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ABSTRACT

We show how a large class of combinatorial optimization problems can be reformulated as a nonconvex minimization

problem over the unit hyper cube with continuous variables. No additional constraints are required; all constraints

are incorporated in the nonconvex objective function, which is a polynomial function. The application of the general

transform to satis�ability and node packing problems is discussed, and various approximation algorithms are briey

reviewed. To give an indication of the strength of the proposed approaches, we conclude with some computational

results on instances of the graph coloring problem.
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1. Introduction

In a number of recent papers [14, 15, 13] we have developed and tested various approximation algo-

rithms for solving a speci�c class of combinatorial optimization problems (so{called node packing

problems), based on optimizing a nonconvex quadratic model over the unit hyper cube. In this

paper we generalize the ideas leading to the model used in the mentioned papers to show how any

0{1 feasibility problem with linear constraints can be transformed to a nonconvex minimization

problem over the unit hypercube. There exist several techniques to arrive at such a model. In this

paper we will describe two of these.

In the �rst technique, the set of linear constraints is replaced by an equivalent set of linear con-

straints that exhibits certain properties. The method used to obtain an appropriate linear refor-

mulation uses techniques similar to those used in, among others, Hammer and Rudeanu [6], Granot

and Hammer [4], Nemhauser and Wolsey [10] and Barth [1]. Subsequently, we show how the set

of linear constraints obtained can be transformed to a polynomial function, such that global min-

imizers of this function yield feasible binary solutions to the original problem. Conversely, each

solution to the original problem coincides with a global minimizer of the polynomial function. Un-

fortunately, the size of the reformulation may be intractable. That is, there are linear inequalities

which need an exponential number of linear inequalities to replace them. There does however exist
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a method that garantuees that the number of linear inequalities needed is linear in the length of

the original inequality. It makes use of the binary representation of the coe�cients occurring in

the inequality and entails the introduction of new variables. In this paper we do not further pursue

this approach; we refer to Warners [12]. It may be emphasized that for many important problem

classes no linear reformulation is required; in particular the class of node packing problems that we

studied earlier [14, 15, 13] and also the satis�ability problem [5]. The second technique to construct

the nonconvex continuous model makes use of the fact that binary variables are idempotent; it is

inspired by the approach of [14].

It turns out that, apart from the problems we studied earlier, also the transformation for satis�a-

bility problems introduced by Gu [5] is a special case of the general transformation scheme.

This paper is organized as follows. In the next section we describe the techniques to obtain the

reformulation, and in Section 3 we consider two special cases; some algorithmic approaches to the

given minimization problem are discussed and computational results are reported on the graph

coloring problem. Concluding remarks are made in the �nal section.

Acknowledgement Thanks are due to Hans van Maaren and Tam�as Terlaky for their comments

on earlier versions of this paper.

2. A nonconvex continuous model

We consider binary feasibility problems of the form

(BP ) �nd x 2 f0; 1gm such that Ax � b:

Here A 2 IRn�m, b 2 IRn and it is assumed that all the data are integral. Many combinatorial

optimization problems can be put into this form by modelling them as integer linear programming

problems and, if required, adding a bound on the objective function value. We have the following

theorem.

Theorem 1 The problem (BP ) can be reformulated as a nonconvex optimization problem over the

unit hypercube with continuous variables.

In fact, for discrete (instead of continuous) variables the content of this theorem is almost trivial.

It is possible to construct such a nonconvex model by simply enumerating all 2m vertices of the

m{dimensional hyper cube. Let V be the set of vertices v that do not satisfy Av � b. Consider the

following model.

(V P )
min PV (x) =

X
v2V

mY
i=1

(1� vi + (2vi � 1)xi)

s.t. x 2 f0; 1gm

By the following lemma, optimizing (V P ) either yields a solution to (BP ), or it proves that (BP )

does not have solution.

Lemma 1 For any x 2 f0; 1gm that does not satisfy Ax � b, it holds that PV (x) = 1. If Ax � b,

then PV (x) = 0.
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Proof: By construction PV (x) � 0. Note that if x � v for some vertex v then

pv(x) =

mY
i=1

(1 � vi + (2vi � 1)xi) =

mY
i=1

(1� vi + 2v2i � vi) = 1;

where we use that v2i = vi. On the other hand, if x 6� v, there is an i for which xi = 1�vi implying

that for that particular i it holds that (1 � vi + (2vi � 1)(1 � vi)) = 0, from which it follows that

pv(x) = 0. Thus PV (x) = 1 if and only if x 2 V , otherwise PV (x) = 0: 2

Thus we have the following corollary.

Corollary 1 (BP ) is feasible if and only if the global optimal value of (V P ) is equal to zero.

Using the following theorem, this result can be generalized to continuous variables.

