approach can be found in [7],

and for IDEIVPs, results will be given in a forthcoming paper.

Substitution of (2.6) into (2.4) yields

(2.7) (I⊗K - B⊗hJ)(Y(j) - Y(j-1)) = - (hA⊗I)R(Y(j-1)).

Formally, the iteration method (2.7) can be applied to problems of any index if the matrix

N = I⊗K - B⊗hJ is nonsingular. Thus, the s blocks K - hBiiJ should be nonsingular. The method

(2.7) will be referred to as the general IDE method. Furthermore, we shall say that the method is in

diagonal mode if B is a diagonal matrix D and in triangular mode if B is a lower triangular matrix T.

Each iteration with (2.7) requires the solution of a linear system with the block-triangular matrix N.

Hence, the system splits into s subsystems of dimension d, reducing the computational costs

considerably. In this paper, we assume that the subsystems are solved by a direct solution method.

Then, apart from solving these s linear subsystems, each update of the matrix I⊗K - B⊗hJ implies

the LU-decomposition of the s blocks K - hBiiJ associated with the s subsystems. However, this

only requires O(sd3) flops which is a factor s2 less than the number of flops needed when the

modified Newton matrix N0 is used. Moreover, these LU-decomposutions can be done in parallel, so

that the effective costs on a parallel system are a factor s3 smaller. Likewise, the solution of the s

subsystems can also be done in parallel, both in the case of the diagonal-implicit and the triangular-

implicit approach. The triangular approach requires additional costs for performing similarity

transformations, but as will be demonstrated in our numerical experiments in Section 3, it usually

converges much faster. We remark that the linear system in (2.7) has similarities with the linear

systems occurring in the parallel diagonal-implicitly iterated RK methods and the parallel triangular-

implicitly iterated RK methods analysed in [6] and [8] for solving IVPs for ODEs. In particular,

reference [8] presents a detailed discussion of the advantages and disadvantages of the diagonal-

implicit and the triangular-implicit approach which to a large extent also applies to the IDE case.

Next, we consider the convergence of the iteration method (2.7). If I⊗K - B⊗hJ  is nonsingular,

then it follows from (2.5) that the error amplification matrix corresponding to (2.7) is given by
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(2.8) M = (I⊗K - B⊗hJ)-1((A - B)⊗hJ).

Let us denote the eigenvectors and eigenvalues of M by a⊗w and µ. Then, we derive the relation

h(A - B + µB)a⊗Jw = µa⊗Kw.

This shows that Jw and Kw are related by the generalized eigenvalue equation Jw = λKw, where λ
is a generalized eigenvalue. On substitution of Jw = λKw and by defining z := λh,  we obtain

z(A - B)a⊗Kw = µ(I - zB)(a⊗Kw).

Thus, if Kw ≠ 0, then µ = µ(z) is an eigenvalue of the matrix

(2.9) Z(z) := z(I - zB)-1(A - B),

provided that I - zB is nonsingular. If Kw = 0 with w ≠ 0, then λ = ∞, so that µ is an eigenvalue of

the matrix I - B-1A. Matrices of the type (2.9) have extensively been studied in [6] and [8]. For a

large number of RK matrices A, diagonal and lower triangular matrices B have been found such that

the eigenvalues µ(z) of Z(z) are within the unit circle whenever Re(z) ≤ 0. Lower triangular matrices

B that possess this property will be said to lie in the set BB
�

(A) associated with the matrix A (in the

following, it will be assumed that B ∈ BB
�

(A), unless stated otherwise). The condition Re(z) ≤ 0 is

satisfied if, and only if, the eigenspectrum σ(K,J) of the pencil J - λK is in the nonpositive halfplane,

that is, if {K,J} is a stable pair. Hence, stability of {K,J} implies | µ(z) | < 1. Furthermore, stability

implies the nonsingularity of the matrices K - hBiiJ, because if the matrix B ∈ BB
�

(A), then its diagonal

entries Bii  are necessarily positive, otherwise Z(∞) would be singular. Thus, we have proved the

convergence theorem:

Theorem 2.1. Let B ∈ BB
�

(A). Then, the general IDE method (2.7) converges for all h > 0 if, and

only if, {K,J} is a stable pair. ♦

Example 2.1. Consider equation (1.6) with Q = Q(y). Then, K = Q(y) and J = (f(y) - Q(y)y
.
)y.

