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The properties of a low-order atmospheric spectral model are investigated by using a bifurcation analysis of its steady 
states and periodic solutions. The time-asymptotic behaviour of the model is either stationary, periodic, quasi-periodic or 
chaotic, depending on the parameter values and initial conditions. Different scenarios are found leading to the generation of 
strange attractors. Some include the occurrence of homoclinic orbits, such that for nearby parameter values chaotic orbits exist 
moving in small tubes around the homoclinic orbits. The chaotic motion describes an irregular flow, predictable on a time 
scale given by the reciprocal of its positive Lyapunov exponent. However, the model cannot describe transitions between 
different preferent flow regimes. This is due to the severe truncation of the spectral expansions. 

1. Introduction 

Largely due to the work of Lorenz [l] it is nowadays accepted that the atmosphere is a physical system 
with limited predictability properties. Consequently, weather forecasts only have validity on a finite time 
interval, which appears to be two weeks at most. As indicated by model results as well as data, another 
characteristic property of the system is its vacillation behaviour: the circulation irregularly fluctuates 
between different preferent flow regimes (also called weather regimes). Often they are classified into three 
categories: a high-index regime (intense westerlies, small wave amplitudes), a low-index regime (large 
waves, weak zonal flow) and an intermediate regime of transitional type. More details and extensive 
references are given in [2]. These properties cannot be explained by a linear theory: they are a consequence 
of the nonlinear interactions between different scales of motion. Within the framework of long-term 
weather forecasting it is important to obtain a better understanding of the dynamics responsible for the 
features reported above. 

In this paper the possibility of constructing simple nonlinear models, which reflect the vacillation and 
predictability properties of the atmosphere, is investigated. This is done by a Galerkin projection of the 
equations of motion onto a limited number of normal modes of the system. The result is a spectral model 

(1.1) 

Here x = (x1, x 2 ,. . ., xN) represents the modal amplitudes, an overdot denotes differentiation with respect 

*Present address, Institute of Meteorology and Oceanography, University of Utrecht, Princetonplein 5, 3584 CC Utrecht, The 
Netherlands. 

0167-2789 /89 /$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



H.E. de Swart/ Anazvsis of an atmospheric spectral model 223 

to time and /,,,(x) is an N-dimensional vector field depending on x and parameters µ. = (µ. 1, µ. 2 , ••. , JLm). 
Furthermore, N is the truncation number and IR N the phase space. 

In this paper we shall study a six-component spectral model of the barotropic potential vorticity 
equation in a beta plane channel. It was originally derived by Charney and DeVore [3] and is also 
considered in [4]. Although these studies answered many questions, our knowledge of the model is still 
incomplete. In particular the existence of vacillatory solutions has not been investigated. Therefore we 
shall investigate whether this model contains a strange attractor with an associated multimodal probability 
distribution in the phase space. Since the chaotic motion is characterized by sensitive dependence on initial 
conditions, it models a finitely predictable flow. The multimodal probability distribution means that the 
trajectories alternately visit different preferent regions in the phase space, as required to simulate 
vacillation behaviour. 

After a brief derivation of the spectral equations in section 2, we study in section 3 the steady-state 
structure of the model. The two parameters varied are the external forcing, controlling the topographic 
instability mechanism, and the width-length ratio of the channel with which the barotropic triad 
interactions are controlled. The existence of strange attractors is investigated in sections 4 and 5 by 
continuing in the parameter space branches of periodic orbits which bifurcate from the steady states. In 
some cases the periodic orbits become homoclinic, such that they connect unstable equilibria with 
themselves. For nearby parameter values strange attractors occur, in agreement with Silnikov's theory [5], 
see also [6, 7]. However, although the model has interesting properties it cannot represent the vacillation 
behaviour of the atmospheric circulation. This is due to the lack of sufficient nonlinear interactions, caused 
by the severe truncation of the spectral equations. It is argued in section 6 that more degrees of freedom 
are needed to obtain the vacillation behaviour. 

