
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J. Kok

Proposal for standard mathematical packages in Ada

Department of Numerical Mathematics Report NM-R8718 November

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Proposal for Standard

Mathematical Packages in Ada

Jan Kok
Centrum voor Wiskunde en lnformatica

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

On behalf of the Ada-Europe Numerics Working Group we propose Ada packages of mathematical types,
constants, operators and subprograms to be added to the standard Ada program library. These include
packages of elementary mathematical functions, of mathematical constants, of random number genera­
tors, and of (cartesian and polar) complex types and related arithmetic operations.

1980 Mathematics Subject Classification: 69049, 65-04.
Key Words & Phrases: Ada, high level language, elementary functions, mathematical packages, standard
functions, scientific libraries.
Notes:
1 . This report will be submitted for publication elsewhere.
2. Ada is a registered trademark of the US Department of Defense AJPO.

l. INTRODUCTION

1

Unlike many other programming languages the language Ada (ANSI-MIL-STD 1815A, 1983) does
not provide standard declarations of the traditional, well-known, elementary mathematical functions.
Definitions can quite well in several ways be expressed in Ada. The absence of a common definition for ele­
mentary functions has therefore been the cause of proliferation of different designs of manufacturer-supplied
packages. This clearly collides with the portability aim of the language Ada, for which otherwise several
language features have particularly been designed for the enhancement of the portability of software.

Among early activities for obtaining a common specification for the elementary functions that would
be acceptable to the numerical community we mention a design by R. Firth and the proposal given in the
NPL/CWI Guidelines (Symm et al., 1984) that was also published in a separate article in Ada Letters (Kok &
Symm, 1984). An initial portable implementation (function bodies) was produced by Whitaker & Eicholtz
(1982).

Since 1986 co-operative activities for achieving a commonly adopted specification of mathematical
functions have taken place frequently, building on work for the core design of a planned numerical library in
Ada in the project Pilot implementations of basic modules for large portable numerical libraries in Ada
(MAP 750). During a stay of Ada-Europe Numerics Working Group members at Argonne National Labora­
tory a first draft was produced of specifications of mathematical packages, including an Ada specification for
elementary functions. This draft was subsequently presented and discussed in meetings of the SIGAda

Report NM-R8718
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

Numerics Users Committee Working Group in Pittsburgh and of the Ada-Europe Numerics Working Group
in Brussels.

The present paper is the result evolved from this draft, taking into account discussions in Ada-Europe
Numerics WG meetings in Brussels and in SIGAda Numerics Users Committee WG meetings at several
places in the USA, other comments received and also a couple of elaborate working papers by Ada-Europe
Numerics WG members.

In this paper the Ada-Europe Numerics Working Group presents an Ada specification of the elementa­
ry functions, as the first of a set of mathematical packages of facilities for which international adoption of an
Ada specification and semantic specification is considered to be highly desirable. Ada specifications of other
desirable mathematical facilities, including a basic random number generator, floating-point primitives and
declarations for composite data structures like vectors, matrices and complex numbers are also given in
Chapter2.

It is widely agreed that a common Ada specification for the elementary functions should be accom­
panied by a detailed statement of the accuracies to be expected of the results of all elementary functions, re­
lated to the employed precision. Work on such accuracy statements is still ongoing, in particular in the SI­
GAda Numerics Users Committee WG.

For clearness the following proposal only contains Ada package declarations, followed by a (usually
mathematical) semantic specification for all facilities. In a preliminary version of the first draft mentioned
above a start was made of a Rationale for the Ada specifications presented, reviewing the background and
discussing the possibilities considered and the choices made. It is expected that an updated version, in agree­
ment with the final contents of the proposal, will be published that will also contain systematically the results
of the many discussions.

2. PROPOSAL

In Section 2.1 we propose (generic) package declarations as additions to the standard Ada program li­
brary. These packages should be present in the Ada program library whenever floating-point arithmetic is
provided.

Separate Ada package declarations are presented for the following areas :-

- basic mathematical provisions like elementary mathematical functions, mathematical constants, and a uni­
form random number generator,

- auxiliary or supporting facilities:

• one package containing declarations of basic auxiliary functions, like the sign of a number or the max­
imum of two values,

• a second (generic) package for providing floating-point primitive functions together with environment
details which cannot be obtained through the Ada floating-point type attributes or the standard package
SYSTEM,

3

- composite mathematical types and the related operators, viz. COMPLEX, VECTOR and MATRIX, together with
arithmetic complex operations and complex functions based on a library package providing a standard
floating-point type REAL that satisfies minimal accuracy requirements.

Section 2.2 contains the semantic specifications for all subprogram declarations proposed.

2.1. Proposed Ada package specifications

The declarations presented are intended for floating-point types. In most cases analogous definitions
could be given for fixed-point types.

2. l. l. Basic mathematical packages

We propose standard Ada specifications for mathematical facilities of general usefulness, viz. for com­
mon mathematical constants, elementary functions, and a generator of randomly distributed floating-point
numbers.

a) Elementary functions

The following generic package contains function declarations for a set of elementary (mathematical)
functions.

with MATHEMATICAL_EXCEPTIONS;
generic

type FLOAT_ TYPE is digits<>;
package GENERIC_ELEMENTARY _FUNCTIONS is

-- Declare the basic mathematical functions
function SQRT (X : FLOAT_ TYPE) return FLOAT_ TYPE;
function LOG (X : FLOAT_TYPE) return FLOAT_TYPE;
function LOG (X, BASE : FLOAT_ TYPE) return FLOAT_ TYPE;
function EXP (X : FLOAT_ TYPE) return FLOAT_ TYPE;
function"**" (X, y : FLOAT_TYPE) return FLOAT_TYPE;

function SIN
function SIN
function cos
function cos
function TAN
function TAN

(X : FLOAT_TYPE) return FLOAT_TYPE;
(X, CYCLE: FLOAT_TYPE) return FLOAT_TYPE;
(X : FLOAT_TYPE)return FLOAT_TYPE;
(X, CYCLE : FLOAT_ TYPE) return FLOAT_ TYPE;
(X : FLOAT_ TYPE) return FLOAT_ TYPE;
(X, CYCLE : FLOAT_ TYPE) return FLOAT_ TYPE;