Thus, Theorem 2.1 implies convergence for h > 0 if {K,J} = { Q(y),(f(y) - Q(y)y
.
)y}  is a stable

pair. ♦

Example 2.2. Consider equation (1.8) with g = g(u), that is, the equation

(1.8') u
.
(t) = f(u,v), g(u) = 0,    v, g ∈ RRd2.

If fvgu is assumed nonsingular, then this equation is of index 2. Evidently, it is of the form (1.2)

with

K = ( )I O
O O ,    J =  ( )fu fv

gu O  .
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Recalling that higher-index problems are stable whenever their index 1 representation is stable, we

write (1.8') in the index 1 form u
.
(t) = f(u,v), gu(u)f(u,v) = 0. This equation is again of the form

(1.2) with

K = K*  = ( )I O
O O ,    J = J* =  ( )fu fv

gufu gufv
 .

Hence, we have convergence for all h > 0 if {K* ,J*} is a stable pair. ♦

2.2. IDE methods for partitioned problems

In this section, we consider problems of the partitioned form {(1.1),(1.2)}. For such problems, it is

convenient to write y = (uT,vT)T, where u and v are respectively of dimension d1 and d2, and to

replace the stage vector Y by the permuted stage vector  Y
~

 = PY := (UT,VT)T, where U and V are

stage vectors associated with u and v in the same way as Y is associated with y. Let us introduce the

permuted iterates Y
~(j) := PY(j), then the permuted versions of (2.4) and (2.5) respectively become

(2.10) N
~  (Y

~(j) - Y
~(j-1)) = - P(hA⊗I)R(P-1Y

~(j-1)),    N
~  := PNP-1,

(2.11) Y
~(j) - Y

~
 = M

~  (Y
~(j-1) - Y

~),    M
~  := PMP-1 =  N

~-1( N
~

 - N
~

0),   N
~

0 := P(I⊗K - A⊗hJ)P-1.

Before selecting suitable matrices N
~

 for the problem {(1.1),(1.2)} we consider the general IDE

method when applied to {(1.1),(1.2)}. By replacing in (2.7) Y(j) by P-1Y
~(j) and by observing that for

any matrix C and any matrix J with a partitioning as in (1.2), the permutation matrix P satisfies

 P(C⊗J)P-1 = 
 


 
C⊗J11 C⊗J12

C⊗J21 C⊗J22
 ,

it can be verified that the general IDE method (2.7) takes the form

(2.7')  
 


 
I⊗K 11 - B⊗hJ11 - B⊗hJ12

- B⊗hJ21 - B⊗hJ22
 (Y

~(j) - Y
~(j-1)) = 

 


 
- hA⊗I O

O - hA⊗I
 PR(P-1Y

~(j-1)).

Since

N
~

0 = 
 


 
I⊗K11 - A⊗hJ11 - A⊗hJ12

- A⊗hJ21 - A⊗hJ22
 ,

the matrix N
~

 associated with (2.7') can be written as

(2.6') N
~  =  

 


 
I⊗K 11 - B⊗hJ11 - B⊗hJ12

- B⊗hJ21 - B⊗hJ22
  = N

~
0 + h  

 


 
(A - B)⊗J11 (A - B)⊗J12

(A - B)⊗J21 (A - B)⊗J22
 .
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We now want to 'improve' this matrix by exploiting the special form of the equation {(1.1),(1.2)}.

From (2.11) it follows that convergence is expected to be faster as the magnitude of N
~

 - N
~

0 is

smaller, that is, if the generated method is 'closer' to the true (modified) Newton process. Of the

various possibilities, we shall consider the cases

(2.12a) N
~  =  

 


 
I⊗K11 - B⊗hJ11 - B⊗hJ12

- A⊗hJ21 - A⊗hJ22
  = N

~
0 + h  

 


 
(A - B)⊗J11 (A - B)⊗J12

O O
 .

(2.12b) N
~  =  

 


 
I⊗K11 - A⊗hJ11 - A⊗hJ12

O - A⊗hJ22
  = N

~
0 + h  

 


 
O O

A⊗J21 O
 .