2. The model 

The spectral model equations are derived as follows (see [2] for details and references). Consider a 
large-scale atmospheric flow (length scale k- 1, time scale a- 1, scale height H) on a beta plane centered at 
latitude <f> = <f>o of the spherical earth. The dynamics of this type of flow are governed by the nondimen
sional vorticity equation 

(2.1) 

Here t is time, iJ;(x, y, t) the stream function, h(x, y) represents the topography of the earth (characteris
tic amplitude h 0 ) and iJ;*(x, y) is a forcing stream function modelling the equator to pole temperature 
difference. All variables have been nondimensionalized according to the scales given above. Furthermore, 
\l 2 is the two-dimensional Laplace operator and 

J(Q b) = aa ab - aa ab d k d... d k d , ax ay ay ax, X = roCOS<f>o I\, y = ro <j>, (2.2) 

where A. is the longitude, <f> the latitude and r0 the radius of Earth. The parameters are 

(2.3) 
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with / 0 = 2Q sin <j>0, /30 = (2Q/r0 ) cos <j>0, Q the angular speed of rotation of Earth and oE the depth of the 
frictional (Ekman) boundary layer near the Earth's surface. The motion is considered in a rectangular 
channel with the boundary conditions 

..p ( x' y, t) = ..p ( x + 2'1T' y, t), 

a..p =0 and _!12-rroi/; dx=O at y=O, y='1Tb (=2'1TB/L), ax ar 0 ay (2.4) 

where B and L are the dimensional width and length of the channel, respectively. 
Next the solution if.; is expanded in a series of orthonormal eigenfunctions { <I>i }i of the Laplace 

operator. Assuming that if.;* and h can be expanded in eigenfunctions as well, we have 

( iJi, ..P*, h) = "'[.( iJ.ij, ..Pj, hJ <I>j, i= U1, J2), 
j 

(2.5) 

where ) 1 and }2 are integers and we require each mode (.pi, <I>) to satisfy the boundary conditions (2.4). In 
this case we find 

<I>0h = fi cos (i2 y /b), '1>1J, = fi exp (i j 1x) sin (j2 y /b), 

IJ1I, i2=1,2, .... 

They represent (0, Ji) zonal flow modes and (IJ1 1, )2 ) Rossby wave modes, respectively. 

(2.6) 

A low-order model is constructed by letting ( -1, 1) sj s (1, 2). The topography and external forcing are 
represented by 

h = cos ( x) sin ( y / b), if.;* = fi iJ.;01 cos ( y / b). 

Projecting eq. (2.1) on these eigenfunctions and introducing the real-valued velocity amplitudes 

X1 = iJio1/b, 
X2= (iJi11 +i/J_11)/({ib), 
X4 = ilio2/b, 

x i* = if.i61/ b ' 

X3=i(iJi11-if.i-11)/({ib), 

X5 = (iJi12 + i/J_12)/(tib), 

we obtain the spectral equations 

.X 1 = yi*x 3 - C(x1 - xt), 

.X2=-(a1X1-/31)X3 -Cx2 -01X4X6, 

x3 = (a1x 1 - /31)x 2 -y1x 1 - Cx 3 + o1x 4x 5 , 

x4 = y2*x6 - Cx 4 

Xs = -(a2x1 - f32)x6 - Cxs 
x6 = (a2X1 - /32)X5 -y2X4 - Cx6 

+ e(x 2x 6 - X3X5), 
- 02X3X4, 

+02XzX4. 

(2.7) 

(2.8) 

(2.9) 



Here 

H.E. de Swart/ Analysis of an atmospheric spectra/ model 

8../2 m2 b2 + (m 2 -1) 
a=--

m '1T 4m 2 - I b2 + m2 

5 = 64../2 b2 - (m 2 -1) 
m 15'1T b2+m2 

16../2 
c=~, 

/3b2 
/3m = b2 + m2' 

* _ 4m /2.by 
Ym - 4m2-1 'IT 

4m 3 {ib-y 
Ym= 4m2-l '1T(b2+m2) 

225 

(2.10) 

are functions of the model parameters. This model is identical to that discussed in [3, 4], except for a 
different scaling. 