4

function COT (X : FLOAT_ TYPE) return FLOAT_ TYPE;

function COT (X, CYCLE : FLOAT_ TYPE) return FLOAT_ TYPE;

function ARCSIN (X : FLOAT_ TYPE) return FLOAT_ TYPE;

function ARCSIN (X, CYCLE : FLOAT_ TYPE) return FLOAT_ TYPE:

function ARCCOS (X : FLOAT_ TYPE) return FLOAT - TYPE;

function ARCCOS (X, CYCLE: FLOAT_ TYPE) return FLOAT_ TYPE;

function ARCTAN (Y : FLOAT_TYPE; x: FLOAT_TYPE := l.0) return FLOAT_TYPE;

functionARCTAN (Y : FLOAT_TYPE; x: FLOAT_TYPE := l.0; CYCLE: FLOAT_TYPE)

return FLOAT_ TYPE;

function ARCCOT (X : FLOAT_ TYPE; y : FLOAT - TYPE := 1.0) return FLOAT_ TYPE;

function ARCCOT (X : FLOAT_ TYPE; y : FLOAT_ TYPE := l.0; CYCLE : FLOAT_ TYPE)

return FLOAT_ TYPE;

function SINH (X

function COSH (X

function TANH (X

function COTH (X

function ARCSINH (X

function ARCCOSH (X

function ARCT ANH (X

function ARCCOTH (X

: FLOAT - TYPE) return FLOAT - TYPE;

: FLOAT - TYPE) return FLOAT - TYPE:

: FLOAT_TYPE) return FLOAT_TYPE:

: FLOAT_ TYPE) return FLOAT - TYPE;

: FLOAT_ TYPE) return FLOAT_ TYPE;

: FLOAT_ TYPE) return FLOAT - TYPE;

: FLOAT_TYPE) return FLOAT_TYPE;

: FLOAT_TYPE) return FLOAT_TYPE;

-- Exception, to be raised for implementation-independent range constraints
ARGUMENT _ERROR : exception renames MA THEMA TICAL_EXCEPTIONS.ARGUMENT _ERROR;

end GENERIC_ELEME..NT ARY _FL"NCTIONS;

A standard instance for FLOAT should be called ELEMENT ARY _FUNCTIONS. Where an implementation

provides additional pre-defined floating-point types SHORT _FLOAT or LONG_FLOAT, it is recommended that

analogous instances SHORT _ELEMENTARY _FUNCTIONS or LONG_ELEMENTARY _FL'NCTIONS should also be
provided.

b) Declaration of exception for mathematical functions

The following package provides one exception declaration for all instances of the above generic pack­

age of elementary functions.

package MATHEMATICAL_EXCEPTIONS is
ARGUMENT _ERROR : exception;

end MATHEMATICAL_EXCEPTIONS;

5

c) Mathematical constants

The package MATIIEMATICAL_CONSTA."ffS contains number declarations through which names are in­

troduced for the values of the available constants with optimal accuracy. We assume that (universal expres­

sions containing) real literals are given that are accurate enough for all possible real types.

package MA THEMA TICAL_CONST ANTS is

-- Number declarations for the mathematical constants
PI : constant:= 3.1415_92653-58979_32384_62643_38327 _95029;

TWO_PI : constant:= 2 *PI;

HALF _PI : constant := PI I 2;
ONE_OVER_PI: constant:= 1.0 I PI;

SQRLPI : constant:= l.7724_53850_9055L60272-9816L48334_ll452;

NATURALE : constant:= 2.7182-81828_45904_52353-60287 _47135_26625;

ONE_OVER_E : constant:= 1.0 I NATURAL_E;

GAMMA : constant:= 0.5772-15664_90153_28606_06512-09008-24024;

end MATHEMATICAL_CONSTANTS;

d) Random numbers

The (generic) package GENERIC_RANDOM_GE~"'ERATOR contains procedures for generating pseudo­

random numbers with a uniform distribution lying strictly between 0.0 and 1.0, for initialising a repeatable

sequence of random numbers, for copying one random seed to another, and for storing and retrieving the

internal representation of a seed value. ·The facility for generating random numbers is also available as a

function that gives no user-control over the seed.

generic
type FLOAT_ TYPE is digits<>;
STORE_SIZE : in INTEGER;

package GENERIC_RA."lDOM_GENERATOR is

type RANDOM_SEEO is limited private;

procedure RANDOM

procedure SET _RA."lOOM_SEED

(SO : in out RA.-..1)()M_SEED;

NUMBER : out FLOAT_ TYPE);

(N
so

: in INTEGER;

: out RANDOM_SEED);

procedure COPY _RANDOM_SEEO (OLD_SEED: in RANDOM_SEEO;

NEW_SEEO: out RANDOM_SEED);

6

function RANDOM return FLOAT_ TYPE;

type STORE_ TYPE is array (1 .. STORE_ SIZE) of INTEGER;

procedure SA VE_RANDOM_SEED (SD

STORE

procedure RESTORE_RANDOM_SEED (STORE

SD

private

: in RANDOM_SEED;

: out STORE_ TYPE);

: in STORE_ TYPE;

: out RANDOM_SEED);

-- implementation dependent: the seed may be implemented as some
-- number of integer components; this number will vary according to
-- the integer word.length.

-- Implementation details are omitted.

end GENERIC_RAl'IDOM_GENERATOR.;

A standard instantiation for the generic random generator package should be provided for the pre­
defined type FLOAT:

with GENERIC_RANDOM_GENERATOR;

package RANDOM_GENERATOR is new GENERIC_RANDOM_GENERATOR(FLOAT, 4);
-- Assuming that the value 4 is suitable for the size of STORE_ TYPE

Where an implementation provides additional pre-defined floating-point types SHORT_FLOAT and/or
LONG_FLOAT, it is recommended that analogous instantiations SHORT_RANDOM_GENERATOR and/or
LONG_RMl)()M_GENERATOR should also be provided.