Notice that (2.12b) requires the matrix J22 to be nonsingular, that is, the equation {(1.1),(1.2)}

should be of index 1. This condition is satisfied by many IVPs (e.g. all IVPs for the equation (1.8)

with gv nonsingular), so that it is relevant to analyse the case (2.12b). The iteration matrices (2.12a)

and (2.12b) respectively generate the methods

(2.13a)
 


 
I⊗K11 - B⊗hJ11 - B⊗hJ12

I⊗J21 I⊗J22
  (Y

~(j) - Y
~(j-1)) =  

 


 
- hA⊗I O

O I
 PR(P-1Y

~(j-1)),

(2.13b)
 


 
I⊗K11 - A⊗hJ11 - A⊗hJ12

O I⊗J22
  (Y

~(j) - Y
~(j-1)) =  

 


 
- hA⊗I O

O I
 PR(P-1Y

~(j-1)),

and will be referred to as the partitioned IDE method I and the partitioned IDE method II. Note that

for d2 = 0 (that is, if there is no partitioning), the methods (2.13a) and (2.13b) respectively reduce to

the general IDE method (2.7') and to the modified Newton method with N
~

 = N
~

0. From (2.12) it

follows that we may expect (2.13a) to converge faster than (2.7') if (A - B)⊗J11 and (A - B)⊗J12 are

of small magnitude, whereas (2.13b) will converge faster if J21 is of small magnitude.

In the Subsections 2.2.1 and 2.2.2, the computational efficiency and convergence conditions for the

partitioned IDE methods (2.13a) and (2.13b)will be discussed.

2.2.1. Partitioned IDE method I

Each iteration with (2.13a) requires the solution of s systems of dimension d := d1 + d2 whose

matrices of coefficients are of the form

(2.14) Ni := ( )K 11 - hBiiJ11 hBiiJ12
J21 J22

,  i = 1, ... , s.

Thus, in order to apply the partitioned IDE method I, the matrices Ni should be nonsingular. Let Di

be the diagonal matrix with d1 diagonal entries 1 and d2 diagonal entries - hBii . Then we may write

Ni = Di-1(K - hBiiJ). For stable IVPs, the matrices K - hBiiJ are nonsingular, and therefore the

matrices Ni. Furthermore, it follows from (2.7') and (2.13a) that for partitioned problems, the

computational complexities of the general IDE and the partitioned IDE method I are comparable.



9

In the convergence analysis, we proceed as in the proof of Theorem 2.1. The matrix M
~   is given by

M
~  = h  

 


 
I⊗K11 - B⊗hJ11 - B⊗hJ12

- A⊗hJ21 - A⊗hJ22
 
-1

 
 


 
(A - B)⊗J11 (A - B)⊗J12

O O
 .

Let the eigenvalues and eigenvectors of M
~  be denoted by µ and  

 


 
b⊗u

b⊗v
. Then,

h(A - B)b⊗(J11u + J12v) = µ(b⊗K11u  - Bb⊗(hJ11u + hJ12v)),

µ( Ab⊗(J21u + J22v)) = 0.

Again, we use the generalized eigenvalue equation Jw = λK w. Writing this equation in the

componentwise form (1.3), we obtain upon substitution

z(A - B)b⊗K11u  = µ(I - zB)(b⊗K11u),   z := λh.

If K 11u ≠ 0, then µ = µ(z) is again an eigenvalue of the matrix Z(z) defined in (2.9). If K11u = 0

with u ≠ 0, then µ is an eigenvalue of the matrix I - B-1A. The analogue of Theorem 2.1 becomes:

Theorem 2.2. Let B ∈ BB
�

(A). Then, the partitioned IDE method I defined by (2.13a) converges for

all h > 0 if, and only if, (1.2) is a stable pair. ♦

Thus, a comparison with Theorem 2.1 reveals that for partitioned problems where K is of the form

(1.2), the two theorems impose the same convergence conditions.

Example 2.3. The IDE (1.6) considered in Example 2.1 can be written as the DAE (cf. [4, p.486])

(1.7) u
.
(t) = v, Q(u)v - f(u) = 0, u, v, f ∈  RRd1.

K and J are of the form (1.2) with K11 = I and J11 = O, J12 = I, J21 = (Q(u)v - f(u))u, J22 = Q(u).