Note that the model is invariant under reflection in x 4 = x 5 = x 6 = 0. This implies that if initial 
conditions are chosen such that x4(0) = x 5 (0) = x6 (0) = 0, the evolution is governed by the three-compo
nent subsystem in (2.9) between the solid lines. Its properties are simple and well-known [2, 3]. For a wide 
range of parameter values it possesses three different equilibria (E1, E2, E3). Here E1 and E 3 are stable, 
whereas E 2 is unstable due to the topographic instability mechanism. The corresponding stream function 
patterns resemble the three large-scale preferent regimes of the atmospheric circulation reported in the 
introduction. However, no vacillation behaviour is found. 

Compared with this three-component model, the full model (2.9) exhibits a new physical mechanism, 
called the barotropic instability. This is caused by the triad interactions between the (0, 2), (1, 1) and (1, 2) 
modes. Application of the Fj121rtoft theorem [8] to this triad yields 

if b2 < 3: (0,2) mode can become unstable, 

if b2 > 3: (1, 1) mode can become unstable. 
(2.11) 

We shall study the set of limit points of (2.9) for the parameter values C = 0.1, /3 = 1.25, y =I and b and 
xt =Uk/a free. Here U is the external velocity forcing in the (0, 1) mode and a/k = 8 m s- 1• The 
situation is that of a flow confined to a channel with length 5000 km and variable width, centered at the 
latitude q,0 = 45°. Furthermore, the topographic amplitude is I km and the dissipation time scale 10 days. 
The model has been analyzed by using routines from the software package AUTO of Doedel [9], in 
combination with numerical time integrations. 

3. Stationary solutions and their bifurcations 

Concerning the equilibria of (2.9), we distinguish between single-mode equilibria, for which the x4-, x 5-

and x6-components are zero, and the other mixed-mode equilibria. The latter always occur in pairs, due to 
the reflection symmetry of the model. In fig. I curves in the (b, x1*) parameter space are shown, where one 
or more real parts of the eigenvalues of the vector field, linearized at a stationary point, become zero. The 
solid curves LI, L2 and L3 are curves of limit points (saddle-node bifurcations). The dashed lines are 
curves of ordinary bifurcation points, whereas the dotted lines, labelled HI, H2 and H3, are curves of 
Hopf bifurcation points. At the limit points and bifurcation points two branches of equilibria come 
together. Consequently, the associated cuives in fig. l(a) divide the parameter space into regions, each with 
its own characteristic number of equilibria. This is denoted by the symbols a., am, where a, represents the 
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Fig. 1. (a) Curves of singular points in the (b, xi*) parameter space. Solid lines are curves of limit points (Ll. L2, L3), dashed lines 
are curves of pitchfork bifurcations (Bl) and dotted lines are curves of Hopf bifurcation points (Hl, H2, H3). The symbols a,. am 
denote the number of single-mode and mixed-mode equilibria, respectively. The points A, B, C and D are associated with a direct 
transition from regular to chaotic behaviour. (b) Blow-up of (a) near point D. (c) Blow-up of (a) near point A. 

number of single-mode equilibria and am the number of mixed-mode equilibria. Stability properties of at 
least one of the equilibria change each time that a curve in the diagram is crossed. They are not indicated, 
since the diagram is already densely filled with information. In fig. l(b, c) blow-ups of two regions are 
presented where the behaviour is rather complicated. Thick points in the diagram are special singular 
points of the model, because they are associated with bifurcations of codimension larger than one. Of 
particular interest are the points A, B, C and D, where we have the coalescence of a Hopf bifurcation and 
saddle-node bifurcation. At these points a direct transition occurs from regular to chaotic solutions [10]. 
They suggest the existence of homoclinic orbits and related chaos, which will be investigated in more detail 



H.E. de Swart/ Analysis of an atmospheric spectral model 

0 

.8 

.4 

.o 

-.4 

8 

i 

16 • 24 
x1 

iEsa 
----------:-------------------

E 
4b 

:eSb 
! 