2.1.2. Auxiliary or supporting facilities

The packages in this section contain subprograms that are expected to be applied in several areas of
mathematical software implementation. The existence of such facilities is needed for the portable implemen­
tation of mathematical modules like the elementary functions.

a) Basic auxiliary functions

The following package contains templates (generic subprogram declarations) for obtaining the max­
imum or minimum of two values, for transferring the sign of a given first value to a given second value of any
integer or floating-point type, for interchanging the values of two objects of the same type, and for establish-

ing whether a given value of an integer type is odd or even.

package BASIC_AUX_FUNCTIONS is

generic
type ORDERED_ TYPE is private;

with function"<" (A, B : ORDERED_ TYPE) return BOOLEAN is<>;

function GENERIC_MIN (A, B : ORDERED_ TYPE) return ORDERED_ TYPE;

generic
type ORDERED_ TYPE is private;

with function"<" (A, B : ORDERED_ TYPE) return BOOLEAN is<>;

functionGENERIC_MAX (A, B: ORDERED_ TYPE) return ORDERED_ TYPE;

generic
type INTEGER_ TYPE is range <>;

function GENERIC_SIGN_NfEGERS (S

v

generic

type FLOAT_ TYPE is digits <>;

function GENERIC_SIGN_FLOATS (S

v

generic

type FIXED_ TYPE is delta <>;

function GENERIC_SIGN_FIXEDS (S

v

generic
type ITEM_ TYPE is private;

: INTEGER_ TYPE;

: I!>;IEGER_ TYPE := l) return INTEGER_ TYPE;

: FLOAT_ TYPE;

: FLOAT_ TYPE:= 1.0) return FLOAT_ TYPE;

: FIXED_ TYPE;

: FIXED_ TYPE:= 1.0) return FIXED_ TYPE;

procedure GENERIC_SW AP (A, B : in out ITEM_ TYPE);

generic

type INTEGER_ TYPE is range <>;

function GENERIC_ ODD (A : INTEGER_ TYPE) return BOOLEAN;

end BASIC_AUX_FUNCTIONS;

b) Primitive functions

7

The following generic package contains modules for manipulating the fraction part and the exponent

part of the (unbiased) floating-point machine number representation of values of a given floating-point type,

together with other facilities related to the spacing and rounding of floating-point values.

8

generic

type FLOAT_TYPE is digits<>;

type EXPONENT_ TYPE is range <>;

package GENERIC_PRIMITIVE_FlJNCTIONS is

RADIX : constant INTEGER := FLOAT_ TYPE , MACHII\"'E_RADIX;

function EXPONENT (X : FLOAT_ TYPE) return EXPONENT_ TYPE;

function SCALE (X : FLOAT_ TYPE;

EXP : EXPONENT_TYPE) return FLOAT_TYPE;

function FRACTION (X : FLOAT_ TYPE) return FLOAT - TYPE;

procedure SPLIT _FLOAT - v ALUE (X : in FLOAT_ TYPE;

FR.ACT : out FLOAT_ TYPE;

EXP : out EXPONENT_ TYPE);

function SYNIHESIZE (X : FLOAT_ TYPE;

EXP : EXPONENT_ TYPE) return FLOAT_ TYPE;

function NEXT _AFTER (X, y : FLOAT_ TYPE) return FLOAT_ TYPE;

function ABS_SPACING (X :FLOAT_TYPE)returnFLOAT_TYPE;

function RECIPROCAL_REL_SPACING (X : FLOAT - TYPE) return FLOAT_ TYPE;

function REMAINDER

function REAL_INT

REPRESENT A TION_ERROR : exception;

end GENERIC_PRIMITIVE_FlJNCTIONS;

(X

(X

: FLOAT_TYPE; y: FLOAT_TYPE := l.0) return FLOAT_TYPE;

: FLOAT - TYPE) return FLOAT_ TYPE;

2.1.3. Composite mathematical types and operations

a) Standard types and operations

The packages REAL_TYPES, CARTESIAN_COMPLEX_TYPES and POLAR_COMPLEX_TYPES contain
definitions of standard types. The standard types provided are (real and complex) scalars, vectors and ma­
trices.

The base is a standard (sub)type called REAL which is a floating-point type satisfying the following
minimal requirements upon its precision. When only one floating-point type is supported (this should be the
pre-defined type FLOAT), that is chosen. Where there is a choice of pre-defined floating-point precisions then

9

the standard type REAL is that which corresponds most closely to (but at least provides) the single precision
(32-bit precision) of the IEEE standard 754 (1985). If a second supported type is a longer type, LONG_REAL

in a similar package LONG_REAL_TYPES should correspond to the pre-defined type whose representation is
closest to double precision (64-bits) of the IEEE standard 754.

Where an analogous package LONG_REAL_ TYPES (based on LONG_REAL) can be provided, it is recom­
mended that this package and the derived complex packages (called LONG_CARTESIA.i."CCOMPLEX_TYPES

and LONG_POLAR_COMPLEX_ TYPES) are provided with the defined standard type names (for example REAL,

COMPLEX, COMPLEX_ VECTOR, REAL_MATRIX, etc.) prefixed by LONG_ (except for the 'renaming' subtype
declarations for VECTOR and MATRIX). Moreover, these packages should contain functions LENGTIIB."'l and
SHORTEN for conversions between REAL and LONG_REAL, or between COMPLEX and LONG_ COMPLEX.

package REAL_ TYPES is

subtype REAL is a floating-point type;
type REAL_ VECTOR is array (INTEGER range<>) of REAL;

type REAL_MATRIX is array (INTEGER range<>. INTEGER range<>) of REAL;

subtype VECTOR is REAL_ VECTOR;

subtype MATRIX is REAL_MATRIX;

- - basic auxiliary functions

function MIN (X, Y: REAL) return REAL;

function MAX (X, Y: REAL) return REAL;

function SIGN (s : REAL;

v : REAL:= 1.0) return REAL;

procedure SWAP (X, Y : in out REAL);

pragma INLINE (MIN, MAX, SIGN, SWAP);

end REAL_ TYPES;

Cartesian and polar representations for complex types are provided in the packages
CARTESIAN_COMPLEX_TYPES and POLAR_COMPLEX_TYPES. These packages also contain selection and
composition operators so that the types may be imported into other (generic) packages as private types, and
operators for complex arithmetic.

with REAL_ TYPES; use REAL_ TYPES;

package CARTESIAN_COMPLEX_TYPES is

- - cartesian types

type COMPLEX is private;
type COMPLEX_ VECTOR is array (INTEGER range <>) of COMPLEX;

type COMPLEX_MATRIX is array (INTEGER range<>, INTEGER range<>) of COMPLEX;

- - selection, conversion and composition operations
function COMPOSE_CARTESIAN (REAL_PART : REAL;

10

function COMPOSE_POLAR

function WIDEN

function REAL_PART (X

function I:MAG_PART (X

function RE (X

function IM (X

function ARGUMENT (X

function MODULUS (X

function "abs" (X

IMAG_PART: REAL := 0.0) return COMPLEX;

(MODL1...US : REAL;

ARGUMENT : REAL := 0.0) return COMPLEX;

(X : REAL) return COMPLEX;

: COMPLEX) return REAL;

: COMPLEX) return REAL;

: COMPLEX) return REAL renames REAL_PART;