Since J22 commutes with J12, it follows from Theorem 2.2 and (1.5) that the partitioned method I

converges for h > 0 whenever { Q(u),(f(u) - Q(u)v)u}  is a stable pair (compare Example 2.1). ♦

2.2.2. Partitioned IDE method II

From (2.13b) it follows that in each iteration we can first solve in parallel the s (uncoupled) d2-

dimensional systems for the last sd2 components V(j) of Y
~(j) (requiring the nonsingularity of J22),

and next the s systems of dimension d1 for the first sd1 components U(j) of Y
~(j), that is, the system

(2.15) (I⊗K11 - A⊗hJ11)(U(j) - U(j-1)) = Q(j),   Q(j) := h(-A⊗I   A⊗J12J22-1)PR(P-1Y
~(j-1)).

The iterate U(j) as defined by (2.15) will be computed iteratively by an inner iteration method. The

recursion (2.13b) itself will be called outer iteration.
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For the inner iteration, we shall use a method which is very much like the general IDE method used

for solving R(Y) = 0 in (2.2). Denoting the inner iterates by Z(k), we have

(2.16) (I⊗K11 - B⊗hJ11)(Z(k) - Z(k-1)) = Q(j) - (I⊗K11 - A⊗hJ11)(Z(k-1) - U(j-1)), k = 1,..., r,

requiring the nonsingularity of the matrices K11 - hBiiJ11. In this inner iteration process we may use

as initial approximation Z(0) = U(j-1) and, after r iterations, we set U(j) = Z(r).

If B is diagonal, then the s linear systems to be solved in each iteration of (2.16) can be treated in

parallel. For triangular B, the degree of parallelism depends on the linear solver used. Let us consider

the case of direct solvers. Then, the LU-decompositions of J22 and the matrices K11 - hBiiJ11,

i = 1, ... , s, can be done in parallel. It is here where the sequential (or effective) costs of the

partitioned method II may be substantially less than those for the general IDE method and the

partitioned method I. The LU-costs of the latter two methods are ≈ 2(d1 + d2)3 / 3 flops, whereas the

partitioned method II requires only ≈ 2(max {d1,d2} )3 / 3 flops, yielding a speed-up factor for the

(often dominating) LU costs of ≈ (d1 + d2)3(max {d1,d2} )-3 = (1 + min{d1d2-1,d2d1-1} )3. Hence, if

d1 equals d2, then a maximum speed-up factor of 8 is obtained. If d2 > d1 and if the matrix K11 is

allowed to be singular, then we may repartition the partitioned equation {(1.1),(1.2)} by adding

algebraic equations to the 'differential equation' part so that d1 is increased. This would reduce the

computational complexity of the method when implemented on a parallel system.

In the next two subsections, the convergence of the outer and inner iteration will be analysed.

2.2.2.1. Convergence of the outer iteration. A convergence result for the outer iteration

(2.13b) is obtained by elimination of V(j) from (2.15) and by writing down the error recursion for

U(j) - U. The corresponding amplification matrix becomes

M
~

11 := - (I⊗K11 - A⊗hJ11)-1(A⊗hJ12J22-1J21).

Denoting the eigenvectors and eigenvalues of M
~

11 by a⊗w and µ~, we obtain

(Aa⊗h(S - J11 + µ~J11))w = (a⊗µ~K11)w

Let a be an eigenvector of A with eigenvalue α. Then,

(µ~(K11 - αhJ11) + αhJ12J22-1J21)w = 0.

Suppose that { K11,J11}  is stable, that is, the 'differential equation' part of the IVP is required to be

stable, which seems to be a quite natural requirement. Then, it follows that the matrix K11 - αhJ11,

and therefore I⊗K11 -  A⊗hJ11, is nonsingular for all αh in the positive halfplane. Hence, for

Re(αh) > 0, the eigenvalues µ~ are also eigenvalues of the matrix

(2.17) Z
~

(αh) := - αh(K11 - αhJ11)-1(J12J22-1J21).
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This leads us to the convergence theorem:

Theorem 2.3. Assume that J22 is nonsingular and that A has its spectrum σ(A) in the positive

halfplane. Then, the outer iteration (2.13b) converges if, and only if, (i) { K11,J11}  is stable and (ii)

Z
~

(αh) has its eigenvalues within the unit circle for all α ∈ σ(A). ♦

Using properties of the logarithmic matrix norm µ[.], the following corollary from Theorem 2.3 can

be proved.

Corollary 2.1. Let the assumptions of Theorem 2.3 be satisfied and let { K11,J11}  be stable. Then,

each of the following conditions are sufficient for convergence of the outer iteration (2.13b):

(2.18a)   h > 0,  µ[K11-1J11] < - ||K11-1J12J22-1J21||,    K11 nonsingular

(2.18b)   0 < h <  
Re(α)

|α|2
  

1
||K11-1J12J22-1J21|| + µ[K11-1J11]

  ,    α ∈ σ(A),    K11 nonsingular.