Theorem 2 Let

P(x) =

KX
k=1

ck
Y
i2Ik

xi;

where x 2 IRm, ck 2 IR, and the sets Ik are sets of indices. Given a vector x such that l � x � u

where l and u are vectors of lower and upper bounds on x. By using a greedy rounding strategy, a

solution [x] can be constructed, such that for each i, [xi] is equal to either its lower or upper bound,

which has the property that P([x]) � P(x).

Proof: We are given a vector x; if for each i, xi is equal to li or ui, we are ready. Otherwise, there

is an i such that li < xi < ui. For the moment, �x all variables to their current value, except the

variable xi. It is our purpose to set this variable to either li or ui, such that the value of P(x)

does not increase. This amounts to minimizing a one{variable linear function over the constraint

li � xi � ui. Obviously, the optimal value is attained in one of the extreme points, in which case

we set xi to this extreme value, or on the whole interval; in that case we can arbitrarily set xi to

either its upper or lower bound. This procedure can be carried out for all variables, until a binary

solution is constructed such that P([x]) � P(x). 2

We conclude that the integrality constraints in (V P ) can be relaxed to linear constraints 0 � x � e

to obtain the following corollary. By e an all{one vector is denoted.

Corollary 2 (BP ) is feasible if and only if there exists a vector x, 0 � x � e, such that PV (x) < 1.

Here e denotes the all{one vector.

Thus we have proven Theorem 1. Since its obviously intractable to construct the nonconvex

continuous model as we have done above (constructing the model in this way is equivalent to

solving the problem), we are interested in �nding other techniques to obtain a similar model. In

the subsequent sections, we consider two techniques to �nd such a similar model.

2.1 Using minimal covers

Let us �rst consider some examples to get a better understanding of the crucial issues.

Example 1 Consider the inequality

x1 + x2 � 1: (2.1)



4

Since we require that both x1 and x2 are binary, we can rewrite this inequality in a stronger, but

nonlinear, form:

x1x2 = 0: (2.2)

Clearly, we have for continuous variables x1 and x2 that

x1x2 = 0 ) x1 + x2 � 1:

This shows that (2.2) is stronger than (2.1), as the converse is not necessarily true. The crucial

point is that of the two variables occurring, at least one should be equal to zero. 2

Example 2 Now consider the following inequality:

x1 + x2 + x3 + x4 � 2: (2.3)

Again, we must have

x1x2x3x4 = 0; (2.4)

but unfortunately this does not imply that (2.3) is satis�ed. For example, if we take (x1; x2; x3; x4) =

(1; 1; 1; 0), (2.4) holds, but (2.3) is violated. However, we may replace (2.3) by the following four

inequalities:

+x2 +x3 +x4 � 2

x1 +x3 +x4 � 2

x1 +x2 +x4 � 2

x1 +x2 +x3 � 2

(2.5)

Note that inequality (2.3) in fact can be interpreted as a Chv�atal cut [3], that can be obtained by

adding the four inequalities (2.5) and rounding the right hand side downwards:

3(x1 + x2 + x3 + x4) � 8 ) x1 + x2 + x3 + x4 � b8=3c = 2:

Recall that a cut, if we solve the linear relaxation, forces the variables to integer values. For the

integer formulation however, it is redundant. So for a binary solution, we have that (2.5) is satis�ed

if and only if (2.3) is satis�ed. Now we can reformulate the original inequality (2.3) as a polynomial

function:

x2x3x4 + x1x2x4 + x1x3x4 + x1x2x3 = 0: (2.6)

Obviously, if (2.6) is satis�ed by a solution 0 � x � e, the system (2.5) is satis�ed, so (2.3) is

satis�ed. 2

In the following we formalize what is exposed by the examples. To this end, let us �rst introduce

some notation with the purpose to show that any inequality with binary variables can be rewritten

in such a way that all coe�cients are nonnegative. Let the jth inequality contained in Ax � b be

denoted by

aTj x =
mX
j=1

ajixi � bj: (2.7)
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De�ne Ij = fi : aji > 0g, Jj = fi : aji < 0g and Kj = Ij [Jj : For the sake of brevity we shall adopt

the following notation:

xi =

(
xi if i 2 Ij
1� xi if i 2 Jj

;

and

bj = bj �
X
i2Jj

aji:

Then (2.7) can be rewritten asX
i2Kj

jajij xi � bj : (2.8)

We �rst consider inequalities of a particular form. By e we denote an all{one vector of appropriate

length. We give the following de�nition.

De�nition 1 Given an inequality eTx � �. The maximum violation # of this inequality is de�ned

as

# = max
x2f0;1gr

eTx� � = r � �:

Obviously, if we have # � 0, the associated inequality is trivially satis�ed. Therefore in the

following we only consider inequalities that have a strictly positive maximum violation. Note that

for inequality (2.1) of the �rst example we have that # = 1, while for inequality (2.3) of the second

example, # = 2. For the inequalities (2.5) however, we have that # = 1.