32 

-.8 '-o---s--.--16 ___ 2_4--~32 
x1 

5 

4 

3 

2 

0 
0 

.8 

.4 

x4 

.0 

-.4 

-.8 
0 

b 

2 4 x/' 8 10 

~ .. 
t! 
\.' c, E 
!~~---___ ..., __________ 
~ .... ------- ~ -------------------------
---~ 

~~~~-----r;~--------
,, 
ii 

E6;.< 
2 4 

x,* 
6 8 10 

227 

Fig. 2. x1- and x4-component of the equilibria as a function of xi* for b = 1.6 (a) and b = 2 (b). A solid line denotes that the 
solution is stable, whereas a dashed line indicates an unstable solution. The triangle symbols denote Hopf bifurcation points, which 
are numbered accordingly in (b). 

in the next section. 
The curve Ll is the bifurcation set of the three-component subsystem. From fig. 1 we conclude that for 

b < 1.279 the six-component model has only single-mode equilibria. If b becomes larger, additional 
mixed-mode equilibria may occur. If b exceeds the value 1.517, periodic solutions may be generated due to 
the presence of Hopf bifurcations, being a manifestation of the barotropic instability mechanism. In fig. 2 
cross-sections of the bifurcation diagram are presented. Shown are the x1- and x 4-cornponent of the 
equilibria as a function of x1* for b = 1.6 and b = 2. Note that the high-index equilibria ( £ 1) are always 
stable, as will be used later on. 

4. Periodic and aperiodic solutions 

4.1. Zona/ flow instabilities 

We have studied the position and stability of periodic orbits branching off from stationary points as a 
function of the forcing parameter xt. This has been done for the cases b = 1.6 and b = 2, which are 
characteristic for the behaviour of the model, as is indicated by (2.11). Note that once the periodic orbits 
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branch off from stationary points of the mixed-mode type, they occur in pairs. Again this is a consequence 
of the reflection symmetry present in eq. (2.9). 

For b = 1.6 one pair of Hopf bifurcation points is found at mixed-mode equilibrium branches, see fig. 
2(a). The result of the continuation of the periodic orbits, emanating from this point, as a function of x( is 
presented in fig. 3. The branch of initially unstable periodic orbits almost immediately merges into a 
saddle-node bifurcation. As a result stable periodic solutions are found in a small range of xt-values, of 
which an example is shown in fig. 4(a). However, they soon become unstable due to a sequence of 
period-doubling bifurcations, leading to the generation of a strange attractor. An example of an associated 
chaotic orbit is shown in fig. 4(b). By application of the method described in Wolf et al. [ll] one positive 
Lyapunov exponent 11 1 = 0.016 was computed for this signal. The reciprocal of this number gives the time 
scale on which the motion is predictable on the average. We have not analyzed the strange attractors in 
detail, since they do not have a global structure: chaotic solutions permanently remain in the low-index 
flow regime. Moreover, it appears that for slightly larger xt-values they turn into nonattracting strange 
invariant sets. These qualitative changes are associated with global bifurcations involving heteroclinic 
connections between the unstable periodic orbits and the saddle points E5JE5b defined in fig. 2(a). The 
strange invariant sets disappear in a global bifurcation at xi* = 13.36. For that parameter value the 
periodic orbits have become homoclinic, connecting E5a and E5b with themselves. A numerical approxima
tion of one of the homoclinic orbits, considered as a periodic orbit with period T-'> oo, is shown in fig. 
4(c). This scenario is described in [12] as a type-B homoclinic explosion. 

4.2. Rossby wave instabilities 

We now consider the situation b = 2, for which five different Hopf bifurcation points have been found, 
numbered accordingly in fig. 2(b ). In fig. 5 the period of the orbits emanating from the Hopf bifurcations 1 
(a) and 2 (b) is shown as a function of xt. Part of the diagram on the left is also discussed in [4]. Clearly, 
the bifurcation structure is complicated: we observe symmetry-breaking and symmetry-recovering pitch
fork bifurcations as well as period-doubling and period-halving bifurcations. However, the most interesting 
property in both diagrams is the tendency of the period to become infinitely large as xt tends to the value 
3.581 (fig. 5(a)) or 3.584 (fig. 5(b)). This behaviour corresponds to the approach to homoclinic orbits 
connecting the saddle-point E3 with itself. Numerical approximations of these orbits are shown in 