(2.18c)   0 < h < -  
µ[- K11 + αhJ11]
|α| ||J12J22-1J21||

  ,    α ∈ σ(A).

Proof. To prove assertions (2.18a) and (2.18b) we use the inequality

(2.19) ρ(Z
~

(αh)) ≤ h |α| || H-1|| ||K11-1J12J22-1J21||,

where H := I - αhK11-1J11.  Obviously, ρ(Z
~

(αh)) < 1 if h ||K11-1J12J22-1J21|| < ||(α-1H)-1||-1. By

virtue of a property of the logarithmic norm, we have that for nonsingular, complex matrices C both

- µ[C] and - µ[-C] are less than ||C-1||-1 (the proof given in [3] for real C, is easily generalized for

complex C). Hence, setting C = α-1H, we conclude that satisfying h ||K11-1J12J22-1J21|| < - µ[-α-1H]

= - µ[-α-1 + hK11-1J11]  certainly implies that ρ(Z
~

(αh)) is less than 1. Since (cf. [10])

µ[-α-1 + hK11-1J11]  = -  
Re(α)

|α|2
   +  hµ[K11-1J11],

we are led to the conditions (2.18a) or (2.18b). For proving (2.18c), we use the inequality

(2.19') ρ(Z
~

(αh)) ≤ h |α| || L-1|| ||J12J22-1J21||,

where L := K11 - αhJ11. We have ρ(Z
~

(αh)) < 1 if h |α| ||J12J22-1J21|| < ||L -1|| -1. Since ||L -1|| -1 is

bounded below by max{ - µ[-L],-  µ[L] } , we conclude that ρ(Z
~

(αh)) is certainly less than 1 if  the

inequality  h |α| ||J12J22-1J21|| < - µ[-L]  is satisfied. This leads to the condition (2.18c). ♦
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Condition (2.18a) implies unconditional convergence and is satisfied if µ[K11-1J11] is sufficiently

negative (i.e. {(1.1),(1.2)} is sufficiently dissipative). If the problem is not sufficiently dissipative,

then we have to impose a step restiction and we may use the conditions (2.18b) or (2.18c). A

practical advantage of (2.18b) over (2.18c) is the separation of quantities defined by the method (the

eigenvalues α of A) and quantities defined by the problem (the matrices K11, J11, etc.). On the other

hand, (2.18b) cannot be applied if K11 is singular and it may be unnecessary restrictive in cases

where Re(α) is small (note that (2.18b) and (2.18c) are equivalent if α > 0 and K11 = I).

Example 2.4. Let K11 = I and let J11 be symmetric. Then, using the Euclidean norm ||.||2, we have

for any complex matrix C (see e.g. [10]), µ2[C] =  12 λmax(C+C* ). Hence, the conditions (2.18)

become

(2.18a')   λmax(J11) < - ||J12J22-1J21||,

(2.18b')   0 < h <  
Re(α)

|α|2
  

1

||J12J22-1J21|| + λmax(J11)
  , α ∈ σ(A),

(2.18c')   0 < h <  
1

|α| ||J12J22-1J21|| + Re(α) λmax(J11)
 , α ∈ σ(A). ♦

2.2.2.2. Convergence of the inner iteration. Finally, we have to prove that the inner iteration

process (2.16) converges to the outer iterate U(j) defined by (2.15). From (2.15) and (2.16) it

follows that

(I⊗K11 - B⊗hJ11)(Z(k) - Z(k-1)) = - (I⊗K11 - A⊗hJ11)(Z(k-1) - U(j)).

It is easily verified that this relation yields the error equation

Z(k) - U(j)  = (I⊗K11 − B⊗hJ11)-1((A - B)⊗hJ11)(Z(k-1) - U(j)).

The corresponding amplification matrix is of the same structure as the matrix M defined in (2.8).

Hence, proceeding as in the proof of Theorem 2.1, we are led to the convergence result:

Theorem 2.4. Let B ∈ BBB
�

(A). Then, the inner iteration method (2.16) converges for all h > 0 to the

solution U(j) of (2.15) if, and only if, { K11,J11}  is stable. ♦

Recall that B ∈ BBB
�

(A) implies that the Bii  are positive, so that the convergence condition implies that

the matrices K11 - hBiiJ11 are nonsingular as required for applying the inner iteration (2.16).