Let us prove an easy lemma.

Lemma 2 Given an inequality eTx � �. For 0 � x � e, the implication

pj(x) =
rY

i=1

xi = 0 ) eTx � �

holds if and only if the maximum violation # � 1.

Proof: Suppose the implication holds, i.e. for any x with pj(x) = 0 we have that eTx � �. There

exists at least one i 2 f1; : : : ; rg such that xi = 0. We have eTx � r � 1 � �. It follows that

# = r � � � 1: On the other hand, suppose that # � 1. This implies that r � � � 1 so r � � + 1.

Now assume that for a given binary x it holds that pj(x) = 0, then there exists an i 2 f1; : : : ; rg

such that xi = 0. Thus eTx � r � 1 � �: 2

Lemma 2 suggests that given an inequality jaj j
Tx � bj where the coe�cients are arbitrary num-

bers, we should replace this inequality by a number of inequalities having binary coe�cients and

maximum violation one. This can be done by making use of minimal covers [10].

De�nition 2 De�ne the sets Kjk � Kj, k = 1; 2; : : : ; Nj, such that for all k and l 2 Kjk the

following holds: X
i2Kjknflg

jajij � bj <
X
i2Kjk

jajij:

A set Kjk is called a minimal cover of inequality j [10].
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Given an arbitrary inequality, assume that we have constructed all its distinct minimal covers. The

number of minimal covers is denoted by Nj . With each of these covers we associate an inequalityX
i2Kjk

xi � jKjkj � 1;

and we denote the union of these inequalities by Cx � c. It is obvious that all inequalities in

Cx � c have a maximum violation of one. Furthermore, we can prove the following equivalency.

Lemma 3 For binary x, jaj j
Tx � bj if and only if Cx � c.

Proof:

� Given x such that aTj x � bj . Suppose that for a k = 1; 2; : : : ; Nj we have thatX
i2Kjk

xi > jKjkj � 1:

This implies that xi = 1 for all i 2 Kjk, from which it follows that

jaj j
Tx �

X
i2Kjk

jajij xi =
X
i2Kjk

jajij > bj:

This contradicts the fact that aTj x � bj. We conclude that Cx � c.

� Now we are given an x such that Cx � c. Let 
 = fi 2 Kj : xi = 1g. Suppose that

jaj j
Tx =

X
i2


jajij xi =
X
i2


jajij > bj :

Sort the indices i 2 
 such that jaji1 j � jaji2 j � : : : � jajim j. Now for some t it holds

that

tX
l=1

jajil j � bj ; while

t+1X
l=1

jajil j > bj : By construction, fi1; i2; : : : ; it+1g = Kjk for some

k = 1; 2; : : : ; Nj which leads again to a contradiction.

2

The above is applied in the following example.

Example 3 Consider the inequality

4x1 + 6x2 � 3x3 � 5x4 + 10x5 � 7: (2.9)

We rewrite this inequality as follows:

4x1 + 6x2 + 3x3 + 5x4 + 10x5 � 15:

This is equivalent with the following set of inequalities:

x2 +x5 � 1

x1 +(1� x4) +x5 � 2

x1 +(1� x3) +x5 � 2

(1� x3) +(1� x4) +x5 � 2

x1 +x2 +(1� x3) +(1� x4) � 3

2

Now we are ready to prove the following important lemma.
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Lemma 4 Any inequality aTj x � bj is equivalent with a polynomial equation

Pj(x) =

NjX
k=1

pjk(x) = 0;

where Nj is the number of minimal covers of inequality j. Here, the pjk(x) are polynomial functions,

each corresponding with a minimal cover and constructed in accordance with Lemma 2. For any x

with 0 � x � e we have that pjk(x) � 0, implying that Pj(x) � 0, and

Pj(x) = 0 , Pj([x]) = 0, aTj [x] � bj;

where by [x] we denote a binary solution that is obtained by rounding all fractional elements of x

either up or down.

Proof: Suppose we are given the inequality aTj x � bj . It can be rewritten in the form (2.8), and

subsequently replaced by the set of inequalities Cx � c. The polynomial Pj(x) is given by

Pj(x) =

NjX
k=1

pjk(x) =

NjX
k=1

Y
i2Kjk

xi:

(see also Lemma 2). It is clear that Pj(x) � 0 for any 0 � x � e. Furthermore, if Pj(x) = 0 for

some 0 � x � e, this implies that each term pjk(x) contributes zero to the total sum; this implies

(by Lemma 2) that Cx � c. Moreover, we have

Pj(x) = 0, Pj([x]) = 0, C[x] � c, aTj [x] � bj;

(using Lemma 3), thus proving the lemma. 2

We have the following corollaries.