: COMPLEX) return REAL renames IMAG_PART;

: COMPLEX) return REAL;

: COMPLEX) return REAL;

: COMPLEX) return REAL renames MODULIJS;

-- cartesian operations

-- unary operations
function "+"
function "-"
function CONJ

(X : COMPLEX) return COMPLEX;

(X : COMPLEX} return COMPLEX;

(X : COMPLEX) return COMPLEX;

-- COMPLEX arithmetic operations
function"+" (X, y: COMPLEX) return COMPLEX;

function "-" (X, y : COMPLEX) return COMPLEX;

function"*" (X, y: COMPLEX) return COMPLEX;

function "/" (X, y : COMPLEX) return COMPLEX;

function"**" (X : COMPLEX; N: INTEGER) return COMPLEX;

-- mixed REAL/COMPLEX arithmetic operations
function"+" (X: REAL; y: COMPLEX) return COMPLEX;

function "+" (X : COMPLEX; y : REAL) return COMPLEX;

function "-" (X : REAL; y : COMPLEX) return COMPLEX;

function "-" (X : COMPLEX; y : REAL) return COMPLEX;

function"*" (X: REAL; y: COMPLEX) return COMPLEX;

function"*" (X: COMPLEX; y: REAL) return COMPLEX;

function "/" (X : REAL; y : COMPLEX) return COMPLEX;

function "/" (X : COMPLEX; y : REAL) return COMPLEX;

-- basic auxiliary utilities
procedure SWAP (X, y : in out COMPLEX);

--pragma
pragma INLINE

private

("+", "-", "*", "/", "**", 11abs", CONJ, SWAP,

COMPOSE_CARTESIAN, COMPOSE_POLAR, WIDEN,

REAL_PART, I:MAG_PART, RE, I:M, ARGUMENT, MODL1...US);

type COMPLEX is

record

RE, IM : REAL := 0.0;
end record;

end CARTESIAN_ COMPLEX_ TYPES;

with REAL_ TYPES; use REAL_ TYPES;

packagePOLAR_COMPLEX_TYPESis

- - polar types

type COMPLEX is private;

type COMPLEX_ VECTOR is array (INTEGER range <>) of COMPLEX;
type COMPLEX_MA TRIX is array (INTEGER range <>, IXTEGER range <>) of COMPLEX;

-- selection, conversion and composition operations
function COMPOSE_ CARTESIAN (REAL_PART: REAL;

IMAG_PART: REAL:= 0.0) return COMPLEX;

function COMPOSE_POLAR (MODULUS : REAL;
ARGUMENT : REAL := 0.0) return COMPLEX;

function WIDEN (X : REAL) return COMPLEX;

function REAL_PART (X

function IMAG_PART (X

function RE (X

function IM (X

function ARGUMENT (X

function MODULUS (X

function "abs" (X

-- polar operations

: COMPLEX) return REAL;

: COMPLEX) return REAL;

: COMPLEX) return REAL renames REAL_PART;

: COMPLEX) return REAL renames IMAG_PART;

: COMPLEX) return REAL;

: COMPLEX) return REAL;

: COMPLEX) return REAL renames MODULUS;

- - unary operations
function"+"

function"-"

function CONJ

(X : COMPLEX) return COMPLEX;

(X : COMPLEX) return COMPLEX;

(X : COMPLEX) return·COMPLEX;

- - COMPLEX arithmetic operations
function"+" (X, y: COMPLEX) return COMPLEX;

function "-" (X, y : COMPLEX) return COMPLEX;

function"*" (X, y : COMPLEX) return COMPLEX;

function "/" (X, y : COMPLEX) return COMPLEX;

function"**" (X : COMPLEX; N: INTEGER) return COMPLEX;

11

12

-- mixed REAL/COMPLEX arithmetic operations
function 11 +11 (X : REAL; Y : COMPLEX) return COMPLEX;

function 11 +11
(X : COMPLEX; Y : REAL) return COMPLEX;

function 11
-

11 {X : REAL; y : COMPLEX) return COMPLEX;

function 11
-

11 (X : COMPLEX; y : REAL) return COMPLEX;

function 11*11
(X: REAL; y: COMPLEX) return COMPLEX;

function 11 *" (X: COMPLEX; y: REAL) return COMPLEX;

function "/" (X : REAL; y : COMPLEX) return COMPLEX;

function "/" (X : COMPLEX; y : REAL) return COMPLEX;

- - basic auxiliary utilities
procedure sw AP (X, Y : in out COMPLEX);

--pragma
pragma Il\1..INE ("+", "-", "*fl, "/","**","abs", CONJ, SWAP,

CO~IPOSE_CARTESIAN, CO~IPOSE_POLAR, WIDEN,

REAL_PART, IMAG_PART, RE, IM, ARGUME."'\'T, MODCLUS);

private

type COMPLEX is
record

R, TIIETA: REAL:= 0.0;
end record;

end POLAR_ COMPLEX_ TYPES;

b) Generic complex functions

A single generic package is provided for COMPLEX functions which can be instantiated for either carte­
sian or polar COMPLEX types, but this assumes that the composition operators satisfy any conditions imposed
on their results by the particular COMPLEX representation.

with MATHEMATICAL_EXCEPTIONS;

generic
type REAL_ TYPE is digits <>;

type COMPLEX_ TYPE is private;
- - selection, conversion and composition operations
with function COMPOSE_ CARTESIAN (REAL_PART: REAL_ TYPE;

IMAG_PART: REAL_ TYPE := 0.0) return REAL_ TYPE is<>;
with function COMPOSE_POLAR (MODULUS : REAL_ TYPE;

ARGUMENT : REAL_ TYPE := 0.0) return REAL_ TYPE is <>;

with function REAL_PART (X : COMPLEX_ TYPE) return REAL_ TYPE is<>;
with function IMAG_PART (X: COMPLEX_ TYPE) return REAL_TYPE is<>;
with function ARGUMENT (X : COMPLEX_ TYPE) return REAL_ TYPE is <>;
with function MODULUS (X : COMPLEX_ TYPE) return REAL_ TYPE is <>;
-- mathematical functions
with function SQRT

with function LOG

with function EXP
with function SIN

with function cos
with function SINH

with function COSH

(X : REAL_ TYPE) return REAL_ TYPE is <>;
(X : REAL_ TYPE) return REAL_ TYPE is <>;
(X : REAL_ TYPE) return REAL_ TYPE is <>;
(X : REAL_ TYPE) return REAL_ TYPE is <>;
(X : REAL_ TYPE) return REAL_ TYPE is <>;
(X : REAL_ TYPE) return REAL_ TYPE is <>;
(X : REAL_ TYPE) return REAL_ TYPE is <>;

package GENERIC_ COMPLEX_ FUNCTIONS is

function SQRT (X : COMPLEX_ TYPE) return COMPLEX_ TYPE;

function LOG (X : COMPLEX_ TYPE) return COMPLEX_ TYPE;

function EXP (X : COMPLEX_ TYPE) return COMPLEX_ TYPE;

function SIN (X : COMPLEX_ TYPE) return COMPLEX_ TYPE;

function cos (X : COMPLEX_ TYPE) return COMPLEX_ TYPE;