Furthermore, we recall that convergence of the outer iteration method (2.15) requires the eigenvalues

of Z
~

(αh) within the unit circle for all α (see Theorem 2.3). In cases where this condition imposes a

stepsize restriction ({(1.1),(1.2)} not sufficiently dissipative), one may wonder whether we should
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require the inner iteration to be unconditionally convergent with respect to h, that is, why should we

choose B ∈ BBB
�

(A). For example, we may simply take B = O, to obtain the result:

Theorem 2.5. Let B = O. The inner iteration method (2.16) converges to the solution U(j) of (2.15)

if

(2.20) h <  
1

|α| ρ(K11-1J11)
  ,    α ∈ σ(A),    K11 nonsingular. ♦

Example 2.5. Consider the case of Example 2.4 where K11 = I, J11 is symmetric. A comparison of

(2.18b') and (2.18c') with (2.20) shows that (2.20) is less restrictive if, respectively, ||J12J22-1J21||
> |α|-1Re(α) ρ(J11) - λmax(J11) and ||J12J22-1J21|| > ρ(J11) - |α|-1Re(α) λmax(J11) for all α ∈ σ(A).

This situation can easily occur if in J the entries of large magnitude are concentrated in the blocks J12

and J21. ♦

Finally, we remark that in actual computation, it is often sufficient to perform only a few inner

iterations. In the extreme case where just one inner iteration is used (i.e., r = 1 in (2.16)), the

partitioned IDE method {(2.13b),(2.16)} reduces to

(2.21)
 


 
I⊗K11 - B⊗hJ11 - A⊗hJ12

O I⊗J22
  (Y

~(j) - Y
~(j-1)) =  

 


 
- hA⊗I O

O I
 PR(P-1Y

~(j-1)).

In fact, in our experiments, we did apply the partitioned IDE method II with a single inner iteration.

3. Numerical experiments

The aim of this section is to compare (i) algorithmic properties of the general IDE method and the

partitioned IDE methods (if applicable), and (ii) the convergence behaviour of the diagonal and the

triangular mode of the IDE methods. This comparison is carried out for IDEIVPs, taken from the

literature, with index varying from 0 until 3.

In all cases, the corrector is defined by the four-stage Radau IIA corrector. The predictor formula is

given by Y(0) := EYn(m), where Yn(m) denotes the final approximation to the stage vector obtained in

the preceding step, and E is the extrapolation matrix of maximal order. As already remarked, the

partitioned iteration method II is applied in the one-inner-iteration mode (2.21). The matrix B

occurring in the three iteration schemes is either the diagonal matrix D derived in [6] or  the lower

triangular matrix T derived in [8]. Thus,

    B = D := ( 0.3205 0 0 0
0 0.0892 0 0
0 0 0.1817 0
0 0 0 0.2334

),  B = T := ( 0.1130 0 0 0
0.2344 0.2905 0 0
0.2167 0.4834 0.3083 0
0.2205 0.4668 0.4414 0.1176

).
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Both matrices have the property that ρ(Z(z)) < 1 whenever Re(z) ≤ 0. However, for B = D the

maximal value of || Z(z)j || in the lefthand halfplane is greater than 1 for j ≤ 4, whereas for B = T, it is

less than 1 for all j. As a consequence, B = T should lead to a much more robust iteration scheme.

Furthermore, the matrices A - B that play a role in how close the iteration methods are to the true

Newton iteration process are given by

A - D = ( -  0.2075 - 0.0403  0 . 0258- 0.0099
  0 . 2344  0 . 1177- 0.0479  0 . 0160
  0 . 2167  0 . 4061  0 . 0073- 0.0242
  0 . 2205  0 . 3882  0 . 3288- 0.1709

), A - T = − (0   0 . 0403- 0.0258  0 . 0099
0   0 . 0836  0 . 0479- 0.0160
0   0 . 0773  0 . 1192  0 . 0242
0   0 . 0786  0 . 1126  0 . 0551

).

Evidently, the magnitude of A - T is considerably smaller than that of A - D. Finally, we observe that

for this Radau IIA corrector the quantity |α|-2 Re(α) in the convergence condition (2.18b) is bounded

below by 3.2.