Corollary 3 The degree of the polynomial associated with an inequality j is equal to

max
k=1;::: ;Nj

jKjkj;

i.e. the size of its largest minimal cover.

Corollary 4 From a (partly) fractional vector x, 0 � x � e, for which it holds that Pj(x) = 0,

multiple binary solutions [x] such that aTj [x] � bj can be constructed.

Example 4 We use inequality (2.9) from the previous example. The largest minimal cover has

size 4, so the polynomial Pj(x) has degree 4. It is given by

Pj(x) = x1x2(1� x3)(1� x4) + (1� x3)(1� x4)x5 + x1(1� x3)x5 + x1(1� x4)x5 + x2x5:

Now to illustrate the `rounding property', consider the vector ~x = ( � � � 1 0 ). It holds that

P (~x) = 0, irrespective of the values xi, i = 1; 2; 3. So these variables can be chosen arbitrarily, yield-

ing 8 distinct solutions. The same holds for e.g. ~x = ( 0 0 1 � � ) and ~x = ( 0 � � � 0 ),

yielding 4 and 8 distinct solutions respectively. 2



8

Now we are ready to construct the nonlinear model of (BP ). Each inequality j is replaced by its

equivalent set of inequalities with maximum violation one, and the polynomial Pj(x) is constructed.

Finally, we take the sum over all these polynomials to obtain the nonconvex minimization problem

that is equivalent with (BP ):

(NMP )
min P(x) =

nX
j=1

Pj(x) =

nX
j=1

NjX
k=1

Y
i2Kjk

xi

s.t. 0 � x � e:

If model (BP ) has a feasible solution, the optimal value of (NMP ) equals zero, and (by Corollary

4) the corresponding minimizer yields one or possibly multiple feasible solutions when it is rounded

to a binary solution.

Note that we can apply Theorem 2 to yield the following corollaries.

Corollary 5 All strict minima of (NMP ) have integral values.

Corollary 6 If a minimizer of (NMP ) has a non{integral objective value, it can be rounded to a

binary solution with improved objective value.

In particular, a fractional solution with objective value smaller than one yields a feasible binary

solution to the original problem.

If a binary solution has a positive objective value, it can be interpreted as follows.

Lemma 5 The objective value of a binary solution x of (NMP ) is equal to the number of minimal

covers in the reformulation of (BP ) that is completely covered by x.

Proof: Follows directly from the construction of the model. 2

Thus the objective value gives an upper bound on the number of constraint violations in the original

formulation (BP ).

Note that model (NMP ) is in this respect di�erent from model (V P ), whose objective value always

lies in the interval [0; 1].

If the coe�cients of a constraint are all equal to �1, 0 or 1 we can say more beforehand about the

number of inequalities that need to be generated to replace a given constraint.

Lemma 6 The number Nj of inequalities with maximum violation one, required to replace a given

inequality aTj x � bj, aji 2 f�1; 0; 1g, written in the form (2.8), is equal to

Nj =

 
jKj j

bj + 1

!
:

Proof: To construct all minimal covers, we need to �nd all sets Kjk such that jKjkj = bj +1. This

amounts to �nding all combinations of bj + 1 elements out of jKj j elements. 2

So for bj =
1
2 jKj j, the number of inequalities required to replace inequality j is exponential in the

length of this inequality. Thus, in speci�c applications, performing the procedure as previously
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described will prove to be computationally intractable. However, there is a linear time algorithm

to replace an arbitrary inequality by a set of inequalities with maximum violation one [12]. This

algorithm makes use of the binary representation of the coe�cients in the inequality. The practical

drawback of this algorithm is that it requires the introduction of a substantial (albeit linear) number

of additional variables and constraints. We do not explain this algorithm here.

In general, to �nd all minimal covers of a given inequality, implicit enumeration of all possible

assignments to the variables occurring in this inequality is required. This can be done by setting

up a search tree in the usual way; at each node a variable xi is set to one in its left branch and

to zero in its right branch. First sorting the coe�cients in descending order, the search tree can

be kept relatively small by choosing variable xi as branching variable at depth i + 1. A branch is

closed when the partial assignment is such that the constraints is violated.

2.2 Using indempotency of the variables

In this section it is shown that using another quite natural approach one arrives at essentially the

same model as described in the previous section. This approach is motivated by the one in [14];

see also Section 3.2. In the mentioned paper, for a special class of combinatorial optimization

problems a nonconvex quadratic model is constructed. For the problems considered, it holds that

for any feasible binary solution also the slacks are binary. By using idempotency of the variables

(i.e. x2i = xi) a concise and computationally attractive model is obtained.