-- Declare exception to be raised for implementation-independent range constraints

ARGUMENT _ERROR: exception renames MATHEMATICAL_EXCEPTIONS.ARGUMENT _ERROR;

end GENERIC_ COMPLEX_FUNCTIONS;

13

Standard instantiations for the generic complex function packages should be provided for the precision

REAL (package REAL_ TYPES) and a related type COMPLEX. Such instantiations can be given as follows:

- - For cartesian representation of COMPLEX

with REAL_ TYPES, CARTESIAN_COMPLEX_ TYPES, ELEMENTARY _FUNCTIONS_REAL:

use REAL_ TYPES, CARTESIAN_ COMPLEX_ TYPES, ELEMENT ARY _FUNCTIONS _REAL;

with GENERIC_ COMPLEX_FUNCTIONS;

package CARTESIAN_COMPLEX_FUNCTIONS is new GENERIC_COMPLEX_FUNCTIONS (REAL, COMPLEX);

-- For polar representation of COMPLEX

with REAL_ TYPES, POLAR_ COMPLEX_ TYPES, ELEMENTARY _FUNCTION5-REAL;

use REAL_ TYPES, POLAR_ COMPLEX_ TYPES, ELEMENTARY _FUNCTIONS_REAL;

with GENERIC_ COMPLEX_FUNCTIONS;

package POLAR_COMPLEX_FUNCTIONS is new GENERIC_COMPLEX_FUNCTIONS (REAL, COMPLEX);

Here the employed package ELEMENTARY _FUNCTION5-REAL is assumed to be an instance of

GENERIC_ELEMENTARY _FUNCTIONS (see Section 2.1.1.a) for the floating-point type REAL_ TYPES.REAL.

Where an implementation supports additional pre-defined floating-point types such that a package

LONG _REAL_ TYPES is also provided, it is recommended that analogous instantiations

LONG_CARTESIAN_COMPLEX_FUNCTIONS and I or LONG_POLAR_COMPLEX_FIJNCTIONS (for the precision

LONG_REAL and the type LONG_COMPLEX) should also be provided.

14

2.2. Semantic specifications

In all cases care has been taken that every function is not only applicable for (one ot) the pre-defined
floating-point types but also for user-defined floating-point types made by a type definition like

type REAL_N is digits N { range A .. B I;

This is solved by presenting packages (or in some cases: subprograms) which are generic with the gen­
eric parameter R..OAT _TYPE. Instantiation will then give all facilities for one real type or for several real
types if this is desired. However, especially in the case of the elementary functions the use of floating-point
types with an additional range constraint for actual generic parameters should always be avoided, since this
might obstruct the performance of mathematical algorithms implemented for approximating the elementary

functions.

The range of applicability of some generic modules extends beyond the area of floating-point and in­
tegral types, viz. when the generic type parameter is specified as private.

For a few modules the semantic specification given is simply an Ada subprogram body.

2.2.1. Basic mathematical packages

a) Elementary functions

For the elementary functions package template the generic parameter R..OAT _TYPE can be a user­
defined type (or subtype) as explained in Section 2.2. However, the package would be virtually useless if ar­
bitrary additional range constraints were applied. The user should note that any range constraint on the actu­
al type substituted for R..OAT _TYPE may invalidate the mathematical functions implementation. Users who
do want to impose range constraints for their own computations are advised to declare the subtypes with res­
tricted ranges after the instantiation of GENERIC_ELEMENT ARY _FUNCTIONS.

The following table specifies the requirements for the parameter ranges of all and the result ranges of
some of the functions. The range constraints for the function arguments (in general the function domains)

must be observed by the user and upon violation the implementation should raise the exception
ARGUMENT _ERROR. All specified range constraints are implementation-independent (the specifications
given here review the mathematical requirements). Other restrictions upon the arguments which depend
upon the range of the floating-point type employed can be specified, and in those cases violation might cause
raising of the pre-defined exceptionNUMERIC_ERROR. The result-range specifications for some inverse func­
tions serve to identify the dominant range of multiple-valued functions.

Function

SQRT

LOG

EXP

all trigonometric functions
SIN

cos
TAN

COT

ARCSIN

ARCCOS

ARCTAJ.'1

ARC COT

SINH

COSH

TANH

COTH

ARCSINH

ARCCOSH

ARCTANH

ARCCOTH

Argument and range

x~O.O

X>O.O,
BASE > 0.0 and BASE/= 1.0

x unrestricted
x ~ 0.0, Y unrestricted when x > 0.0,

Y > 0.0 when X = 0.0

CYCLE/=0.0

x unrestricted
x unrestricted
x unrestricted

X/=0.0

abs x S 1.0,

- rr/2.0 s ARCSIN(X) s rr/2.0,

-CYCLE/4.0 S ARCSIN(X, CYCLE) S CYCLE/4.0

abs x S 1.0,

0.0 S ARCCOS(X) S TC,

0.0 S ARCCOS(X, CYCLE) S CYCLE/2.0

not (X = 0.0 and Y = 0.0),

- rr/2.0 s ARCTAN(Y) s rr/2.0,

- 7t < ARCTAN(Y, X) Sn:,
-CYCLE/2.0 < ARCTAN(Y, X, CYCLE) S CYCLE/2.0

not (X = 0.0 and Y = 0.0),

0.0 S ARCCOT(X) S 7t,

- 7t < ARCCOT(X, Y) S n:,
-CYCLE/2.0 < ARCCOT(X, Y, CYCLE) S CYCLE/2.0

x unrestricted
x unrestricted
x unrestricted

X/=0.0

x unrestricted
X ~ 1.0, ARCCOSH(X) ~ 0.0

abs x < 1.0

abs x > 1.0

15

The elementary functions have their usual mathematical meaning, which should be sufficient informa­
tion. The formal parameter name for floating-point arguments is x, or x and Y for two-argument functions.
However, for the function ARCTAN the formal parameter names are Y and x (in this order), since a legitimate
use of the arctan function is to compute the argument (i.e. the angle) of a cartesian point (Xl, Yl). The ap­
propriate call is then: ARCTAN(Yl, Xl), or better: ARCTAN(x => Xl, Y => Yl).