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Fig. 4. (a) Projection of a periodic orbit, existing for b = 1.6 and xi* = 12. 958, on to the x 1-x4 plane. (b) Projection of a chaotic 

orbit, existing for b = 1.6 and xt = 12.961, on to the x1-x4 plane. (c) Numerical approximation of one of the two homoclinic orbits 

occurring at b = 1.6 and xi* = 13.36 as a periodic solution with period T-+ co. Shown is the projection of the orbit on to the x1-x4 

plane. The other orbit is obtained by reflection in x4 = x 5 = x6 = 0. 

fig. 6(a, b).Note that each of the two asymmetric orbits seems to be just half a part of the homoclinic orbit 

presented in fig. 6(a). 
This type of bifurcation has been analyzed in [5-7]. The local behaviour of the vector field near a 

homoclinic orbit is characterized by three eigenvalues of the matrix derivative of the vector field linearized 

at the saddle point. They are a real positive eigenvalue A.1 and two complex-conjugated eigenvalues 

( -A 2 ± iw ), with A. 2 > 0 and A. 2/A.1 < 1. It follows that for parameter values close to homoclinicity strange 

attractors exist, which occur and disappear due to cascades of period-doubling and period-halving 

bifurcations, respectively. These bifurcations take place near each winding of the T(xi*) curves of fig. 5. 

An example of a chaotic orbit, existing for x1* = 3.5, is shown in fig. 6(c). It has one positive Lyapunov 

exponent, v1 = 0.040. Note that the trajectories move in small tubes which closely resemble the homoclinic 

orbit of fig. 6(a). 
Apart from the principal homoclinic orbit there may exist a number of others, the so-called principal 

homoclinic orbits, which make one or more encounters with the saddle points before returning to them. 

Suppose that the saddle-node bifurcations, associated with the approach to an M-pulse homoclinic orbit 
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occurring for the parameter value ILoM are found for the parameter values P.; (i = 1, 2, ... , oo) with T; the 
corresponding periods of the orbits. Then [6] show that 

lim (T;+1 - T;) = M'TT' 
;--.o:::; w 

(4.la) 

1. [/L;+1-IL0M] [-'TTA2] im _ =-exp --- . 
i-+oo J.L; J.LoM w_ 

(4.lb) 

b our model the numerical values of the three relevant eigenvalues are 

(4.2) 

Upon substituting in the right-hand sides of (4.la,b) we obtain the values 3.04M and -0.82, respectively. 
From fig. 5(a,b) we computed approximations of the left-hand sides of (4.la,b), which are presented in 
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Fig. 6. (a) As fig. 4c, but approximation of the single homoclinic orbit found for b = 2, x1* = 3.581. (b) As fig. 4(c), but for b = 2, 
xi* = 3.584. (c) As fig. 4(b), but for b = 2, xt = 3.5. 
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Table I 
Approximations of the left-hand sides of eqs. (4.la) and (4.lb) from the bifurcation diagrams 
of figs. S(a) and S(b). 

Fig. 5(a) Fig. S(b) 

7i+1-7i 6.2 3.1 

µi+l-µOM 
-0.89 -0.81 

µ;-µOM 
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table I. From that we conclude that the two homoclinic orbits at xi* = 3.584 are principal orbits, whereas 
the homoclinic orbit found for xt = 3.581 is a double-pulse subsidiary orbit. 

4.3. Bifurcation structure of the residuary periodic orbits 

The continuation of periodic orbits generated at the Hopf bifurcation points labelled 3 and 4 in fig. 2(b) 
is shown in fig. 7(a). Details of the bifurcation structure are presented in fig. 7(b). Starting from the points 
3, strange attractors are generated in a similar way as described in section 4.1. Again they almost 
immediately turn unstable due to global bifurcations. The strange invariant sets disappear in cascades of 
period-halving bifurcations. Next the principal branches merge into saddle-node bifurcations, together 
with the branches of periodic orbits originating from the Hopf bifurcation points 4. 

We finally investigate the periodic orbits generated at the Hopf bifurcation points labelled 5. From fig. 8 
it appears that a series of wiggles is found, similar to those presented in fig. 5(a, b). However, in this case 
the conditions for the Silnikov scenario to apply, as discussed in [5-7], are not satisfied. In order to 
understand this behaviour, probably more complicated normal forms have to be developed and analyzed. 

5. Tue possibility of vacillation behaviour 

It was discussed in the introduction that an atmospheric spectral model should simulate the predictabil
ity and vacillation properties of the circulation. So far we have shown that the model (2.9) allows for 