For the moment we restrict ourselves to inequalities with binary coe�cients. Consider the inequality

eTx =

rX
i=1

xi � �: (2.10)

Since x must be binary, vectors x satisfying this inequality are such that eTx is equal to either

0; 1; : : : ; � � 1 or � (assuming that � is integral). So it holds that

eTx(eTx� 1) : : : (eTx� �) = 0: (2.11)

We have the following theorem.

Theorem 3 Using idempotency of the variables, (2.11) reduces to

P�(x) =

N�X
i=1

Y
j2K�

i

xj = 0;

where N� is the number of minimal covers of (2.10), and the K�
i are the index sets of its minimal

covers.

Proof: We use induction. Let us compute the product (2.11), `from left to right'. Consider �rst

the product eTx(eTx� 1). Using idempotency of the variables, we �nd

P2(x) = eTx(eTx� 1) =
rX

i=1

rX
j=1

xixj �
rX

i=1

xi = 2
r�1X
i=1

rX
j=i+1

xixj:
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In the right hand side of this expression, each pair xixj, i; j = 1; : : : ; r; i 6= j occurs exactly once,

with a coe�cient that we may omit in the following. Now suppose that we have carried out the

multiplication for the �rst k factors (0 < k < �), and we have obtained the sum over Nk =

 
r

k

!

distinct terms, each consisting of k letters. We denote this by

Pk(x) =

NkX
i=1

Y
j2Kk

i

xj :

Note that each of these terms represents in fact a minimal cover of the inequality eTx � k � 1,

i.e. Kk contains all minimal covers of this inequality. Now consider the multiplication of Pk(x)

with eTx. Again using the idempotency of the variables, each of the terms with length k will get

a coe�cient k. So each of these will be eliminated, after multiplication of Pk(x) by �k. Thus we

�nd that

Pk+1(x) = Pk(x)

 
rX

i=1

xi � k

!
= kPk(x)+ (k+1)

Nk+1X
i=1

Y
j2Kk+1

i

xj �kPk(x) = (k+1)

Nk+1X
i=1

Y
j2Kk+1

i

xj:

Taking k + 1 = � proves the theorem. 2

In general, given an inequality jajj
Tx � bj, let the set S contain all the distinct values that the left

hand side can take for feasible vectors x. It may be noted that the number of distinct values can

be exponential. The polynomial Pj(x) can be obtained by computing

P j(x) =
Y
s2S

(jaj j
Tx� s); (2.12)

and subsequently setting all coe�cients to 1 and removing the terms that are dominated by others.

A term pj(x) dominates a term pk(x) if the variables occurring in pj(x) are a subset of the variables

occurring in pk(x). It is obvious that pj(x) = 0 then implies that pk(x) = 0, while the reverse is

not necessarily true.

The reader may verify that all `non{covers' get a coe�cient `0' in the process of expanding (2.12),

while it is impossible that any of the covers gets a negative coe�cient. We su�ce with giving an

example.

Example 5 Consider x1 + 2x2 + 3x3 � 3. The feasible vectors for this equation yield values

S = f0; 1; 2; 3g. Computing the product

(x1 + 2x2 + 3x3)(x1 + 2x2 + 3x3 � 1)(x1 + 2x2 + 3x3 � 2)(x1 + 2x2 + 3x3 � 3);

one obtains

P (x) = x1x3 + 6x2x3 + 6x1x2x3 = 0:

Obviously, this is a valid equation, but the last term is dominated by each of the �rst two. Conse-

quently, f1; 2; 3g is not a minimal cover of the given equality. So P (x) = x1x3 + x2x3. 2

In general, it is recommendable to use the method of minimal covers to obtain a model of the form

(NMP ), since it is more e�cient.
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2.3 Transforming equality constraints

So far we have only considered the transformation of inequality constraints to a polynomial function.

Now we consider the problem in which equality constraints occur as well.

(BP 0) �nd x 2 f0; 1gm such that Ax � b and Bx = d.

Here A 2 IRn�m, B 2 IRp�m, b 2 IRn and d 2 IRp. The obvious way to transform the set of

equality constraints Bx = d is by replacing it by Bx � d and Bx � d and subsequently applying

the procedure for transforming inequality constraints.

There are cases however in which it might be bene�cial to deal with the equality constraints in

an alternative way. For example, in [14, 15, 13] the inequality constraints constitute a quadratic

model, whereas adding the equality constraints to the polynomial as well would result in a higher

order model. Due to the structure of the equality constraints, it is possible to not include them

in the polynomial function, but still maintain the nice rounding property stated and proved in

Theorem 2, i.e. that any fractional solution can be rounded to a binary solution without increasing

the objective value.

For speci�c cases we can generalize Theorem 2. We �rst introduce some additional notation and

make two assumptions. Let the sets Et, t = 1; : : : ; p be a partition of the index set f1; : : : ;mg and

let P(x) denote the polynomial function induced by the inequality constraints in (BP 0). Finally,

let x be an arbitrary point in the unit hyper cube such that Bx = d.