For LOG and each of the trigonometric functions two specifications are given, one (the general form)
with a last parameter for choosing the logarithm base (for LOG), or the cycle for the argument (or result) of
the trigonometric function, and one specification without this last parameter assuming the traditional values
of base and cycle. Provision of a single specification for each function (with a default expression for the last
parameter) (see Symm et al., 1984) is avoided, the present specifications allowing more accurate implementa­
tions of the default cases.

16

- For the trigonometric functions the traditional, one-parameter specifications (two-parameter specifications

for ARCTAN and ARCCOT) provide the radian versions of the functions. All functions are overloaded, how­

ever, with versions having an additional last parameter called CYCLE of type FLOAT_ TYPE. This allows

scaling to degrees or to multiples of 2rt to be chosen for the arguments of SIN, cos, TAL~ and COT, and for

the function results of ARCSIN, ARCCOS, ARCTAN and ARCCOT. Forx in degrees the sin ofx is obtained by

SIN(X, 360.0). The sin of 21tX is obtained by SIN(X, 1.0).
Note that for computing arctan(Yl) with Yl in degrees Ada's concept of named parameter association

must be used:
ARCTAL~(Y => Yl, CYCLE=> 360.0)

- A similar design is given for the log function with arbitrary base. The one-parameter case LOG(X) gives

the natural logarithm In.

It should be guaranteed that all elementary functions will not overflow or underflow during computa­

tions if the mathematical result is within the range of safe numbers of the provided floating-point type. In

particular, if one of the_pre-defined exceptions :--.uMERIC_ERROR or CONSTRAD-<1 _ERROR could be raised in

this case. it should not propagate beyond the function body.

If a result is outside the range of safe numbers of the floating-point type, the called function may raise

NUMERIC_ERROR.

For the situation that a mathematical boundary of a function range is exactly representable (for any ac­

curacy definition), it should be guaranteed that returned values do not exceed such boundaries. This applies

to

SQRT : SQRT(X) >= 0.0,

EXP and"**" (for real exponent) : EXP(X) >= 0.0,

SIN, COS : -1.0 <= { SIN(X), COS(X)} <= 1.0,

COTH : COTH(X) >= 1.0.

The effect is that the implementation of a mathematical relationship like ARCSIN (SIN (X)) will never

raise ARGUMENT _ERROR.

The inverse trigonometric functions are not mentioned in this list, since most of the boundaries of

function ranges depend on CYCLE, and this can always be an approximation of a not exactly representable

real value. For the special cases where CYCLE = 27t some of the guarantees are hardly implementable.

The implementer should provide further information about the accuracy that can be expected.

b) Exception for the mathematical functions package

Different instances ofGENERIC_ELEMENTARY _FUNCTIONS do not create new exceptions, but only new

names for the same exception declared by MATHEMATICAL_EXCEPTIONS.

17

c) Mathematical constants

The mathematical constants have their obvious meaning. The accuracy of the literals given should be
appropriate for all supported real types. Therefore, on systems supporting real types of higher precision than
is expected in the present package specification re-editing of the package source code prior to installation is
required.

d) Random numbers

The generic package GENERIC_RANDO'.\LGENERATOR is a template for uniform pseudo-random
number generators. It contains the declaration of a type RANDOM_SEED which is limited private to guaran­
tee the integrity of the seed. The user has to declare objects of this type, for use as parameters of the follow­
ing procedures. Implementations should guarantee that seeds will always be initialised (randomly).

The procedure RANDOM generates a pseudo random result uniformly distributed in the (open) range 0 <
NC'MBER < 1 ; the implementation should protect against the simultaneous updating of the supplied seed.

The procedure SET _RANDOM_SEED can be used to initialize a seed for generating a repeatable se­
quence. A value ofN should always initialize the seed to the same hidden value. The implementation should
protect against simultaneous updating of the seed.

The procedure COPY _RANDOM_SEED can be used for copying seed values. The implementation
should protect against simultaneous accessing of the actual parameters.

The function RA..'i'\j"'DOM generates a pseudo random result uniformly distributed in the (open) range 0 <
~1.JMBER < 1 . The implementation does NOT protect against the simultaneous updating of the supplied seed.
The function cannot be used to obtain reproducible sequences.

The procedure SAVE_RANDOM_SEED can be used for saving seed values, such that a sufficient (inter­
nal) representation is stored in an array variable of type STORE_ TYPE, which is an array type of STORE_SIZE
INTEGERs declared in the package. Here, STORE_SIZE refers to the second generic formal parameter, an in
parameter of type INTEGER. The instantiation of GENERIC_RANDOM_GENERATOR must be made with a suit­
able value for STORE_SIZE.
The procedure RESTORE_RANDOM_SEED reconstructs RANDOM_SEED values from values stored in an
STORE_ TYPE variable. For reconstructing RANDOM_SEED values on machines with (considerably) differing
values of INTEGER 'LAST, re-formatting of the STORE_ TYPE values must be performed by the user.
The implementation should protect against simultaneous accessing of the actual RANDOM_SEED parameters.

2.2.2. Auxiliary and supporting facilities

a) Basic auxiliary functions

The package BASIC_AUX_FUNCTIONS provides templates for min and max functions for any type for
which an ordering has been declared, sign functions for any integer or floating-point type (the function result
is the absolute value of the second parameter with the sign of the first parameter), a swap procedure for inter-

18

changing the values of two variables of the same type, and an odd function for any integer type.