Since this paper aims at a comparison of algorithmic properties of the three IDE methods and the

effect of the diagonal and triangular modes, we avoided effects of stepsize and iteration strategies by

performing the experiments with fixed stepsizes h and fixed numbers of iterations m. Furthermore,

the Jacobian and the LU-decompositions were computed in each integration step.

The tables of results in Section 3.5 list the values csdD / csdT, where D and T refer to the diagonal

and triangular mode, respectively, and where csd is the minimal number of correct significant digits:

(3.1) csd := - log10     
yN - y(tN)

y(tN)     
∞

.

Here yN denotes the numerical solution at the end point tN, and where the division of vectors should

be understood as componentwise division. Divergence will be denoted by csd = -.

3.1. The Colpitts oscillator (index 0)

Our first test problem is the IVP for the Colpitts oscillator specified in [9] on the interval [0,1.8]. This

IVP of index 0 is described by an implicit ODE system of the form (1.6) with four linear differential

equations and with constant, nonsingular capacity matrix Q. For such problems, the general IDE

method and the two partitioned IDE methods are identical, so that only results for the general IDE

method are listed. The results in Table 3.1 show, surprisingly, that the diagonal mode performs much

better than the triangular mode. In all other examples, it is, as expected, the other way around.

3.2. The transistor amplifier (index 1)

The second test problem is an IVP for the transistor amplifier given in [4] on the interval [0,0.2] (see

also [11]). This nonlinear, eight-dimensional problem of index 1 can be represented in the implicit

form (1.6) with a constant, nonpartitioned (but singular) capacity matrix Q, as well as in the semi-

explicit form (1.8) with d1 = 5 and d2 = 3. In the implicit form (1.6), only the general IDE method

can be applied, whereas the semi-explicit form (1.8) allows application of all three IDE methods. In
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order to facilitate a mutual comparison, the csd-values in the Tables 3.2 until 3.5 all refer to the

accuracies of the numerical solution of the untransformed problem (1.6).

Table 3.2 lists results for the general IDE method when applied to the implicit form (1.6). It clearly

shows the greater robustness of the triangular mode.

Next, we compare the three IDE methods when applied to the semi-explicit form (1.8) of the

transistor amplifier. The general IDE method produces the same results as listed in Table 3.2

(algebraically, the two approaches are equivalent). The Tables 3.3 and 3.4 present the results obtained

by the partitioned IDE methods. As expected, the triangular mode is again superior to the diagonal

mode. Furthermore, we see that for larger stepsizes and low numbers of iterations, the partitioned

IDE methods are more robust than the general IDE method. Nevertheless, we may conclude that the

general IDE method in triangular mode performs best for the transistor problem.

In order to appreciate these results, we give results obtained in [11] by means of the RADAU5 code

of Hairer and Wanner [4]. In this table, TOL denotes the tolerance parameter (the absolute and relative

error tolerance both equal TOL), hav is the averaged (accepted) integration step, and mav, JEav, LUav

are the averaged values per (accepted) step of the number of iterations, Jacobian evaluations and LU

decompositions, respectively. Table 3.5 shows that RADAU5 computed the Jacobian and the LU

decomposition in (at least) each integration step. Thus, in this respect, both methods are comparable.

However, the LU decompositions needed in the general IDE method has more intrinsic parallelism

than those needed in RADAU5. Hence, on parallel computer systems, the sequential (or effective) LU

costs of the IDE method will be less. On the other hand, a comparison with the Tables 3.2, 3.3 and

3.4 reveals that the parallel IDE methods need about twice as many iterations than RADAU5 to get the

corrector equation more or less solved.

3.3. The Arnold-Strehmel-Weiner problem (index 2)

In the paper [1] of Arnold, Strehmel and Weiner, we find the index 2 test problem

u
.
 = u2 -  1

2
 v -  1

4
 uw -  3

4
 w2,

(3.2) v
.
 =  1

2
 u2w +  3

4
 uw2 +  3

4
 w3 +  1

2
 v2w,    0.5 ≤ t ≤ 0.6,

0 = 4u2 + v2 - 4.

with exact solution u = w = cos(t), v = 2sin(t). Only the general IDE method and the partitioned IDE

method I can be applied. The Tables 3.6 and 3.7 give the results. Evidently, it is here where the

partitioned method is by far superior to the general IDE method, particularly, for small m.