Assumption 1 Each equality constraint in the set Bx = d concerns only the variables in exactly

one set Et, t 2 f1; : : : ; pg. Furthermore, B is totally unimodular.

For the de�nition of total unimodularity see e.g. Schrijver [11].

Assumption 2 For all t 2 f1; : : : ; pg the following holds. If all variables xi, i =2 Et are �xed to

their current value, while only the variables xi, i 2 Et, remain free, the polynomial function P(x)

reduces to a linear function in the variables xi, i 2 Et.

Under these assumptions we can prove the following theorem.

Theorem 4 An arbitrary solution x with 0 � x � e and Bx = d can be rounded to a binary

solution [x] such that P([x]) � P(x).

Proof: The solution [x] can be constructed by subsequently solving p linear programs. Let xt�1

denote the intermediate solution, obtained after solving t � 1 linear programs. Linear program

t, 1 � t � p, is constructed by �xing all variables xt�1i , i =2 Et, while letting the remaining

variables free. Due to the unimodularity of the resulting constraint matrix (Assumption 1), there

exists a binary optimal solution ~x to this linear program [11]. The next solution xt is obtained by

substituting the binary values of ~x in the corresponding entries of xt�1. It is easily veri�ed that in

each step P(xt) � P(xt�1). 2

Let us emphasize that the linear programs mentioned in this proof in general can be solved more

e�ciently than general LP problems by making use of their special structure [14].

It may be noted that the rounding scheme proposed in the proof of this theorem, and Theorem 2
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can be viewed as approximation algorithms for solving (BP 0) c.q. (BP ).

To �nish this section we mention yet another technique to deal with the equality constraints. Let

us consider equality constraint j, bTj x = dj . Obviously, it holds that (bTj x � dj)
2 � 0, where the

squared expression equals zero if and only equality constraint j is satis�ed. Using idempotency of

the variables, this can be rewritten as

m�1X
i=1

mX
k=i+1

bjibjkxixk +

mX
i=1

bji(bji � 2dj)xi + d2j :

In this way, the equality constraints can be added to the objective function P(x) yielding only

bilinear and linear additional terms, while preserving the rounding property of Theorem 2.

3. Two specific applications

In this section we will discuss a number of speci�c applications of the transform we described in the

previous section, and we will mention a number of algorithms that have been applied to solve them.

It may be stressed that even though any problem of the form (BP ) or (BP 0) can be transformed

to a problem of the form (NMP ), in general this will only be worthwhile if all or most constraints

involved have one or at most few minimal covers. Moreover, the model is particularly suited to

solve feasibility problems rather than problems in which some linear objective function needs to be

optimized. The examples we discuss in this section all satisfy these desirable criteria.

3.1 The satis�ability problem

We consider instances of the satis�ability problem in conjunctive normal form (CNF).

De�nition 3 A formula � is said to be in conjunctive normal form if

� = C1 ^C2 ^ : : : ^ Cn;

where `^' denotes the binary conjunction operator. Each Ci is called a clause, and each clause is

the disjunction of a number of literals:

Cj =
_
i2Rj

xi _
_
i2Sj

:xi;

where `_' is the binary disjunction operator, and `:' is the negation. The formula � is satis�able if

there is an assignment of the values true and false to the variables, such that each clause evaluates

to true.

In the following, we shall associate the value 1 with true, and the value 0 with false.

We can write each clause as a linear inequality. Consider the clause

Cj =
_
i2Rj

xi _
_
i2Sj

:xi;

we can rewrite Cj in the following way (see also Hooker [8]).X
i2Rj

xi +
X
i2Sj

(1� xi) � 1: (3.1)
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Clearly, if (3.1) is satis�ed for some binary x, at least one of the terms in the left hand side

contributes a `1', so there is a i 2 Rj such that xi = 1 (true) and/or a i 2 Sj such that xi = 0

(false); therefore the clause Cj is true.

The next lemma shows that we can write an arbitrary clause Cj as a polynomial, similar to the

one given in Lemma 2.

Lemma 7 Given a clause Cj. Then we have the following implication. Let 0 � x � e,

pj(x) =
Y
i2Rj

(1� xi)
Y
i2Sj

xi = 0 ) Cj is satis�ed by [x].

Proof: Suppose we have written the clause as a linear inequality of the form (3.1). Obviously, this

has a maximum violation #j = jRj j+ jSj j � jRj j � jSj j+ 1 = 1, so Lemmas 2, 3 and 4 apply. 2

It follows that for a given formula in CNF, we can straightforwardly formulate a nonconvex mini-

mization problem as described in the previous section, since each inequality has exactly one minimal

cover. So the satis�ability problem becomes:

(SAT )
min P�(x) =

nX
j=1

pj(x)

s.t. 0 � x � e:

If we are given an optimal solution x of (SAT ), then [x] is also an optimal solution.