For example, a min function for a given type ANY_ TYPE can be obtained (provided that the "<" opera­
tor is defined for values of ANY_ TYPE) through:

function MIN is new BASIC_AUX_FUNCTIONS.GENERIC_MIN (ANY_ TYPE);

A:= MIN (B, c); --with A, B, c of type ANY_TYPE

A package body will suffice here to define the meaning of the auxiliary subprograms.

package body BASIC_AUX_FUNCTIONS is

function GENERlC_MIN (A, B : ORDERED_ TYPE) return ORDERED_ TYPE is
begin

if A< B then
return A;

else
return B;

end if;
end GENER.IC_MIN;

function GE..1\i'ERlC_MAX (A, B : ORDERED_ TYPE) return ORDERED_ TYPE is
begin

if A< B then
return B;

else
return A;

end if;
end GENER.IC_MAX;

function GENERlC_SIGN_INTEGERS (s : INTEGER_ TYPE;
v : INTEGER_ TYPE := 1) return INTEGER_ TYPE is

begin
ifs<Othen

return - abs v;
else

return abs v;
end if;

end GENER.IC_SIGN _INTEGERS;

functionGENERlC_SIGN_FLOATS (S: FLOAT_TYPE;
v: FLOAT_ TYPE := 1.0) return FLOAT_ TYPE is

begin
ifs < 0.0 then

return - abs v;
else

return abs v;

end if;
end GENERIC_SIGN _FLOATS;

function GE><"'ERIC_SIGN_FIXEDS (s: FIXED_TYPE;

v: FIXED_ TYPE:= 1.0) return FIXED_ TYPE is
begin

ifs< 0.0 then
return - abs v;

else
return abs v;

end if;
end GENERIC_SIGN_FIXEDS;

procedure GENERIC_SW AP (A, B : in out ITEM_ TYPE) is
T : constant ITEM_ TYPE := A;

begin
A:=B;

B :=T;

end GENERIC_SW AP;

function GEi."IBRIC_ODD (A: INTEGER_ TYPE) return BOOLEAN is
begin

return INTEGER_ TYPE 'POS(A) mod 2 = l;
end GENERIC_ ODD;

end BASIC_AUX_FUNCTIONS;

b) Primitive functions

19

The functions given here manipulate machine-representations of floating-point values. Their meaning
is defined for machine numbers, not model numbers only, and the results depend on the representation of
floating-point numbers, in particular the machine radix.

We assume that every nonzero floating-point number can be uniquely represented in the form

X =±f *Be, l!B ~f < l,

where B is the radix for the machine representation, f is the fraction or significand, and e is the signed ex­
ponent. Floating-point zero is represented with zero fraction and zero exponent. Then the definitions are as
follows. In every case the result is as defined, provided only that the result is representable as a machine
number; otherwise, an appropriate exception is raised.

EXPONENT{X) returns the unbiased, signed integer exponent e of x. Specification of this function makes
the implicit assumption that the exponent range is within the range of type INTEGER. INTEGER of
16 bits is adequate to represent the 15-bit exponent recommended as a minimum for double­
extended precision in the ANSI/IEEE Standard (1985), for example.

20

Note that EXPONENT(0.0) = 0.0.

SCALE(X, EXP) returns XxBEXP without computing BEXP.

FRACTION(X) returns the signed fraction/of the machine numberx.
It can be computed as SCALE(X, -EXPONENT(X)).

Note that FRACTION(0.0) = 0.0.

SPLIT _FLOAT - v ALUE(X, FRACT, EXP) combines the functionality of EXPONENT and FRACTION to return
both the fraction f and the exponent e for the machine number x.

SYNTHESIZE(X, EXP) is defined as SCALE(X, EXP-EXPONENT(X)) for x /= 0.0. For x = 0.0 the result will
be 0.0.

The parameter values in a call of SYNTHESIZE may be such that they do not represent a machine
number. In that case the defined exception REPRESENTATION_ERROR should be raised instead.

NEXT _AFTER(X, Y) returns the next representable neighbor of x in the direction of Y. If x = Y, the result
isx.

AB8-SPACING(X) returns the absolute spacing in the neighborhood of the machine number x. This value
can be determined, for example, by the computation
MAX(X - NEXT _AFTER(X, XMIN), NEXT _AFTER(X, XMAX) - X),

where XMAX is the largest representable machine number, and XMIN is the largest representable
negative machine number.
Note that forx extremely small in magnitude, the result may underflow.

RECIPROCAL_REL_SPACING(X) returns the absolute value of x I ABS_SPACING(X), with the obvious
underflow and overflow problems associated with extremely small or extremely large x.

REMAINDER is defined by the mathematical relation REMAINDER = X -YxN, where N is the integer
nearest the exact value X!Y; whenever IN -X /Y I = 112, then N is even.
Requirement on second parameter: YI= 0.0.

REAL_INT delivers the integer part of the real value x as a real, without intermediate conversion to IN­

TEGER which might cause overflow. Rounding takes place to the nearest integral value, but a
value is returned of the same floating-point type as the parameter.
Requirement on parameter: x unrestricted.

We note that several of these functions are redundant and could be removed. The functions EXPONENT

and SCALE are fundamental, but the functions FRACTION, SPLIT _FLOAT_ v ALUE, and SYNTHESIZE are easily
constructed from the first two. Interfacing to corresponding system-provided facilities is an obvious imple­
mentation of some of these functions.

l\'EXT _AFTER(X, Y) is another fundamental function that can be used to construct others.

We define the functions ABS_SPACING and RECIPROCAL_REL_SPACING in terms of machine numbers,
but analogous (and possibly more useful) functions might be defined in terms of model numbers as suggested
in the Guidelines.

21

2.2.3. Composite mathematical types and operations

a) Standard types and operations

The package REAL_ TYPES provides a floating-point type REAL, unconstrained array types VECTOR and
MATRIX constructed from this REAL and four basic auxiliary subprograms for REALs. If a similar package
LONG_REAL_ TYPES can be provided, it has the same provisions for LONG_REAL.

The two packages CARTESIAN_COMPLEX_TYPES and POLAR_COMPLEX_TYPES provide private type
definitions, selection and composition operations and arithmetic operations so that complex types can be im­
ported into other generic packages as generic parameters. The declaration parts of the two packages are deli­
berately identical.

For polar complex types (i.e. POLAR_COMPLEX_ TYPES.COMPLE..X and
LONG_POLAR_COMPLEX_ TYPES.LONG_COMPLEX) there should be no range constraints on the type of the
components R and lHETA (for modulus and argument of a complex number) to avoid violation of such con­
straints by intermediate computations (in arithmetic complex operations provided by the polar packages).
However, it is assumed that the representation of a polar complex value should always be unique. Therefore
the argument THETA of a polar result will always be transformed to the range - PI <= THETA <= PI • and the
radius (or modulus) R of a polar result will always be transformed to the range 0.0 <= R. Here, the represent­
able REAL value - PI is always different from PI- 27t (not representable). It can therefore be expected that the
pre-defined equality operator gives the expected mathematical result.