3.4. The pendulum problem (index 3)

A familiar higher-index test problem is the mathematical pendulum. In index 3 form it reads [5]

p
.
 = u, p(0) = 1,

q
.
 = v, q(0) = 0,
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(3.3) u
.
 = -pλ, u(0) = 0,    0 ≤ t ≤ 10.

v
.
 = -qλ - 1, v(0) = 0,

0 = p2 + q2 - 1, λ(0) = 0.

The Tables 3.8 and 3.9 again show that the partitioned method is faster than the general IDE method.

Table  3.1. General IDE method (2.7) Table  3.2. General IDE method (2.7)
Colpitts oscillator (form (1.6)) Transistor amplifier (form (1.6))

------------------------------------------------------------------------- --------------------------------------------------------------------------
h.106 m = 3 m = 4 m = 5 m = 6 h.106 m = 4 m = 5 m = 6 m = 7

------------------------------------------------------------------------- --------------------------------------------------------------------------
7.2 4.0/3.0 5.7/4.2 6.1/5.6 7.4/6.4 0.04     -   - /6.8   - /6.5 5.7/6.5
3.6 4.8/4.2 7.8/5.8 7.9/7.3 9.4/8.7 0.02 6.0/8.0 7.9/8.6 8.0/8.8 8.6/9.3

------------------------------------------------------------------------- --------------------------------------------------------------------------

Table  3.3. Partitioned IDE method I (2.13a) Table  3.4. Partitioned IDE method II (2.21)
Transistor amplifier (form (1.8)) Transistor amplifier (form (1.8))

------------------------------------------------------------------------- --------------------------------------------------------------------------
h m = 4 m = 5 m = 6 m = 7 h m = 4 m = 5 m = 6 m = 7

------------------------------------------------------------------------- --------------------------------------------------------------------------
410-4 3.3/3.8 3.6/4.0 3.9/4.3 4.2/4.7 410-4 4.1/4.1 5.1/4.5 4.8/5.0 5.6/5.6
210-4 5.1/5.4 5.7/6.2 6.3/6.9 7.0/7.6 210-4 5.5/5.9 6.3/6.4 8.1/7.0 7.3/7.7

------------------------------------------------------------------------- --------------------------------------------------------------------------

Table 3.5.  RADAU5 applied to the transistor amplifier (form (1.6))
---------------------------------------------------------------------------------------------

TOL csd hav mav JEav LUav
---------------------------------------------------------------------------------------------

10-4 4.6 3.6 10-4 3.0 0.99 1.31

10-7 8.3 0.7 10-4 2.6 0.99 1.01
---------------------------------------------------------------------------------------------

Table  3.6. General IDE method (2.7) Table  3.7. Partitioned IDE method I (2.13a)
Arnold-Strehmel-Weiner problem Arnold-Strehmel-Weiner problem

------------------------------------------------------------------------- --------------------------------------------------------------------------
h m = 4 m = 5 m = 6 m = 7 h m = 4 m = 5 m = 6 m = 7

------------------------------------------------------------------------- --------------------------------------------------------------------------
0.02   - /2.8   - /5.3 2.5/6.7 5.6/7.7 0.02   - /6.7 5.1/7.4 6.8/8.2 7.5/9.1
0.01   - /5.5 4.4/6.0 5.9/7.4 7.2/8.8 0.01 3.8/9.0 6.0/9.2 8.0/9.9 8.9/10.9

------------------------------------------------------------------------- --------------------------------------------------------------------------

Table  3.8. General IDE method (2.7) Table  3.9. Partitioned IDE method I (2.13a)
Pendulum problem Pendulum problem

------------------------------------------------------------------------- --------------------------------------------------------------------------
h m = 4 m = 5 m = 6 m = 7 h m = 4 m = 5 m = 6 m = 7

------------------------------------------------------------------------- --------------------------------------------------------------------------
  0.1     -     -   - /1.9   - /2.1 0.1   - /4.3   - /3.6 3.7/3.2 4.1/3.7

0.05   - /2.7   - /1.3 2.4/3.6   - /3.6 0.05   - /4.9   - /4.5 4.9/4.3 4.6/4.5
  0.025   - /3.8 3.2/3.8 3.1/4.6 4.0/5.4 0.025   - /5.5 4.7/5.4 6.1/5.4 5.4/5.4
------------------------------------------------------------------------- --------------------------------------------------------------------------
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