Note that the transformation we have introduced in the previous section, for the satis�ability

problem boils down to the transformation used by Gu [5]. The same formulation is used in [2] to

obtain bounds and algorithms for the maximum satis�ability problem.

As pointed out in the previous section, if we are given a contradictory formula �, for a given truth

value assignment x, P�(x) is equal to the number of clauses that is not satis�ed. We give an

example.

Example 6 For a speci�c class of contradictory formulas, the transform has a nice property,

namely that its associated polynomial P(x) � 1, so it is immediately clear that the formulas are

not satis�able, and that each truth value assignment satis�es all but one clause. Let the formula

Hk be the formula containing all 2k di�erent clauses of k literals that can be constructed using

the variables x1; : : : ; xk. Clearly, Hk is not satis�able. Now we show that the polynomial PHk

associated with Hk is equal to one, by induction on k. For k = 1 we have H1 = x1 ^ :x1, which

implies that PH1 = (1 � x1) + x1 = 1. So assume that the claim holds for k. Consider Hk+1.

Clearly, we have

Hk+1 = (xk+1 _Hk) ^ (:xk+1 _Hk):

This implies that

PHk+1
= (1� xk+1)PHk

+ xk+1PHk
:

Since PHk
� 1 we �nd that also PHk+1

� 1. This concludes the example. 2

Gu [5] proposes several algorithms for solving the `global optimization version' (SAT ) of the sat-

is�ability problem. One of these algorithms makes in fact use of the same observation we used to
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prove Theorem 2. The function P� is iteratively minimized by in each iteration choosing a variable

and setting this to either 0 or 1, according to which gives the biggest improvement in terms of

objective value. Note that this rule may be considered as a `branching rule', and thus the global

optimization algorithm as a branching algorithm (without backtracking). It can obviously also be

applied within a backtracking algorithm, in order to obtain a complete algorithm. The algorithms

Gu proposes prove to be quite e�ective. Using a Sun SPARC workstation 2, problems up to a size

of 50000 clauses and 5000 variables are solved in a matter of (fractions of) seconds [5].

We conclude this subsection by mentioning that the approximation algorithm for satis�ability prob-

lems proposed by Johnson [9] also follows by using the transformation scheme in conjunction with

the greedy rounding procedure. If we consider the polynomial representation of a pure k{SAT

formula (i.e. all clauses have length exactly k) with n clauses and substitute x = 1
2e, this solution

has an objective value equal to n2�k. Using the greedy rounding procedure a binary solution with

objective value smaller than or equal to n2�k is obtained, implying that at least (1� 2�k)n clauses

are satis�ed. This is the same bound that Johnson obtains and in fact the algorithms coincide,

although Johnsons does not make (explicit) use of a polynomial representation of the satis�ability

problem.

Incidentally, the bound obtained is also equivalent to the expected quality of a solution obtained

by applying the randomized algorithm in which each variable is set to 1 or 0, both with probability
1
2 . It has been shown recently for pure 3{SAT that no polynomial time algorithm with a better

performance guarantee exists [7].

3.2 Node packing problems

In this section we consider node packing problems, and as an example we discuss the graph coloring

problem. The feasibility version of the GCP can be formulated as follows: Given an undirected

graph G = (V;E), with V the set of vertices and E the set of edges, and a set of colors C, �nd a

coloring of the vertices of the graph such that any two connected vertices have di�erent colors.

The GCP can be modelled as follows. De�ned are the binary decision variables:

xvc =

(
1 color c is assigned to vertex v,

0 otherwise,
8v 2 V; 8c 2 C:

The following constraints must be satis�ed. First, we have to assign exactly one color to each

vertex:X
c2C

xvc = 1; 8v 2 V: (3.2)

Second, two connected vertices may not get the same color:

xuc + xvc � 1; 8(u; v) 2 E; 8c 2 C: (3.3)

Since the latter inequalities obviously have a maximum violation of 1, we straightforwardly derive

the following model for the (GCP ). Note that we choose not to include the equality constraints in
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the objective function, for reasons explained is Section 2.3.

(GCP )

min PG(x) =
X

(u;v)2E

X
c2C

xucxvc

s.t.
X
c2C

xvc = 1; 8v 2 V

0 � x � e:

In [14] an alternative expression for the objective function is derive Denoting the set of linear

inequalities by Ax � e, then the objective function of (GCP ) is given by xT [ATA� diag(ATA)]x.

Here diag(ATA) denotes the diagonal matrix with on its diagonal the diagonal entries of the matrix

ATA.

Let us briey review two approximation algorithms that we have applied to models of the form

(GCP ): a potential reduction algorithm (for details see [14, 15]) and a gradient descent algorithm

[13]. Both have the following structure.