14 

T 

12 

a strange invanant set 

parameter -+ 

Fig. 7. (a) As fig. 5, but for the periodic orbits emanating from the Hopf bifurcation points 3 and 4. (b) Bifurcation scheme in the 
region between the period-doubling bifurcations (PD) of (a). The straight line represents the principal periodic orbit. The number of 
Floquet multipliers with absolute values larger than 1 (measuring the degree of instability of periodic orbits) is also indicated. 
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chaotic solutions, which are predictable for only a finite amount of time. However, the corresponding 
strange attractors appear to have a small size and small attraction domains, such that no vacillation is 
obtained. This is due to the fact that the high-index equilibrium E1, which is dominated by a large (0, 1) 
zonal flow modal amplitude, is stable for all parameter values. It cannot be destabilized by topographic 
instability, since this mechanism only acts on wave modes. Furthermore, barotropic instability of the (0, 1) 
mode is forbidden by the Fj0rtoft theorem [8] because it has the smallest wavenumber of the spectrum. 

With a slight extension of the model it is possible to obtain unstable high-index equilibria. This is done 
by adding a forcing term Cxt to the right-hand side of the equation for the evolution of the x 4-component 
in (2.9). In this way the (0, 2) zonal flow mode of E1 is externally forced. For sufficiently large xt and 
b2 < 3 (because of (2.11)) this mode can become barotropically unstable. As an example we take b = 1.6, 
xt = 4 and let xt be a free parameter. In fig. 9 the results of a numerical bifurcation analysis are 
presented. They show the x4-components of the equilibria as a function of x:, where for xt = 0 is started 
in the known, previously calculated equilibria E1, E2 and E3, respectively. It is obvious that E1 becomes 
barotropically unstable if I x,t I is sufficiently large. We have investigated the bifurcation structure of the 
periodic orbits emanating from these Hopf bifurcation points. As a result additional branches of periodic 
and quasi-periodic orbits were found, but no strange attractors occur. In the range 0 < I xt I < 15 
trajectories either tend to a limit cycle of the high-index type or to a stationary point of the low-index type. 
The existence of point attractors can be understood from fig. 9(b, c). It appears that the equilibrium E 2 

remains unstable if x,t is varied, but always a stable equilibrium of the low-index type is found. When 
lxt I is large most energy of these equilibria is contained in the (1, 1) wave mode. This mode cannot 
become unstable because the model contains only one wave triad for which (2.11) holds, whereas here 
b2 < 3. Thus, the conclusion is that the model (2.9) cannot simulate vacillation behaviour. 

6. Conclusions 

In this paper we have investigated in what sense the six-component atmospheric spectral model of ref. 
[3] represents predictability and vacillation properties of the atmospheric circulation. The time-asymptotic 
behaviour of this model is more complicated than its three-component subsystem: apart from stationary 
behaviour also periodic, quasi-periodic and chaotic solutions are obtained. In particular the latter are of 
interest, since they model an irregular time-dependent flow being predictable on a finite time interval only. 
However, the corresponding strange attractors do not have a global structure such that chaotic trajectories 
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Fig. 9. x4 -components of the equilibria for b = 1.6 and xt = 4 as a function of x4, where for x4 = 0 is started in the known 

equilibrium E1 (a), E 2 (b) and E3 (c), respectively. Stability properties are indicated by a solid line (stable) or a dashed line 

(unstable). The triangle symbol denotes a Hopf bifurcation point. 

are capable of visiting different preferent regions in the phase space. This is caused by the occurrence of 

only one barotropic triad in the model or, equivalently, by the severely truncated spectral expansions. For 

fixed parameter values vacillation may be generated in two different ways. The first way is to add 

stochastic perturbations to the model, as is done in (13]. The second one, of which examples are reviewed 

in [2], is to allow for more degrees of freedom by increasing the horizontal and/or vertical resolution of 

the spectral model. 
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