No exceptions need be raised by the packages since it is expected that the COMPOSE_ functions as well
as the arithmetic operators check that the resulting polar complex value is in the above ranges for the R and
THETA components and if not transform those components. The pre-defined exception NUMERIC_ERROR may
be raised if (the components of) the results of any operator are outside the range of safe numbers.

It should be guaranteed that all complex operators will not overflow or underflow during computations
if (the components of) the mathematical results are within the range of safe numbers. In particular, if the
pre-defined exception NUMERIC_ERROR could be raised in this case, it should not propagate beyond the
operator body.

b) Generic complex functions

The generic package GENERIC_COMPLEX_FUNCTIONS provides a template for the elementary complex
functions in terms of a generic floating-point type parameter and a related generic type parameter for a com­
plex type. The generic formal parameters have been chosen such that instances can be made for all support­
ed accuracies and also for both representations of COMPLEX.

If the first generic actual parameter is REAL from REAL_ TYPES, then all other required generic actual
parameters (in particular COMPLEX) can be obtained from either CARTESIAN_COMPLEX_TYPES or
POLAR_COMPLEX_TYPES, and from an appropriate package ELEMENTARY_FUNCTIONS_REAL that can quite
well be an instance of GENERIC_ELEMENTARY _FUNCTIONS (see Section 2.1.l.a) with REAL_ TYPES.REAL as
the generic actual parameter (cf. the instantiations given at the end of Section 2.1.3.b). In that case, for all
generic subprogram parameters an explicit association can be omitted, in which case the default is used. To
preserve integrity, it is recommended to use the defaults.

22

If the first generic actual parameter is LONG_REAL from LONG_REAL_ TYPES, then all other required
generic actual parameters (in particular LONG_COMPLEX) can be obtained from either
LONG_CARTESIAN_COMPLEX_ TYPES or LONG_POLAR_COMPLEX_ TYPES, and from an appropriate package
ELEMENTARY _FUNCTION$_LONG_REAL that can again be an instance of
GENERIC_ELEMENTARY _FUNCTIONS, with LONG_REAL as the generic actual parameter.

The exception ARGUMENT_ERROR is declared in the package MATHEMATICAL_EXCEPTIONS (see Sec­
tion 2.1.1.b). It should be raised only for calls of the function LOG with abs x = 0.0. The pre-defined excep­
tion NUMERIC_ERROR may be raised if (the components of) the results of any function are outside the range
of safe numbers.

It should be guaranteed that all complex functions will not overflow or underflow during computations
if (the components of) the mathematical results are within the range of safe numbers. In particular, if the
pre-defined exception NUMERIC_ERROR could be raised in this case, it should not propagate beyond the func­
tion body.

ACKNOWLEDGEMENTS

Starting the work on this proposal was made possible by financial support of the Commission of the
European Communities and the US Department of the Navy.

Graham S. Hodgson (NAG, Oxford) contributed the Ada specifications given in the Sections titled
"Random numbers" and "Composite mathematical types and operations". W.J. Cody (Argonne National
Laboratory) supplied the semantic specifications for the primitive functions. Some other specifications were
derived from results of the EC-supported Multi.Annual Programme project (MAP 750) Pilot implementations
of basic modules for large portable numerical libraries in Ada (see, e.g., Kok 1987).

The following individuals contributed to this Proposal through their comments and by taking part in
discussions in workshops of the SIGAda Numerics Users Committee Working Group organised by Gil
Myers, Ada-Europe Numerics Working Group meetings, working group meetings at Argonne National La­
boratory and meetings of the MAP 750 project team. Inclusion in the list of names does not imply that the
named individual or his or her company approves of the present state of this Proposal or of any of its details.

J.L. Adda (SEMA.:METRA, Montrouge), C.A. Addison (CMI, Bergen), J.G.P. Barnes (Alsys Ltd), M.
Bergman (CWI, Amsterdam), L. Bonami (SIE:MENS a.g., Munchen), J. Carroll (NIHE, Dublin), D.
Clarkson (IMSL), W.J. Cody (Argonne National Laboratory (ANL), Argonne), P. Cohen (AJPO), T.J.
Dekker (Universiteit van Amsterdam), L.M. Delves (University of Liverpool), B. Doman (University of
Liverpool), K.W. Oritz (ANL, Argonne), E. Edberg (NORI, Llnkoping), B. Ford (NAG, Oxford), F.
Forest (Informatique Internationale (II), Rungis), T.J. Froggatt (Systems Designers, Camberley), P. Gen­
dre (CISI, Rungis), G.S. Hodgson (NAG, Oxford), Th. Kalamboukis (Athens SE&BS), K. Kohler (NORI,
Linkoping), A.R. Klumpp (JPL, Pasadena), P. Leroy {ALSYS s.a., Paris), R.F. Mathis (Fairfax), H.
Mumm (NOSC, San Diego), G. Myers (NOSC, San Diego), C. Pursglove (University of Liverpool), K.
Rehmer (Magnavox, Ft Wayne), J.P. Rosen (ENST, Paris), K. Schmidt (Universitat Marburg), L. Shan­
beck (QTC), B.T. Smith (ANL, Argonne), J. Squire (Westinghouse, Baltimore), L. Steenman-Oark
(NAG, Oxford), G.T. Symm (NPL, Teddington), C. Ullrich (Universitat Karlsruhe), G. Volksen
{Universitat Marburg), R.P. Wehrum (SIE:MENS, Miinchen), B.A. Wichmann (NPL, Teddington), D.T.
Winter (CWI, Amsterdam).

23

REFERENCES

ANSI/IEEE Std 754-1985. IEEE Standard for Binary Floating-Point Arithmetic, July 1985.

ANSl/MIL-SID 1815 A. Reference manual for the Ada programming language, January 1983.

Ford, B., Kok, J. and Rogers, M.W. (eds.) Scientific Ada, Cambridge University Press, 1986.

Kok, J. Design and implementation of elementary functions in Ada, CWI Report NM-R8710, April 1987.

Kok, J. and Symm, G.T. A proposal for standard basic functions in Ada, Ada Letters, Vol. IV.3, Nov/Dec
1984, 44-52.

Symm, G.T., Wichmann, B.A., Kok, J., and Winter, D.T. Guidelines for the design of large modular
scientific libraries in Ada, NPL Report DITC 37/84 and CWI Report NM-N8401, March 1984 (also in: Ford
et al., 1986).

Whitaker, W.A. and Eicholtz, T.C. An Ada implementation of the Cody-Waite "Software manual for the
elementary functions", US Air Force, 1982.