Starting from a feasible interior point:

1. Find a descent direction for the objective function.

2. Compute the new iterate by �nding the minimum of the objective function along the descent

direction.

3. If the new iterate has an objective value smaller than one, a feasible coloring can be con-

structed by applying Theorem 4; else go to step 1.

4. If the algorithm is trapped in a local minimum, modify the problem by increasing the weights

in PG(x) of the edges e = (u; v) for which u and v have the same color, and restart the

process.

The main di�erence of the two algorithms is the way in which the descent direction is computed:

Potential Reduction: Solving (GCP ) is equivalent to minimizing the following potential func-

tion:

 (x;w) = PG(x)�

2mX
i=1

wi log si;

where w 2 IR2m is a positive weight vector, and the values si are the slacks of the constraints

0 � x � e. In each iteration, a quadratic approximation of  is minimized over an ellipsoid

centered at the current solution vector to obtain a descent direction. This requires factorizing

a (sparse) m�m matrix at least once, which has a worst case complexity of O(m3).

Gradient Descent: The descent direction �x is computed by minimizing the gradient at the

current iterate under the constraint that x + �x remains feasible. This can be done in

O(m logm) time.

We conclude that the computation of the descent direction for the gradient descent algorithm

is done considerably more e�ciently. To increase the solution speed of the potential reduction

algorithm, in each iteration the current iterate is rounded to a binary solution; as soon as a feasible

coloring has been found, the algorithm stops.
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Computational results To give an indication of the e�ectiveness of the algorithms we have men-

tioned above, we present some computational results on a number of randomly generated instances

of the graph coloring problem. The same instances were used in [14]. The optimal solutions of

these instances are known; when running the algorithm the number of colors available was set

equal to this optimal solution. Thus the number of variables for each instance is equal to jV jjCj.

Each instances was solved a hundred times with both algorithms, from di�erent starting points. In

Table 1 the minimal, mean and maximal solution times are reported. The algorithms succeeded in

�nding a feasible (optimal) coloring in all cases. It is emphasized that the computational results

we obtained using an ad hoc MATLABTM implementation (although it does use some FORTRAN

subroutines provided by Zhang [16]); the computation times could be vastly improved by using

a low level language implementation. All tests were run on a HP9000/720 workstation, 144 Mb,

50 mHz. In our computational tests, the potential reduction algorithm never got stuck in a local

MIN MEAN MAX

GjV j:jCj jEj PR GD PR GD PR GD

G50.7 161 .70 .95 1.76 1.23 4.85 1.48

G50.10 229 1.15 1.40 1.99 1.78 6.76 4.43

G50.12 237 1.52 1.15 1.80 1.52 4.70 1.94

G50.15 224 1.93 1.58 2.42 1.69 8.41 1.87

G50.18 288 3.82 1.79 3.98 1.91 7.67 2.08

G100.5 251 3.89 1.67 9.02 2.62 25.28 10.94

G100.8 379 2.16 2.10 8.42 3.02 23.62 3.80

G100.12 484 6.32 2.13 7.32 2.85 13.66 3.57

G100.16 449 9.82 3.31 10.75 4.21 17.20 6.14

G150.6 438 5.76 5.22 17.51 7.05 42.67 19.06

G150.9 612 4.76 5.47 14.28 6.97 66.28 8.84

G150.16 663 25.14 5.17 29.61 6.77 82.83 8.03

G200.5 504 11.96 5.07 35.70 8.45 81.42 15.30

G200.10 954 10.10 9.52 39.19 11.67 109.24 17.33

G200.14 952 39.44 7.78 51.92 9.72 127.50 12.24

G300.10 1383 32.12 17.63 91.39 20.97 194.16 20.62

G500.8 1891 248.40 27.39 656.03 39.19 1477.14 97.56

Table 1: Computational results on a number of undirected graphs G = (V;E). Solution times are

in seconds.

minimum, while the gradient descent algorithm over all 1700 runs converged 57 times to a local

minimum (after which it proceeded to converge to global minima). In general, the gradient descent

algorithm appears to be a bit faster and more robust than the potential reduction algorithm.

4. Concluding remarks

In this paper we have described a way to transform a combinatorial optimization problem to a con-

tinuous nonlinear nonconvex optimization problem over the unit hyper cube. We have shown that
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for speci�c applications this transformation yields strong models that can be e�ciently solved by

appropriate approximation algorithms. This observation is also con�rmed by results we obtained on

another node packing problem, namely the frequency assignment problem [15, 13]. The algorithms

based on the polynomial transform are the most e�ective when the instances of the feasibility prob-

lem under consideration have a `reasonably large' number of feasible solutions. This conclusion can

also be drawn from the results presented by Gu [5]. Future research includes the application of the

proposed transformation and algorithms to other types of combinatorial optimization problems.
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